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Abstract. Transaction processing speed is one of the major considera-
tions in cryptocurrencies that are based on proof of work (POW) such
as Bitcoin. At an intuitive level it is widely understood that process-
ing speed is at odds with the security aspects of the underlying POW
based consensus mechanism of such protocols, nevertheless the tradeo�
between the two properties is still not well understood.

In this work, motivated by recent work [9] in the formal analysis of the
Bitcoin backbone protocol, we investigate the tradeo� between provable
security and transaction processing speed viewing the latter as a func-
tion of the block generation rate. We introduce a new formal property of
blockchain protocols, called chain growth, and we show it is fundamental
for arguing the security of a robust transaction ledger. We strengthen the
results of [9] showing for the �rst time that reasonable security bounds
hold even for the faster (than Bitcoin's) block generation rates that have
been adopted by several major �alt-coins� (including Litecoin, Dogecoin
etc.). We then provide a �rst formal security proof of the GHOST rule for
blockchain protocols. The GHOST rule was put forth in [14] as a mecha-
nism to improve transaction processing speed and a variant of the rule is
adopted by Ethereum. Our security analysis of the �GHOST backbone�
matches our new analysis for Bitcoin in terms of the common pre�x prop-
erty but falls short in terms of chain growth where we provide an attack
that substantially reduces the chain speed compared to Bitcoin. While
our results establish the GHOST variant as a provably secure alternative
to standard Bitcoin-like transaction ledgers they also highlight potential
shortcomings in terms of processing speed compared to Bitcoin. We �-
nally present attacks and simulation results against blockchain protocols
(both for Bitcoin and GHOST) that present natural upper barriers for
the speed-security tradeo�. By combining our positive and negative re-
sults we map the speed/security domain for blockchain protocols and list
open problems for future work.

1 Introduction

The capability for fast transaction processing is a major consideration in any
payment system and a litmus test for its potential to scale at a global level. For
�blockchain� based protocols such as bitcoin [12] the current picture is rather
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grim: some reported1 current rates for Bitcoin processing speed is 7 transactions
per second (tps) while Paypal handles an average of 115 tps and the VISA net-
work has a peak capacity of 47,000 tps (though it currently needs 2000-4000
tps). It goes without saying that improving transaction processing of cryptocur-
rencies is one of the major considerations in the research of payment systems
like Bitcoin, cf. [3].

Bitcoin relies on the distributed maintenance of a data structure called the
blockchain by a set of entities called miners that are anonymous and poten-
tially dynamically changing. The protocol that maintains the blockchain relies
on proofs of work (POW) for ensuring that miners converge to a unique view
of this data structure. The blockchain can be parsed as a ledger of transactions
and assuming that the adversarial parties collectively constitute less than half
of the network's computational power (also referred to as hashing power since
the main computational operation is hashing) it is ensured that all parties have
the same view of the ledger. The transactions in the blockchain are organized in
blocks and each block is associated with a POW. The number of transactions
that �t inside each block is bounded (and is currently restricted by a 1MB cap).

Beyond the obvious engineering factors that a�ect transaction processing
speed of blockchain protocols (such as network speed and computational power
needed to verify transactions) the two main factors are the size of blocks and
the rate that blocks are generated. The current 1MB cap on transactions is
heavily debated and proposals for a 20-fold increase have been recently made2.
Regarding the block generation rate recall that the original parameter setting
for Bitcoin stabilizes it at 1 block per 10 minutes. This is achieved by suitably
calibrating the hardness of the POW instances that are solved by the miners.
At an intuitive level, the POW di�culty is an intrinsic feature for security as it
prohibits the adversary from �ooding the network with messages and gives the
opportunity to the honest parties to converge to a uni�ed view.

A useful unit of time to measure the block generation rate is a round of
full information propagation. Indeed, the e�ect that the speed of information
propagation may have on security is widely understood at least informally and
the e�ect of the former on the latter was predicted by [6]. In [9] a formal rela-
tion between the two was proven: it was observed that security can be formally
shown if the parameter f , expressing the expected number of POW solutions
per complete round of information propagation, is close to 0. In that work it
was shown that as f gets closer to 0 the maximum adversarial hashing power
that the protocol can withstand approximates 50%, Bitcoin's claimed theoretical
limit; on the other hand, as f gets larger the security bound gets worse and it
completely vanishes when f = 1, i.e., the rate of expected 1 block per round.

In [6] it is argued that for blocks of reasonable sizes (including those currently
used), the block size is linearly dependent in the time it takes for a full commu-
nication round to be completed. From this one can argue that round duration is

1 See https://en.bitcoin.it/wiki/Scalability
2 See e.g., [5,15,13] and http://gavintech.blogspot.gr/2015/01/twenty-megabytes-
testing-results.html



linearly related to block size. Furthermore, transaction processing speed is pro-
portional to block size and also proportional to block generation rate per unit of
time (say seconds). Given that we measure time in rounds of full communication
we can express the following intuitive relation for transaction processing speed
(measured in Kb/sec):

transaction processing speed ∝ block size× f

round duration

As a result, since doubling the block size also doubles the round duration, if
we keep the same value of f , the transaction speed remains constant. Hence, the
dominant factor for improving transaction processing speed, is not block-size,
but rather the block generation rate (per round) represented by f . Given the
security critical nature of this parameter it is important to understand how large
it can be selected while maintaining the security of the system.

Interestingly, a number of alternative cryptocurrencies (alt-coins) that are
based on Bitcoin have tinkered with the block generation rate of Bitcoin (see
Figure 1) to achieve faster processing without however providing any formal
arguments about the security implications of such choices.

Cryptocurrency block gen. rate (sec) f (blocks/round) 1/f

Bitcoin 600 0.021 47.6

Litecoin 150 0.084 11.9

Dogecoin 60 0.21 4.76

Flashcoin 6− 60 0.21-2.1 0.476-4.76

Fastcoin 12 1.05 0.95

Ethereum3 12 1.05 0.95

Fig. 1. A list of the di�erent block generation rates various altcoins have chosen
and the corresponding f, 1/f values assuming one full communication round
takes 12.6 seconds (this is the average block propagation time as measured in
[6]). Notice Bitcoin's conservative choice. The value f is the expected number of
POW's per communication round. The value 1/f is also given which is roughly
the expectation of rounds required to obtain a POW.

Given the above motivation the fundamental question we seek to answer is
the following:

For a given block generation rate expressed as the expected number
of blocks per round (parameter f), what is the maximum adversarial
hashing power that can be provably tolerated by a population of honest
miners?

3 Currently the Ethereum Frontier reports an average of about 17 seconds, cf. https:
//etherchain.org; the 12 seconds rate was discussed by Buterin in [4].

https://etherchain.org
https://etherchain.org


The above question may be posed for the core of the Bitcoin transaction
ledger protocol (the Bitcoin �backbone� protocol as de�ned in [9]) but also for
other similar protocols that attempt to use POW's to maintain a blockchain
distributively notably the GHOST rule suggested by Sompolinsky and Zohar
[14] and adopted by Etheurem.

Our Results. In this work, we investigate speed-security tradeo�s in blockchain
protocols as a relationship between block generation rate f and the bound on
the hashing power of the adversary. Speci�cally, our results are as follows.

� We introduce a new property for blockchain protocols, called chain growth
that is cast in the model of [9] and complements the two properties suggested
there (common pre�x and chain quality). We argue that chain growth is a
fundamental property of backbone protocols independent of the other two.
We illustrate this by showing that a backbone protocol satisfying all three
properties implements a �robust transaction ledger� in a black-box fashion
(something that we observe to be not true if one relies on just common
pre�x and chain quality � the two properties by themselves are insu�cient
to imply a robust transaction ledger4 ). Furthermore, chain growth is a
property of interest from an attacker's point of view as it is fundamentally
linked to the transaction processing speed and can constitute an adversarial
goal in its own right: it captures the class of adversaries that are interested
in slowing down processing time.

� We propose a new analysis framework for backbone protocols focusing on
trees of blocks as opposed to chains as in [9]. We illustrate the power of our
framework by substantially improving the security analysis of the bitcoin
backbone protocol and proving for the �rst time that security can still be
attained even at expected rates of f below 1 block per round. At the same
time, we substantially improve the level of security for higher rates and in
this way we prove security for bounds close to 50% for important (in terms of
their market capitalization5) alternative cryptocurrencies (including Litecoin
and Dogecoin) that have opted for much faster block creation rates compared
to Bitcoin. See Figures 3 and 4 for graphs showing our improved security
analysis.

