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Abstract

Multiple protocols implementing exciting cryptographic functionalities using blockchains
such as time-lock encryption, one-time programs and fair multi-party computation assume the
existence of a cryptographic primitive called extractable witness encryption. Unfortunately,
there are no known efficient constructions (or even constructions based on any well studied as-
sumptions) of extractable witness encryption. In this work, we propose a protocol that uses a
blockchain itself to provide a functionality that is effectively the same as extractable witness en-
cryption. By making small adjustments to the blockchain code, it is possible to easily implement
applications that rely on extractable witness encryption and existed only as theoretical designs
until now. There is also potential for new applications. As a key building block, our protocol
uses a new and highly efficient batched dynamic proactive secret sharing scheme which may
be of independent interest. We provide a proof-of-concept implementation of the extractable
witness encryption construction and the underlying dynamic proactive secret sharing protocol.

1 Introduction

In the last few years numerous blockchain-based constructions for exciting and previously consid-
ered impossible cryptographic primitives have emerged. Liu et al. [LJKW18] propose a time-lock
encryption scheme that allows one to encrypt a message such that it can only be decrypted once a
certain deadline has passed, without relying on trusted third parties or imposing a high computa-
tional overhead on the receiver. The construction of Choudhuri et al. [CGJ+17] achieves fairness in
multi-party computation against a dishonest majority, which is a problem with known impossibility
results in the standard model. Goyal and Goyal [GG17] present a first construction for one-time
programs (that run only once and then “self-destruct”) that does not use tamper-proof hardware.
These constructions have something in common - they all rely on blockchains and the notion of
extractable witness encryption. Indeed, it almost seems like blockchains and witness encryption is
a “match made in heaven”. Introduced by Garg et al. [GGSW13], roughly, a witness encryption
scheme is a primitive that allows one to encrypt a message with respect to a particular problem
instance. Such problem instance could be a sudoku puzzle in a newspaper or an allegedly bug-free
program. In general, it can be any NP search problem. If the decryptor knows a valid witness for
the corresponding problem instance, such as a sudoku solution or a bug in the program, he can
decrypt the ciphertext. Extractable security is a strong notion of security for witness encryption. If
a witness encryption scheme is extractable, then an adversary who is able to learn some non-trivial
information about the encrypted message is also able to provide a witness for the corresponding
problem instance. Unfortunately, extractable witness encryption usually requires a strong form
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of obfuscation, so-called differing-inputs obfuscation [BGI+12, ABG+13]. Currently, there are no
practical extractable witness encryption schemes known. In fact, there exist now constructions
based on standard assumptions and the work of Garg et al. [GGHW14] suggests that it even might
be impossible to achieve extractable witness encryption with arbitrary auxiliary inputs.

In this work, we use a blockchain to achieve a functionality that is essentially equivalent to
extractable witness encryption. Roughly, we allow users to encode a secret and specify a release
condition for this secret. A predefined set of blockchain users (in the following, miners) will
then jointly and securely store the encoding and release the secret once the release condition
is satisfied. We introduce a formal definition for extractable witness encryption on blockchain
(eWEB) and a protocol that can augment existing blockchains with this functionality. By making
only small changes to the miner code, it is now possible to easily implement all the applications
that use extractable witness encryption as a building block (see §5). Conveniently, many such
constructions ([LJKW18, CGJ+17, GG17]) already rely on the guarantees provided by a blockchain,
so building extractable witness encryption into the blockchain does not change the assumptions
made by these protocols. We provide a formal proof of security of our construction, relying on the
guarantees provided by the blockchain setting. Specifically, we select a set (or rather, a multiset)
of miners such that the majority of the selected miners are honest. As pointed out by Goyal and
Goyal [GG17], one way to select such set of miners is by selecting miners who were responsible for
mining the last n blocks (where n is large enough). Indeed, a single miner might mine multiple
blocks and if so, appears multiple times in the set. For proof of work blockchains such as Bitcoin, the
probability of successful mining is proportional to the amount of computational power, and hence if
a majority of the computing power is honest, majority of the selected miners can be expected to be
honest. For proof of stake blockchains, where the probability of successful mining is proportional to
the amount of coins possessed by the miner, this property follows from the assumption that honest
miners possess the majority of stake in the system.

Scheme
Dynamic
setting

Adversary Threshold Network
Comm.
(amort.)

Comm.
(non-
amort.)

Herzberg et al. [HJKY95] No Active t/n < 1/2 synch. O(n2) O(n2)
Cachin et al. [CKLS02] No Active t/n < 1/3 asynch. O(n4) O(n4)
Desmedt et al. [DJ97] Yes Passive t/n < 1/3 asynch. O(n2) O(n2)
Wong et al. [WWW02] Yes Active t/n < 1/2 synch. exp(n) exp(n)
Zhou et al. [ZSVR05] Yes Active t/n < 1/3 asynch. exp(n) exp(n)
Schultz-MPSS [SLL08] Yes Active t/n < 1/3 asynch. O(n4) O(n4)
Baron et al. [BDLO15] Yes Active t/n < 1/2− ε synch. O(1) O(n3)
CHURP [MZW+19] Yes Active t/n < 1/2 synch. O(n2) O(n2)
This work Yes Active t/n < 1/2 synch. O(n) O(n2)

Figure 1: Comparison of PSS Schemes. The Comm. columns indicate the communication cost per
secret in each hand-off round.

To ensure that dishonest miners cannot leak the user’s secret, our extractable witness encryption
scheme is built on top of a secret sharing scheme. A secret sharing scheme enables one party to
distribute shares of a secret to n parties and ensures that an adversary in control of t out of n
parties will learn no information about the secret. In our protocol, the miners hold the shares of
the secret. Since we assume that the majority of the selected miners are honest, using a threshold
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of t = n
2 −1 enables us to securely store the secret. However, traditional secret sharing schemes are

insufficient for our setting. In our extractable witness encryption construction, the parties holding
the shares of the secrets are the miners. These can join or leave the system at any time. Thus,
the set of parties holding the secret shares is constantly changing. To achieve security in this case,
dynamic proactive secret sharing (DPSS) is required ([HJKY95, DJ97, SLL08]). A part of our
protocol is a new and highly optimized batched DPSS scheme. We are specifically interested in the
batched setting as there might be thousands of secrets stored in the system at any given time and
we need an efficient way to update all of those secrets in parallel. In contrast to previous work on
batched DPSS [BDLO15] that focused on a single client submitting a batch of secrets and does not
allow to store and release secrets independently, we allow for multiple different clients dynamically
sharing and releasing secrets. Our construction is the most efficient DPSS scheme that allows the
highest-possible adversarial threshold of 1

2 . We have formally proven secure and implemented this
new scheme and believe that it is of independent interest (see Figure 1 for a comparison with other
PSS schemes).

In summary, we make the following contributions:

� We propose a new cryptographic primitive - extractable witness encryption on blockchain (§3).

� We design and formally prove secure a protocol which satisfies the notion of extractable
witness encryption on blockchain (§4).

� We present and formally prove secure a highly efficient batched dynamic proactive secret
sharing construction (§2).

Organization We begin by discussing DPSS - the key building block in our system (§2). We
discuss the DPSS functionality, including adversarial model and definition of security, and provide
an overview of our DPSS construction. We provide the full construction in Appendix C. Next, we
formally define extractable witness encryption on blockchain in Section 3, including syntax (§3.1),
and security definition (§3.2). In Section 4.2 we provide our construction for extractable witness
encryption on blockchain, and we give its security proof in Appendix E. In Section 5 we discuss
various applications that can be implemented using our constructions. We discuss related work on
dynamic proactive secret sharing and extractable witness encryption in Section 6.

2 Dynamic Proactive Secret Sharing (DPSS)

We start by discussing dynamic proactive secret sharing, which is the key building block of our
extractable witness encryption on blockchain construction. We first informally explain the DPSS
process, and provide the adversarial model and the formal definition of its security properties. Then,
we give an overview of our protocol. The full construction and its security proof are provided in
the Appendix (C and D).

2.1 DPSS Background

A dynamic proactive secret sharing scheme (DPSS) allows a party to distribute shares of a secret
to n parties. The scheme ensures that an adversary in control of some threshold number of parties
t will learn no information about the secret. Over the course of running the protocol the set of
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parties holding the secret is constantly changing, and the adversary might “release” some parties
(corresponding users regain control of their systems) and corrupt new ones.

A DPSS scheme typically consists of three phases: setup, hand-off, and reconstruction.
In the setup phase, one or more independent clients secret-share a total of m secrets to a set

of n parties, known as a committee, denoted by C = {P1, . . . , Pn}. After the setup phase, each
committee member holds one share for each secret s.

As the protocol runs, the hand-off phase is periodically invoked. In the hand-off phase, the
sharing of each secret is passed from the old committee, C, to a new committee, C′. This process
reflects parties leaving and joining the committee. After the hand-off phase, all parties in the old
committee delete their shares, and all parties in the new committee hold a sharing for each secret
s. The hand-off phase is particularly challenging, since during the hand-off a total of 2t parties
may be corrupted (t parties in the old committee and t parties in the new committee).

When a client (which need not be one of the clients that secret-shared the secrets in the setup
phase) asks for the reconstruction of some specific secret s?, all parties in the current committee
and the client engage in a reconstruction process to allow the client learn the secret s?.

2.1.1 Adversary Model

We consider a fully malicious adversary A with the power to adaptively choose parties to corrupt
at any time. A can corrupt any number of clients in the setup phase and learn the secrets held by
the corrupted clients. When a party Pi is corrupted by A, A can arbitrarily control the behavior of
Pi and modify the memory state of Pi. Even if A releases its control of some party Pi, the memory
state of Pi may have already been modified; e.g., its share might be erased.

Note that for a party Pi in both the old committee C and the new committee C′, if A has the
control of Pi during the hand-off phase, then Pi is considered to be corrupted in both committees.
If A releases its control before the hand-off phase in which the secret sharing is passed from C to
C′, then Pi is only considered to be corrupted in the old committee C. Similarly, if A only corrupts
Pi after the hand-off phase, Pi is only considered to be corrupted in the new committee C′.

In this paper, we focus on computationally bounded adversaries. For each committee C with a
threshold t < |C|/2, A can corrupt at most t parties in C.

For simplicity, in the following, we assume that there exist secure point-to-point channels be-
tween the parties and the corruption threshold is a fixed value t. Our construction can be easily
adapted to allow different thresholds for different committees (see Appendix C.5 for more details).

2.1.2 DPSS Security Definition

A dynamic proactive secret-sharing scheme is required to satisfy two properties, robustness and
secrecy. At a high-level, robustness requires that it should always be possible to recover the secret.
Secrecy requires that an adversary should not learn any further information about the secret beyond
what has been learned before running the protocol. Our formal definition is similar to the one used
by Baron et al. [BDLO15], but in contrast to their work we consider not only the scenario of one
client submitting the secrets, but many different clients submitting (and requesting release of)
secrets at different points in time.

Robustness. For any PPT adversary A with corruption threshold t holds that after each setup
phase, there exists a fixed secret s? for the sharing distributed during this phase. If the setup phase
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was executed by an honest client, this secret is the same as the one chosen by this client. When at
some point an honest client asks for a reconstruction of this secret, the client receives the correct
secret s?.

Secrecy. For any PPT adversary A with corruption threshold t, there exists a simulator S with
access to an ideal Idealsafe (described in Procedure 2), such that the view of A interacting with S
is computationally indistinguishable from the view in the real execution.

Ideal Procedure 2: Idealsafe

1. Idealsafe receives the secrets from the clients in the setup phase.

2. When an honest client asks for the reconstruction of some specific secret s?, Idealsafe sends
s? to that client.

Definition 2.1. A dynamic proactive secret-sharing scheme is secure if for any PPT adversary A
and threshold t, it satisfies both robustness and secrecy.

2.2 Overview: Our DPSS Construction

We now provide an overview of our batched DPSS construction. We first discuss the hand-off phase
of our construction in the semi-honest case (§2.2.1) and then explain how it can be modified when the
adversary is fully malicious (§2.2.2). Finally, we elaborate on the setup (§2.2.3) and reconstruction
phases (§2.2.4), and provide an intuition for the security proof of our construction (§2.2.5).

In the following, we assume the corruption threshold for each committee is fixed to t. The
construction is based on Shamir Secret Sharing Scheme [Sha79]. We use [x]d to denote a degree-d
sharing, i.e., (d + 1)-out-of-n Shamir sharing. It requires at least d + 1 shares to reconstruct the
secret and any d or fewer shares do not leak any information about the secret. Note that Shamir
Secret Sharing is additively homomorphic.

2.2.1 Skeleton of Our Construction: Semi-honest Case

We first explain the high-level idea of our protocol in the semi-honest setting; i.e., all parties honestly
follow the protocol. The crux of our construction is that both the old and the new committee hold
a sharing of a random value. While the sharing is different for the two committees, the value this
sharing corresponds to is the same. Let ([r]t, [r̃]t) denote these two sharings, where [r]t is held by
the old committee, [r̃]t is held by the new committee, and r = r̃. Suppose the secret sharing we
want to refresh is [s]t, held by the old committee. Then the old committee will compute the sharing
[s + r]t = [s]t + [r]t and reconstruct the secret s + r. Since r is a uniform element, s + r does not
leak any information about s. Now, the new committee can compute [s̃]t = (s + r) − [r̃]t. Since
r̃ = r, we have s̃ = s. This whole process is split into preparation and refresh phases:

� In the preparation phase, parties in the new committee prepare two degree-t sharings of the
same random value r(= r̃), denoted by [r]t and [r̃]t. The old committee receives the shares

5



of [r]t and the new committee holds the shares of [r̃]t. We refer to these two sharings as a
coupled sharing.

� In the refresh phase, the old committee reconstructs the sharing [s]t + [r]t and publishes the
result. The new committee sets [s̃]t = (s+ r)− [r̃]t.

We start by explaining the preparation phase with the goal of generating a coupled sharing of a
random value. In the following, let C denote the old committee and C′ denote the new committee.
Intuitively, the new committee can prepare a coupled sharing as follows:

1. Each party P ′i ∈ C′ prepares a coupled sharing ([u(i)]t, [ũ
(i)]t) of a random value and distributes

[u(i)]t to the old committee and [ũ(i)]t to the new committee.

2. All parties in the old committee compute [r]t =
∑n

i=1[u
(i)]t. All parties in the new committee

compute [r̃] =
∑n

i=1[ũ
(i)]t.

Since for each i holds u(i) = ũ(i), we have r = r̃. However, this way of preparing coupled sharings is
wasteful since at least (n− t) coupled sharings are generated by honest parties, which are uniformly
random to corrupted parties. In order to get (n− t) random coupled sharings instead of just 1, we
borrow an idea from Damg̊ard et al. [DN07].

In the work of Damg̊ard et al., parties need to prepare a batch of random sharings which will be
used in an MPC protocol. All parties first agree on a fixed and public Vandermonde matrix MT

of size n× (n− t). An important property of a Vandermonde matrix is that any (n− t)× (n− t)
submatrix of MT is invertible. To prepare a batch of random sharings, each party Pi generates
and distributes a random sharing [u(i)]t. Next, all parties compute

([r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t)
T = M([u(1)]t, [u

(2)]t, . . . , [u
(n)]t)

T,

and take [r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t as output. Since any (n − t) × (n − t) submatrix of M is
invertible, given the sharings distributed by corrupted parties, there is a one-to-one map from
the output sharings to the sharings distributed by honest parties. If the input sharings of the
honest parties are uniformly random, the one-to-one mapping ensures that the output sharings are
uniformly random as well [DN07].

Note that any linear combination of a set of coupled sharings is also a valid coupled sharing.
Thus, in our protocol, instead of computing ([r]t, [r̃]t) =

∑n
i=1([u

(i)]t, [ũ
(i)]t), parties in the old

committee can compute

([r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t)
T = M([u(1)]t, [u

(2)]t, . . . , [u
(n)]t)

T,

and parties in the new committee can compute

([r̃(1)]t, [r̃
(2)]t, . . . , [r̃

(n−t)]t)
T = M([ũ(1)]t, [ũ

(2)]t, . . . , [ũ
(n)]t)

T.

Now all parties get (n− t) random coupled sharings. The amortized cost of communication per
pair is O(n) elements.

We now describe the refresh phase. For each sharing [s]t which needs to be refreshed, one
random coupled sharing ([r]t, [r̃]t) is consumed. Parties in the old committee first select a special
party Pking. To reconstruct [s]t + [r]t, parties in the old committee locally compute their shares of
[s]t + [r]t, and then send the shares to Pking. Then, Pking uses these shares to reconstruct s+ r and
publishes the result. Finally, parties in the new committee can compute [s̃]t = (s+ r)− [r̃]t.
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2.2.2 Moving to a Fully-Malicious Setting

When faced with a fully-malicious adversary, three problems arise.

� In the preparation phase, a corrupted party may distribute an inconsistent degree-t sharing
or incorrect coupled sharing.

� In the refresh phase, a corrupted party may provide incorrect share to Pking, which results in
a reconstruction failure.

� A malicious Pking may provide an incorrectly reconstructed value.

We address these problems by checking the correctness of couple sharings in the preparation
phase and relying on polynomial commitments to transform a plain Shamir secret sharing into a
verifiable one.

Checking the Correctness of Coupled Sharings. Recall that any linear combination of
coupled sharings is also a valid coupled sharing. Thus, to increase efficiency, instead of checking
the correctness of each coupled sharing, it is possible to check a random linear combination of the
coupled sharings distributed by each party.

To protect the privacy of the coupled sharing ([u(i)]t, [ũ
(i)]t) generated by P ′i , P ′i will generate

one additional random coupled sharing as a random mask, which is denoted by ([µ(i)]t, [µ̃
(i)]t).

Consider the following two sharings of polynomials of degree-(2n− 1):

[F (X)]t =
n∑
i=1

([µ(i)]t + [u(i)]t ·X)X2(i−1),

[F̃ (X)]t =
n∑
i=1

([µ̃(i)]t + [ũ(i)]t ·X)X2(i−1).

If all coupled sharings are correct, then ([F (λ)]t, [F̃ (λ)]t) is also a coupled sharing for any λ. Oth-
erwise, the number of λ such that ([F (λ)]t, [F̃ (λ)]t) is a coupled sharing is bounded by 2n −
1. Therefore, it is sufficient to test ([F (λ)]t, [F̃ (λ)]t) at a random evaluation point λ. Note
that each individual coupled sharing ([u(i)]t, [ũ

(i)]t) is masked by ([µ(i)]t, [µ̃
(i)]t). Therefore, re-

vealing ([F (λ)]t, [F̃ (λ)]t) does not leak any information about the individual coupled sharings
{([u(i)]t, [ũ(i)]t)}ni=1.

Therefore, all parties first generate a random challenge λ (see Appendix C.1). Parties in the old
committee compute [F (λ)]t and then publish their shares. Parties in the new committee compute
[F̃ (λ)]t and then publish their shares. Finally, all parties check whether ([F (λ)]t, [F̃ (λ)]t) is a valid
coupled sharing.

