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ABSTRACT 
Technologies like the Web of Trust and PKI lay the 
foundation for identity on the internet: they map a 
human persona to a cryptographic construct that is 
represented by a public key and protected by a 
private key. Digital signatures are fundamental to 
these digital identities and have been widely used in 
a variety of applications. They’re the heart of SSH, 
the foundation of certificates, and the core of newer 
technologies like blockchain. 

However, today’s simplistic signatures are just the 
start; they can be improved, to create more powerful 
and more complex signatures that can truly be 
better and smarter. 

Now is the time to begin experimenting with these 
possibilities.
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1. AN OVERVIEW OF SIGNATURES 
The traditional usage of digital signatures is quite 
straightforward. The owner of a cryptographic 
identity signs a message (or a certificate) with his 
private key; a recipient can then use the related 
public key to verify the message. 

Bitcoin is one of the few technologies that offers 
something more: multisignatures. Transactions can 
be signed by up to N different people, of whom M 
are required; for example a 2 of 3 multi-sig would 
require two people from a group of three to sign a 
transaction. 

However, Bitcoin multi-sigs are just a first step. 
Even if the simple signatures of the modern day 
were expanded to include multisignatures of any 
size, they still wouldn’t support the full richness of 
business and computer logic that is becoming a part 
of our digital life. Simple signatures can’t offer the 
flexibility that is needed by modern enterprises, and 
they can’t offer the reliability that is required for 
modern finances. 

To support these needs requires a new kind of 
signature — a smarter signature that increases 
options while still meeting the responsibilities of a 
robust and trusted signature system. 

2. THE USES OF SMART SIGNATURES 

The core use of a signature is verification: it must 
ensure that the authorization conditions required for 
a task are met. In the world of simple signatures, 
that meant verifying that the right person signed a 
message. However smart signatures have a wider 
scope, supporting many more use cases. 

Some examples follow. They should be considered a 
starting point, enumerating some of the needs for 
smart signatures, without being a be-all or end-all. 

1. Multifactor Expressions. A smart signature 
should support the inclusion of multiple 
elements within a single signature. 

1. Multisignature Expressions. A 
smart signature should support the 
inclusion of multiple signatures via a 
logical AND operator. They signatures 
would all be required for verification, 
forming an N of N multisignature, such 
as joint homeowners who all need to 
sign over a deed. 

2. Multisignature Subsets. A smart 
signature should also support M of N 
multisignatures where only some 
signatures are required for verification, 
such as a married couple, either of 
whom can write checks from a joint 
bank account. 

3. Multisignature Equivalents. A 
smart signature should support the 
inclusion of multiple signatures via a 
logical OR operator, such as when a 
legacy RSA signature, a current EC 
signatures, and a future-proof Hash 
Signature (which is quantum resistant 
but very slow) are all included and any 
of them can be used to verify the 
signature. 

4. Varied Content. A smart signature 
should support the inclusion and 
combination of a variety of different 
signature elements, including other 
verification elements like biometric 
signatures and proof of hardware 
control, such as a lead developer who 
requires both his signature and a 
hardware token to sign off on software 
releases. It should also support the 
inclusion of elements helpful to enable 
delegation and other signature uses, 
such as timestamps. 

2. Signature Delegation. A key holder should 
be able to precisely control how his key and his 
signature are used. 

1. Time-Limited Delegation. A key 
holder should be able to authorize a 
person or a device to sign for a limited 
time, such as when the key holder is on 
vacation or at a conference. 

2. Time-Expired Delegation. A key 
holder should be able to automatically 
authorize a person or a device if their 
own use of a key goes inactive for an 
extended amount of time, such as when 
a key holder dies, and their successor 
needs to take over signatures. 

3. Use-Limited Delegation. A key 
holder should be able to authorize a 
person to sign only in limited 
situations, such as a software team 
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that can sign a development version of 
software but not a stable version. 

4. Content-Limited Delegation. A key 
holder should be able to authorize a 
person to sign messages with specific 
content, such as a financial department 
that can sign to issue bonds with a 
maximum amount and a bounded 
interest rate. 

5. Non-Signature Delegation. A key 
holder should be able to authorize a 
person to use a key in certain 
instances, such as to revoke a key or to 
revoke a previously signed certificate, 
but not to sign documents. 

3. Internal Depth. A smart signature should 
support internal depth by combining these 
different possibilities, such as a development 
release of software that includes both 
multifactoring and delegation by requiring 3-of-
5 signatures, where one signer has authorized 
his assistant because he’s on leave, and another 
signer requires 2-of-2 keys for his signature, one 
of which is stored on a hardware token. 
Because this depth is created through internal 
links, the requirements are all evaluated 
synchronously. 

