

Smarter Signatures: Experiments in
Verifications

A White Paper from Rebooting the Web of Trust II: ID2020 Design Workshop

By Christopher Allen & Shannon Appelcline

ABSTRACT
Technologies like the Web of Trust and PKI lay the
foundation for identity on the internet: they map a
human persona to a cryptographic construct that is
represented by a public key and protected by a
private key. Digital signatures are fundamental to
these digital identities and have been widely used in
a variety of applications. They’re the heart of SSH,
the foundation of certificates, and the core of newer
technologies like blockchain.

However, today’s simplistic signatures are just the
start; they can be improved, to create more powerful
and more complex signatures that can truly be
better and smarter.

Now is the time to begin experimenting with these
possibilities.

Smarter Signatures v1.0, 9/7/16 Page 2

1. AN OVERVIEW OF SIGNATURES
The traditional usage of digital signatures is quite
straightforward. The owner of a cryptographic
identity signs a message (or a certificate) with his
private key; a recipient can then use the related
public key to verify the message.

Bitcoin is one of the few technologies that offers
something more: multisignatures. Transactions can
be signed by up to N different people, of whom M
are required; for example a 2 of 3 multi-sig would
require two people from a group of three to sign a
transaction.

However, Bitcoin multi-sigs are just a first step.
Even if the simple signatures of the modern day
were expanded to include multisignatures of any
size, they still wouldn’t support the full richness of
business and computer logic that is becoming a part
of our digital life. Simple signatures can’t offer the
flexibility that is needed by modern enterprises, and
they can’t offer the reliability that is required for
modern finances.

To support these needs requires a new kind of
signature — a smarter signature that increases
options while still meeting the responsibilities of a
robust and trusted signature system.

2. THE USES OF SMART SIGNATURES

The core use of a signature is verification: it must
ensure that the authorization conditions required for
a task are met. In the world of simple signatures,
that meant verifying that the right person signed a
message. However smart signatures have a wider
scope, supporting many more use cases.

Some examples follow. They should be considered a
starting point, enumerating some of the needs for
smart signatures, without being a be-all or end-all.

1. Multifactor Expressions. A smart signature
should support the inclusion of multiple
elements within a single signature.

1. Multisignature Expressions. A
smart signature should support the
inclusion of multiple signatures via a
logical AND operator. They signatures
would all be required for verification,
forming an N of N multisignature, such
as joint homeowners who all need to
sign over a deed.

2. Multisignature Subsets. A smart
signature should also support M of N
multisignatures where only some
signatures are required for verification,
such as a married couple, either of
whom can write checks from a joint
bank account.

3. Multisignature Equivalents. A
smart signature should support the
inclusion of multiple signatures via a
logical OR operator, such as when a
legacy RSA signature, a current EC
signatures, and a future-proof Hash
Signature (which is quantum resistant
but very slow) are all included and any
of them can be used to verify the
signature.

4. Varied Content. A smart signature
should support the inclusion and
combination of a variety of different
signature elements, including other
verification elements like biometric
signatures and proof of hardware
control, such as a lead developer who
requires both his signature and a
hardware token to sign off on software
releases. It should also support the
inclusion of elements helpful to enable
delegation and other signature uses,
such as timestamps.

2. Signature Delegation. A key holder should
be able to precisely control how his key and his
signature are used.

1. Time-Limited Delegation. A key
holder should be able to authorize a
person or a device to sign for a limited
time, such as when the key holder is on
vacation or at a conference.

2. Time-Expired Delegation. A key
holder should be able to automatically
authorize a person or a device if their
own use of a key goes inactive for an
extended amount of time, such as when
a key holder dies, and their successor
needs to take over signatures.

3. Use-Limited Delegation. A key
holder should be able to authorize a
person to sign only in limited
situations, such as a software team

Smarter Signatures v1.0, 9/7/16 Page 3

that can sign a development version of
software but not a stable version.

4. Content-Limited Delegation. A key
holder should be able to authorize a
person to sign messages with specific
content, such as a financial department
that can sign to issue bonds with a
maximum amount and a bounded
interest rate.

5. Non-Signature Delegation. A key
holder should be able to authorize a
person to use a key in certain
instances, such as to revoke a key or to
revoke a previously signed certificate,
but not to sign documents.