If the check fails, we need to pinpoint the parties who distributed incorrect coupled sharings.
Each coupled sharing ([u(i)]t, [ũ

(i)]t) is masked by ([µ(i)]t, [µ̃
(i)]t). Therefore it is safe to open the

whole sharing ([µ(i)]t + [u(i)]t · λ, [µ̃(i)]t + [ũ(i)]t · λ) and check whether it is a valid coupled sharing.
For each i, parties in the old committee compute [µ(i)]t + [u(i)]t · λ and publish their shares, and
parties in the new committee compute [µ̃(i)]t + [ũ(i)]t ·λ and publish their shares. This way, we can
tell which coupled sharings are inconsistent. This inconsistency has two possible causes:

� The coupled sharing distributed by a party (in the following, dealer) were invalid (secrets
were not the same or t-sharing was invalid).
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� A corrupted party provided an incorrect share.

The first case implies that the dealer is a corrupted party. To rule out the second possibility, we
will rely on polynomial commitments, which can be used to transform a plain Shamir secret sharing
into a verifiable one so that an incorrect share can be identified and rejected by all parties.

Relying on Polynomial Commitments. A degree-t Shamir secret sharing corresponds to a
degree-t polynomial f(·) such that: (a) the secret is f(0), and (b) the i-th share is f(i). Thus,
each dealer can commit to f by using a polynomial commitment scheme (A.5) to add verifiability.

A polynomial commitment scheme allows the dealer to open one evaluation of f (which corre-
sponds to one share of the Shamir secret sharing) and the receiver can verify the correctness of this
evaluation value. Essentially, whenever a dealer distributes a share it also provides a witness which
can be used to verify this share. Informally, a polynomial commitment scheme should satisfy two
binding properties and one hiding property:

� Polynomial Binding: One commitment cannot be opened to two different polynomials.

� Evaluation Binding: One commitment cannot be opened to two different values at the same
evaluation point.

� Hiding: The commitment should not leak any information about the committed polynomial.

We use the polynomial commitment as follows: In the beginning, each dealer first commits to
the sharings it generated and opens the shares to corresponding parties. To ensure that each party
is satisfied with the shares it received, there is an accusation-and-response phase that proceeds as
follows:

1. Each party publishes (accuse, P ′i ) if the share received from P ′i does not pass the KZG
verification algorithm.

2. For each accusation made by Pj , P
′
i opens the j-th share to all parties, and Pj uses the new

share published by P ′i .

Note that an honest party will never accuse another honest party. Additionally, if a malicious party
accuses an honest party, no more information is revealed to the adversary than what the adversary
knew already. Therefore it is safe to reveal the share sent from P ′i to Pj . After this step, all parties
should always be able to provide valid witnesses for their shares.

From now on, each time a party sends or publishes a share, this party also provides the associated
witness to allow other parties verify the correctness of the share.1 Since honest parties will always
provide shares with valid witnesses and there are at least n − t ≥ t + 1 honest parties, all parties
will only use shares that pass verification. Intuitively, this solves the problem of incorrect shares
provided by corrupted parties since corrupted parties cannot provide valid witnesses for those
shares. Due to a subtle limitation of the KZG commitment scheme, actually we need to add an
additional minor verification step (see Appendix B for details).

We give the complete description of the hand-off protocol in Figure 18 in Appendix C.1.

1Sometimes parties will need to compute linear operations on sharings. Since in our construction we use the KZG
commitment scheme [KZG10], which is linearly homomorphic, all parties can locally compute the commitment of the
result.
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2.2.3 DPSS Setup Phase

At a high level, the setup phase uses a similar approach to the hand-off phase. First, the committee
prepares random coupled sharings. For each secret s distributed by a client, one random sharing
[r]t is consumed. The client receives the whole sharing [r]t from the committee and reconstructs
the value r. Finally, the client publishes s+ r. The committee then computes [s]t = s+ r− [r]t. As
in the hand-off phase, the validity of the distributed shares is verified using the KZG commitment
scheme. The full description of the setup phase is in Figure 25 in Appendix C.2.

2.2.4 DPSS Reconstruction Phase

When a client asks for the reconstruction of some secret s?, all parties in the current committee
simply send their shares of [s?]t and the associated witnesses to the client. Then the client can
reconstruct the secret using the first t+1 shares that pass the verification. The complete description
of the reconstruction protocol is in Figure 26 in Appendix C.3.

2.2.5 Robustness and Secrecy of Our Construction.

We give a high-level idea of our proof.
To show robustness, note that all parties together verify the correctness of the sharings and

commitments dealt by each party. This step ensures that the sharings determined by the shares
held by honest parties are correct openings of the commitments. If a corrupted party provides an
incorrect share with a valid witness, it effectively breaks the evaluation binding property of the
KZG commitment scheme. Therefore, with overwhelming probability, incorrect shares provided by
corrupted parties will be rejected, and each sharing can be reconstructed by using the shares with
valid witnesses.

As for secrecy, note that for each sharing, corrupted parties receive at most t shares, which are
independent of the secret. Therefore, when an honest party needs to distribute a random sharing,
the simulator can send random elements to corrupted parties as their shares without fixing the
shares of honest parties. Since we use the perfectly hiding variant of the KZG commitment, the
commitment is independent of the secret, and can be generated using the trapdoor of the KZG
commitment. Furthermore, we can adaptively open t shares chosen by the adversary after the
commitment is generated. This allows our protocol to be secure against adaptive corruptions.

See Appendix D for more details.

3 Defining Extractible Witness Encryption on the Blockchain

Witness encryption allows a party to encrypt a message to an instance x of an NP language. Another
party can then decrypt the ciphertext using a witness that x is in the language. The traditional
notion of security for witness encryption schemes introduced by Garg et al. [GGSW13] is called
soundness security and states that if a message was encrypted to some instance x that is not in the
language, then no adversary can learn any non-trivial information about the encrypted message.
However, this security notion is often insufficient. Many constructions [LJKW18, CGJ+17, GG17]
consider the case where the instance x is in the language, and must rely on a stronger version
of security for witness encryption schemes, the so-called extractable security. Informally, if an
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Step 1: Storing data Step 2: Periodically updating shares

data M,
condition F

(F, fragment Mi)

Mi,new = 
SecretsHandoff(Mi)

(F, fragment Mi)

Step 3: Releasing data

M =SecretRelease({Mi})

If (F(w) == True):
Release(Mi)SecretStorage(M,F)

Figure 3: High-level overview of eWEB.

adversary is able to distinguish between two different ciphertexts encrypted to the same problem
instance, then he is also able to provide a witness to this problem instance.

In our work we propose to use a blockchain to achieve a similar goal. In our setting we distin-
guish between users who deposit secrets (depositors), users who request that a secret be released
(requesters), and a changing set of miners who are executing these requests. A depositor who
wishes to securely store a secret until some condition is satisfied will distribute the encoded secret
among the miners and specify the release condition. When a requester wishes to learn the secret,
they must provide a valid witness for the release condition. The miners will check the witness, and
if it is valid, provide the secret to the requester in a secure way. In addition to storing and releasing
secrets, we require a hand-off procedure to be periodically executed by the miners, since the set of
miners is constantly changing. During the hand-off process, the secrets are handed from the old set
of miners (old committee) to the new set of miners (new committee). The full process is depicted
in Figure 3. Intuitively, no adversary should learn any non-trivial information about a user’s secret
unless he already knows a witness for the corresponding release condition. Additionally, no one
should be able to change stored secrets.

We now provide a formal syntax of the primitive in §3.1. Using this syntax, we define the
security of extractable witness encryption on a blockchain by providing a security game in §3.2.

3.1 Syntax

The extractable witness encryption on blockchain (eWEB) system consists of the following, possibly
randomized and interactive, subroutines:

SecretStorage(M ,F ) → (id, {frag0, .., fragn}, F ) : Depositor uses the SecretStorage function to
store a secret M which can be released to a requester who knows a witness w s.t. F (w) is true.
After interacting with the depositor, each of the n miners obtains some data (in the following, we
call it a “fragment” of the secret) frag i that is associated with the secret storage request with the
identifier id.

SecretsHandoff ({frag0
0 , .., frag0

n}, .., {fragm
0 , .., fragm

n })→ ({f̃rag0
0, .., f̃rag0

n}, .., {f̃ragm0 , .., f̃ragmn }) :
Miners periodically execute the SecretsHandoff function to hand over all m stored secrets from the
old committee to the new committee. Each miner i of the old committee possesses m fragments
frag0

i , frag1
i , .., fragmi at the start of the hand-off protocol. Each miner i of the new committee

possesses m fragments f̃rag0
i , f̃rag1

i , .., f̃ragmi at the end of the hand-off protocol.

SecretRelease(id ,w) → M or ⊥ : A requester uses this function to request the release of the
secret with the identifier id. The requester specifies the witness w to the decryption condition.
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Miners then check whether the requester holds a valid witness. If so, as a result of the interaction
with the miners, the requester obtains the secret M . Else, the function returns ⊥, indicating a
failed attempt.

3.2 Security Game Definition

We define security via a game.

Definition 3.1 (Security Game). The game is played between the adversary, A, and a challenger,
C. A is a probabilistic, polynomial-time adversary who controls t parties of the old committee and t
parties of the new committee during each handoff round. The game is parametrized by the number
of parties n participating in each round as well as the number of rounds d. There exists a set
of t ∗ d (unique) party identifiers and corresponding public keys of the honest parties. The set
of public keys of honest parties is denoted by PKH . This set is known to A. The decryption
condition F is public information as well. The game takes as input a list W of witnesses for F :
∀w ∈ W : F (w) = true, which is known to the challenger. Note that the same witness can occur
multiple times in this list, and so if there exists at least one witness for W we assume w.l.o.g. that
W is of length d. If no witness for F exists, the list is empty. Whenever messages are exchanged
between parties, the adversary sees them (including messages sent from honest to honest parties).
1. A chooses two strings M1 and M2 of the same length, and submits both to the challenger.

2. The challenger flips a coin, b ∈ {0, 1}, uniformly at random, which is fixed for the duration of
the game.

3. In each round, until A finishes the game, the following happens:
The new committee is chosen and secrets (if any exist) are handed over

� A chooses a set T of t indices for the adversarial parties of the new committee and generates
a public- and secret key pair (pki, ski) for each adversarial member Ci of this committee.
Then, A sends T and the public keys {pki}i∈T to C.

� A chooses a set H of n− t public keys from the set PKH for the honest parties of the new
committee and sends H to C.

� If at least one secret is stored on the blockchain, C carries out SecretsHandoff for each
honest member of the old and the new committee.

4. Additionally, until A finishes the game, one of the following can happen in each round:
(a) A may ask the challenger to create a secret storage request for the challenge

(only once)
� If this is the first time A makes such request, the challenger carries out SecretStorage for the

secret Mb and the secret release condition F .

(b) If the challenge secret storage request was executed, A may ask the challenger to create
a secret release request for the challenge for an honest party with the party
identifier pid.

� If pid corresponds to an honest party, C carries out SecretRelease for the challenge request
using the public key pk of the party with the identifier pid and a witness w ←W .

(c) A may create new secret deposits
� C carries out SecretStorage for the new request for each honest member of the committee

using the information supplied by the adversary.

(d) A may create new release requests for any number of storage requests with IDs
idi

11



� C carries out SecretRelease for each request idi for each honest member of the committee
using the information supplied by the adversary.

(e) A may end the game with its guess, b′, for b.

Definition 3.2. (Secrecy) For a security parameter λ, number of parties participating in each
round n, number of rounds d, corruption threshold t, decryption condition F , and list of witnesses
W of size d (or 0 if no witness for F exists) s.t. ∀w ∈ W : F (w) = true, let the advantage
Adv[A, 1λ, n, d, F ] of the adversary A in the game introduced above be defined as follows:

Adv[A, 1λ, n, d, t, F,W ] =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
The system provides secrecy if for any polynomial-time probabilistic adversary A and any

predicate function F that is verifiable in PPT there exists a PPT extractor E that uses A as an
oracle such that:

Adv[A, 1λ, n, d, t, F,W ] ≥ 1
poly(n) ⇒ Pr[EA(F, 1n) = w | F (w) = True] ≥ 1

poly ′(n) ,

where poly(n), poly′(n) are some polynomials.

Practically, this definition means that if the adversary is able to distinguish between the exe-
cution of the protocol that uses a message M0 as a secret from the execution that uses message
M1 as a secret, then it is also possible to extract a valid witness for the decryption condition F
using this adversary. Note that intuitively this notion is very similar to the extractable security of
witness encryption, which states that if an adversary can distinguish between two ciphertexts then
he can also extract a witness from the corresponding problem instance.

Furthermore, we define a robustness property of the scheme as follows:

Definition 3.3. (Robustness) For any PPT adversary A with corruption threshold t holds that
after the SecretStorage(M ,F ) execution, there exists a fixed secret (identified by id) for the dis-
tributed fragmentation {frag0, .., fragn}. In particular, the fragmentation dealt by an honest de-
positor has the same secret M as the one chosen by this depositor. When at some point an honest
requester executes SecretRelease(id ,w), where F (w) = true, the requester reconstructs the correct
secret M .

4 Our eWEB Protocol Design

In this section, we introduce our construction. First, we provide an overview of the assumptions that
we rely on in our construction (§4.1). Then, we describe our eWEB construction (§4.2). Finally,
we provide a security proof sketch for this construction (§4.3), with a formal proof in Appendix E.

Additionally, in Appendix F we provide a so-called PublicWitness protocol that is very similar
to our eWEB construction, but targets a slightly different use case scenario. In this scenario the
secret is made public after a single successful release request.

4.1 Assumptions

Adversary model. We assume that the adversary is able to control a polynomial number of users and
miners, subject to the constraint that the blockchain has (n2 + 1, n)-chain quality, meaning that for
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each n or more continuous blocks mined in the system, more than half were mined by honest parties.
As pointed out by Goyal and Goyal [GG17], for proof of work blockchains, where the probability of
successful mining is proportional to the amount of computational power, this assumption follows
from the assumption that honest miners possess the majority of the computational power in the
system. We assume that this majority is “significant enough” (to e.g. defeat selfish mining attacks
as is required for e.g. Bitcoin security [ES14]). For proof of stake blockchains, where the probability
of successful mining is proportional to the amount of coins possessed by the miner, it follows from
the assumption that honest miners possess the majority of stake in the system. In practice, we
pick an n that is big enough to provide this property with only a very small error probability.
Our eWEB construction is compatible with both proof of work and proof of stake blockchains that
satisfy this condition.

We assume that once an adversary corrupts a party it remains corrupted. The adversary
cannot adaptively corrupt previously honest parties. When a party is corrupted by the adversary,
the adversary can arbitrarily control this party’s behaviour and internal memory state. We do not
distinguish between adversarial parties and honest parties that behave maliciously unintentionally;
e.g., those that have connection issues and can not access the blockchain to participate in the
protocol.

Infrastructure model. It is common for public keys to be known in blockchains. In addition to
this assumption, we require that each party pi has a unique identifier, denoted by pidi that is known
to all other parties in the system as well. In practice, this unique identifier can be the hash of the
party’s public key. For simplicity, we present the protocol as if there were authenticated channels
between all parties in the system. In practice, these channels can be realized using standard
techniques such as signatures.

Communication model. Our DPSS scheme assumes secure point-to-point communication chan-
nels. In the decentralized blockchain setting of the ExtWe system it is preferable not to make such
an assumption. As mentioned in Churp [MZW+19], this assumption is undesireable since estab-
lishing direct point-to-point channels could comprise nodes’ anonymity and could lead to targeted
attacks. Instead, we assume that parties communicate via an existing blockchain. We distinguish
between posting a message on the blockchain and using the blockchain for broadcast. The latter can
be implemented e.g., using the Transaction Ghosting technique introduced in Churp [MZW+19].
Point-to-point channels can be simulated using IND-CCA secure encryption and broadcasting the
ciphertexts.

Storage. We assume that in addition to the internal storage of the parties there exists some
publicly accessible off-chain storage, and it is cheaper to save a message using this storage rather
than save the same message on the blockchain. The robustness of our system depends on the
robustness properties of the off-chain storage and thus storage systems with a reputation for high
availability should be chosen. However, as we show in Appendix E, malicious off-chain storage does
not impact the secrecy guarantees of our system. Alternatively, at a higher cost, it is also possible
to simply use on-chain storage for everything.

4.2 Our eWEB Construction

We now sketch the workflow of our protocol. Given a secret message M and a release condition
F , the depositor stores the release condition F on the blockchain and secret-shares M among
the miners using the secret storage (setup) algorithm of the DPSS scheme. During the periodically
executed hand-off phase of the protocol, the secrets are passed from the miners of the old committee
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to the miners of the new committee (we elaborate on how these committees are chosen in §4.2.1)
using the DPSS hand-off algorithm. In order to retrieve a stored secret, a requester U needs to
prove that they are eligible to do so. This poses a challenge. An insecure solution is to just send
a witness w to the miners such that the release condition is satisfied: F (w) = true. One obvious
problem with this solution is the fact that a malicious miner is able to use the provided witness to
construct a new secret release request and retrieve the secret himself. To solve this problem, instead
of sending the witness in clear, the user will prove that they know a valid witness. Thus, while the
committee members are able to check the validity of the request and privately release the secret to
U , the witness remains hidden. In the protocol, we rely on non-interactive zero knowledge proofs
(see 4.2.3) for relation R = {(pk, w) | F (w) = true and pk = pk}, where F (·) is the secret release
condition submitted by the depositor and pk is the public key of user U and is used to identify the
user eligible to receive the secret. After the miners verified the validity of the request, they engage
in the DPSS’s secret reconstruction algorithm with the requester U to release the secret to U .

We provide the full secret storage protocol in Figure 6. The hand-off protocol is given in
Figure 7. The secret release protocol is in Figure 8. The complete construction is provided in
Figure 9. We now elaborate on the details we left out from the above sketch of the construction.

4.2.1 Choosing miner committee.

At any point of time, all parties must know the current committee. In our protocol, we chose the
initial committee to be the miners that mined the most recent n blocks. Then, when the hand-off
phase is executed, the old committee passes the secrets to the miners that mined the most recent
n blocks - these constitute the new committee. Note that this way the size of the committee never
changes and all parties can determine the current committee by looking at the blockchain state.
It is possible that some committee miners receive more information about the secrets than others
- roughly, if a party mined m out of the last n blocks, this party receives m

n of all the shares.
This reflects the distribution of the computing power (for POW blockchains) or stake (for POS
blockchains) in the system.

4.2.2 Handling changing committees.

To handle the changing set of miners in the committee holding the secrets, we employ our DPSS
construction (§2.2). Hereby we access all DPSS algorithms (setup, hand-off, secret reconstruction)
in a black-box way.

4.2.3 Proving knowledge of the witness.

To prove the knowledge of a valid witness, we rely on non-interactive zero knowledge proofs (NIZKs).
Roughly, such proofs allow one party (the prover) to prove validity of some statement to another
party (the verifier), in a way that nothing except for the validity of the statement is revealed. In
our construction we specifically rely on non-interactive zero knowledge proofs of knowledge, which
allow the prover convince the verifier that they know a witness to some statement. We provide
formal definitions of the NIZK’s security properties we rely on in Appendix A.2.
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4.2.4 Point-to-point channels/Subtleties.