4. Transactional Support. A smart signature 
system should support external depth by being 
able to prove that specific states have been 
reached in a larger state machine through the 
chaining of multiple signatures, such as when 
an art dealer needs to examine the 
transactional history of a painting to ensure 
that he’s not purchasing stolen goods. Because 
this depth is created through external links, the 
requirements tend to be evaluated 
asynchronously: one smart signature at a time. 

These use cases all focus on the creation of 
signatures, providing functionality that signers need. 
However, there are actually two users for any 
signature: the signer and the verifier. Additional 
verifier-focused use cases may illuminate UI and UX 
requirements for a smart signature system. 

Some of these use cases obviously will require some 
calculation. However, smart signatures are 
ultimately about verification, not computation. In 
fact, our suggested requirements for smart signatures 

do their best to minimize computation as a factor for 
any verifying user. 

3. THE REQUIREMENTS OF SMART 
SIGNATURES 

Because smart signatures offer increased complexity 
over simple signatures, care must be taken to ensure 
that the complexity does not overpower the security 
of either the signatures or the systems that they’re 
running upon. To ensure this, six requirements are 
lsited, as suggestions for smart signature systems: 

1. Composable. The increased complexity of 
smart signatures requires that they be built 
using some sort of programming language. 
However, the language itself must remain 
simple, with complexity built up from a 
constrained set of operations. This ensures the 
security of the signature language. 

2. Inspectable. Signatures must be easily 
understandable by a qualified programmer, so 
that any sophisticated user can readily evaluate 
the elements of a signature and how they will 
be verified. This requirement often emerges 
naturally from composability; it ensures the 
security of the signatures, with a focus on 
human-driven security. 

3. Provable. Signatures must be formally 
analyzable, so that they can support logical 
reasoning and so that sophisticated users and 
expert computer tools can have foreknowledge 
of the requirements of verification. This further 
supports the security of the signatures and also 
foreshadows support for the security and 
stability of the computer systems. 

4. Deterministic. Signatures must always 
produce the same results, even when run on 
different machines or different operating 
systems. This also ensures the security of the 
signatures, but it focuses on machine-driven 
security. 

5. Bounded. Signatures must not be able to 
exceed appropriate CPU or memory limitations 
through creation of malicious (or bad) signings. 
They need to minimize their size in order to 
minimize bandwidth and storage costs. 
Additionally, enforcement of these limitations 
must be deterministic. This also ensures the 
security of the computer system. 
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6. Efficient. Though we place no requirements 
on the difficulty of creating signatures, the cost 
of verifying them should be very low. This also 
ensures the stability of the computer system. 

One other element that should be considered is 
privacy. In smart signature design, there is a trade-
off between flexibility and fungibility: many of the 
functions that make signatures smarter also require 
participants to reveal more about who they are, 
reducing the substitutability of the persons involved 
in the signatures and of any resources being signed. 
Even if privacy is not a requirement, it should be a 
consideration; any decisions about the level of 
privacy in a signature system should be known and 
purposeful. 

A smart signature system that supports the use 
cases described above, that meets the requirements 
listed here, and that considers its privacy 
implications, would add powerful tools to the digital 
world by meeting the needs of the financial and 
business worlds. 

4. EXPERIMENTING WITH SMART 
SIGNATURES 

Fulfilling these uses and meeting these requirements 
for smart signatures necessitates the creation of 
better languages and better tools. However, the 
creation of a new foundation for smart signatures 
(and eventually smarter contracts) can be tricky and 
full of pitfalls, as shown by the recent problems 
plaguing The DAO on Ethereum, where flaws in a 
contract’s code led to the theft of tens of millions of 
dollars[1]. 

The Ethereum crisis clearly shows that the design of 
new languages for smart signature systems must be 
thorough and comprehensive. Architects must 
experiment with many options, to ultimately 
produce something that is stable and trustworthy. 

A few different possibilities are discussed below. 
They should be considered starting points, not 
ending points. They are not being offered as 
standards, nor even as the preferred options for 
smart signature systems. They are instead offered for 
discussion and for expansion, in the hope that they 
will eventually lead the way to a more robust smart 
signature system and the beginning of a more robust 
web of trust. 

4.1 The Languages of Smart Signatures 

Functional programming languages are a good choice 
for the foundation of smart signatures because they 
meet three of the suggested requirements: they’re 
composable, they’re provable, and they’re 
deterministic. The composability and provability 
emerge from the fact that functional programming 
languages are built of pure mathematical functions; 
it’s easy to put them together to create more 
complex systems and it’s easy to prove what they 
do. The determinism emerges from the fact that 
functional programming languages do not support 
state or mutable data; they guarantee that the same 
inputs will always produce the same outputs. 