3. Internal Depth. A smart signature should
support internal depth by combining these
different possibilities, such as a development
release of software that includes both
multifactoring and delegation by requiring 3-of-
5 signatures, where one signer has authorized
his assistant because he’s on leave, and another
signer requires 2-of-2 keys for his signature, one
of which is stored on a hardware token.
Because this depth is created through internal
links, the requirements are all evaluated
synchronously.

4. Transactional Support. A smart signature
system should support external depth by being
able to prove that specific states have been
reached in a larger state machine through the
chaining of multiple signatures, such as when
an art dealer needs to examine the
transactional history of a painting to ensure
that he’s not purchasing stolen goods. Because
this depth is created through external links, the
requirements tend to be evaluated
asynchronously: one smart signature at a time.

These use cases all focus on the creation of
signatures, providing functionality that signers need.
However, there are actually two users for any
signature: the signer and the verifier. Additional
verifier-focused use cases may illuminate UI and UX
requirements for a smart signature system.

Some of these use cases obviously will require some
calculation. However, smart signatures are
ultimately about verification, not computation. In
fact, our suggested requirements for smart signatures

do their best to minimize computation as a factor for
any verifying user.

3. THE REQUIREMENTS OF SMART
SIGNATURES

Because smart signatures offer increased complexity
over simple signatures, care must be taken to ensure
that the complexity does not overpower the security
of either the signatures or the systems that they’re
running upon. To ensure this, six requirements are
lsited, as suggestions for smart signature systems:

1. Composable. The increased complexity of
smart signatures requires that they be built
using some sort of programming language.
However, the language itself must remain
simple, with complexity built up from a
constrained set of operations. This ensures the
security of the signature language.

2. Inspectable. Signatures must be easily
understandable by a qualified programmer, so
that any sophisticated user can readily evaluate
the elements of a signature and how they will
be verified. This requirement often emerges
naturally from composability; it ensures the
security of the signatures, with a focus on
human-driven security.

3. Provable. Signatures must be formally
analyzable, so that they can support logical
reasoning and so that sophisticated users and
expert computer tools can have foreknowledge
of the requirements of verification. This further
supports the security of the signatures and also
foreshadows support for the security and
stability of the computer systems.

4. Deterministic. Signatures must always
produce the same results, even when run on
different machines or different operating
systems. This also ensures the security of the
signatures, but it focuses on machine-driven
security.

5. Bounded. Signatures must not be able to
exceed appropriate CPU or memory limitations
through creation of malicious (or bad) signings.
They need to minimize their size in order to
minimize bandwidth and storage costs.
Additionally, enforcement of these limitations
must be deterministic. This also ensures the
security of the computer system.

Smarter Signatures v1.0, 9/7/16 Page 4

6. Efficient. Though we place no requirements
on the difficulty of creating signatures, the cost
of verifying them should be very low. This also
ensures the stability of the computer system.

One other element that should be considered is
privacy. In smart signature design, there is a trade-
off between flexibility and fungibility: many of the
functions that make signatures smarter also require
participants to reveal more about who they are,
reducing the substitutability of the persons involved
in the signatures and of any resources being signed.
Even if privacy is not a requirement, it should be a
consideration; any decisions about the level of
privacy in a signature system should be known and
purposeful.

A smart signature system that supports the use
cases described above, that meets the requirements
listed here, and that considers its privacy
implications, would add powerful tools to the digital
world by meeting the needs of the financial and
business worlds.

4. EXPERIMENTING WITH SMART
SIGNATURES

Fulfilling these uses and meeting these requirements
for smart signatures necessitates the creation of
better languages and better tools. However, the
creation of a new foundation for smart signatures
(and eventually smarter contracts) can be tricky and
full of pitfalls, as shown by the recent problems
plaguing The DAO on Ethereum, where flaws in a
contract’s code led to the theft of tens of millions of
dollars[1].

The Ethereum crisis clearly shows that the design of
new languages for smart signature systems must be
thorough and comprehensive. Architects must
experiment with many options, to ultimately
produce something that is stable and trustworthy.