� Using our framework we also provide a �rst formal security proof of the
GHOST rule for blockchain protocols. The GHOST rule was put forth in
[14] as a mechanism to improve transaction processing speed. We formalize
the rule as the GHOST backbone protocol and provide a security analysis
in our framework that matches our new analysis for the Bitcoin backbone in
terms of the common pre�x property. Even though we prove chain quality
and chain growth as well, contrary to the Bitcoin backbone, we show that the
GHOST backbone is susceptible to a chain growth attack. While the analysis

4 This does not suggest an error in [9] but rather points to the fact that the proof given
there regarding the implementation of a robust transaction ledger by the bitcoin
backbone is not black-box on the two properties of common pre�x and chain quality.

5 See http://coinmarketcap.com/



presented in [14] suggests that GHOST is as good as Bitcoin in terms of chain
growth, our attack, rather surprisingly, shows the contrary and in fact Bit-
coin's chain growth is substantially faster than GHOST, cf. Figure 6, when
under attack. Our work also highlights the importance of provable security
in the exploration of the design space for Bitcoin-like blockchain protocols;
for instance, while at �rst one may see the GHOST-rule as being superior
to Bitcoin's �longest-chain wins� simple rule, the enhanced rule opens new
opportunities for adversarial manipulation that need to be accounted for in
the security proof.

� We �nally present simulation results and attacks against blockchain protocols
(both for the Bitcoin and GHOST backbone) that present natural upper
barriers in the speed-security domain. Interestingly, for common pre�x the
attacks do not di�erentiate between GHOST and Bitcoin even for settings
of f that correspond to high processing times (the area of the parameter
domain where supposedly GHOST was particularly well suited for): both
protocols lose security approximately for the same parameter settings, cf.
Figure 5. An intuitive explanation for the rather unexpected similarity is
the fact that in the GHOST backbone, the chain selection rule permits the
use of old blocks, while in Bitcoin the attacker is forced to use recent blocks.

Limitations and directions for future research. Our analysis is in the stan-
dard cryptographic model where parties fall into two categories, those that are
honest (and follow the protocol) and those that are dishonest that may deviate
in an arbitrary (and coordinated) fashion as dictated by the adversary. It is an
interesting direction for future work to consider speed-security tradeo�s in the
rational setting where all parties wish to optimize a certain utility function. De-
signing suitable incentive mechanisms is a related important consideration, for
instance see [10] for a suggestion related to the GHOST protocol. The analysis
we provide for both Bitcoin and GHOST is in the static setting, i.e., we do not
take into account the fact that parties change dynamically and that the proto-
col calibrates the di�culty of the POW instances to account for that; we note
that this may open the possibility for additional attacks, [1], and hence it is an
important point for consideration and future work. Our notion of round (bor-
rowed from [9]) assumes complete information propagation between all honest
parties; in practice information propagation is a random variable that depends
on the peer to peer network topology and some parties learn faster than oth-
ers the messages communicated. Finally, the positive and negative results we
present between speed and security still have a gray area in which it is unknown
whether the protocols are secure or there is an attack that breaks security (for
instance, while we show the chain growth of the GHOST backbone to be worse
than Bitcoin's by providing an upper bound via an attack, the lower bound we
prove for chain growth of GHOST is not tight to the attack upper bound and
hence the true chain growth speed of GHOST lies somewhere in this interval).
While the above four points are limitations (and suggest interesting directions
for further research in the area) our model and analysis can be extended to ac-
count for such stronger settings and hence our results may serve as the basis for



further exploring the tradeo� between transaction processing speed and prov-
able security. Another important aspect is privacy in the transaction ledger (cf.
[2,11]) which our analysis, being at a �lower� level in the blockchain protocol
does not interact with directly.
Organization. In section 2 we overview the model that we use for expressing
the protocols and the theorems regarding the security properties. In section 3 we
introduce the chain growth property as well as our new tree-based framework.
In section 4 we present our improved analysis for the Bitcoin backbone protocol.
Then, in section 5 we present our security analysis of an abstraction of the
GHOST protocol that demonstrates it is a robust transaction ledger in the static
setting. Finally, in section 6 we present our attacks against the common pre�x
and chain growth properties for both GHOST and Bitcoin as well as we graph
the speed-security domain in terms of attack and provable security bounds.

2 Preliminaries

2.1 Model

For our model we adopt the abstraction proposed in [9]. Speci�cally in their
setting, called the q-bounded setting, synchronous communication is assumed
that allows each party q queries to a random oracle. The network supports an
anonymous message di�usion mechanism that is guaranteed to deliver messages
of all honest parties in each round. The adversary is rushing and adaptive. The
model is ��at� in terms of computational power in the sense that all honest
parties are assumed to have the same computational power while the adversary
has computational power proportional to the number of players that it controls.

The total number of parties is n and the adversary is assumed to control t of
them. Obtaining a new block is achieved by �nding a hash value that is smaller
than a di�culty parameter D. The success probability that a single hashing
query produces a solution is p = D

2κ where κ is the length of the hash. The total
hashing power of the honest players is α = pq(n − t), the hashing power of the
adversary is β = pqt and the total hashing power is f = α+ β.

In [9] a lower bound to the probabilities of two events, that a round is success-
ful or that is uniquely successful (de�ned bellow), was established and denoted
by γu = α−α2. While su�cient for the setting of small f in [9], here we will need
to use a better lower bound to the probability of these events (see Appendix)
and to the probability of a round being leading branch (see section 3.2). We will
de�ne this bound as γ = αe−α. Observe that γ > γu.

The only di�erence from the model of [9] is that if an honest player in a given
round mines one block, then he continues until all of his queries are spent. So he
may �nd more than one solutions in a round, and thus extend the longest chain
by more than one blocks. A number of de�nitions that will be used extensively
are listed below.

De�nition 1. [9] (divergence) Two chains diverge at a given round if the last
block of their common pre�x was computed before that round.



(successful round) A round is called successful if at least one honest player
computes a solution in this round.

(uniquely successful round) A round is called uniquely successful if exactly
one honest player computes a solution in this round.

De�nition 2. (extends) We will say that a chain C extends another chain C′ if
a pre�x of C′ is a su�x of C.

(recent) By recent(s) we denote the set of blocks that were computed at round
s and afterwards.

2.2 Backbone Protocols

In order to study the properties of the core Bitcoin protocol, the term Backbone
Protocol was introduced in [9]. On this level of abstraction we are only interested
on properties of the blockchain, independently from the data stored inside the
blocks. In the same work the Bitcoin backbone protocol is described in a quite
abstract and detailed way. The main idea is that honest players, at every round,
receive new chains from the network and pick the longest valid one to mine.
Then, if they mine a block, they broadcast their chain at the end of the round.
For more details we refer to [9, Subsection 3.1].

The same level of abstraction can also be used to express the GHOST proto-
col. The GHOST backbone protocol as presented in [14] is based on the principle
that blocks that do not end up in the main chain, should also matter in the chain
selection process. In order to achieve this, players store a tree of all mined blocks
they have heard, and then using the greedy heaviest observed subtree (GHOST)
rule they peak which chain to mine.

Algorithm 1 The function that �nds the �best� chain. The input is a block tree
T .

1: function GHOST(T )
2: B ← GenesisBlock
3: if childrenT (B) = ∅ then
4: return C = (GenesisBlock, ..., B)
5: else

6: B ← argmaxc∈childrenT (B)|subtreeT (c)|
7: end if

8: go to 3
9: end function

At every round players update their tree by adding valid blocks sent by other
players. The same principle as Bitcoin applies, but now for a block to be added
to the tree it su�ces to be a valid child of some other tree block. The adversary
can add blocks anywhere he wants in the tree, as long as they are valid. Again, as
on Bitcoin, players try to extend the chains they choose by one or more blocks.



Finally in the main function, a tree of blocks is stored and updated at every
round. If a player updates his tree he broadcasts it to all other players.

2.3 Security Properties of the Backbone protocols

In [9, De�nitions 2&3] two crucial security properties of the Bitcoin backbone
protocol were considered, the common pre�x and the chain quality property. The
common pre�x property ensures that two honest players have the same view of
the blockchain if they prune a small number of blocks from the tail. On the
other hand the chain quality property ensures that honest players chains' do not
contain long sequences of adversarial blocks.

