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Abstract

We propose a decentralized cryptocurrency based on a block-chain ledger similar to that
of Bitcoin, but where the extremely wasteful proofs of work are replaced by proofs of space,
recently introduced by Dziembowski et al. (CRYPTO 2015). Instead of requiring that a
majority of the computing power is controlled by honest miners (as in Bitcoin), our currency
requires that honest miners dedicate more disk space than a potential adversary.

Once a miner has dedicated and initialized some space, participating in the mining
process is very cheap. A new block is added to the chain every fixed period of time (say,
every minute), and in every period a miner just has to make a small number of lookups to
the stored space to check if she “wins”, and thus can add the next block to the chain and get
the mining reward. Because this check is cheap, proof-of-space-based currencies share some
(but not all) issues with currencies based on “proofs of stake”, like Peercoin. Concretely,
a näıve solution that simply replaces proofs of work with proofs of space raises two main
issues which we address:

Grinding: A miner who can add the next block has some degree of freedom in shaping
how the chain looks, e.g. by trying out different sets of transactions to include in her
block. The miner can try many possible choices until she finds one which results in
a chain that allows her to also mine the next block, thus hijacking the chain forever
while dedicating only a small amount of the space. We solve this problem fully by
“decoupling” the hash chain from the transactions, so that there is nothing to grind.
To bind the transactions back to the hash chain, we add an extra signature chain,
which guarantees that past transactions cannot be altered once an honest miner adds
a block. Our solution also gives a simple and novel way to solve the grinding problem
in currencies based on proofs of stake.

Mining multiple chains: Since checking whether one can add a block is cheap, rational
miners will not only try to extend the so-far-best chain, but also try other chains, in the
hope that they can extend one of them which will ultimately catch up and overtake the
currently-best chain. (In the context of proof-of-stake-based currencies this is known
as the “nothing-at-stake” problem.) This not only gives rational miners a larger-than-
expected reward (compared to what honest miners get), but also makes consensus very
slow, if not impossible. Our solution to this problem is based on penalizing miners
who try to work on more than one branch of the chain.

Finally, we show formally that the proposed cryptocurrency has desirable game-theoretic
properties at least as strong as those shown of Bitcoin (namely, honest mining behavior is
an equilibrium if no single party holds more than half of all space invested in the currency).
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ment dated June 5, 2012), Air Force Laboratory FA875011-20225, and Lincoln Lab PO7000261954.
†Research supported by ERC Starting Grant (259668-PSPC).
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1 Introduction

Bitcoin is a decentralized digital currency which was introduced in 2009 [Nak09] and by now is
by far the most successful digital currency ever deployed. Informally, in the Bitcoin scheme a
digital coin is attached to a public key pk of a digital signature scheme, and it belongs to the
person holding the corresponding secret key sk. In order to transfer a coin from pk to pk′, a
transaction (encoding the statement that the coin belonging to pk is transferred to pk′) is signed
using sk. The complete record of transactions is kept in a public ledger that has the form of a
block chain, which is a sequence β0, β1, . . . of blocks. Each block βi = (txi, . . .) contains, among
other information discussed below, a set txi of new transactions to be added.

The main difficulty when designing a digital currency is to provide security against double-
spending. In the scheme just outlined, a dishonest party P holding sk can sign two different
transactions, the first being a “real” transaction tx′ transferring the coin to the public key pk′

of a recipient R (typically in exchange for some goods), the second tx′′ transferring it to itself,
i.e. to some pk′′ whose corresponding sk′′ is known to P . The recipient R will only possess the
coin if ultimately tx′ (and not tx′′) ends up in the ledger.

To prevent double-spending, one thus must enforce that all parties in the network agree on
the same block chain, except for the last few blocks. A party should wait before accepting a
transaction, until it has been in the chain long enough that she can be reasonably sure that it
will stay there forever. The Bitcoin protocol achieves consensus by making it computationally
hard to add a block to the chain, as detailed in the following.

1.1 Proofs of work (or, how to mine Bitcoins)

In order to extend a block chain Bi = β0, . . . , βi with a new block βi+1, the block βi+1 must
contain a so-called proof of work (PoW) [DN93]. In the case of Bitcoin, the PoW is simply
a nonce µi such that the hash αi+1 = hash(µi, αi, τi, pkminer) of µi together with the hash
αi of the previous block, the set of transactions τi to be added and some public key pkminer
(whose function we explain below) starts with some sufficiently large number of 0’s. If hash(·)
is modeled as a random oracle (in reality it is SHA-256), finding a nonce that starts with t zeros
requires an expected 2t number of evaluations of hash(·).

The number t in the Bitcoin scheme is set dynamically (and adapted roughly every 2 weeks)
so that the total computational power of the network is expected to find a fresh block every 10
minutes. Searching for such a block is called mining. To incentivize mining, every newly added
block generates some fresh coins, which are given to the public key pkminer, whose corresponding
secret key is known by the miner who found the block. There is also a mechanism to incentivize
mining via transaction fees.

Once a miner solves the PoW, she generates a block and sends it out to the network. As this
block needs some time to propagate through the network, it can occur that two blocks extending
the same chain are being sent out, and thus there is an inconsistent view on the chain. The
Bitcoin protocol specifies that every miner should try to extend the longest valid branch1 it is
aware of; this way, even if the block chain branches, ultimately one branch will become longer,
and the shorter ones will eventually be ignored. Thus, once a transaction has been added to
the block chain, and sufficiently many blocks have been added after it, it will stay in the chain
forever (waiting for 6 blocks, which takes roughly one hour, is considered safe).

In order to double-spend a coin, a cheating party would have to branch off sufficiently far
in the past and then make this branch “catch up” with the currently longest branch. A party
cannot do this with reasonable probability, unless it controls close to 50% of the entire hash

1Morey precisely, it is not necessarily the longest branch, but the one that required most computation to find.
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power. A crucial property of the Bitcoin protocol is the fact that miners have a strong incentive
to follow the “work on the longest chain” rule. A rational miner wants the blocks he finds to
end up in the block chain (and not some dead branch), and to achieve this, working towards
extending the longest known chain is a Nash equilibrium.

Consensus in Bitcoin. One can think of the core of the Bitcoin consensus protocol as a
random selection protocol. In every round a miner is picked at random, and this miner is
allowed to add a block. The probability of a particular miner being chosen is proportional to
the fraction of the total hash power it controls. If honest miners control more than half of the
hash power, this will result in a consensus protocol for the ledger.

Honest miners must constantly invest more computing power than a potential adversary
could accumulate in order to prevent double spending. It is estimated that the mining cur-
rently uses several 100 MW of energy; moreover, most mining is currently done by dedicated
hardware, which has no use beyond mining Bitcoins. For these reasons Bitcoin is considered an
“environmental disaster” [And13] by some.

1.2 Proofs of stake

In order to find a “greener” decentralized cryptocurrency, the community has looked for alter-
native decentralized consensus protocols and found a potentially promising candidate in proofs
of stake (PoStake). Whereas in the PoW-based Bitcoin scheme the probability that a party
mines the next block is proportional to the fraction of computing power it contributes, in a
PoStake-based scheme this probability should correspond to the fraction of coins (out of all
coins ever minted) that it holds. This idea is very appealing as no resources (like energy, hard-
ware, etc.) are wasted, but unfortunately, making this approach actually work turns out much
more delicate than for PoW-based schemes. Trying to adapt Bitcoin in a straightforward way
by replacing PoW by PoStake, one runs into at least three major problems which we discuss
now.

Multiple chains: In Bitcoin, a rational miner will always work towards extending the longest
chain known to him, as working on any other chain would only lower the probability that a
potentially mined block will end up in the block chain. If we use PoStake instead of PoW,
then checking whether one can extend a chain is very cheap, and thus there is no reason not
to try extending many different chains in parallel. This impedes quick consensus finding like in
Bitcoin, where rational miners concentrate on the longest chain, which will make it grow faster
than others.

Grinding: In Bitcoin the miner adding the ith block can influence the hash of the chain up to
block i by his choice of transactions to be included. Influencing this value does not result in
any advantage in a PoW-based scheme like Bitcoin. In a PoStake-based scheme on the other
hand, the miner adding block i can try out many different hashes until he finds a “good” one
which will allow him to also add block i+ 1 (and thus the miner could hijack the chain forever).
As before, the reason this is only a problem with PoStake but not with PoW-based schemes is
that checking whether one can extend after a block is cheap.

Participation: In a PoStake-based scheme the parties holding coins must also participate in
securing the currency by providing blocks when their coins “win”. As typically only a fraction
of the parties holding coins will participate, this makes designing a PoStake-based scheme
difficult (as the scheme must work no matter what the fraction is, and it will also constantly
change over time). Moreover, this is a security issue when participation is very low (as for
double-spending it is sufficient to control a fraction of the coins that is slightly larger than that
of coins participating). In the most popular PoStake-based currency, Peercoin, participation is
already below 10%.
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1.3 Proofs of space

In this paper we propose digital currency schemes which are based on so-called proofs of space
(PoSpace), recently introduced by Dziembowski et al. [DFKP15]. A PoSpace is a protocol
between a prover P and a verifier V that has two phases. After an initialization phase, the
prover P is supposed to store some data Sγ of size N ∈ N, and the verifier stores a short
commitment γ to this data. In a later execution phase V sends a challenge c to P, who can
efficiently answer with a short answer a after reading a small fraction of Sγ .