A few different possibilities are discussed below.
They should be considered starting points, not
ending points. They are not being offered as
standards, nor even as the preferred options for
smart signature systems. They are instead offered for
discussion and for expansion, in the hope that they
will eventually lead the way to a more robust smart
signature system and the beginning of a more robust
web of trust.

4.1 The Languages of Smart Signatures

Functional programming languages are a good choice
for the foundation of smart signatures because they
meet three of the suggested requirements: they’re
composable, they’re provable, and they’re
deterministic. The composability and provability
emerge from the fact that functional programming
languages are built of pure mathematical functions;
it’s easy to put them together to create more
complex systems and it’s easy to prove what they
do. The determinism emerges from the fact that
functional programming languages do not support
state or mutable data; they guarantee that the same
inputs will always produce the same outputs.

There are a few options for functional languages.
Lambda calculus languages are the classic choice,
but the Forth-like Bitcoin Script with its stack-
driven functionality offers another possibility. More
farflung options are also considered, such as the
logical sequent calculus.

4.2 Experiment #1: Bitcoin Script

One option for building a new smart signature
system is to start with something that already exists
and that is already being used to safeguard millions
of dollars worth of transactions: Bitcoin Script[2].

Bitcoin Script currently authorizes the spending of
Bitcoins. Typically, each Script is linked to either a
single signature or else to a M-of-N multi-sig.
However, it’s also possible to encode more complex
redemption conditions into a Bitcoin Script, and
even to keep them secret — allowing a recipient to
prove that he met the signing conditions by
matching a hash of those conditions.

Though Bitcoin Script is currently used on the
blockchain, this is not a requirement. The robust
signing language could be used outside of the
blockchain — protecting other sorts of authorization
systems and creating a generalized smart signature
language.

Though Bitcoin Script is constrained, the following
example shows that it’s nonetheless a robust
functional language:

OP_DUP	 OP_HASH160	 <pubKeyHash>	
OP_EQUALVERIFY	OP_CHECKSIG	

This simple script checks a signature against a
public key in order to verify the signature. Much
more complexity is possible.

Smarter Signatures v1.0, 9/7/16 Page 5

Advantages: The biggest advantage of the Bitcoin
Script approach is that it’s well-tested. It’s been in
use for almost a decade with a focus on
authorization, which means that it’s already laid the
groundwork for a smart signature system.

It’s also well-trusted. Bitcoin Script is the heart of
the Bitcoin system, making it the ultimate guardian
of a $10 billion market cap. It’s a language that has
proven its financial responsibility.

Finally, it’s constrained. Though Bitcoin Script
contains an extensive menu of operations (opcodes),
they’ve been curated: some opcodes were disabled in
Bitcoin’s early days to prevent mischief. Because of
these constraints, the individual elements of a
Bitcoin Script can be examined in isolation, making
it easy to see any problems. That’s much of what’s
maintained the trust in Bitcoin Script and ensured
that there were no DAO-style crises.

Disadvantages: The advantageous constraints of
Bitcoin Script may also create one of its biggest
disadvantages: it’s limited. In fact, Bitcoin Script
may be too limited to offer the full menu of options
required for smart signatures. However, there are
already Bitcoin Improvement Proposals in place to
increase the set of Bitcoin Script opcodes[3] [4], while
Bitcoin’s new segregated witness (segwit) support
will make future changes to Bitcoin Script even
easier[5]. Blockstream’s sidechains[6] offer an
alternative: incorporating new operations without
changing the original Bitcoin blockchain.

Removing Bitcoin Script entirely from the
blockchain offers another way to enable language
updates, but it also raises another issue: Bitcoin
Script is currently locked to blockchains. Though it
may be possible to use it independently, this has not
been tested and may raise future issues of
compatibility.

Finally, Bitcoin Script is a Forth-derived language,
which means that it is stack-oriented. This requires
a particular type of logic that may make it harder
for some people to parse or understand — though
this may also be the case for fully functional
languages like lambda calculuses or more outré
languages like those based on sequent calculus.

4.3 Experiment #2: Dex

Peter Todd is working on another possible system
for smart signatures, one that he calls Dex, a system
of deterministic predicate expressions[7]. Much like

Bitcoin Script, Dex’s predicate expressions evaluate
simply to either true or false results. However, the
other part of Dex’s name is just as important: it’s
deterministic, guaranteed to always return the same
result for a specific signature and environment.