De�nition 3 (Common Pre�x Property). The common pre�x property Qcp

with parameter k ∈ N states that for any pair of honest players P1, P2 maintain-

ing the chains C1, C2 in view
H(·)
Π,A,Z(κ, q, z), it holds that

C⌈k
1 ⪯ C2 and C⌈k

2 ⪯ C1.

De�nition 4 (Chain Quality Property). The chain quality property Qcq

with parameters µ ∈ R and ℓ ∈ N states that for any honest party P with

chain C in view
H(·)
Π,A,Z(κ, q, z), it holds that for any ℓ consecutive blocks of C the

ratio of adversarial blocks is at most µ.

These two properties were shown to hold for the Bitcoin backbone protocol.
Formally, in [9, Theorems 9&10] the following were proved:

Theorem 1. Assume f < 1 and γu ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and
λ ≥ 1 such that λ2 − fλ − 1 ≥ 0. Let S be the set of the chains of the honest
parties at a given round of the backbone protocol. Then the probability that S does
not satisfy the common-pre�x property with parameter k is at most e−Ω(δ3k).

Theorem 2. Assume f < 1 and γu ≥ (1 + δ)λβ for some δ ∈ (0, 1). Suppose
C belongs to an honest party and consider any ℓ consecutive blocks of C. The
probability that the adversary has contributed more than (1− δ

3 )
1
λℓ of these blocks

is less than e−Ω(δ2ℓ).

2.4 Robust public transaction ledgers

In [9] the robust public transaction ledger primitive was presented. It tries to
capture the notion of a book where transactions are recorded, and it is used to
implement Byzantine Agreement in the honest majority setting.

A public transaction ledger is de�ned with respect to a set of valid ledgers
L and a set of valid transactions T , each one possessing an e�cient member-
ship test. A ledger x ∈ L is a vector of sequences of transactions tx ∈ T . Each
transaction tx may be associated with one or more accounts, denoted a1, a2, . . .
Ledgers correspond to chains in the backbone protocols. An oracle Txgen is al-
lowed in the protocol execution that generates valid transactions (this represents
transactions that are issued by honest parties). For more details we refer to [9].



De�nition 5. A protocol Π implements a robust public transaction ledger in
the q-bounded synchronous setting if it satis�es the following two properties:

Persistence: Parameterized by k ∈ N (the �depth� parameter), if in a certain
round an honest player reports a ledger that contains a transaction tx in a
block more than k blocks away from the end of the ledger, then tx will always
be reported in the same position in the ledger by any honest player from this
round on.

Liveness: Parameterized by u, k ∈ N (the �wait time� and �depth� parame-
ters, resp.), provided that a transaction either (i) issued by Txgen, or (ii) is
neutral, is given as input to all honest players continuously for u consecutive
rounds, then there exists an honest party who will report this transaction at
a block more than k blocks from the end of the ledger.

These two properties were shown to hold for the ledger protocol build on top
of the Bitcoin backbone protocol. Formally, in [9, Lemma 15&16] the following
were proved:

Lemma 1 (Persistence). Suppose f < 1 and γu ≥ (1 + δ)λβ, for some real
δ ∈ (0, 1) and λ ≥ 1 such that λ2−fλ−1 ≥ 0. Protocol ΠPL satis�es Persistence

with probability 1− e−Ω(δ3k), where k is the depth parameter.

Lemma 2 (Liveness). Assume f < 1 and γu ≥ (1 + δ)λβ, for some δ ∈
(0, 1), λ ∈ [1,∞) and let k ∈ N. Further, assume oracle Txgen is unambiguous.
Then protocol ΠPL satis�es Liveness with wait time u = 2k/(1− δ)γu and depth

parameter k with probability at least 1− e−Ω(δ2k).

3 Chain Growth and Trees of blocks

In this section we introduce our new security property, called chain growth, and
a new analysis framework based on tress of blocks.

3.1 Chain Growth

In addition to the two security properties of the Bitcoin backbone protocol men-
tioned in Section 2.3, and inspired from the comparative analysis of Bitcoin and
GHOST, we de�ne a new property called chain growth. This property aims at
expressing the minimum rate at which the chains of honest players grow. It is
motivated by an attacker that has objective to slow down the overall transaction
processing time of the blockchain system. The common pre�x and chain quality
properties do not explicitly address this issue, and this can be seen from the fact
that both properties can hold even if honest players' chains do not grow at all.

De�nition 6. (Chain Growth Property) The chain growth property Qcg with
parameters τ ∈ R (the �chain speed� parameter) and s ∈ N states that for any
round r > s, where honest party P has chain CP

1 at round r and chain CP
2 at

round r − s in view
H(·)
Π,A,Z(κ, q, z), it holds that minP |CP

1 | −minP |CP
2 | ≥ τ · s.



Bitcoin. For the Bitcoin backbone protocol this property is satis�ed with pa-
rameter τ equal to γ and with overwhelming probability in s. Since all honest
players choose the longest chain they see, and successful rounds happen with
rate γ, their chains will grow at least at this rate. The worst the adversary can
do is not participate, so this is a tight bound.

Theorem 3. The Bitcoin protocol satis�es the chain growth property with speed
parameter (1− δ)γ and probability at least 1− e−Ω(δ2s), for δ ∈ (0, 1).

Proof. Let r, s ∈ N and base(r) denote the minimum length chain that an honest
player mines at round r. Suppose that at round r−s, base(r) = l. We are going to

show that at round r, base(r) is at least l+(1−δ)γs with probability 1−e−Ω(δ2s).

It holds that if some round r′ is successful: base(r′+1) ≥ base(r′)+1, because
the honest player that mined the new solution at round r′ was mining a chain
of size at least base(r′). Inductively if between rounds r and r − s there are k
successful rounds, base(r) ≥ base(r − s) + k.

But notice that γ is a lower bound on successful rounds. From the Cherno�
bound at least (1 − δ)γs such rounds will occur between rounds r − s + 1 and

r with probability 1 − e−Ω(δ2s). Thus base(r + s) ≥ base(r) + (1 − δ)γs with

probability 1− e−Ω(δ2s).

The importance of chain growth as a fundamental property of the backbone
protocol that is of the same caliber as common pre�x and chain quality can
be seen in the fact that the liveness of the ledger essentially depends on it. We
elaborate: in [9, Lemma 16] the liveness property was not proved in a black box
manner given the chain quality and common pre�x properties. Interestingly, by
introducing the chain growth property as a prerequisite together with the other
two, a simple black box proof can be derived. As expected, the con�rmation
time parameter u of the liveness property is tightly connected to the chain speed
parameter τ .

Lemma 3 (Liveness). Let protocol Π satisfy the chain quality and chain growth
properties with overwhelming probability on l, s and parameters µ, τ . Further,
assume oracle Txgen is unambiguous. Then protocol Π satis�es Liveness with
wait time u = 2

τ ·max(k, 1
1−µ ) rounds and depth parameter k with overwhelming

probability in k.

Proof. We prove that assuming all honest players receive as input the transaction
tx for at least u rounds, there exists an honest party at round r with chain C
such that tx is included in C⌈k. From the chain growth property after u rounds
the chain of all honest players has grown by at least τu(≥ 2k) blocks with
overwhelming probability on k. From the chain quality property there exist at
least τu

2 (1−µ)(≥ 1) honest blocks in the length-k su�x of C⌈k with overwhelming
probability on k. Thus tx is included in these blocks and the lemma follows with
overwhelming probability on k.



GHOST. In the GHOST backbone we will prove that the chain growth property
is more nuanced and it is in fact possible for the adversary to mount a non-trivial
attack against it. We defer the details of the analysis and attack for section 6.2.

3.2 Trees of blocks

We introduce next our new analysis framework for backbone protocols that is
focusing on trees of blocks . In this model every player stores all blocks he hears
on a tree starting from the Genesis (or vroot) block. This is the model where
GHOST is normally described. Bitcoin, and other possible backbone variants,
can also be seen in this model and thus a uni�ed language can be built.

We �rst de�ne block trees (or just trees) that capture the minimal and max-
imal knowledge of honest players regarding the block tree on every round.