In [DFKP15] a PoSpace is constructed where any prover that can convince the verifier with
constant probability must either be honest (meaning it has dedicated N bits of space), or run
in time Θ(N) in the execution phase. Note that this is the best we can hope for, as a cheating
prover can aways just store the short communication from the initialization phase and then
simply re-initialize the entire storage during the execution phase, which takes time Θ(N).2

The constructions from [DFKP15] are based on hard-to-pebble graphs. The vertices of such a
graph are labeled, where for some unique nonce µ, vertex i gets label hash(µ, i, l1, . . . , lt) where
l1, . . . , lt are the labels of its children. The prover computes and stores those labels and sends
a Merkle-hash of all labels to the verifier. In the execution phase the verifier simply choses a
subset of those labels to be opened. Some simpler solutions to construct a PoSpace that come
to mind do not work.

Storing a function table. A tempting “solution” is to let P store the function table
(1, f(1)), . . . , (N, f(N)) of a random-looking function f(·) sorted by the second values. A chal-
lenge would then ask to invert the function on value f(x) for some random x ∈ {1, . . . , N},
which an honest prover can do in time log(N) using binary search in the sorted table; Un-
fortunately, this doesn’t work due to time-memory trade-offs [Hel80], which allow a cheating
prover to only store roughly N2/3 input/output tuples, while being able to invert the function
in time N2/3 (in the case where f(.) is a permutation, this goes down to N1/2 time and space,
cf. [DFKP15, Appendix A] for details).

Storing a (pseudo)random file. Another simple idea would be to let V sendN (pseudo)random
bits to P during initialization, and simply query P for some of these bits at random positions
during execution. Unfortunately, this requires N bits of communication, whereas a PoSpace
requires that the verifier’s efficiency only depends on some security parameter, but must be ba-
sically independent of N , which is crucial for all applications of PoSpace discussed in [DFKP15]
and also for this paper.

Formally, a proof of space is defined by four algorithms PoS = {Init,Challenge,Answer,Verify},
and is executed between a verifier V and a prover P. The protocol runs in two phases. We first
describe the initialization phase:

1. P(N) and V(N) have a common input N ∈ N which denotes the amount of space P
should dedicate.

2. V samples some unique nonce µ and sends it to P.3

3. P computes and stores (γ, Sγ) := Init(µ,N) and sends the commitment γ to V.4

2An alternative and much simpler construction in [DFKP15] only implies that the cheating prover runs in
time Ω(N/ log(N)), but here one provably also requires Ω(N/ log(N)) space.

3The nonce ensures that the same space cannot be used for two different proofs (this will be discussed more
later).

4In the PoSpace schemes from [DFKP15] the initialization phase actually has two rounds. In the first one the
verifier sends the commitment γ to the prover, and then, in a second phase, the prover asks the verifier to open
the commitment on some random positions (concretely, the labels corresponding to some random nodes in the
hard-to-pebble graph, together with the labels of their children). This second phase is used to ensure that the
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This concludes the initialization phase, after which P stores the data Sγ of size N , whereas V
only stores the short commitment γ and the nonce µ. The size N of the committed space is
part of the commitment γ and we’ll denote it by Nγ .

In the execution phase, P convinces V that she really stored Sγ .

1. V samples a challenge c← Challenge(N) and sends it to P.

2. P computes the answer a := Answer(µ, Sγ , c) and sends it to V.

3. V runs the verification procedure b := Verify(µ, γ, c, a) and accepts if b = 1.

Proposition 1.1 ([DFKP15]). There exists a PoSpace in the random oracle model with the
following properties:

• Efficiency: For a statistical security parameter λ, the verifier runs in time O(1) during
initialization and in O(λ · log(N)) during execution. The (honest) prover runs in time
O(N · log log(N)) during initialization and in O(λ · log log(N)) during execution.

• Security: Assume that a (potentially cheating) prover makes V accept during the exe-
cution phase with probability5 2−Θ(λ). Then the prover either stores Θ(N) bits (i.e., as
much as an honest prover) or runs in time Θ(N) (on average).

Moreover, the PoSpace satisfies the following two properties (not explicitly mentioned in [DFKP15]),
which will be crucial for our application to cryptocurrencies.

• Public-coin verifier: The verifier is public-coin in the execution phase.

• Unique accepting answer: It is computationally hard to find two accepting transcripts
(c, a), (c, a′) for the execution phase where a 6= a′. (Concretely, finding such a pair implies
breaking the collision-resistance of the underlying hash function).

1.4 Game theory of Spacecoin

The miners in a cryptocurrency are strategic agents who seek to maximize the reward that they
get for mining blocks. As such, it is a crucial property of a cryptocurrency that “following the
rules” is an equilibrium strategy: in other words, it is important that the protocol rules are
designed in such a way that miners never find themselves in a situation where “cheating” and
deviating from the rules yields more expected profit than mining honestly.

In contrast to previous work in the cryptocurrency literature, this paper fully specifies an
extensive game that corresponds to Spacecoin mining, and prove that to follow the protocol
rules is a sequentially rational Nash equilibrium in this extensive game, as long as no single
party holds more than half of all space invested in the currency6.

Prior work related to equilibria in Bitcoin mining has given only an informal treatment of
the problem: notably, [KDF13] presents a thorough, but still informal, analysis of equilibrium
strategies in Bitcoin, and concludes that honest mining is a Nash equilibrium in Bitcoin (as long
as no single party has more than half of the network’s computing power). We remark that the

prover committed to correctly computed labels for most of the vertices. For the application to Spacecoin, we can
move this check to the execution phase. In fact, it is sufficient when a cheating prover gets caught only with some
constant probability, which informally is the reason why we can set the parameter λ below to be a constant.

5For the application to Spacecoin, it suffices if the error probability is a sufficiently small constant, and thus
(as mentioned in the previous footnote) it’s sufficient when λ is a constant.

6We argue that this is an unlikely scenario, and we remark that the stability of Bitcoin is also known to
depend on no single party controlling more than half the network’s computing power. In Section 5.2, we analyze
the potential risks for Spacecoin in the case that a single party does indeed hold such a large proportion of space.
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Nash equilibrium is widely considered to be unsatisfactory as a solution concept for games that
are played over multiple time steps, for reasons which will be detailed in Section 5.1. While
previous game-theoretic discussion in this literature has been restricted to the Nash equilibrium
concept, we prove in Section 5 that the Spacecoin protocol satisfies a stronger solution concept
called sequentially rational Nash equilibrium, which is considered the standard for extensive
games over many time steps.

1.5 Other related work

A concept similar to proofs of space are proofs of storage and proofs of retrievability (cf. [GJM03,
BJO09, ABC+07, JK07, DPML+03] and many more), these are proof systems where a verifier
sends a file to a prover, and later the prover can convince the verifier that it really stored or
received the file. Proving that one stores a (random) file certainly shows that one dedicates
space, but these proof systems are not proofs of space because the verifier has to send the entire
file to the verifier, whereas from a PoSpace we require that the verifiers computation (and thus
also communication) is at most polylogarithmic in the size of the storage to be dedicated.

Permacoin. Permacoin [MJS+14] is a cryptocurrency similar to Bitcoin, but where the proofs
of work are replaced with proofs of retrievability. Here the miners are actually supposed to store
useful data, so the currency serves as a data archive, whereas in spacecoin the dedicated storage
does not store anything useful. Like in Bitcoin, in Permacoin miners are constantly racing to
find a good proof (only the type of proof is different), whereas the main goal of Spacecoin is to
avoid such a race: miners only have to execute a proof once every minute, but apart from that
can use their resources (except the space dedicated for mining) in a useful way.

Another type of proof systems which is related to PoSpace are Proof of Secure Erasure
(PoSE). Informally, a PoSE allows a space restricted prover to convince a verifier that he has
erased its memory of size S. PoSE were suggested by Perito and Tsudik [PT10], who also
proposed a scheme where the verifier sends a random file of size S to the prover, who then
answers with a hash of this file. Using hard to pebble graphs, PoSE with small communication
complexity have been constructed by [DKW11, KK14, ABFG14]. A PoSpace (to be precise,
a PoSpace where the execution phase requires large space, not just time) implies a PoSE (by
simply running the initialisation and execution phase sequentially), but PoSE seems not to
imply a PoSpace. The only application of PoSE we’re aware of is the one put forward in [PT10]
(i.e., to prove that one has erased its memory), in particular, PoSE cannot be used for any of
the applications of PoSpace put forward in [DFKP15], and also the cryptocurrency proposed
in this paper. We refer the reader to [DFKP15] for a more detailed discussion on PoSpace vs.
PoSE.

Burstcoin. The only decentralised cryptocurrency we’re aware of which uses disk space as the
primary mining resource is Burstcoin,7 which was build using the code of the proofs of stake
based cryptocurrency NxT http://nxt.org/. The most serious issue with Burstcoin is that
it has no mechanism to prevent time-memory trade-offs, and thus a miner doing just a small
amount of extra computation can mine at the same rate as an honest miner while using just
a tiny fraction of the disk-space.8 For example, evaluating the underlying hash function9 only
50 times with every random access to the disk, allows to shrink the required disk space to

7http://burstcoin.info/
8The first public mentioning of Burstcoin we could find is from mid August 2014, which is over one year

after the first public talk on Proofs of Space and its potential use in constructing a “green” cryptocurrency
https://sites.google.com/site/warsawcryptoworkshop2013/abstracts. Like Burstcoin, this early proposals
based on Proofs of Space provided no security against time-memory trade-offs and thus were not published.