As mentioned in §4.1, while our DPSS protocol assumes secure point-to-point channels, we do not
make such an assumption in the witness encryption construction. Instead, we rely on authenticated
encryption and Protocols 4 and 5. Protocol 4 is executed whenever a message needs to be securely
sent from one party to another. Note that it is employed not only for the messages exchanged
in the ExtWe protocol, but also for the messages of the underlying DPSS protocol. Whenever a
party receives an encrypted message, it performs an authentication check via Protocol 5 to ensure
that a ciphertext received from some party was generated by the same party. This prevents the
following malleability issue - a malicious user desiring to learn a secret with the identifier id could
generate a new secret storage request with a function F for which he knows a witness, copy the
DPSS messages sent by the user who created the storage request id to the miners and later on prove
his knowledge of a witness for F to release the corresponding secret. Without the authentication
check our construction would be insecure and our security proof (see Appendix E) would not go
through.

4.2.5 Handling large secrets/Using off-chain storage.

Since the secret itself might be very large, it is also possible to first encrypt the secret using a
symmetric encryption scheme, store the ciphertext publicly off chain and then secret-share the key
instead. Also, we store request parameters (such as release conditions or proofs) off-chain, saving
only the hash of the message on-chain.

Protocol 4: MessagePreparation

1. For a message m to be sent by party Ps to party Pr, Ps computes the following ciphertext
c← Encpkr(m|pids), where pkr is the public key of Pr and pids is the party identifier of
Ps.

2. Ps prepends the storage identifier id of his request and sends the tuple (id, c) to Pr. The
storage identifier is specified to let the receiving party know for which request the data
in c is meant to be used.

4.3 Security Proof Intuition

We formally prove the security of our hidden witness protocol in Appendix E. Informally, we show
that the hidden witness protocol satisfies the security definition for extractable witness enryption
on blockchain given in §3.2 by providing a hybrid proof. In this proof, we rely on the unbounded
zero-knowledge and simulation sound extractability properties of the NIZK scheme to switch from
providing honest proofs to using simulated proofs. Next, we rely on the collision-resistance of the
hash function to show that any modification of the data stored offchain will be detected. Then,
we rely on the multi-message IND-CCA security of the encryption scheme to change all encrypted
messsages exchanged between honest parties to encryptions of zero. Finally, we rely on the secrecy
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Protocol 5: AuthenticatedDecryption

1. Upon receiving a tuple (id, c) from party Ps over an authenticated channel, the receiving
party Pr decrypts c using its secret key sk to obtain m← Decsk(c).

2. Pr verifies that m is of the form m′|pids for some message m′, where pids is the identifier
of party Ps.

3. If the verification check fails, Pr stops processing c and outputs an error message.

Protocol 6: SecretStorage

1. The depositor executes NIZK’s KeyGen protocol to obtain a CRS: σ ← KeyGen(1k).

2. The depositor computes hash requestHash ← H(F, σ), and publishes requestHash on the
blockchain. Let id be the storage identifier of the published request.

3. The depositor stores the tuple (id, (F, σ)) offchain.

4. The depositor and the current members of the miner committee engage in the DPSS
Setup Phase protocol for the user’s secret M .

5. Each committee member retrieves requestHash from the blockchain, (F, σ) from the of-
fchain storage, and verifies that requestHash is indeed the hash of (F, σ):

requestHash
?
= H(F, σ)

If this is not the case, the committee member stops processing this request.

6. Otherwise, Ci stores (id, dpss-datai) internally, where dpss-datai is the DPSS data obtained
from the DPSS Setup Phase procedure.

property of our DPSS scheme to switch from honestly executing the DPSS protocol to using a
DPSS simulator. At this point, we can show that either the adversary was able to provide a valid
secret release request for the challenge secret release function, in which case we are able to extract
a witness from the provided NIZK proof (relying on the NIZK’s proof-of-knowledge property), or
the adversary did not provide a valid secret release request and in this case we are able to “forget”
the secret altogether, since it is never used.
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Protocol 7: SecretsHandoff

1. For each secret storage identifier id, the miners of the old and the new committee engage
in the DPSS Handoff Phase for the corresponding secret. Let dpss-dataidi denote the
resulting DPSS data corresponding to the storage identifier id of party Ci of the new
committee after the handoff phase.

2. For each secret storage identifier id, each miner of the new committee stores
(id, dpss-dataidi ) internally.

5 Application examples

In this section, we first present some motivational application examples and briefly explain the
key ideas behind implementing each of them using our construction. Then, we discuss a specific
application - voting - in more detail.

Time-lock encryption. Time-lock encryption, related to timed-release encryption introduced by
Rivest et al. [RSW96], allows one to encrypt a message such that it can only be decrypted after
a certain deadline has passed. As mentioned by Liu et al. [LJKW18], time-lock encryption must
satisfy the following properties:

� The encrypter is not required to be available for decryption.

� The are no trusted third parties.

� Starting to decrypt before the deadline does not provide any advantage, i.e., a party that
started to decrypt before the deadline will succeed at some time t after the deadline, same
time as the party that started to decrypt directly after the deadline has passed.

Time-lock encryption can be easily implemented using our PublicWitness protocol (see Ap-
pendix F) as follows: the encrypter executes SecretStorage request with a secret release con-
dition F specifying the time t when the message can be released. Once the time has passed, a
user that wishes to see the message submits a SecretRelease request with the witness “The
deadline has passed”. Miners then check whether the time is indeed past t and if so, release their
fragments of the secret as specified by SecretRelease. Note that with only a slight modifica-
tion to our protocol it is also possible to allow for automatic decryption - upon receiving a secret
storage request with an “automatic” tag miners would place the identifier in a list and periodically
check whether the secret release condition holds for any request in this list. Furthermore, note that
our construction evades the issue that some time-lock encryption schemes [LJKW18] have: even if
the adversary becomes computationally more powerful, it does not allow him to receive the secret
message earlier. Additionally, we avoid resource waste, since we do not impose a high overhead on
the requester.

Dead man’s switch. A dead man’s switch is designed to be activated or deactivated when
the human operator becomes incapacitated. Software versions of the dead man’s switch typically
trigger a process such as making public or deleting some data. The triggering event for centralized
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Protocol 8: SecretRelease

1. For the desired secret storage request with the identifier id, the requester retrieves
requestHash from the blockchain, (F, σ) from the offchain storage, and verifies that
requestHash is indeed the hash of (F, σ):

requestHash
?
= H(F, σ)

If this is not the case, the requester aborts.

2. The requester computes a NIZK proof of knowledge of the witness for F and his party
identifier pid:

π ← P (σ, pid, w),

3. The requester computes hash of the storage identifier, his party identifier and the proof
to obtain requestHash∗ ← H(id, pid, π) and publishes requestHash∗ on blockchain. Let id∗

be the identifier of the published request.

4. The requester stores the tuple (id∗, (id, pid, π)) offchain.

5. Each committee member retrieves requestHash∗ from the blockchain request with the
identifier id∗, (id, pid, π) from the offchain storage, and verifies that requestHash∗ is the
hash of (id, pid, π):

requestHash∗
?
= H(id, pid, π)

If not, the committee member aborts.

6. Each committee member retrieves requestHash from the blockchain request with the iden-
tifier id, (F, σ) from the offchain storage, and verifies that requestHash is indeed the hash
of (F, σ):

requestHash
?
= H(F, σ)

If not, the committee member aborts.

7. Each committee member Ci retrieves its share of the secret pss-datai from its internal
storage.

8. Each committee member Ci checks whether π is a valid proof using NIZK’s verification
algorithm V :

V (σ, pid, π)
?
= true

If so, Ci and the user with the party identifier pid engage in the DPSS Reconstruction
Phase protocol using pss-datai.
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Protocol 9: eWEB

1. A user can initiate secret storage by executing SecretStorage-HiddenWitness (6).

2. A user can initiate secret release by executing SecretRelease-HiddenWitness (8)
and then obtain the secret using SecretReconstruction procedure (30).

3. In each round, miners execute SecretsHandoff (7) procedure.

software versions can be failing to log in for three days, a GPS signal of a mobile phone that
is not moving for a period of time, or not responding to an automated email. A dead man’s
switch can be seen as insurance for journalists and whistleblowers. It can be implemented using
our PublicWitness protocol as follows: the person who wishes to setup the switch generates a
SecretStorage request with the desired secret release condition F . Such release condition can be
failing to post a signed message on the blockchain for several days or anything publicly verifiable.
As in time-lock encryption, it is possible to either use the standard protocol where a person (e.g.,
a relative or a friend) proves to the miners that the release condition has been satisfied or specify
an “automatic” request where the miners periodically check the secret release condition.

Fair MPC. Multi-party computation (MPC) is considered fair if it ensures that either all parties
receive the output of the protocol, or none. In the standard model fair MPC was proven to be
impossible to achieve for general functions when a majority of the parties are dishonest [Cle86].
Using the witness encryption-based construction of Choudhuri et al. [CGJ+17] that utilizes a public
bulletin board model, fair MPC can be implemented by replacing the extractable witness encryption
with our eWEB protocol. Conveniently, one of the easiest ways to realize Choudhuri et al.’s public
bulletin board in practice is to use a blockchain-based ledger. Thus, by replacing the witness
encryption scheme with our blockchain-based protocol, we are not adding any extra assumptions
to Choudhuri et al.’s construction.

One-time programs. A one-time program is a program that runs only once and then “self-
destructs”. This notion was introduced by Goldwasser et al. [GKR08]. In the same work they
presented a proof of concept construction that relies on tamper proof hardware. A number of works
on one-time programs followed [GIS+10, BHR12, AIKW15, DDKZ13], all of them relied on tamper
proof hardware. Goyal and Goyal [GG17] presented a first construction for one-time programs that
did not rely on tamper proof hardware (but did rely on extractable witness encryption). As with
fair MPC and Choudhuri et al.’s construction, by replacing the witness encryption scheme with our
eWEB protocol in Goyal and Goyal’s work, we are not adding any extra assumptions since their
work already relies on blockchains. Note, however, that their construction necessarily requires POS
blockchains.

Non-repudiation/Proof of receipt. Repudiation is defined as a denial by one of the entities
involved in a communication of having participated in all or part of the communication. With
our eWEB protocol, it is easy to provide a proof that a person received certain data. In this
case, the user providing the data stores it using the SecretStorage protocol. To satisfy the
release condition F , a user with public identifier pid publishes a signed message “User pid wishes
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to receive the message”. The miners then securely release a secret to the user pid as specified by
SecretRelease. The publicly verifiable signature on the message “User pid wishes to receive the
message” then serves as a proof that party pid indeed received the data.

5.1 Voting Protocol

As a more detailed example, we consider the “yes-no” voting scenario. Specifically, the space of
the secrets is {−1, 1}, where −1 stands for a “no” vote, and 1 stands for a “yes” vote. Clients vote
independently at different times, miners store their votes while the voting takes place and release
the sum of all votes at a predefined time. The vote of any particular client must be kept private
and no client should be able to manipulate the outcome more than with his “yes-no” vote. The
last requirement requires the committee to be able to verify the correctness of the secrets shared
by the clients, i.e., that s ∈ {−1, 1}. Note that proving s ∈ {−1, 1} is equivalent to proving s2 = 1.
While this can be done using the commitment to s, the client would additionally need to prove
that the committed value is the same as the one that client shared to the committee. To avoid this
expensive check, the members of the committee prepare the commitments for clients by themselves.
We show that all parties can prepare the Pedersen commitments [Ped92] for clients with constant
amortized cost (see Appendix G.1 for details). These commitments are of the form gshz, where z
is a random value and g, h are two random group generators. Note that the client knows not only
g, but also g, h and z.

To prove that s2 = 1, the client computes w = g2szhz
2

and publishes w to all parties. Note that
it can be done since the client knows s and z. Let β satisfy that h = gβ. To verify whether s2 = 1,
all parties check the following equation:

e(gshz, gshz) = e(g, g) · e(h,w).

Correctness. To show correctness, note that

LHS = e(gs+βz, gs+βz) = e(g, g)s
2+2βsz+β2z2

RHS = e(g, g) · e(gβ, g2sz+βz2) = e(g, g)1+2βsz+β2z2 .

Therefore, if the equation holds, then we have s2 = 1 and thus the vote submitted by the client is
valid.

To compute the result of the voting procedure the committee can compute the sharing of the
result relying on the linear homomorphism of Shamir’s secret sharing scheme and KZG commitment
scheme, and then follow the usual SecretRelease procedure.

6 Related work

Since we believe that our DPSS construction may be of independent interest, we first discuss pre-
vious proactive secret sharing protocols. Then, we elaborate on known approaches for extractable
witness encryption.

6.1 Prior Work on DPSS

Since the introduction of proactive secret sharing by Herzberg et al. [HJKY95], a number of PSS
schemes have been developed. These schemes vary in terms of security guarantees, network as-
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sumptions (synchronous or asynchronous), communication complexity and whether or not they
can handle dynamic changes in the committee membership. In Figure 1 we provide an overview of
PSS schemes and compare the relevant parameters.

Below, we compare our DPSS construction in detail with the two constructions (CHURP [MZW+19],
Baron et al. [BDLO15]) that are most closely related to our protocol, as they are also the most
efficient DPSS schemes to date.

In the best case, CHURP [MZW+19] achieves communication complexity O(n2) plus O(n) · B
to refresh each secret in the hand-off phase, where n is the number of parties and B denotes the cost
of broadcasting a bit. In the worst case (where some corrupted party deviates from the protocol),
it requires O(n2) · B communication per secret.

In the single-secret setting, our protocol achieves the same asymptotic communication com-
plexity as CHURP. However, our protocol achieves amortized communication complexity O(n)
plus O(1) · B per secret in the best case, and O(n2) plus O(n) · B per secret in the worst case.
Batched setting is very relevant to our eWEB application since there might be thousands of secrets
stored at any given time.

In terms of techniques, while CHURP uses asymmetric bivariate polynomials to refresh a se-
cret in the hand-off phase, we use a modified version of the technique borrowed from Damg̊ard et
al. [DN07] to prepare a batch of random secret sharings which will be used in the hand-off phase.
We note that generating random secret sharings is much more efficient than generating bivariate
polynomials. Specifically, each bivariate polynomial requires O(n) communication per party; i.e.,
O(n2) in total. On the other hand, we can prepare O(n) random sharings with the same commu-
nication cost as preparing one bivariate polynomial. To benefit from it, we use a entirely different
way to refresh each secret.

The work of Baron et al. [BDLO15] focuses on a slightly different setting from ours. Specifically,
they are interested in constructing DPSS protocols with unconditional security and a (1/2 − ε)
corruption threshold, where ε is a constant. The construction achieves amortized communication
complexity O(1) per secret. However, in the single-secret setting, it requires O(n3) communication
to refresh a secret.

Because Baron et al. consider a (1/2 − ε) corruption threshold, they are able to utilize the
technique of packed secret sharing [FY92], which allows to store a batch of O(n) secrets in one
sharing by encoding multiple secrets as distinct points of a single polynomial. Therefore, refreshing
each sharing effectively refreshes a batch of O(n) secrets at the same time. However, with this
construction, secrets in the same batch can only be refreshed or reconstructed together. On the
other hand, our construction only generates random sharings in a batch. After that, each secret is
refreshed individually.

6.2 Extractable Witness Encryption

The notion of witness encryption was introduced by Garg et al. [GGSW13]. The notion of ex-
tractable security for witness encryption schemes was first proposed by Goldwasser et al. [GKP+13].
In their work a candidate construction was introduced that requires very strong assumptions over
multilinear maps. As mentioned by Liu et al. [LJKW18], existing witness encryption schemes have
no efficient extraction methods. The work of Garg et al. [GGHW14] suggests that it even might
be impossible to achieve extractable witness encryption with arbitrary auxiliary inputs.

Nevertheless, as mentioned in Sections 1 and 5 the notion of extractable witness encryption
has been extensively used in various cryptographic protocols [CGJ+17, GG17, BH15, LJKW18],
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especially in conjunction with blockchains.

7 Conclusion

We have introduced a new cryptographic primitive: an extractable witness encryption on blockchain
(eWEB), which allows to store and release secrets on blockchain. We provided a proof of concept
eWEB protocol. A key building block of this protocol is a highly efficient batched dynamic secret
sharing scheme that may be of independent interest.
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A Preliminaries

In this section, we introduce cryptographic building blocks used in our system.

A.1 Encryption schemes

In our protocol, we rely on public key encryption schemes. We use a standard definition of a public
key encryption scheme consisting of a key generation algorithm Gen, an encryption algorithm Enc,
and a decryption algorithm Dec that satisfy the correctness property. For security purposes, in our
scheme we rely on multi-message IND-CCA security, defined as follows:
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Definition A.1. Multi-message IND-CCA security
An encryption scheme (Gen,Enc,Dec) is said to be IND-CCA secure if any PPT adversary A

is successful in the following game with the probability at most 1
2 + negl(n), where negl(·) is a

negligible function:

� The challenger generates keys (pk, sk)← Gen(1n).

� A receives pk as input.

� The challenger chooses b← {0, 1} at random.

� A gets a black-box access to Decsk(·).

� In each round i until A wishes to end the game the following happens:

– A chooses mi.

– The challenger gives A the challenge ciphertext ci = Encpk(mi) if b = 0, and ci =
Encpk(0) otherwise.

– A’s access to Decsk(·) is now restricted - A is not allowed to ask for the decryption of
ci.

� A outputs b∗ ∈ {0, 1} and wins if b = b∗.

Note that the multi-message IND-CCA security is equivalent to the (single-message) IND-CCA
security.

A.2 Non-interactive zero-knowledge proofs

Non-interactive zero-knowledge proofs (NIZKs) allow one party (the prover) prove validity of some
statement to another party (the verifier), in a way that nothing except for the validity of the
statement is revealed and no interaction between the prover and the verifier is needed. More
formally, as defined in [Gro06]:

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x the statement
and w the witness.

A proof system for relation R consists of a key generation algorithm KeyGen, a prover P and
a verifier V . The key generation algorithm produces a CRS σ. The prover takes as input (σ, x, w)
and produces a proof π. The verifier takes as input (σ, x, π) and outputs 1 if the proof is acceptable
and 0 otherwise.

Definition A.2. Proof system
We say (KeyGen, P, V ) is a proof system for R if it satisfies the following properties:
Perfect completeness. For all adversaries A holds:

Pr[σ ← KeyGen(1k); (x,w)← A(σ);π ← P (σ, x, w) :
V (σ, x, π) = 1 if (x,w) ∈ R] = 1

Perfect soundness. For all adversaries A holds:

Pr[σ ← KeyGen(1k); (x, π)← A(σ) :
V (σ, x, π) = 0 if x /∈ L] = 1
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We call (KeyGen, P, V ) a proof of knowledge for R if there exists a polynomial time extractor
E = (E1, E2) with the following properties:

For all adversaries A holds:

Pr[σ ← KeyGen(1k) : A(σ) = 1] =
Pr[(σ, ε)← E1(1

k) : A(σ) = 1], and
Pr[(σ, ε)← E1(1

k); (x, π)← A(σ);w ← E2(σ, ε, x, π) :
V (σ, x, π) = 0 or (x,w) ∈ R] = 1

Definition A.3. NIZK
We call a non-interactive proof system (KeyGen, P, V ) a non-interactive zero-knowledge

proof (NIZK) for R if there exists a polynomial time simulator S = (S1, S2), which satisfies the
following property:

(Unbounded) computational zero-knowledge. For all PPT adversaries A holds

Pr[σ ← KeyGen(1k) : AP (σ,·,·)(σ) = 1] ≈ Pr[(σ, τ)← S1(1
k) : AS(σ,τ,·,·)(σ) = 1],

where f(k) ≈ g(k) means that there exists a negligible function negl(k) s.t. |f(k)−g(k)| < negl(k)

Finally, in our protocol we require that if after seeing some number of simulated proofs the
adversary is able to produce a new valid proof, we are able to extract a witness from this proof.
This property is called simulation sound extractability [Gro06]:

(Unbounded) simulation sound extractability. We say a NIZK proof of knowledge
(KeyGen, P, V, S1, S2, E1, E2) is simulation sound extractable, if for all PPT adversaries A holds

Pr[(σ, τ, ε)← SE1(1
k); (x, π)← AS2(σ,τ,·)(σ, ε);w ← E2(σ, ε, x, π) : (x, π) /∈ Q and (x,w) /∈

R and V (σ, x, π) = 1] ≈ 0,

where SE1 is an algorithm that outputs (σ, τ, ε) such that it is identical to S1 when restricted to
the first two parts (σ, τ), and Q is a list of simulation queries and responses (i.e., simulated proofs).