De�nition 7. T ∀
r (resp. T ∃

r ) is the tree formed by blocks s.t. ∀(resp. ∃)p ∈ hon-
est players: p has received block b at the beginning of round r. Similarly, T tot

r is
the tree that contains T ∃

r and also includes all blocks mined by honest players
at round r. Also we denote by TP

r the tree that is formed from the blocks that
player P has received until the beginning of round r and by T ∗

r (b) the subtree of
T ∗
r rooted on b where ∗ ∈ {∀,∃, tot, P}.

Blocks in T ∀
r have been received by all players, and at least one honest player

has received the blocks in T ∃
r . So for every honest player P it holds that:

T ∀
r ⊆ TP

r ⊆ T ∃
r ⊆ T tot

r

Intuitively, heavier trees represent more proof of work. But there are more
than one ways to de�ne what is a �heavy� tree. For example, in Bitcoin a heavy
tree is a long one. But for GHOST a heavy tree is one with many nodes. To
capture this abstraction we condition our de�nitions on a norm g de�ned on
trees. This norm will be responsible for deciding what is heavy, and thus favored
by the chain selection rule. We choose to omit g from the notation since it will
always be clear from the context which norm we use.

De�nition 8. For each round r of the protocol we de�ne the following three
functions on the nodes of T tot

r under a norm g de�ned on forests (sets of trees).

� |v|rold : If v ∈ T ∃
r then |v|rold = g(T ∃

r (v)), otherwise |v|rold = 0.

� |v|rtot : |v|rtot = g(T tot
r (v)).

� |v|rnew : Let F be the forest formed by blocks mined by honest players at round
r that are descendants of v (possibly including v). Then |v|rnew = g(F ).

Let siblings(v) denote the set of nodes in T ∃
r that share the same parent with

v. Then node v is d-dominant at round r w.r.t. f ∈ {old, new, tot} i�

domr
f (v, d) ⇔ |v|rf ≥ d ∧ ∀v′ ∈ siblings(v) : |v|rf ≥ |v′|rf + d



The Bitcoin protocol can be described using the notion of the d-dominant
node. Let g be the length of the longest tree in the forest. Each player p, starting
from the root of his T p

r tree, greedily decides on which block to add on the
chain by choosing one of its 0-dominant children and continuing recursively.
Interestingly GHOST can also be described this way by setting g to be the
number of nodes of the forest. Thus we have a uni�ed way for describing both
protocols. Building upon this uni�ed language we can describe the paths that
fully informed honest players may choose to mine in a quite robust way, thus
showcasing this power of the notation.

De�nition 9. (Paths sets)

- Paths(T ) is the maximal set of root-leaf paths of tree T
- HonestPaths(r, b) is the maximal subset of Paths(T ∃

r (b)) s.t.
∀p = v0v1..vk ∈ HonestPaths(r, b) ∀i ∈ {1, .., k} domr

old(vi, 0)

Having established the necessary nomenclature we introduce a new technical
tool, the notion of leading branch rounds. Intuitively, a leading branch round
can be thought of as a round that gives the opportunity for honest players
to consent. The idea is that leading branch rounds will throw o� balance the
tree, and mining paths on the following round will become concentrated on one
branch of the tree. The adversary can try to balance the tree, so that a fork will
be created, but he has to pay for it by mining blocks on the weak branch.

A unique dominating path exists every time a leading branch round hap-
pens pointing to the subtree where honest players will mine in the next round
(unless the adversary interferes). We de�ne both leading branch rounds and the
dominating path formally as follows.

De�nition 10. (LB(s, d) rounds and plb(r, s)) We call round r Leading Branch
with respect to round s and di�erence d ≥ 1 if and only if at that round, d is
the maximum value s.t. the following set is non-empty:

{p = vrootv1..vk |p ∈ Paths(T tot
r ) ∧ ∃i : vi ∈ recent(s)∧

∀i (parent(vi) ̸∈ recent(s)) ⇒ domr
new(vi, d)}

The common pre�x up to the �rst node that was computed at round s or after-
wards of all paths in this set (for the maximum value of d), if it exists, is denoted
by plb(r, s).

Note that leading branch rounds as de�ned here, constitute a generalization
of the uniquely successful rounds of [9]. Uniquely successful rounds are de�ned
independently of the history, but this is not the case for leading branch rounds,
as they depend on T ∃

r . Observe that every round r that is uniquely successful, is
also a LB(r, 1) round both for Bitcoin and GHOST. Additionally leading branch
rounds have the extra parameter s, that is related to how deep the imbalance on
the tree is, in terms of rounds. For example suppose no fork exists on T ∃

r (i.e.,
T ∃
r is a chain) and honest miners have mined new blocks. Then this round is



Fig. 2. Illustration of the setting when round r is in LB(s, 1). In the left side
(Bitcoin - the g norm measures maximum height), |v2|rnew = 2 while |v1|rnew = 1,
hence v2 is 1-dominant. In the right side (GHOST - the g norm measures number
of nodes), |v2|rnew = 2 while |v1|rnew = 3, hence v1 is 1-dominant and |v3|rnew = 2
while |v4|rnew = 1, hence v3 is 1-dominant.

leading branch for every s. If a round is leading branch for s1, then it will also
be for all s2 that are smaller than s1. However, the reverse does not always hold.
Suppose honest miners only mine two new blocks, on top of two sibling nodes.
Then for s larger than the round that their common ancestor was mined, this is
not a leading branch round, but for smaller s it is.

Notice that uniquely successful rounds happen less and less often as the ex-
pected number of rounds per block6 1/f decreases. By focusing on the di�erence
of the number of new solutions on di�erent branches, and not on their absolute
number, we manage to describe a class of �good� events that happen with a
non-negligible probability even for 1/f < 1.

Remark 1. For Bitcoin, g is chosen to be the length of the longest tree in the
forest and leading branch rounds are represented by LBmax. For GHOST, g is
chosen to be the total number of nodes on the forest, and leading branch rounds
are represented by LBsum.

Remark 2. For the Bitcoin and GHOST backbone protocols it holds that if, at
round r, a block b is d1-dominant w.r.t. to old and d2-dominant w.r.t. to new
and for any player P that mines some of the new blocks TP

r (b) = T ∃
r (b), then b

is (d1 + d2)-dominant w.r.t. to tot.

6 Expected number of rounds per block is approximately 1
f
. The random variable

described follows a negative binomial distribution with parameter (1 − p) and thus
the expectation is ⌈ 1

f
− p

f
⌉, where p is the probability that a query on the hash oracle

will be successful (which is very small compared to 1).



4 Bitcoin

4.1 A better bound for the common pre�x property

In this section we present a better security bound than the one in [9] regarding
the common pre�x property of the Bitcoin backbone protocol. The bound of
[9] is derived by the observation that (in our terminology) the adversary should
produce a block for all rounds that are silent and leading branch. With this, it

is shown that γu ≥ f+
√

f2+4

2 β is su�cient for security; observe that in general

the coe�cient
f+

√
f2+4

2 > 1 for any f > 0. Here we show that γ ≥ β is su�cient
thus we eliminate entirely the dependence on f in the coe�cient of β (also recall
γ ≥ γu). This improvement in the bound has a signi�cant impact in terms of
provable security as shown in Figures 3,4.

Fig. 3. The level of provable security comparing the results of [9] and our im-
proved results for Bitcoin. Under the curves the common pre�x property prov-
ably holds. The respective block-rate values chosen for two popular altcoins are
depicted on the graph.

Our main tool to derive this is a proof that all leading branch rounds have to
be compensated by the adversary (and not just those that are silent). To show
this we have to perform a more delicate analysis that requires some additional
terminology. Next we introduce the notion of an m-Uniform round.

De�nition 11. (m-Uniform rounds) We call a round m-Uniform if, at that
round, m is the minimum value such that for all chains C1, C2 that any two honest
parties initially invoke the pow algorithm with, it holds that ||C1| − |C2|| ≤ m.



Fig. 4. Similar to �gure 3 but for larger values of 1/f . Under the curves the
common pre�x property provably holds. The respective block-rate values chosen
for two popular altcoins are depicted on the graph. Bitcoin is in the far right
(recall from table 1 that for Bitcoin it holds 1/f ≈ 47).