9The underlying hash function is Shabal256 which was one of the SHA-3 submissions http://www.shabal.com/
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just 1% of what honest miners would need. Another serious problem with Burstcoin is that a
constant fraction (0.024%) of the entire dedicated disk space must be read every time a new
block gets mined (as opposed to logarithmically many in Spacecoin). We provide more details
in Appendix A.

2 Overview of Spacecoin

2.1 High-level protocol description

Spacecoin follows a block-mining paradigm similar to the Bitcoin system, in which miners create
blocks of transactions which constitute a public ledger in the form of a block chain. Instead
of requiring miners to provide a proof of work in order to create a valid transaction block,
Spacecoin requires miners to provide a much more efficiently computable proof of space.

Transactions. Transactions are performed basically identically to Bitcoin: Each coin “be-
longs” to some public key pk. The block chain acts as a ledger that keeps track of which coins
belong to which keys (but to prevent grinding, we suggest a new design for the block chain in
Section 2.5 where the transactions are decoupled from the proofs). To transfer a coin from pk
to pk′, a transaction specifying this must be signed by sk (the secret key for pk), and then be
added to the block chain. We also allow special transactions to initialize miners, and a special
type of transaction which penalizes a miner who extended two different chains using the same
proof of space.

Incentivize mining. Like in Bitcoin, there are two ways to incentivize miners to contribute
resources (disk space in Spacecoin, computing power in Bitcoin): (1) a reward for adding blocks
and (2) transactions fees.

Reward: For adding a block a miner receives some Spacecoins, which do not come from a
benefactor, but are created out of thin air when the block is added to the hash chain. How
large the reward is has to be specified as part of the protocol, and will typically depend on the
index of the block.10

Transaction fees: When generating a transaction, one can dedicate (a typically very small)
amount of the transferred coins to the miner who adds the block that includes the transaction
to the block chain.11

Initialize miner. If a miner wants to contribute N bits of space to the mining effort, she
samples a public/secret key pair (pk, sk) and runs the PoSpace initialization procedure. (Being
in a non-interactive setting, there is no verifier to generate the unique nonce µ, so we simply
use pk for this.)

(γ, Sγ) := Init(pk,N) .

The miner stores (Sγ , sk) and generates a special transaction which just contains (pk, γ). Once
this transaction is in the block chain the miner can start mining as described next.

Mining. Blocks are added to the block chain every fixed time period (say, every minute), and
we require that all parties have a clock that is roughly synchronized. To add a block in time
period i, the miner retrieves the hash value of the last block in the best chain so far (this chain
has i− 1 blocks), and also a challenge c. How to derive the challenge c is the main difficulty we
face. In our simplest solution we assume an unpredictable beacon that generates and broadcasts

10In Bitcoin, the reward was initially 50 Bitcoins, but it halves roughly every 4 years, and is currently at 25.
11Currently, in Bitcoin the transaction fees are tiny compared to the mining reward, but as the latter gets

smaller, at some point transaction fees must become the main incentivizing factor.
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a freshly sampled random (or at least unpredictable) value from which the challenge is derived
every minute (we also propose two solutions without assuming a beacon). The miner then
computes the PoSpace answer from c:

a := Answer(pk, Sγ , c) .

For two valid proofs (pk, γ, c, a) and (pk′, γ′, c′, a′) we denote with (recall that Nγ is the size of
the space committed by γ)

(a′, Nγ′) ≺ (a,Nγ)

that the proof a is better than a′. We postpone the discussion on what properties this ordering
should satisfy and how it’s defined to Section 2.2. For now, we only mention that the ordering
should satisfy

Pr[(a′, N ′) ≺ (a,N)] =
N

N +N ′

that is, the probability that a wins is proportional to its fraction of the total space. The
probability is taken over the choice of a random oracle used to compute the quality of a proof.

If the answer a found by a miner is so good that there is a realistic chance of it being the
best answer found by any miner, the miner creates the next block – which contains the PoSpace
proof and transactions – and sends it out to the network in the hope that it will end up in the
chain.

For the remainder of this one-minute time period the miner need not do anything. As mining
only requires a small amount of work (computation, communication and random access to the
storage) in every time period, it can be run on any computer that has some free disk space and
is connected to the internet without any noticeable slowdown.

In the introduction we discussed the three major problems of PoStake-based cryptocurren-
cies; below we shortly sketch how these are addressed in our PoSpace-based scheme:

Participation. Since in a scheme based on PoSpace (or PoW) stake holders are not required
to participate in mining, the participation problem is not an issue in this work, which makes
designing a PoSpace-based scheme significantly easier and more robust than what seems possible
with pure PoStake-based approaches.

Grinding. We solve the grinding problem by de-coupling the chain containing the proofs from the
transactions, so there is nothing to grind on in the proof chain. Of course, we must somehow
tie the transactions to the proofs, which we do by adding a chain containing signatures; we
discuss this in Section 2.5. This solution can also be used to solve the grinding problem in
PoStake-based schemes.

Extending multiple chains. This problem is addressed in different ways in the schemes we
propose. In a nutshell, as trying to extend multiple chains comes almost for free, we cannot
prevent miners from doing so, but we can punish them afterwards.

2.2 Quality of a PoSpace Proof

Consider some valid proofs (pk1, γ1, c1, a1), . . . , (pkm, γm, cm, am) for space of size N1, . . . , Nm.
We want to assign a quality to a proof (which will only be a function of ai and Ni), such that
the probability (over the choice of the random oracle hash) that the ith proof has the best
“quality” corresponds to its fraction of the total space, i.e.

Pr
hash(.)

[∀j 6= i : (aj , Nj) ≺ (ai, Ni)] =
Ni∑m
j=1Nj

.
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We observe that in order to achieve this, it’s sufficient to achieve this for any pair of commit-
ments, i.e.,

Pr
hash(.)

[(aj , Nj) ≺ (ai, Ni)] =
Ni

Ni +Nj
.

If all the Ni were of the same size N , we could simply define

(aj , N) ≺ (ai, N) ⇐⇒ hash(aj) ≤ hash(ai)

That is, we map every ai to a random value hash(ai), and whichever value is largest wins. We
want to allow for different Ni values, so miners who want to contribute space N ′ only need one
space commitment, and do not have to split it up in N ′/N space commitments of size N , and
then run a proof for each chunk separately.

For this, we define a distribution DN , N ∈ N which is defined by sampling N values in [0, 1]
at random, and then outputting the largest of them.

DN ∼ max {r1, . . . , rN : ri ← [0, 1], i = 1, . . . , N} (1)

With DN (τ) we denote a sample of DN (or rather, a distribution which is very close to it) using
randomness τ to sample. We now say that (ai, Ni) is of higher quality than (aj , Nj) if

(aj , Nj) ≺ (ai, Ni) ⇐⇒ DNj (hash(aj)) ≤ DNi(hash(ai)) . (2)

It remains to show how to efficiently sample from the distribution DN for a given N . Recall
that if FX denotes the cumulative distribution function (CDF) of some random variable X over
[0, 1] and the inverse F−1

X exists, then F−1
X (U) for U uniform over [0, 1] has the same distribution

as X. The random variable X sampled according to the distribution DN has CDF FX(z) = zN ,
since this is the probability that all N values ri considered in (1) end up being below z (and
hence also their maximum). Therefore, if we want to sample from the distribution DN , we can
simply sample F−1

X (U) for U uniform over [0, 1], which is U1/N . In (2) we want to sample DNi

using randomness hash(ai) and hash(·) outputs 256-bit bitstrings instead of values in [0, 1],
hence we have to normalize first and we compute DNi(hash(ai)) as

DNi(hash(ai)) :=
(
hash(a)/2256

)1/N
.

Note that this introduces a tiny imprecision due to the fact that hash(a)/2256 is uniform over
a discrete set instead of the continuous interval [0, 1], but this can be safely disregarded.

2.3 Where the challenge comes from

The main difficulty we face when designing a PoSpace-based scheme is the generation of the
PoSpace challenge c.

2.3.1 Assuming an unpredictable beacon

Our most basic solution simply assumes an unpredictable beacon which broadcasts a value
every minute. The beacon being unpredictable means that no party at time t has non-negligible
probability of guessing the beacon to be broadcast at time t + 1. Such a beacon could e.g. be
instantiated as the hash of the current time and the NASDAQ chart. Given such a beacon, the
challenge c for mining block i can simply be derived as a hash of the beacon value (hashing
turns an unpredictable value into a random looking one).

Assuming an unpredictable beacon is a fairly strong assumption, but it doesn’t trivialise
the problem. It does mostly solve the grinding problem, but doesn’t help with the “extending
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multiple chains” problem at all: As the challenge does not depend on the hash chain, a miner
who finds a very good proof can try to add it to many different chains – not just the best one
– to reduce the probability of his block being “orphaned”, i.e., a different chain without his
block ultimately becoming the best one. Such behavior is rational, but undesirable in that it
prevents consensus on a single chain. To de-incentivize it, we define a special transaction which
allows to “steal” the reward a miner gets for adding a block if the miner used the same proof
for extending two different chains.

To add a block, a miner must provide a signature on the previous signature block in that
chain. Thus, if a miner with key (pk, sk) tries to add a block to two chains, he must sign two
different messages for the same time slot i. We allow for special “punishment transactions”
which are basically of the form (pk′, σ′j , α) and have the following semantics: Let pk be the key
of the miner that added the jth block in the current chain. If this block does not contain a
signature for σ′j and α is a signature for σ′j = (j, . . .) under pk, then half of the reward that pk
gets for adding this block is transferred to pk′, and the other half is destroyed. Of course this
reward will typically be claimed by the miner who adds a subsequent block i > j, as there is
no point in adding such a transaction for another miner. To prevent that a miner immediately
transfers his reward to another key – and thus avoid punishment – we specify that the reward
for adding a block cannot be transferred until several (say 1000) blocks later (except via a
punishment transaction).