A.3 Hash functions

To reduce communication cost of our protocol, we use hash functions. In the following, we for-
mally define a hash function family and the collision-resistance property that we rely on in our
construction.

Definition A.4. Hash function family
A family of functions H = {hi : Di → Ri}i∈I is a hash function family, if the following holds:
Easy to sample. There exists a PPT algorithm Gen outputting i s.t. hi is a random member

of H.
Easy to evaluate. There exists a PPT algorithm Eval s.t. for all i ∈ I and x ∈ Di,

Eval(i, x) = hi(x).
Compression. For all i ∈ I holds |Ri| < |Di|.

We say a hash function family is a collision resistant hash function (CRHF) if the following
condition holds:

Collision-resistance. Foll all PPT A, security parameter k and a negligible function negl(·)
holds:

Pr[i← Gen(k); (x, x′)← A(i) : x 6= x′ and hi(x) = hi(x
′)] ≤ negl(k)
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A.4 Shamir Secret Sharing

As a part of our DPSS construction, we use the standard Shamir secret sharing scheme [Sha79].
For a finite field F, a degree-d Shamir sharing of w ∈ F is a vector (w1, . . . , wn) which satisfies

that, there exists a polynomial f(·) ∈ F[X] of degree at most d such that f(0) = w and f(i) = wi
for i ∈ {1, . . . , n}. Each party Pi holds a share wi and the whole sharing is denoted as [w]d.

A.5 Polynomial Commitment Schemes

In essence, a degree-d Shamir sharing is a degree-d polynomial. In our DPSS construction we will
use polynomial commitment schemes to transform a plain Shamir sharing to a verifiable secret
sharing. The following definition of the polynomial commitment scheme comes from [KZG10]. For
simplicity, we only focus on perfectly hiding commitment schemes.

Definition. A polynomial commitment scheme contains the following 6 algorithms.

� Setup(1κ, t): It generates a pair of public-private keys (PK, SK) to commit a polynomial of
degree at most t in F. SK is not required in the rest of the scheme.

� Commit(PK, f(·)): It outputs a commitment Com to the polynomial f(·) and some associated
decommitment information d.

� Open(PK, Com, f(·), d): It outputs the polynomial f(·) used to create the commitment Com,
with decommitment information d.

� VerifyPoly(PK, Com, f(·), d): It verifies the correctness of the opening. If the opening is
correct, it outputs 1. Otherwise, it outputs 0.

� CreateWitness(PK, f(·), i, d): It outputs (i, f(i), wi) where wi is a witness to check the cor-
rectness of f(i).

� VerifyEval(PK, Com, i, f(i), wi): It verifies the correctness of the evaluation f(i). If the eval-
uation is correct, it outputs 1. Otherwise, it outputs 0.

Definition A.5 ([KZG10]). We say (Setup,Commit,Open,VerifyPoly, CreateWitness,VerifyEval)
is a secure polynomial commitment scheme if it satisfies the following properties.

Correctness. For all f(·) ∈ F[X], let PK← Setup(1κ, t) and Com← Commit(PK, f(·)).

� The output of Open(PK, Com, f(·), d) is successfully verified by VerifyPoly(PK, Com, f(·), d).

� For all (i, f(i), wi)← CreateWitness(PK, f(·), i, d), it is successfully verified by
VerifyEval(PK, Com, i, f(i), wi).

Polynomial Binding. There exists a negligible function ε(·) such that for all adversaries A:

Pr[ PK← Setup(1κ, t), (Com, f(·), f ′(·), d, d′)← A(PK) :

VerifyPoly(PK, Com, f(·), d) = 1 and

VerifyPoly(PK, Com, f ′(·), d′) = 1 and f 6= f ′] ≤ ε(κ).
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Evaluation Binding. There exists a negligible function ε(·) such that for all adversaries A:

Pr[ PK← Setup(1κ, t), (Com, 〈i, f(i), wi〉, 〈i, f ′(i), w′i〉)← A(PK) :

VerifyEval(PK, Com, i, f(i), wi) = 1 and

VerifyEval(PK, Com, i, f ′(i), w′i) = 1 and f(i) 6= f ′(i)] ≤ ε(κ).

Hiding. Given (PK, Com) and {(ij , f(ij), wij )}j∈[t] for f(·) ∈ F[X] such that
VerifyEval(PK, Com, ij , f(ij), wij ) = 1 for all j ∈ [t], no computationally unbounded adversary A
has any information about f(k) where k 6∈ {i1, . . . , it}.

KZG Commitment Scheme. The following commitment scheme is from [KZG10].

� Setup(1κ, t): It generates two groups G and GT of prime order p (with p ≥ 2κ) such that
there exists a symmetric bilinear pairing e : G×G → GT where t− SDH assumption holds.
Then it randomly samples two generators g, h ∈ G and α ∈ [p − 1]. The secret key SK is α
and the public key PK is (G,GT , e, g, g

α, gα
2
, . . . , gα

t
, h, hα, hα

2
, . . . , hα

t
). The field F is set

to be Zp.

� Commit(PK, f(·)): It chooses a random polynomial r(·) ∈ Zp[X] of degree t. Then compute
the commitment Com = gf(α)hr(α) using PK. Set d = r(·).

� Open(PK, Com, f(·), r(·)): It outputs f(·), r(·).

� VerifyPoly(PK, Com, f(·), r(·)): If the degree of either f(·) or r(·) is larger than t, it outputs
0. Otherwise, it computes gf(α)hr(α) using PK and compares with Com. If the result matches
Com, it outputs 1. Otherwise, it outputs 0.

� CreateWitness(PK, f(·), i, r(·)): It first computes f ′(x) = f(x)−f(i)
x−i and r′(x) = r(x)−r(i)

x−i . Then

compute wi = gf
′(α)hr

′(α) using PK. Finally, output (i, f(i), r(i), wi).

� VerifyEval(PK, Com, i, f(i), r(i), wi): It checks whether e(Com, g) = e(wi, g
α/gi)e(gf(i)hr(i), g).

If true, it outputs 1. Otherwise, it outputs 0.

Definition A.6 (t-Strong Diffie-Hellman (t-SDH) Assumption [KZG10]). Let α be a ran-
dom element in Z∗p. Given as input a (t+ 1)-tuple 〈g, gα, gα2

, . . . , gα
t〉 ∈ Gt+1, for every adversary

At-SDH, the probability

Pr[At-SDH(g, gα, gα
2
, . . . , gα

t
) = 〈c, g

1
α+c 〉]

is negligible for any value c ∈ Zp\{−α}.

Lemma A.1 ([KZG10]). The above scheme is a secure polynomial commitment scheme provided
the t− SDH assumption holds in (e,G,GT ).

Linear Homomorphism of the KZG Commitment Scheme. In the following, we use
ComKZG(f ; r) to denote the commitment of f(·) that uses a polynomial r(·) as randomness. We
use wi(f ; r) to denote the witness associated with the evaluation point i. Concretely,

ComKZG(f ; r) = gf(α)hr(α), wi(f ; r) = g
f(α)−f(i)

α−i h
r(α)−r(i)
α−i .

It is easy to verify that, for any constants c1, c2 and polynomials f1, f2, r1, r2,
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ComKZG(c1f1 + c2f2; c1r1 + c2r2) =
(ComKZG(f1; r1))

c1 · (ComKZG(f2; r2))
c2 ,

wi(c1f1 + c2f2; c1r1 + c2r2) = (wi(f1; r1))
c1 · (wi(f2; r2))c2 .

A.6 Preparing Random Sharings

The following protocol comes from [DN07], which allows a set of parties to prepare a batch of
random sharings. The protocol will utilize a predetermined and fixed Vandermonde matrix of size
n× (n− t), which is denoted by MT (therefore M is a (n− t)×n matrix). An important property
of a Vandermonde matrix is that any (n − t) × (n − t) submatrix of MT is invertible. Therefore,
given the sharings generated by corrupted parties, there is a one-to-one map from the first (n− t)
random sharings generated by honest parties to the resulting (n − t) sharings. The description of
Rand appears in Protocol 10. The communication complexity of Rand is O(n2) field elements.

Protocol 10: Rand

1. Each party Ci randomly samples a sharing [s(i)]t and distributes the shares to other
parties.

2. All parties locally compute

([r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t)
T = M([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

and output [r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t.

Lemma A.2 ([DN07]). For a semi-honest adversary A, r(1), . . . , r(n−t) are uniformly random
given the views of A.

A.7 Generating Challenge

We introduce a simple protocol Challenge, which comes from [BSFO12], to let all parties generate
an element in F with high min-entropy. The cost of Challenge is O(κ) on-chain communication.

Protocol 11: Challenge

1. Each party Pi chooses a random string stri ∈ {0, 1}
log |F|
n and publish stri.

2. All parties convert (str1, . . . , strn) into an element λ in F.
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Lemma A.3 ([BSFO12]). For any fixed set of t corrupt parties and for any given subset S ∈ F,
the probability that a challenge generated by Challenge lies in S is at most

|S|

2(n−t)
log |F|
n

≤ |S|
2κ/2

.

B Limitation of the KZG Commitment Scheme

Intuitively, the use of a polynomial commitment scheme should prevent the case that a corrupted
party provides a wrong share with a valid witness from happening. This is because when the dealer
opens the whole sharing, there will be two opens of the commitment for different values at the same
evaluation point, which breaks the evaluation binding property. However, if the dealer is corrupted,
it may not even know how to open the commitment properly. Usually, this problem can be tackled
by requiring the polynomial commitment scheme to be extractable, i.e., there exists an extractor
which can extract the polynomial the dealer committed.

However, a major limitation of the KZG commitment scheme is that the commitment is not
extractable. It turns out that directly adding extractable feature to the KZG commitment scheme
is expensive (or requires additional assumptions) [CHM+19]. To avoid such cost, our idea is to
additionally verify the computation of the commitments during the verification of couple sharings.

We note that a nice feature of the KZG commitment is that if a commitment is correctly com-
puted, from t + 1 shares with valid witnesses, one can compute the commitment of this sharing
(i.e., the witnesses include all randomness which is necessary to compute the commitment). There-
fore, when checking the correctness of couple sharings, all parties also use the shares with valid
witnesses to check whether the commitment is correctly computed. Note that this guarantees that
from the shares and witnesses held by honest parties, one can re-compute the whole sharings and
valid witnesses for all shares. It achieves the same effect as the extractable feature. If a corrupted
party provides an incorrect share with a valid witness at a later point, then it effectively breaks
the evaluation binding property since we have already learned the correct share and the witness of
this party from the shares and witnesses held by honest parties.

C Our DPSS Construction

In the following, we describe provide our complete DPSS protocol. We start by explaining the
handoff phase (§C.1), then describe the setup phase (§C.2) and the reconstruction phase (§C.3),
and give the full protocol in (§C). We provide the proof of security in Appendix D.

C.1 Hand-off Phase

In the following, we will use C = {P1, . . . , Pn} to represent the old committee and C′ = {P ′1, . . . , P ′n}
to represent the new committee.

The hand-off phase includes two steps, preparation phase and refresh phase.

� In the preparation phase, the new committee will prepare two degree-t sharings of the same
random value r(= r̃), denoted by [r]t and [r̃]t. The new committee will hold the shares of [r̃]t
while the old committee will hold the shares of [r]t. We refer to these two sharings as a pair
of couple sharings.
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� In the refresh phase, the old committee will reconstruct the sharing [s]t + [r]t and publish the
result. The new committee will set [s̃]t = (s+ r)− [r̃]t. Since r = r̃, we have s = s̃.

Preparing Couple Sharings with Polynomial Commitments The couple sharings are pre-
pared in a batch way. Recall that each Shamir sharing itself is a polynomial. In the following, we
use a sharing [s]t to also denote its corresponding polynomial. We use ComKZG([s]t; [z]t) to denote
the KZG commitment of [s]t using the random polynomial [z]t. Let wi([s]t; [z]t) denote the witness
output by CreateWitness(PK, [s]t, i, [z]t).

Distribution. Each party P ′i in the new committee first prepares two pairs of random couple
sharings ([u(i)]t, [ũ

(i)]t), ([v(i)]t, [ṽ
(i)]t). The second pair of random couple sharings are used as

random polynomials when committing the first pair of random couple sharings. Concretely, each
P ′i computes ComKZG([u(i)]t; [v(i)]t) and ComKZG([ũ(i)]t; [ṽ(i)]t).

Then for each Pj ∈ C, P ′i sends Pj the j-th shares of [u(i)]t, [v
(i)]t and the associated witness

wj([u
(i)]t; [v(i)]t). For each P ′j ∈ C′, P ′i sends P ′j the j-th shares of [ũ(i)]t, [ṽ

(i)]t and the associated

witness wj([ũ
(i)]t; [ṽ(i)]t). The commitments of [u(i)]t, [ũ

(i)]t are published.
Finally, all parties verify the validity of their shares and witnesses. The description of Dis-

tribution appears in Protocol 12. The communication complexity of Distribution is O(n2)
elements plus O(n) elements of broadcasting.

Protocol 12: Distribution

1. Each party P ′i in the new committee randomly samples two pairs of couple sharings
([u(i)]t, [ũ

(i)]t) and ([v(i)]t, [ṽ
(i)]t).

2. Each party P ′i in the new committee computes ComKZG([u(i)]t, [v
(i)]t),

ComKZG([ũ(i)]t, [ṽ
(i)]t) and publishes the commitments.

3. Each party P ′i in the new committee distributes [u(i)]t, [v
(i)]t associated with the witnesses

to the old committee C and distributes [ũ(i)]t, [ṽ
(i)]t associated with the witnesses to the

new committee C′.

4. All parties verify the validity of their shares and witnesses by invoking VerifyEval of the
KZG commitment scheme.

Accusation and Response. After Distribution, all parties run a two-round accusation-response
protocol to ensure the success of the distribution of the random couple sharings.

Specifically, if some party Pj ∈ C
⋃
C′ finds that the shares and the witness received from P ′i

are invalid, Pj publishes (accuse, P ′i ). In response, P ′i publishes the shares and the witness which
were sent to Pj .

If the shares and the witness published by P ′i are invalid, all parties regard P ′i as a corrupted
party. Otherwise, Pj will use the new shares and witness. Note that an honest party never accuses
another honest party. Therefore, either Pj is corrupted or P ′i is corrupted. In either case, the shares
and the witness are known to the adversary and therefore are free to be published.
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Note that after this step, a party who fails to provide a share with a valid witness of some sharing
prepared in Distribution must be corrupted. The description of Accusation-Response appears
in Protocol 13. Note that in the best case where all parties behave honestly, there is no accusation
and Accusation-Response requires no communication. In the worst case, each party may accuse
O(n) parties, resulting in O(n2) elements of broadcasting.

Protocol 13: Accusation-Response

1. For each party Pj ∈ C
⋃
C′, if the shares and the witness received from P ′i ∈ C′ are invalid,

Pj publishes (accuse, P ′i ).

2. For each accusation against P ′i made by Pj , P
′
i publishes the shares and the witness which

were sent to Pj .

3. For each accusation against P ′i made by Pj , all parties check the validity of the shares
and the witness published by P ′i .

� If the shares and the witness are invalid, all parties regard P ′i as a corrupted party.

� Otherwise, Pj uses the shares and the witness published by P ′i .

Verification. Now, we need to check whether the commitments are correctly computed and
whether u = ũ and v = ṽ.

All parties first invoke Distribution and Accusation-Response again. Let ([µ(i)]t, [µ̃
(i)]t), ([ν

(i)]t, [ν̃
(i)]t)

denote the couple sharings generated by P ′i ∈ C′. Then parties in the old committee hold shares
of [µ(i)]t, [ν

(i)]t and valid witnesses. Parties in the new committee hold shares of [µ̃(i)]t, [ν̃
(i)]t and

valid witnesses. These sharings are used as random masks to protect the secrecy of the original
sharings in the following check.

Let F (·), F̃ (·), H(·), H̃(·) be 4 polynomials of degree 2n− 1 such that

F (X) =
n∑
i=1

(µ(i) + u(i)X)X2i−2, F̃ (X) =
n∑
i=1

(µ̃(i) + ũ(i)X)X2i−2,

H(X) =
n∑
i=1

(ν(i) + v(i)X)X2i−2, H̃(X) =
n∑
i=1

(ν̃(i) + ṽ(i)X)X2i−2.

Recall that the KZG commitment scheme is a linear homomorphism. Then for all constant λ, the
old committee can compute [F (λ)]t, [H(λ)]t and the commitment ComKZG([F (λ)]t; [H(λ)]t) with
corresponding witnesses. The new committee can compute [F̃ (λ)]t, [H̃(λ)]t and the commitment
ComKZG([F̃ (λ)]t; [H̃(λ)]t) with corresponding witnesses.

Note that if for at least 2n points {λi}i∈[2n],

1. F (λi) = F̃ (λi) and H(λi) = H̃(λi),

2. the commitments ComKZG([F (λi)]t; [H(λi)]t) and
ComKZG([F̃ (λi)]t; [H̃(λi)]t) are correctly computed,
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then all couple sharings and commitments are correctly generated. Therefore, if some party P ′i
distributed incorrect couple sharings or provided invalid commitments, we can detect it with over-
whelming probability by testing a random evaluation point.

To this end, all parties in the new committee C′ invoke Challenge to generate a challenge
λ ∈ Zp. Parties in the old committee publish their shares of [F (λ)]t, [H(λ)]t and the associated
witnesses. Parties in the new committee publish their shares of [F̃ (λ)]t, [H̃(λ)]t and the associated
witnesses. For each sharing, all parties use the first t + 1 shares that pass the verification to
reconstruct the whole sharing. Then check if

1. F (λ) = F̃ (λ) and H(λ) = H̃(λ),

2. the commitments ComKZG([F (λ)]t; [H(λ)]t) and ComKZG([F̃ (λ)]t; [H̃(λ)]t) are correctly com-
puted.

If the check fails, all parties take fail as output. The description of Verification appears
in Protocol 14. The communication complexity of Verification is O(n2) elements plus O(n)
elements of broadcasting when all parties behave honestly, and O(n2) elements plus O(n2) elements
of broadcasting in the worst case.