Dex also more fully embraces functional
programming: it’s built using lambda calculus. As
with Lisp, atoms of numbers, strings, symbols, and
cells are recursively built up into s-expressions. (In
other words, Dex contains parenthesized lists that
regularize and order the evaluation of functions.)
These s-expressions are then merkelized (hashed),
producing unique digests.

Dex expressions should look quite familiar to Lisp
programmers:

(sig_valid	<pubkey>	<sig>	<hash>)	

This function might be accessed with a lambda
function like the following:

(sig_valid	 <pubkey>	 (cdr	 argm)	 (sha256	 (car	
argm)))	

Which allows a message and its signature to be
passed into the sig_valid function:

(sig_valid	<pubkey>	(cdr	'(<msg>	<sig>))	(sha256	
(car	'(<msg>	<sig>))))	

When the cdr, the car, and the sha256 hash are all
evaluated, the sig_valid function can then do its job
and determine the validity of the signature. Again,
much more complexity is possible.

Advantages. One of the biggest advantages of Dex
is one of its core features, its determinism. The
ability to run code on different computers and get
the same results is vital for the consensus of any
signature system. With a language like Bitcoin
Script, which is not built on an entirely functional
language, this sort of determinism was much more
difficult to achieve. In Dex, thanks to its basis in
lambda calculus, it’s there from the start as an
integral feature of the language.

Dex also has excellent properties of efficiency. The
use of a merkle tree helps Dex to enable pruning:
unneeded data in an expression can be cut out and
replaced with hash digests, making it easier to use
lite clients.

Finally, Dex is upwardly mobile. Smart signatures
can be building blocks for creating full smart

Smarter Signatures v1.0, 9/7/16 Page 6

contract systems, and this is an option that Todd
has considering from the start. He even calls Dex
one of the “Building Blocks of the State Machine
Approach to Consensus”, with its deterministic
expressions being states in the state machine[8].

Disadvantages. Lambda Calculus is generally an
unusual sort of programming language. It doesn’t
have the same coding styles or the same
programming patterns as more common, imperative
languages. This is what enables many of its desired
features, but it can also prove a disadvantage to
some programmers. Further, languages like Common
Lisp and Scheme have long been used in entry-level
college computer classes, which may create cognitive
biases in students who were confused about the
unusual though processes required.

Compared to a well-tested language like Bitcoin
Script, Dex is quite novel. It’s not just untested, it’s
truly experimental. Though there’s great potential
for its expansion, it will have to be thoroughly
examined before it can reach that potential.

4.4 Experiment #3: Crypto Conditions

Crypto-conditions[9] were developed by Stefan
Thomas as part of the Interledger[10] project, based
on a requirement for a smart signature data type in
the Interledger Protocol's core data model. The
protocol relies on one or more ledgers that are
involved in an end-to-end transfer being able to put
funds on hold pending the fulfillment of a predefined
condition. This condition is, in effect, the definition
of a smart signature and the fulfillment of that
condition is the signature itself. More information is
available from Crypto-condition workshops
presented at Interledger[11] and at IETF[12]. In
adition, Crypto-Conditions (draft-thomas-crypto-
conditions-00) has been submitted as an Internet
Draft for candidacy as a standards track RFC[13].

An essential requirement of crypto-conditions is that
any implementation must be able to evaluate if it
will be able to validate the signature later
(fulfillment) just by looking at the signature
definition (condition). This allows a ledger to reject
a transfer that is using a condition the ledger doesn't
support before the end-to-end transfer is fully
prepared, avoiding a case where the ledger fails to
release the funds upon receipt of the signature
(fulfillment) because they are unable to validate it.
It also meets the core purpose of the provability
requirement for smart signatures, even if it does so
by a slightly different manner.

Crypto-conditions define a format for encoding these
signature definitions (conditions) and signatures
(fulfillments) that incorporates versioning, a feature-
requirement bitmask, and a max-fullfilment size
requirement. This supports validation of the
fulfillment conditions and offers other advantages ...