Let base(r) denote the length of the shortest chain than an honest player
at round r chooses to mine. From the de�nition of the m-uniform round it
follows that on the next round, honest players will mine chains of size at least
base(r) + m. The size of these chains must also grow at least as much as the
maximum number of solutions a single honest player has found at round r (recall
that according to De�nition 8 this is equal to |vroot|rnew), because these solutions
will be known to all players at round r + 1. More compactly:

Observation 4. For every m-uniform round r it holds that

base(r) + max{|vroot|rnew,m} ≤ base(r + 1)

As it was discussed earlier, LB rounds are �bad� for the adversary, because
they help honest players consent on a single blockchain in the following round.
On the other hand, m-Uniform rounds are �good�, since some honest players
mine on shorter chains and thus waste their hash queries. Unfortunately for the
adversary, this type of rounds does not happen naturally in the system and he
must mine and publish blocks of his own to make a round non-uniform (m-
uniform with m > 0). Independently of uniformity, the adversary must still
compensate for all leading branch rounds as shown in the next lemma.

Lemma 5. Suppose C1 and C2 are the chains of two honest parties at round r
that diverge at round s ≤ r. Also suppose that rounds r1, .., rt are leading branch



rounds such that ri ∈ LBmax(s, di) and ri ∈ [s, .., r − 1]. Then, the adversary
must have mined and published at least

∑t
i=1 di di�erent blocks until round r.

Proof. For the mi-uniform round ri (i ∈ {1, .., t}), let li = base(ri) and ki =
|vroot|rinew. For every such round, we prove that the adversary must have published
at least di blocks and place them in speci�c positions in the respective chains,
in order for the fork to be maintained. Formally we show the following.

Claim. Let r be a LBmax(s, d) round that is m-uniform, with s ≤ r, then:

1. if m ≥ 1, there exists a chain C such that blocks at positions

base(r) + 1, ...,base(r) +m

are mined by the adversary.
2. ifm < d, at the end of round r and onwards and for all pairs of honest players'

chains C1, C2 that diverge at round s, in each of the following positions there
exists at least one adversarial block (in one of the two chains, as long as both
chains have su�cient length):

base(r) +m+ (|vroot|rnew − d) + 1, ...,base(r) + |vroot|rnew

Proof of Claim. The �rst point follows from the fact that all honest players
mine a chain of size at least base(r). So for the round to be m-Uniform a chain
of size at least base(r)+m must exist. But honest players, at the start of round
r, have mined blocks on chains of at most size base(r). Otherwise no honest
player would choose to mine a chain with length base(r). So blocks at positions
base(r) + 1, .., base(r) + m of the aforementioned chain must have been mined
by the adversary.

For the second point, let C be a chain that an honest player extends by
|vroot|rnew blocks at round r. By de�nition C by the end of the round has length
at least base(r) + |vroot|rnew. From the de�nition of the leading branch rounds
we know that all honest players at round r, that extend a chain that diverges
with C at round s, �nd at most |vroot|rnew − d solutions. Thus, by the end of the
round, their chains have length at most base(r) +m+ |vroot|rnew − d. And so, all
chains at the end of round r that have at least one honest block on the positions
mentioned on the second point, do not diverge with C at round s (as they are
longer than the upper bound we just established). And since no honest player
is going to mine blocks in these positions in any following round, this also holds
for every round after r. It follows that any honest players' chain that diverges
at round s with C has adversarial blocks at the positions mentioned.

Consider the chains C1, C2 of two honest players' at the end of round r and
onwards that diverge at round s. For the sake of contradiction, assume that there
is one position among those mentioned that both chains have blocks produced
by honest players. In this case C1, C2 do not diverge with C at round s and thus
they cannot diverge with each other at round s. This concludes the proof of the
claim. ⊣



It remains to show that the blocks that the adversary must publish for every
di�erent leading branch round must be in distinct positions.

If mi ≥ di, from the previous claim, item 1, the adversary has published a
chain where he has mined blocks at positions li+1, .., li+di. On the other hand,
if mi < di then, since C1 and C2 diverge at round s, and they have size greater or
equal than li+ki, the blocks at positions li+mi+ki−di+1, .., li+ki cannot be
both mined by honest players (due to the claim above, item 2). Moreover, there
exists a chain where the adversary has mined blocks at positions li+1, .., li+mi

(due to claim above, item 1). Recall that ki ≥ di hence these positions are disjoint
and thus a total of di = (ki − (mi + ki − di + 1) + 1) +mi blocks at least must
have been mined and published by the adversary in the range li + 1, .., li + ki.

Finally, from Observation 4 it holds that li+max({ki,mi} ≤ li+1, and there-
fore all these blocks are on distinct positions on the chains they belong. Thus
the lemma follows.

Given the above core lemma we can now easily prove the improved bound for
the common-pre�x property following the same proof strategy as in [9]. Namely,
it can be shown that the adversary cannot use very old solutions to compensate
for recent leading branch rounds, and thus by suitably limiting his power he will
be unable to produce enough solutions to compensate for every leading branch
round, as it is required by the core lemma. The full proofs are omitted.

Lemma 6. Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1) . Suppose C1 and
C2 are the chains of two honest parties at round r. Then, for any s ≤ r, the
probability that C1 and C2 diverge at round r − s is at most e−Ω(δ3s).

Theorem 4. Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). Let S be the set of
the chains of the honest parties at a given round of the backbone protocol. Then
the probability that S does not satisfy the common-pre�x property with parameter
k is at most e−Ω(δ3k).

5 GHOST

In this section, we prove that the GHOST backbone protocol is su�cient to
construct a robust transaction ledger. Whenever notation from De�nition 8 is
used, it is assumed that g(F ) is the total number of nodes of the forest F .

5.1 Common Pre�x and Chain Quality

In the previous section, it was shown that the e�ort that leading branch rounds
impose on the adversary is cumulative. A similar idea is developed here but a
di�erent approach is needed. The reason that the previous analysis cannot be
used for GHOST, is that the blocks that the adversary mines to compensate for
leading branch rounds, are not uniquely associated with a speci�c height in the
chain, as it was the case for Bitcoin. Moreover, in GHOST, honest players can
choose to mine smaller chains than the ones that they were mining previously



hence the length of the chain is not monotonically increasing. To re�ect these
facts, we introduce a new notion, that of a path that all of its nodes are dominant
up to a certain value.

De�nition 12. (pdom(r, d)) For d > 0, pdom(r, d) is the longest subpath p =
vrootv1 . . . vk in T tot

r s.t.

p ̸= vroot ∧ ∀i : domr
tot(vi, d)

If no such path exists pdom(r, d) = ⊥.

In the next lemma, we show that for any sequence of m leading branch
rounds starting at some round r′, no matter the strategy of the adversary, there
will be at least one honest block at round r in pdom(r,m − k) where k is the
number of adversarial blocks that have been released during rounds [r′, r − 1].
This establishes the robustness of pdom in the sense that only adversarial blocks
can decrease it and they do so in a linear fashion at worst.

Lemma 7. Let rounds r1, .., rm be uniquely successful rounds from round r′ until
round r. If the adversary publishes at most k < m blocks from round r′ until
round r, then at least one of the blocks mined by honest players at the uniquely
successful rounds will be in pdom(r,m− k).

Proof. We are �rst going to prove two preliminary claims that show the e�ect
of a uniquely successful round to pdom. The �rst claim shows that if a uniquely
successful round s is not compensated accordingly by the adversary, a newly
mined block will be forced into pdom(s, 1).

Claim. Let round s be a uniquely successful round and b be the honest block
mined at round s. If the adversary does not publish any block at round s − 1
then b ∈ pdom(s, 1).

Proof of Claim. First notice that since the adversary does not publish any block
it holds that T ∃

s = T ∀
s . Therefore, all nodes in the path from vroot to b are at

least 0-dominant w.r.t. to old. For any uniquely successful round it holds that all
nodes up to the newly mined block are 1-dominant w.r.t. new. Thus it follows
that b ∈ pdom(s, 1). ⊣

The second claim shows the e�ect of a uniquely successful round s to an
existing pdom(s − 1, d) path. Notice that if the adversary publishes less than d
blocks the same nodes continue to be at least 1-dominant in the following round.

Claim. Let round s be a uniquely successful round, b be the honest block mined
at round s and pdom(s− 1, d) ̸= ⊥. If the adversary publishes (i) k < d blocks at
round s− 1 then pdom(s− 1, d) ⊆ pdom(s, d+ 1− k), (ii) k = d blocks at round
s− 1 then either b ∈ pdom(s, 1) or pdom(s− 1, d) ⊆ pdom(s, 1).