This punishment strategy strongly discourages a miner from trying to extend more than one
chain, as doing so will most likely lead to not getting any reward at all, even when having the
best proof for a given time slot.

2.3.2 Challenge from the past

We now describe our scheme without an unpredictable beacon. This scheme is identical to the
one outlined above, except that the challenge c does not come from the beacon, but is derived
from the block chain itself.

The simplest solution (which does not quite work) is to let the challenge for block i be the
hash of block i − 1. Our block chain consists of a proof chain, and a separate signature chain
that binds the transactions to the proof chain. If we only hash the block from the proof chain,
no problem arises with miners trying to grind through several possible challenges, but another
problem remains: If there are many different chains, the miner gets different challenges for
different chains. A rational miner would thus compute the answers for many different chains,
and if one of them is very good, try to add a block to the corresponding chain, even if this
chain is not the best chain seen so far. If all miners behave rationally, this will at the very least
considerably slow down consensus, as bad chains get extended with blocks of the same quality
as the currently best chain; thus we expect to see a race between many different chains without
the lower-quality chains falling behind rapidly. A solution to this kind of problems that is used
in12 Slasher 1.0 is to penalize miners that extend chains that do not end up in the final chain,
but this seems not very robust.

The solution we propose is to compute the challenge as a hash of block i− dist (rather than
i−1), for some appropriately chosen dist (dist = 120 seems like a good value for a 1-minute time
slot). Now, a miner only obtains different challenges for the ith block of two different chains if
those chains have forked at least d blocks ago. With dist = 120, it is extremely unlikely that
two chains will survive in parallel for dist blocks. Recall that we penalize a miner who adds a
block (using the same challenge) to two different chains, thus as long as we have two or more

12https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
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chains that all forked more than dist blocks ago, there is a strong incentive for miners to add
their blocks to the best chain; which is why we expect the other chains to fall behind very fast.

The reason we cannot set dist to be arbitrary large is that a miner at time t knows its
challenges for all the blocks t+ 1, . . . , t+ dist. Thus, she can compute all the dist answers, and
need not access her space for the next dist minutes. If dist was very large, a miner could use
the same space for several space commitments, as there would be enough time to re-instantiate
the space several times in the dist-blocks window. To avoid this, dist should be set so that
initializing the space takes roughly dist minutes. In the next section we will discuss another
reason to choose a small dist in order to prevent usage of cheap storage devices like tapes for
mining.

2.3.3 Request challenge from other miners

Finally, inspired by existing PoStake-based schemes, we sketch a scheme where a miner must
request the challenge from other miners. A miner who tries to extend two or more chains
must publish at least two requests for challenges, and any such pair of requests for challenges
in the same time slot (requests contain a signature of the requesting party) can be used to
create a punishing transaction. Here we must require that miners, when putting their space
commitment into the chain, also put some deposit. This deposit can later be withdrawn, but
the space commitment can only be used for mining as long as the deposit is there. If a miner
posts two requests, this pair of requests can be used to get half of his deposit, whereas the other
half is destroyed (this ensures that the miner gets punished even when posting the punishment
transaction himself). Note that in the previous scheme we punished a miner who added two
blocks using the same challenge, here we punish the mere attempt to request two different
challenges for different chains.

More concretely, assume a miner pk wants to extend some chain with last block φi−1. He
first computes an index t = hash(pk, φi−1) ∈ {1, . . . , 10 000}, which means we must ask the user
who mined block i−t for a challenge. The miner publishes this request (on some kind of bulletin
board), hoping that the user who mined block i− t is still online and will provide the challenge.
To incentivize providing challenges, the user providing the challenge will get a fraction of the
reward, should the requesting miner win so his block is added. We limit the domain of possible
“challenge-providing miners” to those that added one of the last 10 000 blocks, so we can be
reasonably sure a significant fraction of them is still active, while 10 000 is large enough so
that the challenge requests for each individual miner are rather small. If a miner sees a request
addressing him, he can compute the challenge c using a verifiable pseudorandom function (VRF)
and publish it. We require a VRF here to avoid “grinding” through many possible challenges
in the case the requesting and the providing miner collude, or the requesting miner is lucky and
“asks” himself for a challenge. Even if this happens, by using a VRF the only thing gained by
the miner is that she she gets one challenge extra for free, thus doubling her chances for mining
the next block.

Realizing such a solution seems significantly more complicated and delicate than the previous
one, and thus we do not further discuss this approach here.

2.4 Minor issues

We now discuss some minor issues that arise and how to solve them.

DoS. A party who wants to mine must have its space commitment (pk, γ) added to the hash
chain. A malicious party could flood the network with countless requests of fake commitments
to be added to the chain. One simple way to counter this problem is to request some small
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transaction fee, as is done for normal transactions. The drawback is that now miners must
already possess some coins to even start mining. Another solution is to require a PoSpace proof
for the commitment (pk, γ) to be added, i.e., a := Answer(pk, Sγ , c), where the challenge c can
for example be computed via the Fiat-Shamir transformation as c = hash(pk, γ). This proof
is only provided to convince miners that some work went into generating the commitment, but
the proof will not be added to the chain.

Reusing space. We require that a public key pk is only used once for a space commitment:
a commitment (pk, γ) will not be added to the chain if some commitment (pk, γ′) is already
in the chain. As the PoSpace scheme from [DFKP15] uses the unique nonce (here pk) as a
prefix to every random oracle query, the random oracle used in the PoSpace scheme for a given
commitment (pk, γ) is independent from the random oracles used for any other commitments.
This implies that space cannot be re-used for different commitments.

Why add commitments to the chain. It is not obvious why we require a miner to first
add a space commitment (pk, γ) to the hash chain before it can start mining, instead of simply
having miners keep this commitment locally and only send it out once they found a good
PoSpace proof. The reason is that the PoSpace proofs from [DFKP15] have the property that
one can take a correctly constructed commitment (pk, γ0), and by making minor changes turn
it into many other commitments (pk, γ1), (pk, γ2), . . . that can reuse almost all space, while it
is still possible to answer almost all challenges correctly.13 Thus, if there were no requirement
to have a published commitment in the block-chain with a unique public key, a cheating miner
could re-use the same space for many different commitments.

Tapes. The designer(s) of Bitcoin probably were anticipating that most of the mining will
be done by users on their personal computers. What happened instead is that today almost all
mining is done by clusters of application-specific integrated circuits (ASICs), which can do the
computation for a tiny fraction of the hardware and energy cost of a general-purpose processor.
We anticipate that a PoSpace-based currency would mostly use the idle disk space on personal
computers for mining. Although hard disks are rather expensive compared to other storage
devices – most notably, tapes – devices like tapes are not really adequate for mining, as we
also require frequent random accesses to answer the PoSpace challenges, which is more difficult
on tapes which are made for long term storage. This is clearly true for the first (beacon) and
third (challenge from other miners) scheme outlined in the previous section, as there the proof
must be computed within a single one-minute time slot. Things are less clear for our second
(challenge from the past) scheme, as here the miner only needs to compute the proof in dist
minutes, recall that dist is the parameter that specifies that the challenge for block i is computed
as a hash of block i− dist.

It has to be further investigated to what extent this actually is an issue. But given that the
cost advantages of tapes is being debated even for long term storage,14 it seems unlikely that
in our context, where frequent random access is necessary, tapes will bring any advantage.

2.5 The block-chain format

A block chain is a sequence of blocks β0, β1, . . . Each block βi = (φi, σi, τi) is created by a
miner and consists of three main parts, which we call “sub-blocks”. Each sub-block starts
with the index i that specifies its position in the block chain. Below, we outline the remaining

13γ0 is a Merkle-hash of all the labels in a hard to pebble graph. We can change γ0 to another value by simply
changing a single label, which will not be noticed in the execution phase unless this particular label with its
children is requested.

14http://www.computerworld.com/article/2475237/data-center/tape-versus-disk--the-backup-war-exposed.
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Figure 1: Our block chain consists of a proof chain that does not allow for grinding, and a
signature chain that binds the transactions to the proof chain.

components of the three sub-blocks of a block βi, i > 0. The genesis block β0 necessarily has a
somewhat different format as it cannot depend on previous blocks:

• The hash sub-block φi contains:

– A 256-bit hash hash(φi−1) of the hash sub-block from the previous block in the chain.

– A “space proof” containing the miners identity pk (more details on this are given below).

• The transaction sub-block τi contains:

– A list of transactions (defined in more detail below).

• The signature sub-block σi contains:

– The miner’s signature Sign(sk, τi) on the transaction sub-block τi associated with this
block.

– The miner’s signature Sign(sk, σi−1) on the signature sub-block σi−1 associated with
the previous block in the chain.

The links between consecutive blocks in the block chain are illustrated in Figure 1. We
will also refer to the hash sub-blocks as the proof chain, and the signature sub-blocks with the
transactions as the signature chain. Solid arrows represent hashes, and dotted arrows represent
signatures. Notice that while the signature and transaction sub-blocks are all linked together,
the hash sub-blocks are only linked to each other and not to any signature or transaction
sub-blocks.