Lemma C.1. If at least one party P ′i did not generate valid couple sharings or commitments in
Setup-Dist, with probability at least 1− 2n

2κ/2
, all parties take fail as output in Verification.

Proof. Note that if the check passes, by the evaluation binding property of the KZG commitment,
for each sharing, the shares held by honest parties must be consistent with the first t + 1 shares
that pass the verification. Therefore, this check equivalently verifies whether the sharings held by
honest parties are correct couple sharings and whether the commitments are correctly computed
based on the shares held by honest parties.

In the case that at least one party P ′i did not generate valid couple sharings or commitments,
the number of λ such that both checks pass is bounded by 2n − 1. The lemma follows from
Lemma A.3.

Single Verification. This step is only invoked when all parties take fail as output in Verifi-
cation. In this case, we want to pinpoint the parties who deviate from the protocol.

Recall that λ is the challenge generated in Verification. To check P ′i , parties in the old
committee publishes their shares of [µ(i)]t + λ[u(i)]t, [ν

(i)]t + λ[v(i)]t and the associated witnesses.
Parties in the new committee publishes their shares of [µ̃(i)]t + λ[ũ(i)]t, [ν̃

(i)]t + λ[ṽ(i)]t and the
associated witnesses. For each sharing, all parties use the first t+1 shares that pass the verification
to reconstruct the whole sharing.

For each i ∈ [n], all parties compute the commitments

ComKZG([µ(i)]t + λ[u(i)]t; [ν(i)]t + λ[v(i)]t)

= ComKZG([µ(i)]t; [ν(i)]t) · (ComKZG([u(i)]t; [v(i)]t))
λ,

and

ComKZG([µ̃(i)]t + λ[ũ(i)]t; [ν̃(i)]t + λ[ṽ(i)]t)

= ComKZG([µ̃(i)]t; [ν̃(i)]t) · (ComKZG([ũ(i)]t; [ṽ(i)]t))
λ.

Then check if
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Protocol 14: Verification

1. All parties invoke Distribution and Accusation-Response. Let
([µ(i)]t, [µ̃

(i)]t), ([ν
(i)]t, [ν̃

(i)]t) denote the random couple sharings generated by P ′i ∈ C′.

2. All parties in the new committee C′ invoke Challenge to generate a challenge λ ∈ Zp.

3. Let

F (X) =
n∑
i=1

(µ(i) + u(i)X)X2i−2, F̃ (X) =
n∑
i=1

(µ̃(i) + ũ(i)X)X2i−2,

H(X) =
n∑
i=1

(ν(i) + v(i)X)X2i−2, H̃(X) =
n∑
i=1

(ν̃(i) + ṽ(i)X)X2i−2.

Each party Pj in the old committee publishes the j-th shares of [F (λ)]t, [H(λ)]t and the
witness wj([F (λ)]t; [H(λ)]t). Each party P ′j in the new committee publishes the j-th

shares of [F̃ (λ)]t, [H̃(λ)]t and the witness wj([F̃ (λ)]t; [H̃(λ)]t).

4. All parties compute the commitment ComKZG([F (λ)]t; [H(λ)]t) using

{ComKZG([u(i)]t; [v(i)]t)}i∈[n], {ComKZG([µ(i)]t; [ν(i)]t)}i∈[n],

and compute the commitment ComKZG([F̃ (λ)]t; [H̃(λ)]t) using

{ComKZG([ũ(i)]t; [ṽ(i)]t)}i∈[n], {ComKZG([µ̃(i)]t; [ν̃(i)]t)}i∈[n].

5. All parties use the first t + 1 shares that pass the verification to reconstruct the whole
sharings [F (λ)]t, [F̃ (λ)]t, [H(λ)]t, [H̃(λ)]t. All parties check if

(a) F (λ) = F̃ (λ) and H(λ) = H̃(λ),

(b) ComKZG([F (λ)]t; [H(λ)]t) and ComKZG([F̃ (λ)]t; [H̃(λ)]t) are correctly computed.

If any check fails, all parties take fail as output.

1. µ(i) + λu(i) = µ̃(i) + λũ(i) and ν(i) + λv(i), ν̃(i) + λṽ(i),

2. ComKZG([µ(i)]t + λ[u(i)]t; [ν(i)]t + λ[v(i)]t) and
ComKZG([µ̃(i)]t + λ[ũ(i)]t; [ν̃(i)]t + λ[ṽ(i)]t) are correctly computed.

If the check fails, P ′i is regarded as a corrupted party. The description of Single-Veri appears
in Protocol 15. The communication complexity of each call of Single-Veri is O(n) elements of
broadcasting. When all parties behave honestly, there is no need to run Single-Veri. Otherwise,
Single-Veri is invoked for each dealer P ′i , resulting in O(n2) elements of broadcasting in total.
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Protocol 15: Single-Veri(P ′
i )

1. Each party Pj in the old committee publishes the j-th shares of [µ(i)]t + λ[u(i)]t, [ν
(i)]t +

λ[v(i)]t and the witness wj([µ
(i)]t + λ[u(i)]t; [ν(i)]t + λ[v(i)]t). Each party P ′j in the new

committee publishes the j-th shares of [µ̃(i)]t + λ[ũ(i)]t, [ν̃
(i)]t + λ[ṽ(i)]t and the witness

wj([µ̃
(i)]t + λ[ũ(i)]t; [ν̃(i)]t + λ[ṽ(i)]t).

2. All parties compute the commitments ComKZG([µ(i)]t + λ[u(i)]t; [ν(i)]t + λ[v(i)]t) by

ComKZG([µ(i)]t; [ν(i)]t) · (ComKZG([u(i)]t; [v(i)]t))
λ

and ComKZG([µ̃(i)]t + λ[ũ(i)]t; [ν̃(i)]t + λ[ṽ(i)]t) by

ComKZG([µ̃(i)]t; [ν̃(i)]t) · (ComKZG([ũ(i)]t; [ṽ(i)]t))
λ.

3. All parties use the first t + 1 shares that pass the verification to reconstruct the whole
sharings [µ(i)]t +λ[u(i)]t, [µ̃

(i)]t +λ[ũ(i)]t, [ν
(i)]t +λ[v(i)]t, [ν̃

(i)]t +λ[ṽ(i)]t. All parties check
if

(a) µ(i) + λu(i) = µ̃(i) + λũ(i) and ν(i) + λv(i), ν̃(i) + λṽ(i),

(b) ComKZG([µ(i)]t+λ[u(i)]t; [ν(i)]t+λ[v(i)]t) and ComKZG([µ̃(i)]t+λ[ũ(i)]t; [ν̃(i)]t+λ[ṽ(i)]t)
are correctly computed.

If any check fails, P ′i is regarded as a corrupted party.

Lemma C.2. With probability at least 1− n
2κ/2

, all corrupted parties that did not generate valid
couple sharings or commitments in Setup-Dist can be identified in Single-Veri.

Proof. Note that if the check passes, by the evaluation binding property of the KZG commitment,
for each sharing, the shares held by honest parties must be consistent with the first t + 1 shares
that pass the verification. Therefore, this check equivalently verifies whether the sharings held by
honest parties are correct couple sharings and whether the commitments are correctly computed
based on the shares held by honest parties.

In the case that P ′i did not generate valid couple sharings or commitments, the number of
λ such that both checks pass is bounded by 1. The lemma follows from the union bound and
Lemma A.3.

Output. For each identified corrupted party P ′i , all parties use all 0 sharings instead of the one
distributed by P ′i . Let MT be a fixed Vandermonde matrix of size n × (n − t). Then, the old
committee C computes

([r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t)
T = M([u(1)]t, [u

(2)]t, . . . , [u
(n)]t)

T

([ψ(1)]t, [ψ
(2)]t, . . . , [ψ

(n−t)]t)
T = M([v(1)]t, [v

(2)]t, . . . , [v
(n)]t)

T.
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The new committee C′ computes

([r̃(1)]t, [r̃
(2)]t, . . . , [r̃

(n−t)]t)
T = M([ũ(1)]t, [ũ

(2)]t, . . . , [ũ
(n)]t)

T

([ψ̃(1)]t, [ψ̃
(2)]t, . . . , [ψ̃

(n−t)]t)
T = M([ṽ(1)]t, [ṽ

(2)]t, . . . , [ṽ
(n)]t)

T.

Note that the KZG commitment scheme is linear homomorphism. Therefore, the old committee
C computes the commitments {ComKZG([r(i)]t; [ψ(i)]t)}i∈[n−t] and the witnesses associated with their

shares. The new committee C′ computes the commitments {ComKZG([r̃(i)]t; [ψ̃(i)]t)}i∈[n−t] and the
witnesses associated with their shares.

Finally, output the following (n− t) pairs of couple sharings

([r(1)]t, [r̃
(1)]t), . . . , ([r

(n−t)]t, [r̃
(n−t)]t).

According to Lemma A.2, the resulting (n − t) pairs of couple sharings are uniformly random.
The description of Output appears in Protocol 16. Note that Output does not require any
communication.

Protocol 16: Output

1. For each party P ′i ∈ C′, if P ′i is identified as a corrupted party, all sharings generated by
P ′i are replaced by all 0 sharings.

2. Parties in the old committee C compute

([r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t)
T = M([u(1)]t, [u

(2)]t, . . . , [u
(n)]t)

T

([ψ(1)]t, [ψ
(2)]t, . . . , [ψ

(n−t)]t)
T = M([v(1)]t, [v

(2)]t, . . . , [v
(n)]t)

T.

3. All parties in the old committee compute the commitments {ComKZG([r(i)]t; [ψ(i)]t)}i∈[n−t]
and the witnesses associated with their shares.

4. Parties in the new committee C′ compute

([r̃(1)]t, [r̃
(2)]t, . . . , [r̃

(n−t)]t)
T = M([ũ(1)]t, [ũ

(2)]t, . . . , [ũ
(n)]t)

T

([ψ̃(1)]t, [ψ̃
(2)]t, . . . , [ψ̃

(n−t)]t)
T = M([ṽ(1)]t, [ṽ

(2)]t, . . . , [ṽ
(n)]t)

T.

5. All parties in the new committee compute the commitments
{ComKZG([r̃(i)]t; [ψ̃(i)]t)}i∈[n−t] and the witnesses associated with their shares.

Refresh Phase We will maintain the invariance that for each secret s, the old committee C holds
the sharing [s]t. In addition, the old committee holds another random sharing [z]t, which is used to
commit the sharing [s]t. The commitment of [s]t, i.e., ComKZG([s]t; [z]t) has been published. Each
party Pj ∈ C holds the witness wj([s]t; [z]t).
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For each secret sharing [s]t held by the old committee, one pair of couple sharings ([r]t, [r̃]t)
generated in the preparation phase is consumed. Let [ψ]t and [ψ̃]t be the random sharings which are
used to commit [r]t and [r̃]t respectively. Then the commitments of [r]t, [r̃]t, i.e., ComKZG([r]t; [ψ]t),
ComKZG([r̃]t; [ψ̃]t) have been published. Each party Pj ∈ C holds the witness wj([r]t; [ψ]t). Each
party P ′j ∈ C′ holds the witness wj([r̃]t; [ψ̃]t). A special party Pking ∈ C is selected and responsible
to do the reconstruction. The description of Refresh appears in Protocol 17. The communication
complexity of Refresh is O(n) elements plus O(1) broadcasting.

Protocol 17: Refresh

1. All parties in the old committee compute [s+ r]t = [s]t + [r]t and [z + ψ]t = [z]t + [ψ]t.

2. Each party Pj ∈ C computes the witness associated with its share of [s+ r]t, i.e., wj([s+
r]t; [z + ψ]t) = wj([s]t; [z]t)wj([r]t; [ψ]t).

3. All parties compute the commitment of [s + r]t by ComKZG([s + r]t; [z + ψ]t) =
ComKZG([s]t; [z]t)ComKZG([r]t; [ψ]t).

4. Each party Pj ∈ C sends its shares of [s+ r]t, [z+ψ]t and the associated witness to Pking.

5. Pking verifies the correctness of the received shares and reconstructs s+ r, z+ψ using the
first t+ 1 shares that pass the verification.

6. Pking computes the witness w0([s+ r]t; [z + ψ]t). Note that Pking holds enough shares to
reconstruct the whole sharings [s+ r]t, [z + ψ]t.

7. Pking publishes the values s+ r, z + ψ and the witness w0([s+ r]t; [z + ψ]t).

8. All parties check the correctness of the reconstruction. If the check fails, all parties
regard Pking as a corrupted party and take (corrupted, Pking) as output. Otherwise, all

parties in the new committee compute [s̃]t = (s + r) − [r̃]t, [z̃]t = (z + ψ) − [ψ̃]t. The
last step is done by regarding (s+ r), (z + ψ) as constant sharings, i.e., each party takes
(s+ r), (z + ψ) as its shares. Since the whole sharings are public, each party P ′j ∈ C′ can
compute ComKZG(s+ r; z + ψ) and wj(s+ r; z + ψ).

9. Each party P ′j ∈ C′ computes the witness associated with its share of [s̃]t, i.e.,

wj([s̃]t; [z̃]t) = wj(s + r; z + ψ)/wj([r̃]t; [ψ̃]t), and the commitment of [s̃]t, i.e.,
ComKZG([s̃]t; [z̃]t) = ComKZG(s+ r; z + ψ)/ComKZG([r̃]t; [ψ̃]t).

The full description of the hand-off phase appears in Protocol 18. We give a brief analysis of
the communication complexity.

� Preparation Phase:

– When all parties behave honestly, the communication complexity is O(n2) elements plus
O(n) elements of broadcasting. On average, each couple sharing requires O(n) elements
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plus O(1) elements of broadcasting.

– When one or more parties behave maliciously, the communication complexity is O(n2)
elements plus O(n2) elements of broadcasting. On average, each couple sharing requires
O(n) elements plus O(n) elements of broadcasting.

� Refresh Phase:

– When all parties behave honestly, the communication complexity per secret is O(n)
elements plus O(1) elements of broadcasting.

– In the worst case, the communication complexity per secret is O(n2) elements plus O(n)
elements of broadcasting.

In summary, when all parties behave honestly, refreshing each secret requires O(n) elements plus
O(1) elements of broadcasting. In the worst case, refreshing each secret requires O(n2) elements
plus O(n) elements of broadcasting.

Protocol 18: Hand-off

� Preparation Phase

1. All parties invoke Distribution and Accusation-Response.

2. All parties invoke Verification to verify the correctness of the sharings generated
in Step 1. If Verification fails, all parties invoke Single-Veri(P ′i ) for all P ′i ∈ C′.

3. All parties invoke Output.

� Refresh Phase

For each secret sharing [s]t held by the old committee, one pair of random couple sharings
([r]t, [r̃]t) is consumed. Repeat the following steps until [s]t is successfully shared to the
new committee.

1. All parties agree on a special party Pking which is not identified as a corrupted party.

2. All parties invoke Refresh.

C.2 Setup Phase

At the beginning of the protocol, a trusted third party prepares the public key PK for the KZG
commitment scheme. Then parties in the first committee run a distribution protocol with the client
to share the secrets.

At a high level, the committee first uses a similar approach to the preparation phase of the hand-
off phase to prepare random sharings. For each secret s, one random sharing [r]t is consumed. The
client collects the whole sharing [r]t and then reconstructs the value r. Finally, the client publishes
s+ r . The committee can compute [s]t = s+ r − [r]t.
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Preparing Random Sharings with Polynomial Commitments The descriptions of Setup-
Dist, Setup-Acc-Res Setup-Veri, Setup-Single-Veri and Setup-Output appear in Proto-
col 19, Protocol 20, Protocol 21, Protocol 22 and Protocol 23 respectively. Compared with the
preparation phase in the hand-off phase, each dealer only needs to prepare random sharings in-
stead of random couple sharings.

Protocol 19: Setup-Dist

1. Each party Pi randomly samples two sharings [u(i)]t and [v(i)]t.

2. Each party Pi computes ComKZG([u(i)]t, [v
(i)]t) and publishes the commitment.

3. Each party Pi distributes [u(i)]t, [v
(i)]t associated with the witnesses to all other parties.

4. All parties verify the validity of their shares and witnesses by invoking VerifyEval of the
KZG commitment scheme.

Protocol 20: Setup-Acc-Res

1. For each party Pj , if the shares and the witness received from Pi are invalid, Pj publishes
(accuse, Pi).

2. For each accusation against Pi made by Pj , Pi publishes the shares and the witness which
were sent to Pj .

3. For each accusation against Pi made by Pj , all parties check the validity of the shares
and the witness published by Pi.

� If the shares and the witness are invalid, all parties regard Pi as a corrupted party.

� Otherwise, Pj uses the shares and the witness published by Pi.

Lemma C.3. If at least one party Pi did not generate valid commitments in Setup-Dist, with
probability at least 1− 2n

2κ/2
, all parties take fail as output in Setup-Veri.

Lemma C.4. With probability at least 1− n
2κ/2

, all corrupted parties that did not generate valid
commitments in Setup-Dist can be identified in Setup-Single-Veri.

Fresh Phase After random sharings are prepared, the client acts like the Pking in Refresh. For
each secret s, a random sharing [r]t is consumed. Let [ψ]t denote the random sharing which is used
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Protocol 21: Setup-Veri

1. All parties invoke Setup-Dist and Setup-Acc-Res. Let [µ(i)]t, [ν
(i)]t denote the random

sharings generated by Pi.

2. All parties invoke Challenge to generate a challenge λ ∈ Zp.

3. Let

F (X) =

n∑
i=1

(µ(i) + u(i)X)X2i−2, H(X) =

n∑
i=1

(ν(i) + v(i)X)X2i−2.

Each party Pj publishes the j-th shares of [F (λ)]t, [H(λ)]t and the witness
wj([F (λ)]t; [H(λ)]t).

4. All parties compute the commitment ComKZG([F (λ)]t; [H(λ)]t) using
{ComKZG([u(i)]t; [v(i)]t)}i∈[n], {ComKZG([µ(i)]t; [ν(i)]t)}i∈[n].

5. All parties use the first t+1 shares that pass the verification to reconstruct the whole shar-
ings [F (λ)]t, [H(λ)]t. All parties check if ComKZG([F (λ)]t; [H(λ)]t) is correctly computed.
If not, all parties take fail as output.

Protocol 22: Setup-Single-Veri(Pi)

1. Each party Pj publishes the j-th shares of [µ(i)]t+λ[u(i)]t, [ν
(i)]t+λ[v(i)]t and the witness

wj([µ
(i)]t + λ[u(i)]t; [ν(i)]t + λ[v(i)]t).

2. All parties compute the commitment ComKZG([µ(i)]t + λ[u(i)]t; [ν(i)]t + λ[v(i)]t) by

ComKZG([µ(i)]t; [ν(i)]t) · (ComKZG([u(i)]t; [v(i)]t))
λ.

3. All parties use the first t+1 shares that pass the verification to reconstruct the whole shar-
ings [µ(i)]t +λ[u(i)]t, [ν

(i)]t +λ[v(i)]t. All parties check if ComKZG([µ(i)]t +λ[u(i)]t; [ν(i)]t +
λ[v(i)]t) is correctly computed. If not, Pi is regarded as a corrupted party.

to compute the commitment of [r]t, i.e., ComKZG([r]t; [ψ]t). All parties hold their shares of [r]t, [ψ]t
and the associated witnesses. The description of Setup-Fresh appears in Protocol 24. The
communication complexity of Setup-Fresh is O(n) elements plus O(1) elements of broadcasting.