Adventages. Crypto-conditions are deterministic.
Rather than attempting to define a Turing complete
signature language crypto-conditions simply
combines existing primitives that can be
deterministically validated on any platform. As such,
the combined result, which uses simple boolean
algebra, is also determinisitic across platforms.

Crypto-conditions are also nicely compact. Complex
boolean logic trees of hashed conditions can be
compacted down to a single hash using Merkle
Trees, while a fulfillment can also leave any
unfulfilled branches (such as in an m-of-n signature)
as hashes.

Disadvantages. Crypto-conditions is another novel
system that is still undergoing development.

4.5 Experiment #4: Sequent Calculus

Russell O'Connor offers a fourth approach to smart
signatures based on sequent calculus. This approach
envisions smart signatures with formal proofs, where
simpler proofs are functionally combined to
ultimately create smarter signatures that are
analyzable formally. The type system limits the
sequent calculus to defining only finitary functions
with bounded complexity, while the language comes
with formal semantics that are easy to define in
software proof assistants. A full paper on this topic
is pending.

Advantages. The best advantage of a sequent
calculus is that the formal semantics can be formally
reasoned about, and programs can be proved correct
using software proof assistants. Furthermore, the
interpreter for the sequent calculus can also be
proved correct, potentially allowing for an end-to-
end proof of correctness "down to the metal".

Disadvantages. The main disadvantage of a
sequent calculus approach is that it's perhaps even
more esoteric than the state machines and lambda
calcuses previously described. There will likely be
some issues with inspectability as a result. However,
it's possible that a language could be built atop the
formal proofs that made them more accessible.

Smarter Signatures v1.0, 9/7/16 Page 7

5. LESSONS LEARNED FROM OTHER
PLACES

There are numerous lessons that can be learned for
smart signatures from other places — particularly
lessons related to security. As the Ethereum crisis
showed us, smart signatures and smart contracts
won’t be secure until their programming languages
are secured and protected against errors. Resolving
this problem is just as important as laying the
foundations of a smart signature language.
Fortunately, a number of people have been tackling
this issue.

Jack Pettersson and Robert Edström of the
Chalmers University of Technology have written a
thesis on making smart contracts safer[16]. Their
approach focuses on Idris, a functional programming
language with lambda binding. It uses an advanced
type system to offer solutions for several classes of
common errors and even provides a backend for
Ethereum. More broadly, the SecLang taskforce[17]
focuses on security in programming languages. They
have been writing papers for decades that analyze
security, improve privacy, and remove
vulnerabilities. Their approaches could be vital to
enabling that same security in smart contract
languages. Both Chalmers and SecLang point us
toward options for safety and security in smart
signatures languages of all sorts; there are doubtless
other possibilities.

However, many of these approaches also have their
origins in other fields. Bitcoin and Interledger both
have strong roots in the internet community and can
offer lessons on how existing payment networks will
need to interact with new smart contracts.
Meanwhile, existing papers on sequent
calculus[14][15] can offer a foundation for O'Connor's
unique and innovative approach. The past is
prologue, but its lessons learned are important for
moving into the future.

Open Questions

Figuring out how to create and secure a new
language for smart signatures is just the first step.
There are many other open questions, some of which
were raised in an earlier Rebooting the Web of Trust
paper[18].

Context. Though functional languages are stateless,
they still require contexts: how do they receive
input? Bitcoin provides context through the output
script of a previous transaction. Other online tools

have internal contexts, external contexts, or run
contexts. However, there’s nothing parallel for smart
signatures. What contexts are required, and how
should they be implemented?

Revocation. How do we allow signers to revoke a
signature? Do we need to separate out proof of
validation and proof of non-revocation in a script? Is
it even possible to prove non-revocation?
Alternatively, should we severely limit the lifespan
of signatures to avoid the question of revocation
entirely?

Hierarchical Deterministic Keys. Some use
cases, such as short-term delegation, could benefit
from Hierarchical Deterministic Keys (HDKs), where
children key can be created from a parent key. How
can these HDKs be incorporated into smart
signatures and how can they be secured?

Oracles. A third-party oracle can help with the
evaluation of certain conditions such as proof-of-
existence and perhaps even proof-of-non-revocation.
However, oracles may also be what separates smart
signatures from more complex smart contracts. Does
a simple subset of oracles have any place in the
world of smart signatures? If so, what’s the actual
dividing line between a smart signature and a smart
contract?