By decoupling proofs from transactions we achieve security against grinding : For any space
commitment (pk, γ), the miner pk cannot generate two (or more) correctly formatted hash-
blocks to be added to the proof chain. For this it is also crucial that the underlying PoSpace
has the “unique accepting answer” property discussed in the introduction.

The signature chain binds the transactions to the proof chain. If an honest miner (honest to
be defined below) adds the ith block, the transactions corresponding to this proof chain up to
block i cannot be changed any more, even if an adversary controls all secret keys from miners
that added the first i−1 blocks. Here the miner being honest means that she only signs a single
block of transactions using the secret-key sk corresponding to her identity pk, and moreover
keeps sk secret. To see this, note that if we want to change the transactions in block j < i
while keeping the current proof chain up to block i, then the signatures for blocks j, . . . , i must
be re-computed, which requires sk.
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3 Transactions

Spacecoin is based on a secure15 signature scheme

Σ = (SigParamGen, SigKeyGen, Sign, SigVerify)

and a PoSpace protocol
Π = (Init,Challenge,Answer,Verify) .

In the following we specify the three types of transactions (for payments, space commitments
and punishments) that we allow in Spacecoin.

Payments. Coins are held and transfered by parties identified by a verification key in the
support of SigKeyGen.16 More specifically, a transaction transfers coins from m benefactors to
n beneficiaries and has the form

ctx = (payment, txId, ~in, ~out) .

txId: Here and below, txId always denotes a unique arbitrary transaction identifier. That is,
no two transactions in a blockchain can share their identifier.

~out: A list of beneficiaries and the amount they receive. Specifically ~out = (out1, . . . , outm)
where each outi = (pki, vi) and:

– pki is in the support of SigKeyGen and specifies a beneficiary, and

– vi is the number of coins that pki is to be paid.

~in: A list of inputs coins to the transaction. Specifically ~in = (in1, . . . , inn), a list of n bene-
factors, each comprised of a triple: inj = (txIdj , kj , sigj), where

– txIdj is the identifier of a past transaction,

– kj is an index that specifies a particular beneficiary pkkj of the transaction txIdj ,
17

– sigj is a signature of (txId, txIdj , kj , ~out), which verifies under key pkkj proving ownership
of the the kjth beneficiary of transaction txIdj and binding the coin to the beneficiaries.18

In order for a transaction to be considered valid, the following conditions must be satisfied:

1. No benefactor is referenced by more than one transaction in the block chain (to prevent
double-spending).

2. The sum of the input values to the transaction (i.e. the sum of the amounts provided by
each benefactor) is greater than or equal to the sum of amounts paid to beneficiaries.

15Existentially unforgeable under chosen message attacks.
16In Bitcoin, the specification of payments is more general: instead of specifying beneficiaries via their verifi-

cation keys, recipients are specified by writing a script scr in a special (non-Turing-complete) scripting language
called Bitcoin Script. The output coins of a transaction can then be redeemed by any party which can produce
inputs which “satisfies” the script scr. In practice, Spacecoin can be straightforwardly modified to accommodate
such scripting; but in this work, for clarity of exposition, we assume that each payment recipient is specified by
a verification key.

17That is the kjth beneficiary of transaction txIdj is the jth benefactor of transaction txId.
18txId is signed in order to avoid transaction malleability https://en.bitcoin.it/wiki/Transaction_

Malleability
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Note that some of the beneficiary identities may belong to the creator of the transaction, who
may thus transfer money back to himself as “change”: this may be desirable if the sum of the
input values exceeds the sum of the amounts of payments he wants to make to other parties.
Apart from normal payments, we allow for two further types of transactions to initialize and
punish miners.

Space commitment. A space commitment transaction is of the form

ctx = (commit, txId, (pk, γ)) ,

where – assuming the transaction was correctly generated – pk is a public key and γ is computed
as (γ, Sγ) := Init(pk,N), i.e., it is a space commitment to some space of size N (we assume that
N is specified by γ, and thus do not explicitly add it).

Punishment. A punishment transaction is of the form

ctx = (punish, txId, pk′, (m,α)) ,

where m starts with an index j−1 for some j ∈ N. The transaction has the following semantics:
Let σj be the jth block of the signature chain in the current chain, and pkj the public key of
the miner who added the jth block. If m 6= σj−1 and SigVerify(pkj ,m, α) = 1, i.e., pkj was
used to sign another message than σj−1 with index j − 1, then this transaction transfers half
the reward and transactions fees that went to pkj for adding the ith block to pk′, the other half
is destroyed.

We additionally require that i − j < 1000, thus, the punishment must happen within 1000
blocks (and as we disallow withdrawing a mining rewards for 1000 blocks, this reward cannot
have already been spent).

4 Instantiation

In this section we describe the concrete steps required for setting up, mining and paying in
Spacecoin. We give the instantiation for the second scheme (challenge from the past), outlined
in Section 2.3. The first (random beacon) scheme is almost identical, except that the challenge
c is derived from the random beacon (and not by hashing a block from the chain).

Setup. At setup we have to fix the security parameter κ to be used for the signature and
PoSpace scheme. Moreover, we must specify parameters and functions:

time: A variable time ∈ N which specifies the length of a timeslot in minutes. It should
be sufficiently larger than the time a message needs to propagate through the network, but
otherwise as small as possible. time = 1 seems like a reasonable choice here.

dist: A variable dist ∈ N which specifies that the challenge for block i is a function of block
i− dist. A reasonable value is dist = 120.

Reward: A function Reward : N→ N where Reward(i) specifies the amount of Spacecoins a miner
gets for mining the ith block (we leave this unspecified).

Quality: The function Quality takes as input a space commitment (pk, γ) for space of size N
and a challenge/answer pair (c, a). If Verify(pk, γ, c, a) 6= 1 (i.e., it is not a valid PoSpace
proof transcript), the function outputs −∞. Otherwise the output is (with DN (.) as defined in
Section 2.2)

Quality(pk, γ, c, a) = DN (hash(a)) .

In order to decide which of two given proof chains is the “better” one, we also need define the
quality of a proof chain φ0, . . . , φi, which we’ll denote with QualityPC(φ0, . . . , φi). Each hash
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block φj contains a proof (pkj , γj , cj , aj), and we let vj = DNj (aj) denote the quality of the jth
proof in the chain. For any quality v ∈ [0, 1], we denote with

N(v) = min{N ∈ N : Pr[v ≺ w | w ← DN ] ≥ 1/2}

the space required to get a better proof than v on a random challenge with probability 1/2.
Note that N(vj) will usually be around the total storage of all miners that were active when
the jth block was mined. With this definition, a natural measure for the quality of the chain
would be simply the sum19

∑i
j=1N(vj). The problem with this measure is that if some miner

finds an extremely good proof, say N(v) is 1000 times larger than the total storage (this will
happen roughly every 1000 blocks), then the miner could withhold his proof, and 1000 blocks
later generate a fork using this proof followed by 999 arbitrarily bad proofs for the remaining
blocks. To avoid such deep forks, we cap proofs that are too good by saying that vj cannot
contribute more to the sum than, say 10 times the median of the last 101 blocks (the median
gives a good approximation of the total space that is dedicated towards mining). Formally, let
N̂(vj) be recursively defined as

N̂(vj) = max{N(vj) , 10 ·median(N(vj−101), . . . , N(vj−1)}

Another reason why defining the quality simply as
∑i

j=1N(vj) is problematic, is that the total
contributed space can increase drastically over time. In this case, in order to come up with a
chain whose quality is better than the quality of the real chain it’s sufficient to dedicate much
less than the total space that is currently devoted towards mining. For this reason, we only
take the last 1000 blocks into account when computing the quality:

QualityPC(φ0, . . . , φi) =
i∑

j=max{1,i−1000}

N̂(vj)

Finally, a genesis block β0 = (φ0, σ0, τ0) is generated and published; it has a format differ-
ent from other blocks. The transactions block contains only one space commitment τ0 =
(commit, txId, (pk0, γ0)), the hash block φ0 contains only some random string,20 and the sig-
nature block σ0 contains the signature Sign(sk0, τ0) of the transactions block (but not of the
previous signature block, as there is none).

Initialize Mining. A party that wants to dedicate N bits of storage for mining first generates
an identity and a space commitment

(pk, sk)← SigKeyGen , (γ, Sγ) := Init(pk,N) .

It stores Sγ (of size N) and sk locally. The miner then generates and publishes a transaction
ctx = (commit, txId, (pk, γ)). Once ctx has been added as a transaction to the hash chain, the
miner can start mining as described next.

Mining. As we enter time slot i, the miner retrieves21 the so-far-best block chain β0, . . . , βi−1

(that is, the chain maximizing QualityPC(φ0, . . . , φi−1). We assume that the miner “honestly”

19We start summing with j = 1 not j = 0 as the genesis block (still to be defined) will not contain a proof.
20Or better, some kind of timestamp like a sentence from a newspaper of the day, as is done in Bitcoin, to

show that the genesis block was not generated before some date.
21With “publishes” and “retrieves” we mean that a party sends or downloads something from the network.

Typically, there would be some servers that organize the data, i.e., keep track of the best chains and collect
transactions, so a miner would only interact with one or a few such servers it trusts.
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stores space Sγ and the corresponding commitment (pk, γ) has been added to some transcription
block τj , j ≤ i − 1 in this chain. Next, the miner computes its challenge by hashing the hash
block that is dist blocks in the past

c := hash(pk, φi−dist) .

The miner computes the PoSpace answer

a := Answer(pk, Sγ , c) .