The full description of the setup phase appears in Protocol 25. When all parties behave honestly,
sharing each secret requires O(n) elements plus O(1) elements of broadcasting. In the worst case,
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Protocol 23: Setup-Output

1. For each party Pi, if Pi is identified as a corrupted party, all sharings generated by Pi are
replaced by all 0 sharings.

2. All parties compute

([r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t)
T = M([u(1)]t, [u

(2)]t, . . . , [u
(n)]t)

T

([ψ(1)]t, [ψ
(2)]t, . . . , [ψ

(n−t)]t)
T = M([v(1)]t, [v

(2)]t, . . . , [v
(n)]t)

T.

3. All parties compute the commitments {ComKZG([r(i)]t; [ψ(i)]t)}i∈[n−t] and the witnesses
associated with their shares.

Protocol 24: Setup-Fresh

1. All parties send their shares of [r]t, [ψ]t and the associated witnesses to the client.

2. The client verifies the correctness of the received shares and reconstructs r, ψ using the
first t+ 1 shares that pass the verification.

3. The client randomly samples z. Then publish s+ r, z + ψ.

4. All parties compute [s]t = (s + r) − [r]t, [z]t = (z + ψ) − [ψ]t. The last step is done by
regarding (s+ r), (z+ψ) as constant sharings, i.e., each party takes (s+ r), (z+ψ) as its
shares. Since the whole sharings are public, each party can compute ComKZG(s+r; z+ψ)
and wj(s+ r; z + ψ).

5. Each party computes the witness associated with its share of [s]t, i.e., wj([s]t; [z]t) =
wj(s + r; z + ψ)/wj([r]t; [ψ]t), and the commitment of [s]t, i.e., ComKZG([s]t; [z]t) =
ComKZG(s+ r; z + ψ)/ComKZG([r]t; [ψ]t).

sharing each secret requires O(n) elements plus O(n) elements of broadcasting.

C.3 Reconstruction Phase

When asking to reconstruct some secret s? to a client, all parties in the current committee simply
send their shares of [s?]t and the associated witnesses to the client. Then the client can reconstruct
the secret using the first t+1 shares that pass the verification. The description of Reconstruction
appears in Protocol 26. The communication complexity of Reconstruction is O(n) elements.
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Protocol 25: Setup

� Preparation Phase

1. All parties invoke Setup-Dist and Setup-Acc-Res.

2. All parties invoke Setup-Veri to verify the correctness of the sharings generated in
Step 1. If Setup-Veri fails, all parties invoke Setup-Single-Veri(Pi) for all Pi.

3. All parties invoke Setup-Output.

� Fresh Phase

For each secret s, one random sharing [r]t is consumed. All parties invoke Setup-Fresh.

Protocol 26: Reconstruction

Suppose [s?]t is the sharing all parties want to reconstruct and Client is the receiver.

1. All parties in the current committee send their shares of [s?]t and the associated witnesses
to Client.

2. Client verifies the correctness of the received shares and witnesses. Then reconstruct s?

using the first t+ 1 shares that pass the verification.

C.4 Full DPSS Protocol

The full construction is presented in Protocol 27. We summarize the communication complexity of
each phase as follows:

� Setup Phase: When all parties behave honestly, sharing each secret requires O(n) elements
plus O(1) elements of broadcasting. In the worst case, sharing each secret requires O(n)
elements plus O(n) elements of broadcasting.

� Hand-off Phase: When all parties behave honestly, refreshing each secret requires O(n) ele-
ments plus O(1) elements of broadcasting. In the worst case, refreshing each secret requires
O(n2) elements plus O(n) elements of broadcasting.

� Reconstruction Phase: Reconstructing each secret requires O(n) field elements.

We present the proof of robustness and the proof of security of our DPSS construction in
Appendix D.
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Protocol 27: Main

� Setup Phase

1. A trusted party invokes Setup(1κ, t) of the KZG commitment scheme and publishes
the public key PK.

2. The first committee and the client invoke Setup to share the secret values.

3. All parties only keep their shares of the secrets and the associated witnesses and
erase anything else.

� Hand-off Phase

1. All parties invoke Hand-off to pass the sharings of the secrets from the old com-
mittee to the new committee.

2. Parties in the old committee erases all their shares and witnesses. Parties in the
new committee only keep their shares of the secrets and the associated witnesses
and erase anything else.

� Reconstruction Phase

Let s? be the secret all parties need to reconstruct and Client be the receiver. All parties
invoke Reconstruction on [s?]t and Client.

C.5 Extension to Various Thresholds

We note that our construction can be easily extended to handle various sizes of committees with
the only requirement that each committee satisfies honest majority. At a high-level, we simply use
secret sharings of different thresholds for different committees.

Specifically, let n, t denote the number of parties and the threshold for the old committee, and,
n′, t′, for the new committee. Now the couple sharings will be two sharings of the same value where
one is a degree-t sharing and the other one is a degree-t′ sharing.

When preparing couple sharings in the preparation phase, each party in the new committee will
generate a pair of random couple sharings and distribute the degree-t sharing to the old committee
and the degree-t′ sharing to the new committee. The verification step processes as before except
that the old committee uses the threshold t and the new committee uses the threshold t′. The
refresh phase remains unchanged.

The security can be shown in a similar way as that of Protocol 27.

D DPSS Security Proof

D.1 DPSS Robustness Proof

To show the robustness, it is sufficient to prove the following three lemmas.
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Lemma D.1. With overwhelming probability, after the setup phase, there exists a fixed secret for
each sharing. Especially, if the client is honest, then the secret is the same as the one chosen by
the client.

Proof. According to Lemma C.3, all parties can detect misbehaviors in Setup-Veri with over-
whelming probability. Then in Setup-Single-Veri, according to Lemma C.4 and the union
bound, all corrupted parties that did not generate valid commitments in Setup-Dist can be iden-
tified. The reason for using the union bound is because we use the same challenge string λ in
Setup-Veri and Setup-Single-Veri.

Therefore, in Setup-Output, for each Pi ∈ C which is not identified as a corrupted party, with
overwhelming probability,

1. for each sharing distributed by Pi, the shares held by honest parties are consistent.

2. honest parties hold valid witnesses associated with their shares and the KZG commitments
published by Pi are correctly computed.

Note that, from the shares held by honest parties, we can compute the shares and the associated
witnesses that corrupted parties should hold. According to the evaluation binding property of the
KZG commitment scheme, a corrupted party cannot generate a different share with a valid witness.

Therefore, with overwhelming probability, for each sharing [r]t output by Setup-Output,
the secret r can be determined by the shares held by honest parties, and, corrupted parties cannot
generate different shares with valid witnesses. Thus, in Setup-Fresh, the client is able to compute
the correct secret r using the first t+1 shares that pass the verification. Suppose the client publishes
s+r. Since [r]t is correctly shared among the committee C, all parties in C can compute the sharing
[s]t = (s+r)−[r]t. According to the correctness of [r]t, (1) honest parties in C hold consistent shares
of [s]t with valid witnesses, (2) the KZG commitment of [s]t is correctly computed. According to
the evaluation binding property of the KZG commitment scheme, a corrupted party in C is unable
to provide a wrong share of [s]t with a valid witness.

The secret of the sharing [s]t = s + r − [r]t is s, which is a fixed value and determined by the
shares held by honest parties. In particular, if the client is honest, then s remains the same as the
choice of the client.

Lemma D.2. With overwhelming probability, after each of the hand-off phase, for each secret, all
honest parties in the new committee C′ receive the correct shares of the original secret. For any set
T ⊂ C′, the shares provided by parties in T can only be reconstructed (by an honest reconstructor)
to either the original secret or ⊥, where ⊥ means a failure in the reconstruction. In particular, if
T contains at least t + 1 honest parties, then the shares provided by parties in T can always be
reconstructed (by an honest reconstructor) to the original secret.

Proof. According to Lemma C.1, all parties can detect misbehaviors in Verification with over-
whelming probability. Then in Single-Veri, according to Lemma C.2 and the union bound, all
corrupted parties that did not generate valid couple sharings or commitments can be identified. The
reason for using the union bound is because we use the same challenge string λ in Verification
and Single-Veri.

Therefore, in Output, for each P ′i ∈ C′ which is not identified as a corrupted party, with
overwhelming probability,
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1. for each sharing distributed by P ′i , the shares held by honest parties are consistent.

2. the secrets of the two sharings in a pair of couple sharings are the same.

3. honest parties hold valid witnesses associated with their shares and the KZG commitments
published by P ′i are correctly computed.

Note that, from the shares held by honest parties, we can compute the shares and the associated
witnesses that corrupted parties should hold. According to the evaluation binding property of the
KZG commitment scheme, a corrupted party cannot generate a different share with a valid witness.

Assume the robustness holds for the old committee C. Then, in Refresh, a corrupted party
cannot provide a wrong share of [s + r]t with a valid witness to Pking. Since Pking receives at
least t+ 1 correct shares with valid witnesses from honest parties, Pking can always reconstruct the
sharing [s+ r]t. In addition, according to the evaluation binding property of the KZG commitment
scheme again, a corrupted Pking cannot generate a value different from s+ r with a valid witness.
Since [r̃]t is correctly shared among the new committee C′ and r = r̃, all parties in C′ can compute
the sharing [s̃]t = (s + r) − [r̃]t such that s̃ = s. According to the correctness of [r̃]t, (1) honest
parties in C′ hold consistent shares of [s̃]t with valid witnesses, (2) the secret is s̃ = s and (3) the
KZG commitment of [s̃]t is correctly computed. According to the evaluation binding property of
the KZG commitment scheme, a corrupted party in C′ is unable to provide a wrong share of [s]t
with a valid witness.

Therefore, for any subset T ⊂ C′, either the shares provided by parties in T contain at least
t + 1 valid shares, which can be used to reconstruct the correct secret, or contain at most t valid
shares, which leads to an abort of the reconstruction.

Lemma D.3. With overwhelming probability, the client in Reconstruction can always recon-
struct the correct secret s?.

Proof. Note that the current committee contains at least t+1 honest parties. The statement follows
from Lemma D.2.

D.2 DPSS Secrecy Proof

We will first construct a simulator S and then show that the transcript of the interaction between
S and the adversary A is indistinguishable from the real execution.

Simulating the Setup Phase. The simulator S first prepares the public key. S invokes Setup(1κ, t)
and receives two groups G,GT of prime order p and a symmetric bilinear pairing e : G×G→ GT .
S samples a random generator g ∈ G. Then randomly sample α, β ∈ Zp. Let h = gβ. The

public key PK is set to be (G,GT , e, g, g
α, . . . , gα

t
, h, hα, . . . , hα

t
).

Simulating Setup-Dist. Recall that a sharing [s]t is also used to denote its corresponding
polynomial. We use the notation [s]t(x) to denote the value at the point x.

For each honest party Pi, the simulator S chooses two random elements for each corrupted
party as its shares of [u(i)]t and [v(i)]t. Recall that h = gβ. S randomly samples a sharing as
[u(i)]t + β[v(i)]t such that the shares held by corrupted parties match the shares of [u(i)]t and [v(i)]t
chosen for corrupted parties. Then S computes the commitment

ComKZG([u(i)]t; [v(i)]) = g[u
(i)]t(α)h[v

(i)]t(α) = g([u
(i)]t+β[v(i)]t)(α).
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For each corrupted party Pj , the witness associated with its share [u(i)]t(j) can be computed
by

wj([u
(i)]t; [v(i)]t) = g

[u(i)]t(α)−[u(i)]t(j)
α−j h

[v(i)]t(α)−[v(i)]t(j)
α−j

= g
[u(i)]t(α)+β[v

(i)]t(α)−[u(i)]t(j)−β[v
(i)]t(j)

α−j

= g
([u(i)]t+β[v

(i)]t)(α)−([u(i)]t+β[v
(i)]t)(j)

α−j

The simulator S faithfully follows the rest of the steps in Setup-Dist.
Simulating Setup-Acc-Res. Note that an honest party never accuses another honest party.

Since all shares sent from honest parties to corrupted parties are generated explicitly, S simply
follows the protocol.

Simulating Setup-Veri and Setup-Single-Veri. In the first step, S simulates Setup-Dist
and Setup-Acc-Res in the same way as described above. S faithfully follows Challenge when
generating a challenge λ ∈ Zp.

For each honest party Pi, S randomly samples a sharing as [µ(i)]t +λ[u(i)]t such that the shares
held by corrupted parties match the shares of [u(i)]t and [µ(i)]t sent to corrupted parties. Then
[ν(i)]t + λ[v(i)]t is set to be

β−1(λ([u(i)]t + β[v(i)]t) + ([µ(i)]t + β[ν(i)]t)− ([µ(i)]t + λ[u(i)]t)).

Note that the following two sharings [u(i)]t +β[v(i)]t, [µ
(i)]t +β[ν(i)]t have been explicitly generated

when S simulates Setup-Dist.
The simulator S faithfully follows the rest of the steps in Setup-Veri and Setup-Single-Veri.
Simulating Setup-Output. Since Setup-Output does not need communication, S simply

follows the protocol. Note that for each pair of sharings ([r(i)]t, [ψ
(i)]t), S can compute the whole

sharing [r(i)]t + β[ψ(i)]t using {[u(j)]t + β[v(j)]t}j∈[n].
Simulating Setup-Fresh. Depending on whether the client is honest or corrupted, there are

two cases.

� If the client is honest, S chooses two random elements as s+ r, z + ψ and publishes them on
behalf of the client.

� If the client is corrupted, S randomly samples a sharing as [r]t based on the shares held by
corrupted parties, and computes [ψ]t = β−1(([r]t+β[ψ]t)− [r]t). S faithfully sends the shares
and witnesses of honest parties to the client. After receiving s + r, z + ψ from the client, S
computes the secret s from s+ r, r and sends the secret to Idealsafe.

Finally, S computes the sharing [s]t + β[z]t := ((s+ r) + β(z + ψ))− ([r]t + β[ψ]t).
Handling Adaptive Corruptions. Suppose Pj is corrupted by A. The simulator S needs to

prepare the sharings dealt by Pj and the messages sent from other honest parties to Pj .
We first prepare the sharings dealt by Pj . Based on the shares held by corrupted parties, S

randomly samples a sharing as [u(j)]t. Then [v(j)]t is set to be β−1(([u(j)]t + β[v(j)]t) − [u(j)]t).
Regarding the sharings [µ(j)]t, [ν

(j)]t, there are two cases.

� If Pj is corrupted before the challenge λ is generated in Setup-Veri, [µ(j)]t and [ν(j)]t can
be prepared in the same way.
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� Otherwise, [µ(j)]t, [ν
(j)]t are set to be ([µ(j)]t+λ[u(j)]t)−λ·[u(j)]t and ([ν(j)]t+λ[v(j)]t)−λ·[v(j)]t

respectively.

Then, we prepare the messages sent from other honest parties to Pj . Recall that [r(1)]t(j), . . . , [r
(n−t)]t(j)

are the j-th shares of [r(1)]t, . . . , [r
(n−t)]t output by Setup-Output. For each i ∈ [n−t], if [r(i)]t(j)

has not been determined, S randomly samples an element as [r(i)]t(j) (Note that if [r(i)]t is used
to share a secret of a corrupted client, then [r(i)]t(j) may be explicitly generated depending on the
time when Pj is corrupted by A).

Let H ⊆ C be a set of (n − t) honest parties and MH denote the submatrix containing the
columns with indices i ∈ H. According to the property of the Vandermonde matrix, MH is
invertible. There is a one-to-one map from the j-th shares of [r(1)]t, . . . , [r

(n−t)]t to the j-th shares
of {[u(i)]t}Pi∈H. For each honest party Pi 6∈ H, S randomly samples an element as the j-th share of
[u(i)]t. Then, the j−th shares of {[u(i)]t}Pi∈H can be computed from the j-th shares of {[r(i)]t}i∈[n−t]
and {[u(i)]t}Pi 6∈H.

Regarding the j-th shares of [µ(i)]t, [ν
(i)]t dealt by an honest party Pi, there are two cases.

� If Pj is corrupted before the challenge λ is generated in Setup-Veri, for each honest party
Pi, the j-th share of [µ(i)]t is set to be a uniform element and the j-th share of [ν(i)]t is set to
be

β−1(([µ(i)]t + β[ν(i)]t)(j)− [µ(i)]t(j)).

� Otherwise, the j-th shares of [µ(i)]t, [ν
(i)]t are set to be ([µ(i)]t +λ[u(i)]t)(j)−λ · [u(i)]t(j) and

([ν(i)]t + λ[v(i)]t)(j)− λ · [v(i)]t(j) respectively.

Once the j-th shares are prepared, the associated witnesses can be computed in the same way
as those for corrupted parties.

Simulating the Hand-off Phase.
We will maintain the invariance that

1. for each sharing [s]t, the simulator S learns the shares that should be held by corrupted
parties.

2. for each commitment ComKZG([s]t; [z]t), the simulator S knows the whole sharing [s]t +β[z]t.

It is clear that this invariance holds in the first call of the hand-off phase.
Simulating Distribution. Distribution is simulated in a similar way to Setup-Dist.
Concretely, for each honest party P ′i ∈ C′, the simulator S chooses two random elements for each

corrupted party in the old committee as its shares of [u(i)]t and [v(i)]t and two random elements for
each corrupted party in the new committee as its shares of [ũ(i)]t and [ṽ(i)]t. Recall that h = gβ.
S randomly samples a value as u(i) + βv(i) = ũ(i) + βṽ(i). Based on this value and the shares of
corrupted parties, S randomly samples two sharings as [u(i)]t + β[v(i)]t and [ũ(i)] + β[ṽ(i)]t.
S computes the commitments ComKZG([u(i)]t; [v(i)]t), ComKZG([ũ(i)]t; [ṽ(i)]t) and the witnesses

associated with the shares of corrupted parties in the same way as that when simulating Setup-
Dist.

The simulator S faithfully follows the rest of the steps in Distribution.
Simulating Accusation-Response. Note that an honest party never accuses another honest

party. Since all shares sent from honest parties to corrupted parties are generated explicitly, S
simply follows the protocol.
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Simulating Verification and Single-Veri. In the first step, S simulates Distribution and
Accusation-Response in the same way as described above. S faithfully follows Challenge
when generating a challenge λ ∈ Zp.

For each honest party Pi, S randomly samples a value as µ(i) + λu(i) = µ̃(i) + λũ(i). Based on
this value and the shares of corrupted parties, S randomly samples two sharings as [µ(i)]t + λ[u(i)]t
and [µ̃(i)] + λ[ũ(i)]t. Then [ν(i)]t + λ[v(i)]t and [ν̃(i)]t + λ[ṽ(i)]t are set to be

β−1(λ([u(i)]t + β[v(i)]t) + ([µ(i)]t + β[ν(i)]t)− ([µ(i)]t + λ[u(i)]t)),

β−1(λ([ũ(i)]t + β[ṽ(i)]t) + ([µ̃(i)]t + β[ν̃(i)]t)− ([µ̃(i)]t + λ[ũ(i)]t))

respectively. Note that the following sharings [u(i)]t+β[v(i)]t, [µ
(i)]t+β[ν(i)]t and [ũ(i)]t+β[ṽ(i)]t, [µ̃

(i)]t+
β[ν̃(i)]t have been explicitly generated when S simulates Distribution.