There are a few options for functional languages. 
Lambda calculus languages are the classic choice, 
but the Forth-like Bitcoin Script with its stack-
driven functionality offers another possibility. More 
farflung options are also considered, such as the 
logical sequent calculus. 

4.2 Experiment #1: Bitcoin Script 

One option for building a new smart signature 
system is to start with something that already exists 
and that is already being used to safeguard millions 
of dollars worth of transactions: Bitcoin Script[2]. 

Bitcoin Script currently authorizes the spending of 
Bitcoins. Typically, each Script is linked to either a 
single signature or else to a M-of-N multi-sig. 
However, it’s also possible to encode more complex 
redemption conditions into a Bitcoin Script, and 
even to keep them secret — allowing a recipient to 
prove that he met the signing conditions by 
matching a hash of those conditions. 

Though Bitcoin Script is currently used on the 
blockchain, this is not a requirement. The robust 
signing language could be used outside of the 
blockchain — protecting other sorts of authorization 
systems and creating a generalized smart signature 
language. 

Though Bitcoin Script is constrained, the following 
example shows that it’s nonetheless a robust 
functional language: 

OP_DUP	 OP_HASH160	 <pubKeyHash>	
OP_EQUALVERIFY	OP_CHECKSIG	

This simple script checks a signature against a 
public key in order to verify the signature. Much 
more complexity is possible. 
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Advantages: The biggest advantage of the Bitcoin 
Script approach is that it’s well-tested. It’s been in 
use for almost a decade with a focus on 
authorization, which means that it’s already laid the 
groundwork for a smart signature system. 

It’s also well-trusted. Bitcoin Script is the heart of 
the Bitcoin system, making it the ultimate guardian 
of a $10 billion market cap. It’s a language that has 
proven its financial responsibility. 

Finally, it’s constrained. Though Bitcoin Script 
contains an extensive menu of operations (opcodes), 
they’ve been curated: some opcodes were disabled in 
Bitcoin’s early days to prevent mischief. Because of 
these constraints, the individual elements of a 
Bitcoin Script can be examined in isolation, making 
it easy to see any problems. That’s much of what’s 
maintained the trust in Bitcoin Script and ensured 
that there were no DAO-style crises. 

Disadvantages: The advantageous constraints of 
Bitcoin Script may also create one of its biggest 
disadvantages: it’s limited. In fact, Bitcoin Script 
may be too limited to offer the full menu of options 
required for smart signatures. However, there are 
already Bitcoin Improvement Proposals in place to 
increase the set of Bitcoin Script opcodes[3] [4], while 
Bitcoin’s new segregated witness (segwit) support 
will make future changes to Bitcoin Script even 
easier[5]. Blockstream’s sidechains[6] offer an 
alternative: incorporating new operations without 
changing the original Bitcoin blockchain. 

Removing Bitcoin Script entirely from the 
blockchain offers another way to enable language 
updates, but it also raises another issue: Bitcoin 
Script is currently locked to blockchains. Though it 
may be possible to use it independently, this has not 
been tested and may raise future issues of 
compatibility. 

Finally, Bitcoin Script is a Forth-derived language, 
which means that it is stack-oriented. This requires 
a particular type of logic that may make it harder 
for some people to parse or understand — though 
this may also be the case for fully functional 
languages like lambda calculuses or more outré 
languages like those based on sequent calculus. 

4.3 Experiment #2: Dex 

Peter Todd is working on another possible system 
for smart signatures, one that he calls Dex, a system 
of deterministic predicate expressions[7]. Much like 

Bitcoin Script, Dex’s predicate expressions evaluate 
simply to either true or false results. However, the 
other part of Dex’s name is just as important: it’s 
deterministic, guaranteed to always return the same 
result for a specific signature and environment. 

Dex also more fully embraces functional 
programming: it’s built using lambda calculus. As 
with Lisp, atoms of numbers, strings, symbols, and 
cells are recursively built up into s-expressions. (In 
other words, Dex contains parenthesized lists that 
regularize and order the evaluation of functions.) 
These s-expressions are then merkelized (hashed), 
producing unique digests. 