If q := Quality(pk, γ, c, a) is very high, so it has a realistic chance to end up as the best answer
of the entire network, the miner generates a hash block φi = (i, hash(φi−1), pi), where pi is the
space proof22 (pk, γ, c, a, j, q). Then the miner retrieves transactions (typically, giving priority
to the ones paying the highest fees), checks their correctness, and adds the valid ones to a
transaction block τi. It then computes the signature block σi = (Sign(sk, σi−1), Sign(sk, τi))
and publishes block βi = (φi, σi, τi), hoping that it will end up in the block chain, earning the
miner Reward(i) Spacecoins, plus the transactions fees of the transactions in τi.

Transaction. Any party can generate a transaction and publish it. If it is correctly generated,
it should ultimately end up in the block chain. We have already described the format and
semantics of the three types of transactions in Section 3.

5 Game theory of Spacecoin

The miners in a cryptocurrency are strategic agents who seek to maximize the reward that they
get for mining blocks. As such, it is a crucial property of a cryptocurrency that “following the
rules” is an equilibrium strategy: in other words, it is important that the protocol rules are
designed in such a way that miners never find themselves in a situation where “cheating” and
deviating from the rules yields more expected profit than mining honestly.

Intuitively, Spacecoin mining is modeled by the following n-player strategic game. Game-
play occurs over a series of discrete time steps, each of which corresponds to a block being added
to the block chain. At each time step, each player (miner) must choose a strategy, specified by:

• which blocks to extend (if any), which transactions to include in the new blocks, and

• which extended blocks to publish (if any).

We present the details of our game-theoretic analysis in the unpredictable-beacon model,
and remark that the analysis can be extended to cover the other models too.

5.1 Game-theoretic preliminaries

The standard game-theoretic notion for a strategic game which occurs over multiple time steps
(rather than in “one shot”) is called an extensive game. In order to accurately model the proba-
bilistic aspects of the Spacecoin protocol (e.g. the unpredictable beacon), we consider extensive
games with chance moves: this is the standard game-theoretic notion to capture extensive games
which involve exogenous uncertainty. The uncertainty is modeled by an additional player called
Chance (a.k.a. Nature) which behaves according to a known probability distribution.

In the Spacecoin setting, every player (including Chance) makes an action at every time
step. A player’s action consists of choosing whether and how to extend the block chain, and

22The index j of the space commitment and the quality q are redundant, but they simplify verifying the proof.
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the action of Chance determines the value of the unpredictable beacon for the next time step.
We therefore omit the usual notation that specifies which players move at each time step, for
clarity’s sake.

An extensive game is commonly visualized as a game tree, with the root node representing
the start of the game. Each node represents a state of the game, and the outward edges from
any given node represent the actions that players can take at that node. Leaf nodes represent
terminal states: once a leaf is reached, the game is over. In accordance with the literature, we
refer to paths in the game tree (starting at the root) as histories; and histories which end at a
leaf node are called terminal histories.

Definition 5.1. [Extensive game] An extensive game Γ = 〈N,H, fC , ~I, ~u〉 is defined by:

• [N ], a finite set of players.

• H, the set of all possible histories, which must satisfy the following two properties:

– the empty sequence () is in H, and

– if (a1, . . . , aK) ∈ H then for all L ≤ K, it holds that (a1, . . . , aL) ∈ H.

We write Z ⊆ H to denote the subset consisting of all terminal histories. For any history
h,

A(h) = {a : (h, a) ∈ H} = ×i∈[N ]Ai(h)

denotes the set of action profiles that can occur at that history, and Ai(h) denotes the set
of actions that are available to player i at history h.

• f(·, h) is a probability measure on AC(h), where h ∈ H and C denotes the Chance player.

• ~I = (I1, . . . , IN ), where each Ii is a partition of H into disjoint information sets, such
that Ai(h) = Ai(h

′) whenever h and h′ are in the same information set I ∈ Ii. Let Ai(I)
denote the set of actions that are available to player i at any history in information set I.

• ~u = (u1, . . . , uN ), where each ui : Z → R is the utility function of player i.

5.1.1 Imperfect information and information sets

An extensive game is said to have perfect information if at any point during game-play, every
player is perfectly informed of all actions taken so far by every other player. In the context of
Spacecoin, players are only aware of each others’ announced actions: for example, if Alice tries
extending several blocks and then only announces one of them, then Bob does not know about
the other blocks that Alice tried to extend. Thus, Spacecoin is a game of imperfect information.

The information that players do not know about other players’ actions is modeled by the
partitions ~I = (I1, . . . , IN ) in Definition 5.1. Each Ii is a partition ofH into disjoint information
sets, and for each i ∈ [N ] and any pair of histories h, h′ ∈ I in a particular information set I ∈ Ii,
player i cannot tell the difference between game-play at h and at h′.

Example 5.2. [“Match my number” game]Consider a simple two-player game in two rounds:
in the first round, player 1 chooses a number a ∈ {0, 1, 2}. In the second round, player 2 chooses
a number b ∈ {0, 1, 2}. Player 2 wins if b = a, and player 1 wins otherwise. Clearly, player 2
can always win if he knows a.

However, we consider a game of imperfect information where player 2 must choose b without
knowing a: in particular, suppose player 2 only learns whether a = 0. Then, the histories (a = 1)
and (a = 2) are in the same information set in the partition I2. Figure 3 shows the game tree,
with player 2’s information sets as dotted red boxes: within each dotted box, player 2 cannot
tell which history he is at.
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0
1

2

0
1

2

Figure 2: Game tree for the “Match my number” game

5.1.2 Strategies

A strategy of a player in an extensive game is defined by specifying how the player decides
his next move at any given history. In games of imperfect information, the player may not
know which history he is at, so we instead specify how the player decides his next move at any
information set.

Definition 5.3. [Strategy profile]A strategy profile ~α = (α1, . . . , αN ) of an extensive game
Γ = 〈N,H, fC , ~I, ~u〉 specifies for each player i ∈ [N ] and each information set I ∈ Ii a probability
distribution αi(I) over the action set Ai(I). We say that αi is the strategy of player i.

Let I(h) denote the information set in which history h lies. The probability that a history
h occurs under strategy profile α is denoted by Pr~α[h], and the probability that a history h′

occurs given that h occurred is denoted by Pr~α[h′|h].
Recall that the utility functions u1, . . . , uN were originally defined on inputs in Z, the set

of terminal histories. For each i ∈ [N ], we now define ui(~α) to be the expected utility of player
i given the strategy profile ~α. That is,

ui(~α) =
∑
h∈Z

ui(h) · Pr ~α[h].

Moreover, we define ui(~α|h) to be the expected utility of player i given ~α and given that history
h has already occurred. That is,

ui(~α|h) =
∑
h′∈Z

ui(h
′) · Pr ~α[h′|h].

5.1.3 Equilibrium notions

The most widely known equilibrium concept for a strategic game is the Nash equilibrium [Nas50],
given in Definition 5.4. Intuitively, in a Nash equilibrium, each player’s strategy is a best response
to the strategies of the other players.

For a strategy profile ~α, we write ~α−i to denote (αj)j∈N,j 6=i, that is, the profile of strategies
of all players other than i; and we use (α′i, ~α−i) to denote the action profile where player i’s
strategy is α′i and all other players’ actions are as in ~α.

Definition 5.4 (Nash equilibrium of an extensive game). Let Γ = 〈N,H, f, ~I, ~u〉 be an extensive
game. A strategy profile ~α is a Nash equilibrium of Γ if for every player i ∈ [N ] and every
strategy α′i of player i,

ui(~α) ≥ ui(α′i, ~α−i).
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The Nash equilibrium concept was originally formulated for one-shot games, and it is known
to have some shortcomings in the setting of extensive games. Informally, the Nash equilibrium
does not account for the possibility of players changing their strategy partway through the
game: in particular, there exist Nash equilibria that are not “stable” in the sense that given the
ability to change strategies during the game, no rational player would stick with his equilibrium
strategy all the way to the end of the game.

Example 5.5. [“Unstable” game]Consider a simple two-player game in two rounds: in the first
round, player 1 chooses either strategy A or B. In the second round, player 2 chooses either
strategy C or D. The game tree is given below, where the notation (x, y) at the leaves denotes
that player 1 gets payoff x and player 2 gets payoff y if that leaf is reached.

Player 1’s turn

Player 2’s turn

(1, 2)(1, 2)

C D
Player 2’s turn

(2, 1)(0, 0)

C D

A B

Figure 3: Game tree for the “Unstable” game.

It is a Nash equilibrium of this game for player 1 to choose B, and player 2 to always choose
C23 However, the strategy profile (B,C) seems “unstable”24, in the following sense: player 1
does not want to switch from strategy B to A because of the “threat” that player 2 will then
choose C. However, in the situation where player 1 has actually chosen strategy A, it is clearly
better for player 2 to play D rather than follow through with the threatened strategy C. That
is, the threat does not seem credible.

To address these shortcomings of the Nash equilibrium concept for extensive games, an
alternative (stronger) notion has been proposed: the sequentially rational Nash equilibrium.
This stronger concept ensures that players are making the best decision possible at any point
during game-play. In a game with imperfect information, it is necessary to consider not only
the strategy profile, but the players’ beliefs at any point in time about how game-play arrived
at the current information set. A strategy profile which takes into account players’ beliefs is
called an assessment.

Definition 5.6. [Assessment] An assessment in an extensive game is a pair (~α, ~µ) where ~α =
(α1, . . . , αN ) is a strategy profile and ~µ = (µ1, . . . , µN ) is a belief system, in which each µi is
a function that assigns to every information set in Ii a probability measure on the histories in
the information set.