Proof of Claim. There are two cases. In the �rst case suppose the adversary
publishes k < d blocks. Then with these blocks the adversary can lower the
dominance of nodes in pdom(s− 1, d) by k. Thus pdom(s− 1, d) will be a pre�x
of all the chains in HonestPaths(s, vroot). But because s is a uniquely successful
round the dominance of all nodes in pdom(s − 1, d) w.r.t. tot at round s will
increase by one. Therefore pdom(s− 1, d) ⊆ pdom(s, d+ 1− k).

In the second case suppose the adversary publishes k = d blocks. If he does
not publish all of these blocks to reduce the dominance of nodes in path pdom(s−
1, d), then pdom(s−1, d) will be a pre�x of all the chains in HonestPaths(s, vroot)
and as in the previous case, pdom(s− 1, d) ⊆ pdom(s, d+ 1− k).

Otherwise the adversary will reduce the dominance of at least one node in
pdom(s−1, d) to zero. If b is a descendant of the last node in pdom(s−1, d), then
all nodes in pdom(s − 1, d) will be 1-dominant w.r.t. tot and pdom(s − 1, d) ⊆
pdom(s, 1) = pdom(s, d + 1 − d). If b is not a descendant of the last node in
pdom(s−1, d), then for the player P that mined this block it holds that TP

s = T ∃
s ,

because he would have not mined a chain that does not contain pdom(s − 1, d)
at round s otherwise. Therefore, P at round s was mining a chain that belonged
to HonestPaths(s, vroot) and thus all nodes in the chain are at least 0-dominant
w.r.t. old. But because s is a uniquely successful round the dominance of all
nodes in the chain will increase by one and b ∈ pdom(s, 1). ⊣

Let bi denote one of the blocks mined by honest players at round ri. Let us
assume that r = rm. We are going to prove the lemma using induction on the
number of uniquely successful rounds m.

For the base case suppose m = 1. The adversary does not publish any block
until round r1 and from the �rst claim b1 ∈ pdom(r1, 1). Thus the base case is
proved. Suppose the lemma holds for m − 1 uniquely successful rounds and let
k1 be the number of blocks published by the adversary in the round interval
[r′, rm−1 − 1]. We have two cases.

(First case) k1 = m− 1 and the adversary publishes no blocks in the rest of
the rounds. From the �rst claim it follows that bm ∈ pdom(rm, 1).

(Second case) k1 < m − 1 and from the induction hypothesis there exists a
block b mined by honest players at the uniquely successful rounds r1, .., rm−1

where b ∈ pdom(rm−1,m − 1 − k1). If the adversary publishes m − 1 − k1 new
blocks before round rm − 1, then from the �rst claim, bm ∈ pdom(rm, 1). If the
adversary publishes k2 < m− 1− k1 before round rm − 1, then from the second
claim, at round rm − 1, b ∈ pdom(rm − 1,m− 1− k1 − k2).

Let k3 < m− 1− k1 − k2 be the number of blocks the adversary publishes at
round rm − 1. From the same claim either bm ∈ pdom(rm,m− 1− k1 − k2 − k3)
or b ∈ pdom(rm,m− 1− k1 − k2 − k3). This completes the induction proof.

We proved that if k4 < m is the number of blocks the adversary has published
until round r = rm, then at least one honest block is in pdom(rm,m− k4). Now
in the case r > rm, let k5 < m − k4 be the number of blocks the adversary
publishes in the remaining rounds. The lemma follows easily from the second
claim.



In the next lemma we prove that after a �xed amount of consecutive rounds,
one honest block mined on these rounds, is permanently inserted in the chain that
every honest player chooses to mine thereafter with overwhelming probability
on s.

Lemma 8. Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). It holds for any
(4
√
s+ 1√

βδ
)2 consecutive rounds before some round r there exists a block mined

by an honest player during these rounds and contained in the chain that any
honest player chooses to mine after round r with probability 1− e−Ω(δ2s).

Proof. Let random variable Zr′ denote the number of blocks the adversary pro-
duces during r′ rounds, and random variable Xr′ denote the number of rounds
that are uniquely successful during r′ rounds. Then for µ = s

r′ from the Cherno�
bounds we have:

Pr[Zr′ ≥ (1 + δ
√
µ)βr′] ≤ e−Ω(δ2s), for δ ∈ (0, 1) (1)

Pr[Xr′ ≤ (1− δ
√
µ)γr′] ≤ e−Ω(δ2s), for δ ∈ (0, 1) (2)

and thus from the negation of both events it holds that with probability at
least 1− e−Ω(δ2s):

Xr′ − Zr′ > βδ(r′ − (2 + δ)
√
r′s)

For r1 = (4
√
s + 1√

βδ
)2 rounds it holds that with probability at least 1 −

e−Ω(δ2s):
Xr1 − Zr1 > (8− 4δ)βδs+ (6− δ)

√
βδs+ 1

and thus from Lemma 7 at round r1 one honest block b will be in pdom(r1, Xr1 −
Zr1) with probability at least 1− e−Ω(δ2s).

Next we show that as long as for any round r2 > r1 the adversary pro-
duces less blocks than the number of uniquely successful rounds plus Xr1 −Zr1 ,
pdom(r1, Xr1 − Zr1) ⊆ pdom(r2, 1).

Claim. Let rounds r1, .., rm be uniquely successful rounds in the round interval
[r′ + 1, r] and pdom(r

′, d) ̸= ⊥. If for all uniquely successful rounds ri it holds
that the adversary has published ki < i+ d blocks and the adversary publishes
at most k < m + d blocks from round r′ until round r, then pdom(r

′, d) ⊆
pdom(r,m+ d− k).

Proof of Claim. As long as the nodes in pdom(r
′, d) are at least 1-dominant,

all honest players will work on chains containing pdom(r
′, d) and thus uniquely

successful rounds will increase their dominance. On the other hand the adversary
can at worst reduce the dominance of these nodes by the number of blocks
he publishes. But from the assumptions made in the statement the number of
the blocks the adversary publishes is always less than the number of uniquely
successful rounds plus d. Therefore in all rounds the nodes in pdom(r

′, d) are at
least 1-dominant and the claim follows. ⊣



From the above claim, b ∈ pdom(r, 1) if for all rounds until round r > r1 it
holds that

(Xr1 − Zr1)− (Zr−r1 −Xr−r1) > 1

But for r − r1 ≥ 1 it holds that with probability at least 1− e−Ω(δ2s)

Xr−r1 − Zr−r1 > X1 − Z1 > βδ − (2 + δ)βδ
√
s

and therefore

(Xr1 − Zr1) + (Xr−r1 − Zr−r1) > (Xr1 − Zr1) + (X1 − Z1) > 1

Thus b will stay in the chains of honest players permanently after round r1, since
b ∈ pdom(r, 1) for any r > r1, with probability 1− e−Ω(δ2s).

We can use this argument inductively for every round of the form r1 · k
where k ∈ N. Suppose that block bk has been added permanently to the chains
of honest players at round r1 · k. Then for all uniquely successful rounds after
r1 · k, the path to the newly mined block contains bk and thus Lemma 7 holds
for the subtree under bk. Everything stated in the proof of the base cases holds
for the round interval [r1 · k,∞). Therefore another block bk+1 will be added
permanently to the chains of honest players at round r1 · (k+1) and the lemma
follows by induction.

From Lemma 8 it follows that the density in terms of rounds of honest blocks
in any chain that an honest player chooses to mine is about 1

(4
√
s+ 1√

βδ
)2

with

probability 1 − e−Ω(δ2s). Since in s rounds the adversary can compute only a
limited number of blocks the chain quality property follows.

Theorem 5. Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). Suppose C is the
chain of an honest party at round r. Then it holds that for any l consecutive
blocks of C, there exists at least one honest block with probability 1− e−Ω(δ4l).

From Lemma 8 again it follows that all honest players at round r will share
in the chains they choose to mine a block computed at worst at round r−(4

√
s+

1√
βδ
)2 with probability 1 − e−Ω(δ2s). Since in s rounds all players can compute

only a limited number of blocks the common pre�x property follows.

Theorem 6. Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). Let S be the set
of the chains of the honest parties at a given round of the GHOST backbone
protocol. Then the probability that S does not satisfy the common-pre�x property
with parameter k is at most e−Ω(δ4k).