Dex expressions should look quite familiar to Lisp 
programmers: 

(sig_valid	<pubkey>	<sig>	<hash>)	

This function might be accessed with a lambda 
function like the following: 

(sig_valid	 <pubkey>	 (cdr	 argm)	 (sha256	 (car	
argm)))	

Which allows a message and its signature to be 
passed into the sig_valid function: 

(sig_valid	<pubkey>	(cdr	'(<msg>	<sig>))	(sha256	
(car	'(<msg>	<sig>))))	

When the cdr, the car, and the sha256 hash are all 
evaluated, the sig_valid function can then do its job 
and determine the validity of the signature. Again, 
much more complexity is possible. 

Advantages. One of the biggest advantages of Dex 
is one of its core features, its determinism. The 
ability to run code on different computers and get 
the same results is vital for the consensus of any 
signature system. With a language like Bitcoin 
Script, which is not built on an entirely functional 
language, this sort of determinism was much more 
difficult to achieve. In Dex, thanks to its basis in 
lambda calculus, it’s there from the start as an 
integral feature of the language. 

Dex also has excellent properties of efficiency. The 
use of a merkle tree helps Dex to enable pruning: 
unneeded data in an expression can be cut out and 
replaced with hash digests, making it easier to use 
lite clients. 

Finally, Dex is upwardly mobile. Smart signatures 
can be building blocks for creating full smart 
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contract systems, and this is an option that Todd 
has considering from the start. He even calls Dex 
one of the “Building Blocks of the State Machine 
Approach to Consensus”, with its deterministic 
expressions being states in the state machine[8]. 

Disadvantages. Lambda Calculus is generally an 
unusual sort of programming language. It doesn’t 
have the same coding styles or the same 
programming patterns as more common, imperative 
languages. This is what enables many of its desired 
features, but it can also prove a disadvantage to 
some programmers. Further, languages like Common 
Lisp and Scheme have long been used in entry-level 
college computer classes, which may create cognitive 
biases in students who were confused about the 
unusual though processes required. 

Compared to a well-tested language like Bitcoin 
Script, Dex is quite novel. It’s not just untested, it’s 
truly experimental. Though there’s great potential 
for its expansion, it will have to be thoroughly 
examined before it can reach that potential. 

4.4 Experiment #3: Crypto Conditions 

Crypto-conditions[9] were developed by Stefan 
Thomas as part of the Interledger[10] project, based 
on a requirement for a smart signature data type in 
the Interledger Protocol's core data model. The 
protocol relies on one or more ledgers that are 
involved in an end-to-end transfer being able to put 
funds on hold pending the fulfillment of a predefined 
condition. This condition is, in effect, the definition 
of a smart signature and the fulfillment of that 
condition is the signature itself. More information is 
available from Crypto-condition workshops 
presented at Interledger[11] and at IETF[12]. In 
adition, Crypto-Conditions (draft-thomas-crypto-
conditions-00) has been submitted as an Internet 
Draft for candidacy as a standards track RFC[13]. 

An essential requirement of crypto-conditions is that 
any implementation must be able to evaluate if it 
will be able to validate the signature later 
(fulfillment) just by looking at the signature 
definition (condition). This allows a ledger to reject 
a transfer that is using a condition the ledger doesn't 
support before the end-to-end transfer is fully 
prepared, avoiding a case where the ledger fails to 
release the funds upon receipt of the signature 
(fulfillment) because they are unable to validate it. 
It also meets the core purpose of the provability 
requirement for smart signatures, even if it does so 
by a slightly different manner. 

Crypto-conditions define a format for encoding these 
signature definitions (conditions) and signatures 
(fulfillments) that incorporates versioning, a feature-
requirement bitmask, and a max-fullfilment size 
requirement. This supports validation of the 
fulfillment conditions and offers other advantages ... 

Adventages. Crypto-conditions are deterministic. 
Rather than attempting to define a Turing complete 
signature language crypto-conditions simply 
combines existing primitives that can be 
deterministically validated on any platform. As such, 
the combined result, which uses simple boolean 
algebra, is also determinisitic across platforms. 

Crypto-conditions are also nicely compact. Complex 
boolean logic trees of hashed conditions can be 
compacted down to a single hash using Merkle 
Trees, while a fulfillment can also leave any 
unfulfilled branches (such as in an m-of-n signature) 
as hashes. 

Disadvantages. Crypto-conditions is another novel 
system that is still undergoing development. 

4.5 Experiment #4: Sequent Calculus 

Russell O'Connor offers a fourth approach to smart 
signatures based on sequent calculus. This approach 
envisions smart signatures with formal proofs, where 
simpler proofs are functionally combined to 
ultimately create smarter signatures that are 
analyzable formally. The type system limits the 
sequent calculus to defining only finitary functions 
with bounded complexity, while the language comes 
with formal semantics that are easy to define in 
software proof assistants. A full paper on this topic 
is pending. 