In Definition 5.6, µi(I)(h) represents the probability that player i assigns to the history
h ∈ I having occurred, conditioned on the information set I ∈ Ii having been reached. For each
i ∈ [N ], we now define ui((~α, ~µ)|I) to be the expected utility of player i at the information set
I ∈ Ii, given the strategy profile ~α and belief system ~µ. That is,

ui((~α, ~µ)|I) =
∑
h∈I

ui(~α|h) · µ(I)(h).

23It is straightforward to verify that this is an equilibrium, by considering the payoff matrix of the game.
24In this example, we assume that the game is with perfect information.
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We write ui((~α, ~µ)) to denote ui((~α, ~µ)|{()}), that is, the expected utility for player i at the
beginning of the game.

An assessment (α, µ) is said to be sequentially rational if for every i ∈ [N ] and every
information set I ∈ Ii, the strategy of player i is a best response to the other players’ strategies,
given i’s beliefs at I. A formal definition follows.

Definition 5.7 (Sequentially rational assessment). Let Γ = 〈N,H, f, ~I, ~u〉 be an extensive game.
An assessment (~α, ~µ) is sequentially rational if for every i ∈ [N ] and every strategy α′i of player
i, for every information set I ∈ Ii, it holds that

ui((~α, ~µ)|I) ≥ ui(((α′i, ~α−i), ~µ)|I).

Definition 5.7 almost fully captures the idea players should be making the best decision
possible given their beliefs at any point during game-play. To fully characterize a sequentially
rational Nash equilibrium, we require additionally that the beliefs of the players be consistent
with ~α. For example, if an event occurs with zero probability in ~α, then we require that the
players also believe that it will occur with zero probability.

Definition 5.8. [Consistent assessment] Let Γ = 〈N,H, f, ~I, ~u〉 be an extensive game. A
strategy profile ~α is said to be completely mixed if it assigns positive probability to every action
at every information set. An assessment (~α, ~µ) is consistent if there is a sequence ((~αn, ~µn))n∈N
of assignments that converges to (~α, ~µ) in Euclidean space, where each ~αn is completely mixed
and each belief system ~µn is derived from ~αn using Bayes’ rule.

Finally, we arrive at the definition of a sequentially rational Nash equilibrium.

Definition 5.9. [Sequentially rational Nash equilibrium]An assessment is a sequentially ratio-
nal Nash equilibrium if it is sequentially rational and consistent.

5.2 Game-theoretic analysis of Spacecoin

In order to analyze the game-theoretic properties of Spacecoin mining, we define an extensive
game, SpacecoinGame, which models the actions that miners can take, and the associated pay-
offs. To facilitate analysis, we simplify the action space of the game as much as possible while
still accurately modeling the incentives of Spacecoin miners. Concretely:

• We do not include the action of creating a space commitment because (as discussed in
Section 2.1 under “Mining”) we can assume that rational miners will commit to all the
space they have, and nothing else.25

• We do not include the action of creating transactions because such actions do not affect
the rewards that players receive from mining blocks, except in the case of punishment
transactions. To deal with the case of punishment transactions, we define the payoff
of a player who mines multiple blocks in the same time step to be zero. This payoff
function exactly captures that of a miner in the actual Spacecoin protocol, because it is
a dominant strategy for each other miner to create a punishment transaction (including a
positive transaction fee) if she sees that a cheating player has mined multiple blocks in a
time step, and hence we can assume that the cheating player will surely be punished at
a later point in the protocol. Since the punishment penalizes the cheating player by the
amount of the mining reward, it follows that the cheater’s overall utility for the time step
in which he cheated is zero.

25Later in this section, we address what happens if a miner gains additional space (or loses some space) during
the game.
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• We do not explicitly model the amount of space that each player has26. Instead, we study
the two critical cases: in our initial analysis, we assume that no miner controls more than
50% of the space committed by active miners. Then, we discuss potential issues that arise
if a miner does control a majority of the space.

Definition 5.10. [The Spacecoin Game] Let B denote set of all blocks as defined in Section 2.5.
For any number of players N ∈ N, any number of time steps K ∈ N, and any reward function
ρ : N→ N, we define the extensive game SpacecoinGameΠ,K,ρ = 〈N,H, fC , ~I, ~u 〉 as follows:

• The set H of histories is defined inductively as follows.

– The action set of the Chance player AC(h) = {0, 1}m is the same for every history
h.

– The empty sequence () is in H, and Ai(()) = {(∅,∅)} for each i ∈ [N ].

– Let h = (h′, a) be any non-terminal history where the latest action profile a =
(a1, . . . , aN , aC) consists of the actions of each player in [N ] ∪ {C} at history h′,
and for each player i ∈ [N ], the action ai = (Si, Ti) is a pair of sets. Then for any
i ∈ [N ], the action set Ai(h) of player i at h is

Ai(h) = P(T )× B where T =
⋃
i∈[N ]

Ti.

An action ai = (Si, Ti) can be interpreted as follows: Si is the set of blocks from the
previous time step which player i attempts to extend in this time step, and Ti is the
set of extended blocks which player i announces in this time step.

• The probability measure f(·, h) is uniform over {0, 1}m.

• For each i ∈ [N ], we define the partition Ii by an equivalence relation ∼i. The equivalence
relation ∼i is defined inductively as follows (we write [h]i to denote the equivalence class
of h under ∼i):

– [()]i = {()}, that is, the empty sequence is equivalent only to itself.

– [(h, ((S1, T1), . . . , (SN , TN ), aC))]i ={
(h′, ((S′1, T

′
1), . . . , (S′N , T

′
N ), a′C)) ∈ H : h ∼i h′ ∧ Si = S′i ∧ Ti = T ′i ∧ aC = a′C ∧ ∀j 6= i, Tj = T ′j

}
,

where h and h′ are histories and the pairs (Sj , Tj) and (S′j , T
′
j) are actions of player

j. That is, two histories are equivalent under ∼i if they are identical except in the
“first components” Sj of the actions (Sj , Tj) taken by the players other than i.

• ~u = (u1, . . . , uN ), where each ui : Z → R is defined as described below. For a history h, let
beac(h) denote the sequence of actions taken by the Chance player in h, and let beacj(h)
denote the jth action taken by the Chance player in h. For a block B, let B.c denote the
challenge c within the proof of space of B. Recall that Quality(B) was defined in Section
4. We define

Quality(B, c) =

{
Quality(B) if B.c = c

0 otherwise.

26We remark that the standard way to model this would be to assign a type to each player, representing how
much space he has.
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Similarly, let QualityPC((B1, . . . , BL), (c1, . . . , cL))

=

{
QualityPC((B1, . . . , BL)) if ∀i ∈ [L], Bi.c = ci

0 otherwise.

Let blocks(h) denote the sequence of “winning blocks” at each time step in the game,
defined inductively:

– blocks(()) = ()

– blocks((h′, ((S1, T1), . . . , (SN , TN ), aC))) = arg maxB∈T (Quality(B, beac|h|(h))),
where T = ∪i∈[N ]Ti.

Let blocksj(h) denote the jth block in the blockchain. We assume that the winning block
is unique at each time step27.

Let winners(h) denote the sequence of players who announce the winning block at each
time step in the game, defined inductively as follows:

– winners(()) = ()

– winners(h = (h′, ((S1, T1), . . . , (SN , TN ), aC))) = arg maxi∈[N ] maxB∈Ti(Quality(B, beac|h|(h))).

Let winnersj(h) denote the jth winner in the sequence winners(h). Let onlyonej(i, h) be an
indicator variable for the event that player i’s jth action (Si, Ti) in the history h does not
mine multiple blocks, i.e. |Ti| ≤ 1.

Finally, the players’ utility functions are defined as follows: for a terminal history h of
length K,

ui(h) =
∑
j∈[K]

δi,winnersj(h) · onlyonej(i, h) · ρ(blocksj(h)),

where δi,j is the Kronecker delta function28. That is, a player’s utility is the sum of the
rewards he has received for announcing a winning block (in the time steps where he has
announced at most one block).

By Definition 5.10, for any i ∈ [N ], for any histories h, h′ in the same information set
I ∈ Ii, it holds that blocks(h) = blocks(h′). Thus, we can associate a unique blockchain with
each information set: we define blocks(I) to be equal to blocks(h) for any h ∈ I. Similarly,
beac(h) = beac(h′) for any h, h′ ∈ I in the same information set I, so we define beac(I) to be
equal to beac(h) for any h ∈ I.

For a block B ∈ B and a challenge c ← Challenge, we define Extendi(B, c) to be the block
generated by player i when mining the next block after B using the PoSpace challenge c (the
exact format of such a block is specified in Section 4).

Theorem 5.11. For any number of players N , any number of time steps K ∈ N, and any
reward function ρ : N→ N, let ~α = (α1, . . . , αn) be a pure strategy profile of SpacecoinGameΠ,K,ρ,
defined as follows: for each i ∈ [N ], for any information set I ∈ Ii such that I 6= {()},

αi(I) (({blocksj(I)} , {Extendi(blocksj(I), beacj(I))})) = 1,

27This can be achieved by breaking ties between blocks in an arbitrary way. Note that it is not possible for two
different players to announce exactly the same (valid) block, because each block contains the miner’s identity.

28Kronecker delta function: δi,j = 1 if i = j, and 0 otherwise.
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where j ≥ 1 is the length of the histories in information set I29. That is, player i’s next action
at information set I is

α̂i = ({blocksj(I)} , {Extendi(blocksj(I), beacj(I))}) .