5.2 Chain Growth

In this section it is proved that GHOST satis�es the Chain Growth property.
However, in comparison with Bitcoin, the speed parameter of GHOST is a lot



weaker. This re�ects the fact that honest players in GHOST may be lead by
the adversary to adopt shorter chains and hence honest players' chains are not
monotonically increasing (cf. Section 6.2 where we describe a chain growth attack
against GHOST).

Theorem 7. Assume γ ≥ (1+ δ)β, for some real δ ∈ (0, 1). The GHOST back-
bone protocol satis�es the chain growth property with parameters τ = 1

(4
√
k+ 1√

βδ
)2(k+1)

,

s = (4
√
k + 1√

βδ
)2(k + 1) with probability at least 1− e−Ω(δ4k).

Proof. Let s1 = (4
√
k+ 1√

βδ
)2. We prove that after s1 · (k+1) rounds the block

chain of every player will have grown by at least one block. Let C1 be the chain
of player p at round r and C2 at round r + s1(k + 1).

From theorem 6 it follows that the pre�x C
⌈k
1 of C1 will be also a pre�x for

C2 with probability 1−e−Ω(δ4k). Also, from lemma 8 it follows that for all round
intervals of the form [r + is1, r + (i + 1)s1] for i ∈ {0, k}, there exists at least
one block in chain C2 that was computed on this interval by an honest player
with probability at least 1−e−Ω(δ4k). By an application of the union bound with

probability 1− e−Ω(δ4k) there are a total of k+ 1 new blocks in C2 and C
⌈k
1 is a

pre�x of C2. Thus |C2| − |C1| ≥ 1 ≥ 1
s1(k+1)s1(k + 1) and the GHOST protocol

satis�es the chain growth property with probability 1− e−Ω(δ4k).

5.3 Robust public transaction ledger

It was proved on the previous subsections that the GHOST backbone protocol
satis�es all three security properties: Common Pre�x, Chain Quality and Chain
Growth. As it was shown in [9] and further discussed on lemma 3, using arbitrary
protocols that satisfy these properties one can implement in a black box man-
ner a robust public transaction ledger through protocol ΠPL. Thus the GHOST
backbone protocol can be used to implement a robust transaction ledger. The
security and speed parameters under which the ledger works are described in
the next two lemmas.

Lemma 9 (Persistence). Suppose γ ≥ (1 + δ)β, for some real δ ∈ (0, 1).

Protocol ΠPL satis�es Persistence with probability 1 − e−Ω(δ4k), where k is the
depth parameter.

Lemma 10 (Liveness). Assume γ ≥ (1 + δ)β, for some δ ∈ (0, 1) and let
k ∈ N. Further, assume oracle Txgen is unambiguous. Then protocol ΠPL satis�es
Liveness with wait time u = 2k(4

√
k+ 1√

βδ
)2(k+1) rounds and depth parameter

k with probability at least 1− e−Ω(δ4k).

Theorem 8. The GHOST backbone protocol can be used to implement a robust
transaction ledger.



6 Transaction Speed - Security Tradeo�s

In [8] an attack (sel�sh mining) against the chain quality property of Bitcoin was
demonstrated. It was proven to be optimal in [9]. However, regarding optimal
attacks on the common pre�x and chain growth properties little is known. In
this section, attacks on these two properties are explored in an experimental
way (through computer simulations) providing some interesting insights on the
optimality of the theoretical results proved previously. Both of these attacks
a�ect transaction speed in di�erent ways. The �rst attack, targets security when
f is large, an thus prohibits the increase of the block generation rate in order
to increase the transaction speed. The second attack, targets the chain growth
speed, thus making increases in the block generation rate less e�ective.

6.1 Attack on Common Pre�x

Fig. 5. The level of insecurity in terms of the hashing power of the adversary
as a function of 1/f . Above the two (almost identical) curves our attack breaks
common pre�x with a fork that is 100 blocks deep with probability of success at
least 1%. The respective block-rate values chosen for two altcoins are depicted
on the graph.

In this subsection we do experimental analysis on attacks targeting the com-
mon pre�x property of the Bitcoin and GHOST protocols. The two protocols



seem quite robust against these attacks when f > 1. However, their security de-
teriorates as f grows bigger and taking advantage of these attacks an adversary
can e�ectively cause deep forks to appear. Graphs on how various cryptocurren-
cies' (that use di�erent parameterizations of the Bitcoin and GHOST backbone
protocols) fare in terms of the attacks are also presented.

The idea of the attacks is the following: when a fork of depth 1 naturally
happens, the adversary splits its hashing power, as well as the honest players'
power, on the two branches. In our model this is possible because we consider
the adversary to be rushing7.

On Bitcoin, when an honest player in one of the two branches publishes a
new solution, then the adversary also publishes one of its solutions (if he has
any) on the other branch. If honest players extend both branches by the same
length in the same round, then the adversary just reschedules the messages so
again players are split in half. Otherwise, if possible, the adversary lengthens the
chain that is behind by the same amount of blocks, to keep the fork running.
Additionally, even if players modi�ed the backbone protocol to use �ip a coin
in order to resolve ties, they would have 0.5 probability to go in one of the two
branches, so adding randomness does not seem to help against this attack.

The GHOST attack proceeds in the same way with two big di�erences. First,
the adversary has to pay for the absolute di�erence of the total number of solu-
tions released on the two branches by the honest players in each round (instead of
the max that he paid for Bitcoin). Secondly, the solutions that are produced by
the adversary are never invalid. He just mines the �rst nodes after the common
pre�x of the two branches and the blocks that are produced cannot be invali-
dated. In contrast, solutions that are produced for Bitcoin must always extend
the head of any of the two diverging chains to be useful. Thus, the blocks used
by the adversary must be recent.

Most interestingly these two attacks have almost the same e�ectiveness on
both protocols as shown in �gure 5. For f < 1 both protocols tolerate this type of
attack and achieve an almost optimal level of security. But when f grows larger
than 1, security deteriorates in a surprisingly similar rate. This result suggests,
that paying for the di�erence of the sum of new blocks in the two branches and
paying for the di�erence of the maximum chains on the two branches on each
round but only with recent blocks, for our parameters of interest, seems to be
equally hard for the adversary.

In the graphs we also present the speci�c choices made by various altcoins
that were reported in table 1. It is interesting to point out that for the choice
made in Ethereum8 (f = 1) our provable security bound is around 35% while
for Dogecoin and Litecoin our improved analysis brings the provable security

7 As argued in [8] this is a plausible attack strategy, we refer to their paper for more
details.

8 Note that Ethereum is not yet in production stage and several variants of GHOST
have been implemented. Our results refer to the original proposal of [14], but with
12 seconds block generation rate as discussed by Buterin in [4]. Our framework can
be used to further explore design alterations of the original GHOST rule.



bound to a relatively satisfactory level of over 47%. Extreme choices such as
Flashcoin cannot be supported at all by the security analysis, while Bitcoin on
the other end of the spectrum opts for the safest choice that enables a near
optimal provable security bound of about 49%. We remark that the original
proposal for GHOST for a 1 sec per block [14] yields an 1/f = 1/12 which
is in a completely precarious region of the speed-security domain (note it was
subsequently amended to f = 1).

6.2 Attack on Chain Growth

Fig. 6. Chain speed from experimental analysis for f = 1. Note that as the hash
power of the adversary increases, the ratio of Bitcoin to GHOST chain speed
increases.

Chain growth is closely related to transaction processing speed. Slow chain
growth implies a low number of transactions per second. Also as proved in



lemma 3, chain growth is closely related to the con�rmation time of transac-
tions.

In this subsection an attack on the chain growth of GHOST is presented
and experimentally tested. This attack exploits the fact that in GHOST thin
and long trees may have the same or less weight than short and wide trees.
The goal of the adversary is to mine, in secret, a subtree of height two that is
heavier than the naturally longer subtree that the honest players are mining by
themselves. If the adversary's subtree gets heavier it can publish it and following
the GHOST rule force the honest players to switch to a shorter main chain. By
doing this repeatedly, every time starting from a recently mined block, and by
restarting if honest miners get too far ahead, a concrete reduction of the chain
growth speed is achieved as shown in Figure 6, that increases as the adversaries
power increases. An interesting feature of the attack is that it gets better as f
get smaller.