6. CONCLUSION

This paper is meant to be an icebreaker. Though it
offers some suggested smart signature use cases and
requirements, they’re evolutionary. They were
incorporated in part from the Rebooting the Web of
Trust I “Smart Signatures” (2015) paper and in part
from Peter Todd’s “Dex: Deterministic Predicate
Expressions for Smarter Signatures” (2016) paper,
then they were expanded and reorganized for this
paper. In other words, they’re works in progress that
could still benefit from additional input. Similarly,
the experiments overviewed in this paper are just
four of many. More possibilities and more
discussions are welcome!

Smart signatures are an important tool that could
change the way business is done on the internet;
they could revamp how we live and even play in
electronic communities. As a result, it’s critical that
we get them right, that we not repeat the mistakes
of The Dao and other sophisticated computer
systems that went before us, but which didn’t live
up to the rigors of actual usage.

Smarter Signatures v1.0, 9/7/16 Page 8

So we offer this paper as the beginning of a
conversation about how to create smarter signatures.

What do you suggest?

FOOTNOTES

[1] Del Castillo, Michael. 2016. “The DAO Attacked:
Code Issue Leads to $60 Million Ether Theft”. Coin
Desk. http://www.coindesk.com/dao-attacked-code-
issue-leads-60-million-ether-theft/.

[2] Allen, Christopher, Greg Maxwell, Peter Todd,
Ryan Shea, Pieter Wuille, Joseph Bonneau, Joseph
Poon, and Tyler Close. 2015. “Smart Signatures”.
Rebooting the Web of Trust I.
https://github.com/WebOfTrustInfo/rebooting-the-
web-of-trust/blob/master/final-documents/smart-
signatures.pdf.

[3] Torpey, Kyle. 2016. “New BIP Would Enable
Better Privacy, CrossBlockChain Exchange,
TrustFree Betting, and More for Bitcoin”.
CoinJournal. http://coinjournal.net/new-bip-enable-
better-privacy-crossblockchain-exchange-trustfree-
betting-bitcoin/.

[4] Lau, Johnson. 2016. “BIP 114. Merkelized
Abstract Syntax Tree”. GitHub.
https://github.com/bitcoin/bips/blob/master/bip-
0114.mediawiki.

[5] Bitcoin Core. 2016. “Segregated Witness: The
Next Steps”. Bitcoin Core.
https://bitcoincore.org/en/2016/06/24/segwit-next-
steps/.

[6] Maxwell, Gregory. 2015. “Extending Bitcoin with
Sidechains”. Blockstream.
https://blockstream.com/developers/.

[7] Todd, Peter. 2016. “Dex: Deterministic Predicate
Expressions for Smarter Signatures”. Rebooting the
Web of Trust II: ID2020 Workshop.
https://github.com/WebOfTrustInfo/ID2020Design
Workshop/blob/master/topics-and-advance-
readings/DexPredicatesForSmarterSigs.md.

[8] Todd, Peter. 2016. “Building Blocks of the State
Machine Approach to Consensus”. Peter Todd.
https://petertodd.org/2016/state-machine-consensus-
building-blocks.

[9] Thomas, Stefan. "Crypto Conditions". GitHub.
https://github.com/interledger/rfcs/tree/master/000
2-crypto-conditions.

[10] Interledger web site. https://interledger.org.

[11] Thomas, Stefan. 2016. "Crypto-conditions". ILP
Workshop.
https://www.youtube.com/watch?v=YfBDDWp58po
&list=PLIR1FI1vEGeGvladEm-
YZIvokXyH4bbIL&index=7.

[12] Thomas, Stefan. 2016. "Crypto-conditions: A
Standard for Composable Signatures". IETF96
Ledger. https://youtu.be/uPXXfClTqSY?t=49m8s

[13] Thomas, Stefan. 2016. "Crypto-Conditions:
draft-thomas-crypto-conditions-00". IETF
Datatracker. https://datatracker.ietf.org/doc/draft-
thomas-crypto-conditions/

[14] Ariola, Zenn M., Aaron Bohannon, and Amr
Sabry. 2009. "Sequent Calculi and Abstract
Machines". ACM Transactions on Programming
Languages and Systems.
http://www.cs.indiana.edu/~sabry/papers/sequent.pd
f.