The simulator S faithfully follows the rest of the steps in Verification and Single-Veri.
Simulating Output. Since Output does not need communication, S simply follows the pro-

tocol. Note that for each i ∈ [n − t], S can compute the whole sharings [r(i)]t + β[ψ(i)]t and
[r̃(i)]t + β[ψ̃(i)]t using {[u(j)]t + β[v(j)]t}j∈[n] and {[ũ(j)]t + β[ṽ(j)]t}j∈[n] respectively.

Simulating Refresh. Based on the shares of corrupted parties, S first chooses a random sharing
as [s+ r]t = [s]t + [r]t. Then, the sharing [z + ψ]t is set to be

β−1(([s]t + β[z]t) + ([r]t + β[ψ]t)− ([s]t + [r]t)).

According to the invariance, S knows the sharing [s]t + β[z]t. S also learns [r]t + β[ψ]t when
simulating Output.

Since the whole sharings [s+r]t and [z+ψ]t are known to S, S computes the witnesses associated
with the shares of honest parties. S faithfully follows the rest of the protocol.

Finally, S computes the sharing [s̃] + β[z̃] := ((s+ r) + β(z + ψ))− ([r̃]t + β[ψ̃]t).
Handling Adaptive Corruptions. Depending on which committee the party corrupted by A

belongs to, there are two cases.

� Suppose P ′j in the new committee is corrupted. The simulator S needs to prepare the shares
dealt by P ′j and the messages sent from other honest parties P ′i ∈ C′\{P ′j}.
For each honest party P ′i ∈ C′\{P ′j}, S randomly samples an element as the j-th share of

[ũ(i)]t. The j-th share of [ṽ(i)]t is set to be β−1(([ũ(i)]t + β[ṽ(i)]t)(j)− [ũ(i)]t(j)). The witness
can be in the same way as that for a corrupted party. For P ′j , based on the shares held by

corrupted parties, S randomly samples a pair of couple sharings ([u(j)]t, [ũ
(j)]t). Then [v(j)]t

and [ṽ(j)]t are set to be

β−1(([u(j)]t + β[v(j)]t)− [u(j)]t)

β−1(([ũ(j)]t + β[ṽ(j)]t)− [ũ(j)]t)

respectively.

1. If P ′j is corrupted before the challenge λ is generated in Verification, ([µ(j)]t, [µ̃
(j)]t), ([ν

(j)]t, [ν̃
(j)]t),

and the j-th shares of [µ̃(i)]t, [ν̃
(i)]t with the witnesses for all honest parties P ′i ∈ C′\{P ′j}

can be prepared in the same way.
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2. If P ′j is corrupted after the challenge λ is generated, ([µ(j)]t, [µ̃
(j)]t) and ([ν(j)]t, [ν̃

(j)]t)
are set to be

([µ(j)]t + λ[u(j)]t, [µ̃
(j)]t + λ[ũ(j)]t)− λ · ([u(j)]t, [ũ(j)]t)

([ν(j)]t + λ[v(j)]t, [ν̃
(j)]t + λ[ṽ(j)]t)− λ · ([v(j)]t, [ṽ(j)]t)

respectively. For each honest party P ′i ∈ C′\{P ′j}, the j-th shares of [µ̃(i)]t and [ν̃(i)]t are
set to be

([µ̃(i)]t + λ[ũ(i)]t)(j)− λ · [ũ(i)]t(j)
([ν̃(i)]t + λ[ṽ(i)]t)(j)− λ · [ṽ(i)]t(j)

respectively. The witness can be computed in the same way as that for a corrupted
party.

� Suppose Pj in the old committee is corrupted. The simulator S needs to prepare the j-th
share of each sharing [s]t and the messages sent from honest parties.

For each sharing [s]t, let [z]t denote the random sharing which is used to commit [s]t.

– If the old committee is the first committee, and [s]t is dealt by a corrupted client, S
does nothing. Recall that the whole sharing [s]t, [z]t were explicitly generated when
simulating Setup-Fresh.

– Otherwise, S randomly samples an element as the j-th share of [s]t. The j-th share of
[z]t is computed by β−1(([s]t + β[z]t)(j)− [s]t(j)). The witness can be computed by

wj([s]t; [z]t) = g
([s]t+β[z]t)(α)−([s]t+β[z]t)(j)

α−j .

Then, we prepare the messages sent from honest parties to Pj . Recall that [r(1)]t(j), . . . , [r
(n−t)]t(j)

are the j-th shares of [r(1)]t, . . . , [r
(n−t)]t output by Output. For each i ∈ [n− t], if [r(i)]t(j)

has not been determined, S randomly samples an element as [r(i)]t(j) (Note that if [r(i)]t has
been used in Refresh for [s(i)]t, since the whole sharing [s(i) + r(i)]t was generated when
simulating Refresh and the j-th share of [s(i)]t has been prepared as above, the j-th share
of [r(i)]t is determined).

Let H ⊆ C′ be a set of (n − t) honest parties and MH denote the submatrix containing the
columns with indices i ∈ H. According to the property of the Vandermonde matrix, MH is
invertible. There is a one-to-one map from the j-th shares of [r(1)]t, . . . , [r

(n−t)]t to the j-th
shares of {[u(i)]t}P ′i∈H. For each honest party P ′i 6∈ H, S randomly samples an element as the

j-th share of [u(i)]t. Then, the j−th shares of {[u(i)]t}P ′i∈H can be computed from the j-th

shares of {[r(i)]t}i∈[n−t] and {[u(i)]t}P ′i 6∈H.

Regarding the j-th shares of [µ(i)]t, [ν
(i)]t dealt by an honest party P ′i , there are two cases.

– If Pj is corrupted before the challenge λ is generated in Verification, for each honest
party P ′i , the j-th share of [µ(i)]t is set to be a uniform element and the j-th share of
[ν(i)]t is set to be

β−1(([µ(i)]t + β[ν(i)]t)(j)− [µ(i)]t(j)).
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– Otherwise, the j-th shares of [µ(i)]t, [ν
(i)]t are set to be ([µ(i)]t+λ[u(i)]t)(j)−λ · [u(i)]t(j)

and ([ν(i)]t + λ[v(i)]t)(j)− λ · [v(i)]t(j) respectively.

Once the j-th shares are prepared, the associated witnesses can be computed in the same way
as those for corrupted parties.

Simulating the Reconstruction Phase. Note that if the receiver Client is honest, there is no
need to send any message to the adversary. S does nothing. Now assume that Client is corrupted.
Suppose [s?]t is the sharing all parties want to reconstruct. In addition, let [z?]t be the sharing
used to compute the commitment of [s?]t, i.e., ComKZG([s?]t; [z?]t). By the invariance, S learns the
whole sharing [s?]t + β[z?]t.
S first queries the secret s? from Idealsafe.

� If the current committee has already generated the whole sharing [s?]t, [z
?]t, S does nothing.

It corresponds to the following two possible scenarios.

– If s? is dealt by a corrupted client and the current committee is the first committee, the
whole sharings [s?]t, [z

?]t were explicitly generated when simulating Setup-Fresh.

– If s? was just reconstructed to a corrupted client and [s?]t has not been refreshed yet,
the whole sharings [s?]t, [z

?]t were explicitly generated when simulating the last call of
Reconstruction.

� Otherwise, based on the shares of [s?]t held by corrupted parties and the secret s?, S randomly
samples a sharing as [s?]t. Then set [z?]t to be β−1(([s?]t + β[z?]t)− [s?]t).

Since the whole sharings are prepared, S computes the witness for each honest party. Finally, S
sends the shares of honest parties with witnesses to Client.

Proving indistinguishability. We show that any PPT adversary A cannot distinguish the view
when interacting with the simulator S constructed above from the view in the real world. Consid-
ering the following hybrids.

Hybrid0: Execution in the real world. The simulator controls all honest parties and follows
the protocol.

Hybrid1: The simulator S prepares the public key PK and stores α, β. The rest of the steps
remain the same as Hybrid0. The distribution is identical to Hybrid0.

Hybrid2: In this hybrid, S uses the shares of honest parties to recover the secrets dealt by
corrupted clients and sends them to Idealsafe. The distribution is identical to Hybrid1.

Hybrid3: In Setup-Dist, S does not generate the whole sharings [u(i)]t, [v
(i)]t for each honest

party Pi. Instead, S simulates Setup-Dist, Setup-Acc-Res, Setup-Veri and Setup-Single-
Veri in the way we described above. In Setup-Output, S generates a random sharing [u(i)]t
based on the shares held by corrupted parties.

Recall that S has generated the whole sharing [u(i)]t + β[v(i)]t when simulating Setup-Dist.
Therefore, [v(i)]t is set to be β−1(([u(i)]t + β[v(i)]t)− [u(i)]t).

As for [µ(i)]t and [ν(i)]t, recall that S has generated the whole sharing [µ(i)]t + λ[u(i)]t and
[ν(i)]t + λ[v(i)]t. Therefore, [µ(i)]t and [ν(i)]t are set to be

([µ(i)]t + λ[u(i)]t)− λ · [u(i)]t
([ν(i)]t + λ[v(i)]t)− λ · [v(i)]t
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respectively.
Regarding adaptive corruption, if Pj is corrupted by A before Setup-Output, the view of Pj

is prepared by S in the way we described above.
Note that for each honest party Pi, the sharing [µ(i)]t is prepared as a random mask to protect

the secrecy of [u(i)]t. Therefore, [µ(i)]t + λ[u(i)]t is a random sharing. S perfectly simulates the
behaviors of honest parties. The distribution is identical to Hybrid2.

Hybrid4: Similarly to Hybrid3, S simulates Distribution, Accusation-Response, Veri-
fication and Single-Veri in the way we described above. The generation of the whole sharings
([u(i)]t, [ũ

(i)]t), ([v
(i)]t, [ṽ

(i)]t) for each honest party P ′i is postponed to Output. If Pj ∈ C
⋃
C′ is

corrupted by A before Output, the view of Pj is prepared by S in the way we described above.
The distribution is identical to Hybrid3.

Hybrid5: In Setup-Output, S changes its strategy of generating [u(i)]t, [v
(i)]t for each honest

party Pi. Recall that all parties compute

([r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t)
T = M([u(1)]t, [u

(2)]t, . . . , [u
(n)]t)

T

in Setup-Output. Let H ⊆ C be a set of (n − t) honest parties and MH denote the submatrix
containing the columns with indices i ∈ H. By the property of the Vandermonde matrix, MH is
invertible. There is a one-to-one map from {[r(j)]t}j∈[n−t] to {[u(i)]t}Pi∈H.

For each j ∈ [n− t], S generates a random sharing [r(j)]t based on the shares held by corrupted
parties. For each honest party Pi 6∈ H, S generates a random sharing [u(i)]t based on the shares
held by corrupted parties. Then, the sharings {[u(i)]t}Pi∈H can be determined by {[r(j)]t}j∈[n−t] and

{[u(i)]t}Pi 6∈H. After [u(i)]t for each honest party Pi is generated, [v(i)]t, [µ
(i)]t, [ν

(i)]t are computed
in the same way as that in Hybrid3.

Note that any misbehavior of corrupted parties can be detected and identified with overwhelm-
ing probability. In the case that each sharing [u(i)]t dealt by a corrupted party Pi is consistent, by
Lemma A.2, the resulting sharings [r(1)]t, . . . , [r

(n−t)]t are random sharings. Therefore, the distri-
bution is statistically close to Hybrid4. The negligible difference comes from the case where some
misbehavior is not detected in Setup-Veri or identified in Setup-Single-Veri.

Hybrid6: Similarly to Hybrid5, in Output, S changes its strategy of generating ([u(i)]t, [ũ
(i)]t),

([v(i)]t, [ṽ
(i)]t) for each honest party Pi. In a nutshell, S first generates {([r(j)], [r̃(j)])}j∈[n−t] and

then generates ([u(i)]t, [ũ
(i)]t), ([v

(i)]t, [ṽ
(i)]t) for each honest party Pi. The distribution is statisti-

cally close to Hybrid5.
Hybrid7: In this hybrid, S further changes its strategy of generating ([r(j)]t, [r̃

(j)]t) for all
j ∈ [n − t] in Output. In Refresh, S first samples a random sharing as [s + r]t based on the
shares held by corrupted parties. Then, the sharing [r]t is set to be [s+r]t−[s]t. S samples a random
sharing [r̃]t based on the secret r̃ = r and the shares held by corrupted parties. Note that this new
way of generating {([r(j)]t, [r̃(j)]t)}j∈[n−t] does not change the distribution of {([r(j)]t, [r̃(j)]t)}j∈[n−t].
Therefore the distribution remains the same as Hybrid6.

Hybrid8: In this hybrid, S first computes the sharings {([r(j)]t+β[ψ(j)]t, [r̃
(j)]t+β[ψ̃(j)]t)}j∈[n−t]

using {([u(i)]t + β[v(i)]t, [ũ
(i)]t + β[ṽ(i)]t)}i∈[n]. In Refresh, [z + ψ]t can be computed by

[z + ψ]t = β−1(([s]t + β[z]t) + ([r]t + β[ψ]t)− ([s]t + [r]t)).

Note that [s + r]t and [z + ψ]t are prepared without using [s]t, [r]t, [z]t, [ψ]t. So far, Hand-off is
fully simulated by S. If Pj ∈ C

⋃
C′ is corrupted by A, the view of Pj is prepared by S in the way
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we described above. Since [s̃]t may be used by Reconstruction, S prepares the whole sharing
[s̃]t. Recall that [s̃]t := (s+r)− [r̃]t and s̃ = s. S samples a random sharing [s̃]t based on the secret
s̃ = s and the shares held by corrupted parties. The distribution is the same as Hybrid7.

Hybrid9: In this hybrid, S further changes its strategy of generating [r(j)]t for all j ∈ [n − t]
in Setup-Output. Recall that in Hybrid5, S first generates {[r(j)]t}j∈[n−t] and then generates

[u(i)]t for each honest party Pi.
In Setup-Fresh, for an honest client, S first samples a random value as s+r. Then, S samples

a random sharing [s+ r]t based on the secret s+ r and the shares held by corrupted parties. The
sharing [r]t is set to be [s + r]t − s. Note that this new way of generating {[r(j)]t}j∈[n−t] does not

change the distribution of {[r(j)]t}j∈[n−t]. Therefore the distribution remains the same as Hybrid8.
Hybrid10: In this hybrid, S changes its strategy of generating z for an honest client. S chooses

a random value as z + ψ and then set z = (z + ψ) − ψ. Note that s + r and z + ψ are prepared
without using s, z. So far, Setup is fully simulated by S. If Pj ∈ C is corrupted by A, the view of
Pj is prepared by S in the way we described above. Since [s]t may be used by Reconstruction,
S prepares the whole sharing [s]t. Note that if s is dealt by a corrupted client, the whole sharing
[s]t has already been generated. For an honest client, recall that [s]t := (s+ r)− [r]t. S samples a
random sharing [s]t based on the secret s and the shares held by corrupted parties. The distribution
is the same as Hybrid9.

Hybrid11: So far, the sharing [s]t is only used in Reconstruction and it is generated in
the same way as that in Reconstruction. Therefore, S only generates the sharing [s]t when
Reconstruction is invoked and Client is corrupted. Note that in this case S can learn the secret
by querying Idealsafe. The distribution is the same as Hybrid10.

Note that in the last hybrid, the simulator does not need to have access to the secrets to
simulate the whole process. We conclude that the distribution of Hybrid11 is computationally
indistinguishable to the distribution of Hybrid0.

E eWEB Security Proof

In the following, we prove that the eWEB construction (Figure 9) satisfies the security definition
given in §3.2. Let εi denote the success probability of the adversary in hybrid Hi.

For secrecy, we proceed with the proof using a number of hybrid games.

Proof. H0 : This hybrid corresponds to the execution of the game using the HiddenWitness
construction as specified in Protocol 9.

H1 : In this hybrid, SecretStorage and SecretRelease functions are changed: instead of
honestly constructing the CRS σ in step 2 of SecretStorage using KeyGen(1k), the challenger
executes the simulator S1(1

k) to get (σ′, τ), and instead of honestly constructing a proof π in step 2
of SecretRelease using P (σ, pk, w), the challenger uses the simulator S2(σ, τ, pk) to get a proof
π′. The simulator S = (S1, S2) is given by the unbounded computation zero-knowledge property of
the used NIZK (as defined in §A.2). The challenger then uses σ′ instead of σ and π′ instead of π.

Lemma E.1. By the unbounded zero-knowledge property of the used NIZK system, there exists
a negligible function negl1(λ) such that the following holds: |ε1 − ε0| ≤ negl1(λ).

Proof. Given an adversary A that distinguishes between H0 and H1, we define an adversary B
on the unbounded zero-knowledge property of the used NIZK. B behaves like a challenger to A,
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following the description of the security game defined in §3.2, except that instead of generating
the crs σ on its own, B uses the one supplied by its own challenger. Then, whenever A requests
B to create a secret release request for an honest identifier pid, instead of providing the proof on
its own, B chooses a witness w ∈W , forwards the identifier pid and the witness w to its challenger
and supplies the resulting proof to A. Upon A ending the game, B responds to its challenger
with 0 (meaning the challenger was using the real prover algorithm) if A’s response was H0, and
1 otherwise. Note that if B’s challenger was using the real prover algorithm, the game A is in is
exactly H0, while if B’s challenger was using the simulator, the game A is in is exactly H1. Thus,
the advantage of the adversary B is exactly the same as the advantage of the adversary A, and
since the advantage of B is negligible by the unbounded zero-knowledge property of the used NIZK,
the advantage of A is negligible as well.

H2 : In this hybrid, SecretStorage is changed: instead of using the simulator S1(1
k), the

challenger uses the simulator SE1(σ, τ, pk), given by the simulation sound extractability property
of the used NIZK (as defined in §A.2).

Lemma E.2. For the hybrids H1 and H2 : holds: |ε2 − ε1| = 0.

Proof. Since the output of SE1 is identical to S1 when restricted to the first two parts (σ, τ) (as
defined in §A.2), from the adversary’s perspective nothing changed.

H3 : In this hybrid, in addition to storing (id, (F, σ)) off-chain in step 3 of the SecretStorage
procedure, the challenger stores this information internally. In step 5 of SecretStorage and steps
1 and 6 of SecretRelease, if private copy is available for the request, instead of checking the
correctness of the hash, the off-chain data is compared directly with the private copy.

Lemma E.3. By the collision-resistance of the hash function used in our construction, there exists
a negligible function negl3(λ) such that the following holds: |ε3 − ε2| ≤ negl3(λ).

Proof. Given an adversary A that distinguishes between H2 and H3, we define an adversary B
on the collision-resistance of the used hash function. B behaves like a challenger to A, as defined
in hybrid H2, and additionally internally stores (F, σ) of the challenge request (note that this is
the only storage request executed by the challenger acting as a user). Denote the internal copy
by (Fintern, σintern). Then, when the challenger in the security game would get the offchain data
(F ′, σ′) and check the hash, B chooses a random bit b, and checks the hash of the offchain data if b
is 0, and compares the offchain data to the internal one if b is 1. In any case, B sends (F ′, σ′) and
(Finter, σinter) to its challenger.