Then ~α is a Nash equilibrium of SpacecoinGameΠ,K,ρ.

Proof. Take any player i ∈ [N ]. By the definition of Extend, for any information set I ∈ Ii with
I 6= {()}, the quality v of the extended blockchain

v = QualityPC((blocks(I),Extendi(B, beacj(I))), beac(I))

is the same for any block B which was announced at time step j. Therefore, no utility can be
gained by choosing any block B over any other block B′ to extend: that is, ui(~α) ≥ ui(α′i, ~α−i)
for any strategy α′i which distributes probability over actions of the form (S, T ) where |S| = 1.

Moreover, not extending any block or extending multiple blocks precludes a player from
being the “winner” and receiving the reward in this time step, so extending a block is preferable
to not extending any block. That is, ui(~α) ≥ ui(α′i, ~α−i) for any strategy α′i which assigns non-
zero probability to any action of the form (S, T ) where |S| 6= 1.

We have shown that ui(~α) ≥ ui(α
′
i, ~α−i) for all strategies α′i of player i. The theorem

follows.

Theorem 5.12. Let Π = {Init,Challenge,Answer,Verify} be a proof of space. For any number
of players N , any number of time steps K ∈ N, and any reward function ρ : N → N, let (~α, ~µ)
be an assessment of SpacecoinGameΠ,K,ρ where:

• ~α and α̂i are defined as in Theorem 5.11, and for each n ∈ N, we define ~αn to be the
completely mixed strategy profile which (at history h) assigns probability 1/|Ai(h)|n to
every action except α̂i, and assigns all remaining probability to α̂i.

• ~µ is derived from ~α using Bayes’ rule in the following way: ~µ = limn→∞ ~µ
n, where for

each n ∈ N, ~µn is derived from ~αn using Bayes’ rule.

Then (~α, ~µ) is a sequentially rational Nash equilibrium of SpacecoinGameΠ,K,ρ.

Proof. Let I ∈ Ii be any information set of player i in SpacecoinGameΠ,K,ρ, and let L be the
length of histories in I. It follows from Definition 5.10 that the expected utility of player i at I
is ui((~α, ~µ)|I) = ∑

j∈[L]

δi,winnersj(h) · onlyonej(i, h) · ρ(blocksj(h)) + u′i((~α, ~µ)),

where u′i is the utility function of player i in the game SpacecoinGameΠ,K−L,ρ. Since winners,
onlyone, and blocks are invariant over histories within any given information set, the summation
term can be computed explicitly by player i at I. Hence, in order to maximize his expected
utility at I, the player needs simply to maximize u′i((~α, ~µ)). Let (~α|K−L, ~µ|K−L) denote the
assessment (~α, ~µ) for the first K − L time steps of the game. By Theorem 5.11, ~α|K−L is a
Nash equilibrium of SpacecoinGameΠ,K−L,ρ. Since ~µ is derived from ~α by Bayes’ rule, it follows
that ui((~α, ~µ)|I) ≥ ui(((α

′
i, ~α−i), ~µ)|I) for any strategy α′i of player i. Applying this argument

for every I, we conclude that (~α, ~µ) is sequentially rational in SpacecoinGameΠ,K,ρ.
By construction, limn→∞ ~αn = ~α and ~µ = limn→∞ ~µ

n, so (~α, ~µ) is consistent. The theorem
follows.

29All histories in an information set must be of the same length.
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Parameters. The Spacecoin Game is parametrized by N and K. It is natural to ask: do we
require that the number of miners N is fixed in advance, or that the block-chain will end after a
certain number K of time-steps? The answer is no. Theorem 5.12 gives a sequentially rational
Nash equilibrium in which each player’s strategy is independent of N , and so it makes sense for
each miner to play this strategy even if N is unknown or changes over time. In light of this,
from each rational player’s point of view, K can be considered to be the number of time-steps
that he intends to participate in the game: perhaps his goal is to use his earnings to buy a house
after K time-steps, or perhaps he does not expect to live for more than K time-steps30. The
crucial observation is that even if different players have different values of K “in their heads”,
their equilibrium strategies are still the same.

Buying space. Players’ strategies in equilibrium do not depend on the amount of space that
(they believe) other players possess. Also, we showed above that the equilibrium strategies are
robust to changes in N . Hence, if a player’s amount of space changes (e.g. he buys/sells a hard
disk), then he can simply create a new space commitment, and then behave as a “new player”
with the new amount of space.

The “51% Attack”. If a player P controls more than half of the total space that belongs
to active miners, then following the protocol rules is no longer a Nash equilibrium, because
whichever branch of the block-chain P chooses to mine on will eventually become the highest-
quality chain. Thus, P can decide arbitrary rules about which blocks to extend, and the other
players will be incentivized to adapt their strategies accordingly. Moreover, P can prevent
certain transactions from ever getting into the block-chain, by refusing to extend blocks which
contain these transactions – as a consequence, P can mine multiple blocks per time-step without
ever being punished. This attack was first analyzed by [KDF13] in the context of Bitcoin, which
suffers from the same problem (with respect to computing power rather than space).

It may seem unrealistic that a single party would control more than half of the total space
that belongs to active miners in a widely adopted currency. A more realistic concern could
be that a large group of miners (in a mining pool) may acquire more half of the total space.
However, under the assumption that each miner is an individual strategic agent, we consider it
unlikely that such a mining pool could do much damage: for this, a large group of self-interested
and relatively anonymous agents would have to coordinate and trust each other throughout the
duration of an attack. In particular, each rational miner in the pool must be convinced that
he will get his share of the attack profits, and it seems highly unlikely that a large group of
anonymous people would all trust each other so. The improbableness of a 51% attack by a
mining pool is supported by recent events: when a large mining pool (ghash.io) was nearing
50% of Bitcoin computing power in 2014, self-interested miners started leaving the mining pool
in order to avoid destabilizing the currency.
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A Burstcoin

In this section we give the details on the security issues of Burstcoin as outlined in Section 1.5.
The description below is based on http://burstcoin.info/intro/, which is the only specifi-
cation of the Burstcoin mining process we could find, but unfortunately is kept rater informal.

To mine Burstcois, a miner first initialises his diskspace as follows: He picks a nounce µ and
an account identifier (which is a hash of a public-key) Id, and then computes iteratively 4096
values x0, x1, . . . ∈ {0, 1}256 as

x0 = H(Id, µ) and xi+1 = H(xi) for i = 1, . . . , 4096

The miner then stores s0, . . . , s4095 where si = xi ⊕ x4096. This 4096 values are called a plot,
and the miner can store plots using different nouces until all the dedicated space is filled. In
the following we assume that there’s just the one plot s0, . . . , s4095.

Once every few minutes a new block gets added to the hash-chain, and at this point the
miner can compute an index i ∈ {0, . . . , 4095}, and then must look up the value si. This si then
determines if the miner “wins” and can add the next block (the details on how this is done are
irrelevant for this discussion).

Note that this requires accessing a constant fraction (i.e, one block per plot, or 0.024%)
of the entire dedicated disk space every time a new block gets mined. Moreover this scheme
allows for a simple time-memory trade-off: A miner can store only, say every 100th value
x0, x100, x200, . . . x4000, and also the last value x4096. Then, on input an index i, say i = 2345,
the miner looks up the value xj for j = i − (i mod 100) = 2300, and them computes xi (and
thus si = xi⊕x4096) which requires 45 invocations to the underlying hash function (in the worst
case, the number of requested hashes is 100, and on average 100/2 = 50).

More generally, a miner can save a factor of t in storage for storing a plot, at the prize of
having to compute an expected t/2 hashes with every lookup. Given that access times of hard-
disks are in the range of milliseconds, whereas application-specific integrated circuits (ASICs)
can compute in the order of millions of hashes per second per dollar invested,31 it seems that
the cheapest way to mine is to not store any plots at all and just treat the currency as a Proof of
Work based currency.32 In http://burstcoin.info/intro/, the creators of Burstcoin discuss
mining their currency in a pure PoW style, though they come to a different conclusion:

Technically, this mining process can be mined POW-style, however mining it as
intended will yield thousands of times the hashrate, and your hardware will sit idle
most of the time. Continuously hashing until a block is found is unnecessary, as
waiting long enough will cause any nonce to eventually become valid.

We note that even if disk-space was totally free, accessing it is still a non-trivial computation
that costs energy, and thus exploring the time-memory trade-off make sense. The optimal ratio
(i.e., the value t discussed above) will depend on the cost of a hash compared to a random
access.

31https://en.bitcoin.it/wiki/Mining_hardware_comparison
32Currently ASICs exist mostly for the SHA256 hash function used in Bitcoin, and not for the rather exotic

Shabal256 hash used in Burstcoin.

27

http://burstcoin.info/intro/
http://burstcoin.info/intro/
https://en.bitcoin.it/wiki/Mining_hardware_comparison


We observe that simply storing a function table as discussed in Section 1.3 already seems to
be a much better idea than the ”plots” based approach of Burstcoin. Both approaches succumb
to time-memory trade-offs, but when storing a function table, mining requires reading just one
short value from the disk per mined block,33 and verifying a proof requires just one evaluation
of the underlying function. Using plots as in Burstcoin requires w = 4096 evaluations of the
underlying hash function for verification, and one must access N

256·w disk locations when mining.

33This is true if we store the function table of a permutation, if it’s a function then lookup requires binary
search and thus O(logN) lookups, where N is the total dedicated space.
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