On the other hand the optimal attack for Bitcoin is quite trivial (see Sec-
tion 3.1) and much less e�ective. Since GHOST under this attack is slower than
Bitcoin under an optimal attack, we conclude that the chain growth parameter
for GHOST should be smaller than that of Bitcoin's, and thus GHOST is sub-
optimal in terms of the chain growth property (also note that our provable lower
bound is also worse than that of Bitcoin, cf. Theorem 5.2). This conclusion de-
bunks the suggestion of [14] that the di�erence of GHOST chain speed compared
to Bitcoin is relatively small, and sheds light to a �rst noticeable shortcoming.

Together with the attack on common pre�x, we have attacks in the whole
range of the spectrum for GHOST: for small f , chain growth can be made almost
10% less than that of Bitcoin (cf. Figure 6), and for big f security can be broken
(cf. Figure 5), for attackers with less that 35% of the total computation power.

A short description of the attack is given in Figure 2.
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A Probability of Leading branch rounds

Lemma 11. For p < 0.1 and a ∈ (p, 2k) : e−a−kp ≤ (1− p)
a
p−k ≤ e−a+kp
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Proof. The second inequality is well studied and holds for p > 0. For the �rst

inequality by solving for a we get a ≤ k ln(1−p)

1+
ln(1−p)

p

which holds for p < 0.1 and

a ∈ (p, 2k).

Let γ be a lower bound on the probability of a uniquely successful round
(a round where only one block is found). From the event where (n − t) players
throw q coins each and exactly one coin toss comes head γ is at most:

(n− t)qp(1− p)q(n−t)−1 ≥ ae−a−p ≥ γ

This is also a lower bound for the event that at least one honest party com-
putes a solution in a round, and also that either for GHOST or bitcoin a leading
branch round happens, since uniquely successful rounds are also leading branch
rounds. So γ = ae−a−p.

B Proofs

B.1 Lemma 6

Proof. We de�ne three bad events, A, B and C, which we show to hold with
probability exponentially small in s. We conclude the proof by showing that if
none of these bad events happens, then there cannot exist C1 and C2 diverging
at round r − s.

The bad event A occurs if, at some round r′ ≥ r−s, the adversary broadcasts
a chain C with the following properties. (1) C is returned by the function maxvalid
of an honest party; (2) the block head(C) was computed by the adversary before
round r − (1 + δ

8 )s.
We now give an upper bound on the probability that event A occurs. Let

r∗ ≤ r− (1+ δ
8 )s be the latest round at which a block of C was computed by an

honest party (if none exists, then r∗ = 0), and let ℓ denote the length of the chain
up to that block. If any other block computed by an honest party exists among
the blocks from length ℓ up to len(C), then such block was computed in rounds
r − (1 + δ

8 )s up to r′, and it follows that the probability that the adversary's
block can extend it at round r′ is negligible in (κ − logD). Therefore, we infer
that with overwhelming probability the adversary has computed all the blocks
from length ℓ to len(C), and done so during the rounds r∗ to r′. Let Z denote
the total number of solutions the adversary obtained in r′ − r∗ rounds. Let also
X denote the total number of successful rounds for the honest parties in r′ − r∗

rounds. We have
Z ≥ len(C)− ℓ ≥ X.

The �rst inequality was argued above and the second one follows from [9, Lemma
5]. Finally, note that, by Lemma [9, Lemma 6], the event Z ≥ X has measure
exponentially small in the number of rounds r′ − r∗. Since that number satis�es
r′ − r∗ ≥ δs/8, we conclude that Pr[A] ≤ e−Ω(δ3s).

The second bad event occurs if the adversary has obtained a large number
of solutions during (1 + δ

8 )s rounds. Speci�cally, let Z denote the number of



successful calls to the oracle by the adversary, for a total of (1 + δ
8 )s rounds.

De�ne B to be the event Z ≥ (1 + δ
9 )(1 + δ

8 )βs. An application of Cherno�
bounds gives

Pr[Z ≥ (1 + δ
9 )(1 +

δ
8 )βs] ≤ e−Ω(βδ2s).

The third bad event occurs when not enough leading branch rounds occur.
Consider any number, say, s′ of rounds, and denote by X ′ the number of them
that were leading branch. We have

Pr[X ′ ≤ (1− δ
4 )γs

′] ≤ e−Ω(γδ2s′).

From now on we assume that none of the events A, B and C occurs. From
lemma? , it is easy to see that the adversary has to compute at least

∑k
i=1 di

solutions, where r1, ..., rk are LBmax(s, di) rounds such that s ≤ ri ≤ r. Since
a round is LBmax(s, d) with probability γ, from the negation of the third bad
event we expect at least (1− δ

4 )γs such rounds.
Note that, since A does not occur, the adversary may not use solutions com-

puted before round r − (1 + δ
8 )s with probability at least 1 − e−Ω(δ3s). The

negation of the second bad event bounds the number of solutions the adver-
sary can obtain. Thus from lemma 5 it has to hold with probability at least
1− e−Ω(δ3s):

(1− δ
4 )γs ≤ (1 + δ

9 )(1 +
δ
8 )βs ⇔

(1− δ
4 )γ ≤ (1 + δ

9 )(1 +
δ
8 )β ⇒

(1− δ
4 )(1 + δ)β ≤ (1 + δ

9 )(1 +
δ
8 )β ⇒

(1− δ
4 )(1 + δ) ≤ (1 + δ

9 )(1 +
δ
8 )

But the last inequality does not hold for δ ∈ (0, 1). We conclude that if
A∪B∪C does not occur, then C1 and C2 cannot diverge at round r− s. Finally,
an application of the union bound on A ∪ B ∪ C implies that the adversary
can successfully maintain such C1 and C2 with probability at most exponentially
small in s and the statement of the lemma follows.

B.2 Theorem 4

Proof. If there is only one chain in S then the property is satis�ed trivially.
Consider two chains C1 and C2 in S and the least integer k∗ such that

C⌈k∗

1 ⪯ C2 and C⌈k∗

2 ⪯ C1. (3)

We need to show that the event k∗ ≥ k happens with probability exponentially
small in k.

Let r be the current round and let r − s be the round at which the last
common block of C1 and C2 was computed. The length of the chains cannot be
greater than the number of solutions Y obtained from the oracle in s rounds.
By the Cherno� bound,

Pr[Y ≥ (1 + δ)fs] ≤ e−δ2fs/3.



It follows that, with probability 1− e−δ2fs/3, s > k∗/((1+ δ)f). Thus, if k∗ ≥ k,
we have a sequence of s = Ω(k) consecutive rounds with chains C1 and C2
diverging, and the theorem follows from Lemma 6

B.3 The GHOST protocol

Algorithm 3 The proof of work function, parameterized by q, D and hash
functions H(·), G(·). The input is (x, C, T ).

1: function pow(x, C, T )
2: ⟨s′, x′, ctr′⟩ ← head(C)
3: s← H(ctr′, G(s′, x′))
4: ctr ← 1
5: B ← ε
6: h← G(s, x)
7: while (ctr ≤ q) do
8: if (H(ctr, h) < D) then ▷ Proof of work succeeded
9: B ← ⟨s, x, ctr⟩
10: C ← CB ▷ Extend chain
11: ⟨s′, x′, ctr′⟩ ← head(C)
12: s← H(ctr′, G(s′, x′))
13: h← G(s, x)
14: end if

15: ctr ← ctr + 1
16: end while

17: T ← update(T, C as separate blocks) ▷ Add new blocks to the tree
18: return ⟨T, C⟩
19: end function



Algorithm 4 The GHOST backbone protocol, parameterized by the input con-
tribution function I(·) and the reading function R(·).

1: T ← GenesisBlock
2: C ← GenesisBlock
3: st← ε
4: round← 0
5: while True do

6: Tnew ← update(T, blocks found in Receive())
7: C̃ ← GHOST(Tnew)
8: ⟨st, x⟩ ← I(st, C̃, round, Input(),Receive()) ▷ Determine the x-value.
9: ⟨Tnew, Cnew⟩ ← pow(x, C̃, T )
10: if C ̸= Cnew or T ̸= Tnew then

11: C ← Cnew
12: T ← Tnew

13: Broadcast(T as separate blocks)
14: end if

15: round← round+ 1
16: if Input() contains Read then

17: write R(xC) to Output()
18: end if

19: end while
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