If the offchain data is not altered, the check requestHash
?
= H(F ′, σ′) returns true, same as the

check (Fintern, σinter)
?
= (F ′, σ′). If the offchain data is altered and the hash of the altered data

is not the same as of the original data, the results of the comparison are again the same - both
return false. Thus, the only case where the challenger behaves differently in hybrids H2 and H3

(and the adversary thus has the chance of distinguishing H2 and H3) is the case where the offchain
data is altered, but the hash of the altered data is still the same as that of the original. Thus, the
advantage of the adversary A is at most the same as the winning probability of the adversary B.
Since by the collision-resistance property of the hash function used the winning probability of B is
negligible, so is the advantage of A.
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H4,(i,j)∈[n∗d]×[n∗d] : In this hybrid, all encrypted message sent from an honest party Pi to an
honest party Pj are changed to encryptions of zero strings of the same length.

Lemma E.4. By the multi-message IND-CCA security of the encryption function used in our
construction, there exists a negligible function negl4,(i,j)(λ) such that the following holds: |ε4,(i,j)−
ε4,(i′,j′)| ≤ negl4,(i,j)(λ), where ε4,(i′,j′) denotes the advantage of the adversary in the hybrid previous
to H4,(i,j).

Proof. Given an adversary A that distinguishes between H4,(i,j) and the previous hybrid H4,(i′,j′),
we define an adversary B on the IND-CCA security of the used encryption scheme. B receives a
public key pk from its challenger and sets the public key of Pj to be pk. Then, B behaves like a
challenger to A as defined in the previous hybrid, except when Pi sends a message to Pj or when
a message to Pj needs to be decrypted. In the former case, B submits the tuple m, pid,i, where m
is the corresponding message and pid,i is the identifier of Pi to its challenger and uses the resulting
challenge instead of the encryption of the message. In the latter case, if the requested ciphertext
is not the same as one of the challenge messages, B obtains the corresponding plaintext using its
decryption oracle for pk. If the requested ciphertext c is one of the challenge messages and was
sent by one of the adversarial parties, B responds with an error message “Authentication check
failed”. Note that this is possible since by the correctness property of the used encryption scheme
we know that the message contained inside the ciphertext c is of the form (m, pid,i) since c is a
duplicate of a ciphertext produced by Pi. Thus, since c is coming from an adversarial party and the
party identifiers are unique, we know that this ciphertext does not pass the authentication check as
defined in Protocol 5. Thus, B acts the same way the challenger for A would act. Upon A ending
the game, B responds to its challenger with 0 (meaning the challenge contained real messages) if
A’s response was H4,(i′,j′), and 1 otherwise. Note that if B’s challenger chose real messages, the
game A is in is exactly H4,(i′,j′), while if B’s challenger chose zero strings, the game A is in is
exactly H4, (i, j). Thus, the advantage of the adversary B is exactly the same as the advantage of
the adversary A, and since the advantage of B is negligible by the IND-CCA security of the used
encryption scheme, the advantage of A is negligible as well.

H5 : In this hybrid, the challenger switches from honestly executing the DPSS protocol to using
the DPSS simulator Sdpss while honestly simulating Idealsafe himself. In order to use Sdpss, the
challenger simulates point-to-point channels of the DPSS protocol as follows:

� Whenever A sends a DPSS message to the challenger, the challenger decrypts the ciphertext
using the secret key of a corresponding honest party to obtain a message of the form (m, pid),
and if it passes the authentication check (Protocol 5), eliminates the party identifier and
forwards the resulting message m to Sdpss.

� Whenever the challenger receives a message m from Sdpss that is designated for an adver-
sarial party pr and is coming from an honest party ps, the challenger sends the ciphertext
Encpkr(m, pid,s) to A, where pid,s is the identifier of the party ps and pkr is the public key of
pr.

� Whenever a DPSS message must be sent from one honest party to another, the challenger
proceeds the same way as in H4,(n∗d,n∗d) - sends encryption of the zero string of the same
length as the corresponding message.
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Additionally, upon receiving a secret storage request for the challenge from A, the challenger asks
the simulator to execute SecretStorage request as an honest client.

Finally, the challenger simulates Idealsafe by storing a list L of identifier-secret pairs as follows:

� Once the challenger executed the secret storage request for the challenge, the challenger stores
the pair (id,MB) in L, where id is the identifier of the challenge request.

� Upon receiving a secret s from the simulator, the challenger stores the pair (id, s) in L, where
id is the identifier of corresponding secret storage request.

� Upon Sdpss querying Idealsafe, the challenger looks up the list of the stored secrets and
provides s if the pair (id, s) is in L.

Lemma E.5. By the secrecy of the used DPSS scheme, there exists a negligible function negl5(λ)
such that the following holds: |ε5 − ε4,(n∗d,n∗d)| ≤ negl5(λ).

Proof. Assume that there exists some adversary A able to distinguish between the hybrids H5 and
H4,(n∗d,n∗d). Then, we can construct an adversary B on the secrecy of the used DPSS scheme. B
behaves as a challenger to A. First, B sets up the public keys and the identifiers of the honest
parties and submits these to A. Then, whenever A chooses a new set of adversarial parties, B
forwards its choice to its challenger. Whenever a DPSS message is sent by A to an honest party, B
decrypts it using the secret key of this honest party to obtain a message of the form (m, pid,s) and
if it passes the authentication check, B forwards it to its challenger (otherwise B can safely abort
outputting an error message “Authentication check failed”). Whenever B receives a message from
its challenger that is designated for an adversarial party pr (with a public key pkr) and is coming
from an honest party ps, B sends the ciphertext Encpkr(m, pid,s) to A, where pid,s is the identifier of
the party ps. Upon receiving a first secret storage request for the challenge from A, B forwards Mb

to its own challenger requesting to execute SetupPhase for Mb. Note that B’s challenger does not
provide B with messages that are directed to honest parties. B keeps track of the DPSS protocol
and whenever an encryption of such message is expected by A, B proceeds the same way as in
H4,(n∗d,n∗d) - sends encryption of the zero string of the same length. Note that if B’s challenger
uses the real DPSS protocol, the game A is in is exactly H4,(n∗d,n∗d), while if B’s challenger uses
the simulator, the game A is in is exactly H5. Thus, the advantage of the adversary B is at least
the same as the advantage of A, and since the advantage of B is negligible by the secrecy of the
DPSS scheme, the advantage of A is negligible (denote it by negl5,1(λ)) as well.

H6 : In this hybrid, the challenger changes the way it is generating Mb and simulating Idealsafe:
instead of saving (id,Mb) in L upon the SecretStorage request, the challenger generates and
stores it only upon it is requested by the simulator.

Lemma E.6. For the hybrids H5 and H6 holds |ε6 − ε5| = 0.

Proof. Note that Mb is used only in the simulation of Idealsafe. The simulator of the DPSS scheme
does not use a message stored in Idealsafe until the reconstruction of this message is requested.
Thus, it makes no difference whether the message is stored in L upon SecretStorage request or
only once its reconstruction may be requested.
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Now, note that in the last hybrid the following holds:
Case 1: A provided a valid secret release request for function F for an identifier pid

of a dishonest user in step 8d) of the security game. In hybrid H1 the challenger switched
from providing real CRS and proofs to providing simulated CRS and proofs and in hybrid H2

the challenger switched from using the simulator S1 to using the simulator SE1. Thus, in this
case A interacts with the simulator (SE1, S2) and outputs a new (since the used party identifier
is not honest) proof that is accepted by the challenger (acting as a verifier). By the proof of
knowledge property of the used NIZK proof, there exists an extractor E2 extracting a witness w ←
E2(σ, ε, pk, π). By the unbounded simulation sound extractability of the NIZK used the property
F (w) = true holds with the probability 1−negl6,0(λ) for some negligible function negl6,0(λ). Thus,
in case 1, we extract a valid witness with an overwhelming probability 1−(negl6,0(λ)+negl(n)5 (λ)+∑

(i,j)∈[n∗d]×[n∗d] negl(n)4,(i,j) (λ) +
∑

i∈[3] negl(n)i (λ)) and the security of the scheme holds in this
case.

Case 2: A did not provide a valid secret release request for function F for a dishonest
identifier pid in step 8d) of the security game. In this case, we know that the adversary
did not create a secret release request for the challenge in step 8d) of the security game. Thus,
the DPSS simulator never requests Mb. Thus, Mb is never generated. Since we removed all
information about the secret, the advantage of the adversary in winning in the last hybrid game
is negligible (denote it by negl6,1(λ)). Thus, the advantage of the adversary in H0 is at most
1
2 + negl6,1(λ) + negl(n)5 (λ) +

∑
(i,j)∈[n∗d]×[n∗d] negl(n)4,(i,j) (λ) +

∑
i∈[3] negl(n)i (λ).

Now, we briefly outline why the scheme also has the robustness property assuming that the
underlying off-chain storage is always available and it is not possible to change the data stored in
the off-chain storage.

First, note that since hash function is a deterministic function and we assume that the data
stored off-chain can not be altered, the test in line 5 of Protocol 6 always returns true for an honest
client. If a client is dishonest and provided a wrong request hash, all honest miners abort the
procedure and return ⊥. In the first case, the miners subsequently store the information received
through the DPSS protocol and by the robustness of the used DPSS scheme, after the execution
of SecretStorage there exists a fixed secret and if the client that executed SecretStorage was honest,
this secret is the same as the one chosen by the client.

Second, by the robustness property of the DPSS protocol, the fragmentation of sharing secret
after the SecretsHandoff phase corresponds to the fragmentation of the secret after the SecretStorage
phase.

Third, since hash function is a deterministic function and we assume that the data stored off-
chain can not be altered, the tests in line 1, line 5 and line 6 of Protocol 8 always return true for
honest clients that executed SecretStorage and SecretRelease. If the client executing SecretRelease
is dishonest and provided a wrong request hash, all honest miners abort the procedure and return ⊥.
If the client who executed SecretStorage was dishonest, the honest client executing SecretRelease
aborts the procedure and returns ⊥. If both clients provided the correct request hashes and the
client executing SecretRelease provided a valid proof, the client and the miners execute the DPSS
Reconstruction phase and thus by the robustness of the DPSS protocol the client reconstructs
the secret that existed at the end of the SecretStorage phase.
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F Public Witness Protocol

Our second construction is the public witness protocol. In the public witness setting, the user
requesting the release of the secret provides the witness for the secret release condition publicly,
allowing everyone to reconstruct the secret.

In some applications it may be unnecessary to continue hiding the secret once a valid witness is
submitted. Imagine a dead man’s switch, where certain information must be publicly released once
a person has been confirmed dead. Another example is a new episode of a top TV show that must
be publicly released at a certain time. In this setting, we use a multisignature scheme [BGLS03]
that allows a group of miners to jointly sign the data such that the verifying user is convinced that
each member of the group participated in signing. The protocol can be altered as follows:

� Instead of using NIZK proofs, the witness can be submitted in clear.

� Instead of engaging in the DPSS Reconstruction phase with the user who provided a valid
witness, miners post the corresponding reconstruction data off-chain and the hash of this data
on-chain.

� Miners verify information posted by other miners and sign the verified shares using a mul-
tisignature scheme.

� Users retrieve the shares from blockchain and verify the signature. Using the retrieved infor-
mation, users execute the DPSS Reconstruction phase to reconstruct the secret.

The complete construction is provided in Figure 31. As in §4.2, the construction uses Protocol 4
and Protocol 5 to handle point-to-point channels between the members of the system.

Protocol 28: SecretStorage-PublicWitness

1. The user computes hash of the decryption condition requestHash← H(F ), and publishes
requestHash on blockchain. Let id be the storage identifier of the published request.

2. The user stores the tuple (id, F ) offchain.

3. The user and the current members of the miner committee engage in DPSS Setup Phase
protocol for the user’s secret M .

4. Each committee member retrieves requestHash from the blockchain, F from the offchain
storage, and verifies that requestHash is indeed the hash of F :

requestHash
?
= H(F )

If this is not the case, the committee member stops processing this request.

5. Otherwise, Ci stores (id, dpss-datai) internally, where dpss-datai is the DPSS data obtained
after the DPSS Setup Phase procedure.
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Protocol 29: SecretRelease-PublicWitness

1. The user computes hash requestHash∗ ← H(id, w), and publishes requestHash∗ on
blockchain. Here, id is the storage identifier of the desired secret, and w is the wit-
ness to the decryption condition of this request on blockchain. Let id∗ be the identifier
of the published request.

2. The user stores the tuple (id∗, (id, w)) offchain.

3. Each committee member retrieves requestHash∗ from the blockchain request with the
identifier id∗, (id, w) from the offchain storage, and verifies that requestHash∗ is indeed
the hash of (id, w):

requestHash∗
?
= H(id, w)

If this is not the case, the committee member stops processing this request.

4. Each committee member retrieves requestHash from the blockchain request with the iden-
tifier id, F from the offchain storage, and verifies that requestHash is indeed the hash of
F :

requestHash
?
= H(F )

If this is not the case, the committee member stops processing this request.

5. Each committee member Ci retrieves the DPSS data dpss-dataidi corresponding to the
storage identifier id from its internal storage.

6. Each committee member Ci checks whether w is a valid witness for F :

F (w)
?
= true

If so, Ci publishes (pid,i, id, dpss-data
id
i ) on blockchain, where pid is the party identifier of

Ci.

Protocol 30: SecretReconstruction

1. For the secret storage identifier id, the user retrieves the corresponding tuples
(pid,i, id, dpss-data

id
i ) from blockchain, where pid,i is a party identifier of the miner Ci

that was in the committee during the time of the corresponding secret release.

2. The user uses published shares dpss-dataidi to reconstruct the secret as done in the DPSS
Reconstruction Phase protocol.
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Protocol 31: PublicWitness

1. A user can initiate secret storage by executing SecretStorage-PublicWitness (28).

2. A user can initiate secret release by executing SecretRelease-PublicWitness (29).

3. After SecretRelease-PublicWitness was successfully executed at least once, any user
can obtain the secret using SecretReconstruction procedure (30).

4. In each round, miners execute SecretsHandoff (7) procedure.

G Voting Application

In this section, we consider the “yes-no” voting scenario. Specifically, we consider the space of the
secrets to be {−1, 1}, where “-1” stands for a “no” vote, and “1” stands for a “yes” vote. Note
that, this requires the committee to be able to verify the correctness of the secrets shared by the
clients. To this end, we will let each client first commit to its secret and then prove the correctness
of the secret. In particular, we will show that the proof only contains one field element sending
from the client to all parties in the committee.

G.1 Step 1: Preparing Commitments for the Secrets of Clients

Recall that in the setup phase, all parties in the committee first prepare a random sharing [r]t.
Then the client collects the whole sharing [r]t, reconstructs the value r, and publishes s+r. Finally,
all parties can compute [s]t = s+ r − [r]t.

Let [z]t denote the random sharing used for the KZG commitment of [s]t. Recall that g, h are
two random generators of the group G in the public key PK of the KZG commitment scheme. Then
gshz is the Pedersen commitment of s. A straightforward way of preparing this commitment is
asking the client to compute it and publish the commitment to all parties. However, it will require
the client to prove that it is the same value as the secret it shares to the committee.

We note that the Pedersen commitment is linear homomorphism. If all parties know the Peder-
sen commitment of r, after the client publishes s+ r, all parties can locally compute the Pedersen
commitment of s by themselves.

To this end, we modify the setup phase as following. In Setup-Dist (Protocol 19), each party
Pi will distribute two sharings [u(i)]t, [v

(i)]t and publish the commitment ComKZG([u(i)]t; [v(i)]t).

We require that each Pi further publishes the Pedersen commitment of u(i), i.e., gu
(i)
hv

(i)
. In

Setup-Veri (Protocol 21), all parties also compute the Pedersen commitment of F (λ) and check
its correctness. Similarly, in Setup-Single-Veri (Protocol 22), all parties compute the Pedersen
commitment of µ(i) +λu(i) and check its correctness. Finally, in Setup-Output (Protocol 23), all
parties locally compute the Pedersen commitments of r(1), . . . , r(n−t).

We note that the Pedersen commitment is perfectly hiding. Therefore, the secrecy of the DPSS
protocol still holds. In particular, for an honest party Pi, the simulator we constructed in Section D
will generate [u(i)]t + β[v(i)]t in clear, where β satisfies that h = gβ. Therefore, the simulator can
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compute the Pedersen commitment of u(i) by gu
(i)+βv(i) = gu

(i)
hv

(i)
.

G.2 Step 2: Proving the Correctness of the Secret

After Step 1, all parties will end up holding the Pedersen commitment of the secret s, i.e., gshz.
Now we want to verify that s ∈ {−1, 1}. This is equivalent to verify that s2 = 1.

To this end, the client computes w = g2szhz
2

and publishes w to all parties. Note that it can
be done since the client knows s and z. Let β satisfy that h = gβ. To verify whether s2 = 1, all
parties check the following equation:

e(gshz, gshz) = e(g, g) · e(h,w).

Correctness. To show correctness, note that

LHS = e(gs+βz, gs+βz) = e(g, g)s
2+2βsz+β2z2

RHS = e(g, g) · e(gβ, g2sz+βz2) = e(g, g)1+2βsz+β2z2 .

Therefore, if the equation holds, then we have s2 = 1.

Security. We first consider an corrupted client. Note that s, z are determined by the shares held
by honest parties. In this setting, when receiving (g, h = gβ) from the challenger, we show that if
s 6∈ {−1, 1} but the verification passes, then we can break the t-SDH assumption.

The simulator first prepares PK. This can be done by randomly samples α and computes
(g, gα, . . . , gα

t
, h, hα, . . . , hα

t
). Then, the simulator simply follows the protocol using the real inputs.

Recall that the simulator is able to extract s, z from the shares held by honest parties. Suppose
that w = gx published by the corrupted client passes the verification. Then, we have

e(gshz, gshz) = e(g, g)s
2+2βsz+β2z2

e(g, g) · e(h,w) = e(g, g) · e(gβ, gx) = e(g, g)1+βx.

Therefore, x = s2+2βsz+β2z2−1
β = s2−1

β + 2sz + βz2. The simulator computes

y =

(
w

g2sz · hz2
) 1
s2−1

= g1/β.

Finally, the simulator provides 〈0, y = g1/β〉 to the challenger.
We now consider an honest client. We show that the simulator we constructed in Section D is

able to compute w. In this setting, the public key PK is prepared by the simulator. Recall that
the simulator knows β and s+ βz when simulating Setup (Protocol 25). Therefore, the simulator
can compute w by

g
(s+βz)2−1

β .

Since the client is honest, s satisfies that s2 = 1. Therefore, (s+βz)2−1
β = 2sz + βz2, which means

that

g
(s+βz)2−1

β = g2sz+βz
2

= g2szhz
2

= w.
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Remark G.1. In [KZG10], there is another variant of the KZG commitment scheme which is
computationally hiding. The Pedersen commitment gshz can be viewed as the KZG commitment
of the polynomial f(x) = s + z · x. Then, the client wants to prove that f2(0) = 1. The above
process can be seen as the client commits the polynomial f2(x) and opens the evaluation of f2(x)
at point x = 0.

Since the verification of opening only requires e(gf
2(β), g) = e(gf(β), gf(β)), the client does not

need to publish the commitment Com = gf
2(β).
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