[15] Guenot, Nicolas and Daniel Gustafsson. 2015.
"Sequent Calculus and Equational Programming".
IT University of Copenhagen.
http://arxiv.org/pdf/1507.08056.pdf.

[16] Edström, Robert and Jack Pettersson. 2016.
“Safer Smart Contracts through Type-Driven
Development”. Chalmers University of Technology.
http://publications.lib.chalmers.se/records/fulltext/2
34939/234939.pdf.

[17] SecLang Taskforce. 2016. “Security:
Programming Languages”. DistriNet.
https://distrinet.cs.kuleuven.be/research/taskforces/s
howTaskforce.do?taskforceID=seclang.

[18] Allen, Christopher, Greg Maxwell, Peter Todd,
Ryan Shea, Pieter Wuille, Joseph Bonneau, Joseph
Poon, and Tyler Close. 2015. “Smart Signatures”.
Rebooting the Web of Trust I.
https://github.com/WebOfTrustInfo/rebooting-the-
web-of-trust/blob/master/final-documents/smart-
signatures.pdf.

MAJOR REFERENCES

Allen, Christopher, Greg Maxwell, Peter Todd, Ryan
Shea, Pieter Wuille, Joseph Bonneau, Joseph Poon,
and Tyler Close. 2015. “Smart Signatures”.
Rebooting the Web of Trust I.
https://github.com/WebOfTrustInfo/rebooting-the-

Smarter Signatures v1.0, 9/7/16 Page 9

web-of-trust/blob/master/final-documents/smart-
signatures.pdf

Edström, Robert and Jack Pettersson. 2016. “Safer
Smart Contracts through Type-Driven
Development”. Chalmers University of Technology.
http://publications.lib.chalmers.se/records/fulltext/2
34939/234939.pdf.

Todd, Peter. 2016. “Closed Seal Sets and Truth Lists
for Better Privacy and Censorship Resistance”. Peter
Todd. https://petertodd.org/2016/closed-seal-sets-
and-truth-lists-for-privacy.

Todd, Peter. 2016. “Building Blocks of the State
Machine Approach to Consensus”. Peter Todd.

https://petertodd.org/2016/state-machine-consensus-
building-blocks

Todd, Peter. 2016. “Dex: Deterministic Predicate
Expressions for Smarter Signatures”. Rebooting the
Web of Trust II: ID2020 Workshop.
https://github.com/WebOfTrustInfo/ID2020Design
Workshop/blob/master/topics-and-advance-
readings/DexPredicatesForSmarterSigs.md

Thomas, Stefan. 2016. "Crypto Conditions". Stefan
Thomas.
https://github.com/interledger/rfcs/tree/master/000
2-crypto-conditions

Additional Credits

Authors: Christopher Allen, Shannon Appelcline

Contributors to Previous Papers: Greg Maxwell, Peter Todd, Ryan Shea, Pieter Wuille, Joseph Bonneau,
Joseph Poon, and Tyler Close

About Rebooting the Web of Trust
This paper was produced as part of the Rebooting the Web of Trust II design workshop. On May 21st and
May 22nd, 2016, over 40 tech visionaries came together in Manhattan, New York following the ID2020 Summit
at the UN to talk about the future of decentralized trust on the internet with the goal of writing 3-5 white
papers and specs. This is one of them.

Workshop Sponsors: Blockstack, Blockstream, Evernym, IPFS, Microsoft, Netki, Tierion, ID2020

Workshop Producer: Christopher Allen

Workshop Facilitators: Christopher Allen with graphic facilitation by Sue Shea, additional paper editorial
& layout by Shannon Appelcline, and additional support by Kiara Robles.

What’s Next?
The design workshop and this paper are just starting points for Rebooting the Web of Trust. If you have any
comments, thoughts, or expansions on this paper, please post them to our GitHub issues page:

https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/issues

The next Rebooting the Web of Trust design workshop is scheduled for October 19th-21st in San Francisco,
California. If you’d like to be involved or would like to help sponsor these events, email:

ChristopherA@LifeWithAlacrity.com