Advantages. The best advantage of a sequent 
calculus is that the formal semantics can be formally 
reasoned about, and programs can be proved correct 
using software proof assistants. Furthermore, the 
interpreter for the sequent calculus can also be 
proved correct, potentially allowing for an end-to-
end proof of correctness "down to the metal". 

Disadvantages. The main disadvantage of a 
sequent calculus approach is that it's perhaps even 
more esoteric than the state machines and lambda 
calcuses previously described. There will likely be 
some issues with inspectability as a result. However, 
it's possible that a language could be built atop the 
formal proofs that made them more accessible. 
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5. LESSONS LEARNED FROM OTHER 
PLACES 

There are numerous lessons that can be learned for 
smart signatures from other places — particularly 
lessons related to security. As the Ethereum crisis 
showed us, smart signatures and smart contracts 
won’t be secure until their programming languages 
are secured and protected against errors. Resolving 
this problem is just as important as laying the 
foundations of a smart signature language. 
Fortunately, a number of people have been tackling 
this issue. 

Jack Pettersson and Robert Edström of the 
Chalmers University of Technology have written a 
thesis on making smart contracts safer[16]. Their 
approach focuses on Idris, a functional programming 
language with lambda binding. It uses an advanced 
type system to offer solutions for several classes of 
common errors and even provides a backend for 
Ethereum. More broadly, the SecLang taskforce[17] 
focuses on security in programming languages. They 
have been writing papers for decades that analyze 
security, improve privacy, and remove 
vulnerabilities. Their approaches could be vital to 
enabling that same security in smart contract 
languages. Both Chalmers and SecLang point us 
toward options for safety and security in smart 
signatures languages of all sorts; there are doubtless 
other possibilities. 

However, many of these approaches also have their 
origins in other fields. Bitcoin and Interledger both 
have strong roots in the internet community and can 
offer lessons on how existing payment networks will 
need to interact with new smart contracts. 
Meanwhile, existing papers on sequent 
calculus[14][15] can offer a foundation for O'Connor's 
unique and innovative approach. The past is 
prologue, but its lessons learned are important for 
moving into the future. 

Open Questions 

Figuring out how to create and secure a new 
language for smart signatures is just the first step. 
There are many other open questions, some of which 
were raised in an earlier Rebooting the Web of Trust 
paper[18]. 

Context. Though functional languages are stateless, 
they still require contexts: how do they receive 
input? Bitcoin provides context through the output 
script of a previous transaction. Other online tools 

have internal contexts, external contexts, or run 
contexts. However, there’s nothing parallel for smart 
signatures. What contexts are required, and how 
should they be implemented? 

Revocation. How do we allow signers to revoke a 
signature? Do we need to separate out proof of 
validation and proof of non-revocation in a script? Is 
it even possible to prove non-revocation? 
Alternatively, should we severely limit the lifespan 
of signatures to avoid the question of revocation 
entirely? 

Hierarchical Deterministic Keys. Some use 
cases, such as short-term delegation, could benefit 
from Hierarchical Deterministic Keys (HDKs), where 
children key can be created from a parent key. How 
can these HDKs be incorporated into smart 
signatures and how can they be secured? 

Oracles. A third-party oracle can help with the 
evaluation of certain conditions such as proof-of-
existence and perhaps even proof-of-non-revocation. 
However, oracles may also be what separates smart 
signatures from more complex smart contracts. Does 
a simple subset of oracles have any place in the 
world of smart signatures? If so, what’s the actual 
dividing line between a smart signature and a smart 
contract? 

6. CONCLUSION 

This paper is meant to be an icebreaker. Though it 
offers some suggested smart signature use cases and 
requirements, they’re evolutionary. They were 
incorporated in part from the Rebooting the Web of 
Trust I “Smart Signatures” (2015) paper and in part 
from Peter Todd’s “Dex: Deterministic Predicate 
Expressions for Smarter Signatures” (2016) paper, 
then they were expanded and reorganized for this 
paper. In other words, they’re works in progress that 
could still benefit from additional input. Similarly, 
the experiments overviewed in this paper are just 
four of many. More possibilities and more 
discussions are welcome! 

Smart signatures are an important tool that could 
change the way business is done on the internet; 
they could revamp how we live and even play in 
electronic communities. As a result, it’s critical that 
we get them right, that we not repeat the mistakes 
of The Dao and other sophisticated computer 
systems that went before us, but which didn’t live 
up to the rigors of actual usage. 
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So we offer this paper as the beginning of a 
conversation about how to create smarter signatures. 

What do you suggest? 
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