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ABSTRACT

Over the last few years, there has been substantial research on

automated analysis, testing, and debugging of Ethereum smart

contracts. However, it is not trivial to compare and reproduce that

research. To address this, we present SmartBugs, an extensible and

easy-to-use execution framework that simplifies the execution of

analysis tools on smart contracts written in Solidity, the primary

language used in Ethereum. SmartBugs is currently distributed

with support for 10 tools and two datasets of Solidity contracts.

The first dataset can be used to evaluate the precision of analysis

tools, as it contains 143 annotated vulnerable contracts with 208

tagged vulnerabilities. The second dataset contains 47,518 unique

contracts collected through Etherscan. We discuss how SmartBugs

supported the largest experimental setup to date both in the number

of tools and in execution time. Moreover, we show how it enables

easy integration and comparison of analysis tools by presenting a

new extension to the tool SmartCheck that improves substantially

the detection of vulnerabilities related to the DASP10 categories

Bad Randomness, Time Manipulation, and Access Control (identified
vulnerabilities increased from 11% to 24%).

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Software defect analysis; • Security and privacy →
Software security engineering.
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1 INTRODUCTION

Ethereum is one of the most popular blockchain-based platforms,

mainly because it enables developers to write distributed applica-

tions (Dapps) based on smart contracts— programs that are exe-

cuted across a decentralised network of nodes. The main language

used to develop Ethereum smart contracts is Solidity
1
, a high-level

language that follows a JavaScript-like, object-oriented paradigm.

Contracts written in Solidity are compiled to bytecode that can be

executed on the Ethereum Virtual Machine (EVM).

Smart contracts are at the core of Ethereum’s value. However,

as noted by some researchers [1, 5], writing secure smart contracts

is far from trivial. In a preliminary study performed on nearly one

million Ethereum smart contracts, using one analysis framework for

verifying correctness, 34,200 of them were flagged as vulnerable [6].

Famous attacks, such as TheDAO exploit
2
and the Parity wallet

bug
3
illustrate this problem and have led to huge financial losses.

There has been some effort from the research community to

develop automated analysis tools that locate and eliminate vulner-

abilities in smart contracts [4, 5, 8, 9]. However, it is not easy to

compare and reproduce that research: even though several of the

tools are publicly available, the datasets used are not. If a developer

of a new tool wants to compare the new tool with existing work,

the current approach is to contact the authors of alternative tools

and hope that they give access to their datasets (as done in, e.g., [7]).

The aim of this paper is to present SmartBugs, an extensible

and easy-to-use execution framework that simplifies the execution

of analysis tools on Solidity smart contracts and facilitates repro-

ducibility. We describe the architecture of the framework, the tools

and datasets provided, and the methodologies used for adding new

tools and for filtering datasets (§2). We illustrate two typical use

cases where SmartBugs can be used (§3). First, we discuss how it

supported the largest experimental setup to date both in the number

of tools and in execution time [3]. Second, we show how it can be

used to compare tools by adding a new extension of SmartCheck [8]

that improves substantially the detection of vulnerabilities related

to the DASP10 categories Bad Randomness, Time Manipulation, and
Access Control (identified vulnerabilities increased from 11% to 24%).

SmartBugs is open-source and is publicly available online at:

https://smartbugs.github.io

1
Interested readers on Solidity, refer to https://solidity.readthedocs.io.

2
Analysis of the DAO exploit (Phil Daian): https://bit.ly/2XOqVmy

3
The $280M EthereumâĂŹs Parity bug (Matt Suiche): https://bit.ly/3guX8Yx
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Figure 1: SmartBugs Architecture

2 SMARTBUGS

This section describes SmartBugs, focusing on system requirements,

available tools and datasets, methodologies for adding tools and fil-

tering datasets, and the available interfaces. SmartBugs is composed

of five main parts: the command-line interface, the tool configura-

tions, the Docker images of the tools, the datasets of smart contracts,

and the SmartBugs Runner, which brings all the parts together to ex-

ecute the analysis tools. We also provide a web-based user interface

that interacts with SmartBugs. Figure 1 shows how the different

SmartBugs components are put together.

2.1 System Requirements

SmartBugs requires Docker and Python3 with the modules PyYAML,
solidity_parser, and docker. Since Solidity versions are not always

backwards-compatible, the analysis tools might have problems

processing some contracts depending on the solidity compiler used.

For example, Solidity v0.5.0 introduced breaking changes
4
and this

creates compatibility issues with some versions of the Mythril tool.

To mitigate this problem, SmartBugs provides the possibility of

having two different versions of the same tool by adding a property

in the configuration file. The configuration file supports a default

tool version to compile and analyse contracts above Solidity v0.5.0

(or all contracts if no other tool version is provided). It is also

possible to specify a different tool version to compile and analyse

contracts below Solidity v0.5.0. This is illustrated in Section 2.3.

2.2 Available Tools and Datasets

At the time of writing, SmartBugs comes with 10 tools ready to

be used: HoneyBadger, Maian, Manticore, Mythril, Osiris, Oyente,

Securify, Slither, SmartCheck, Solhint. It is also distributed with two

datasets of Solidity contracts. The first dataset is named sb
curated

and contains 143 annotated vulnerable contracts with 208 tagged

vulnerabilities, divided into 10 categories. This dataset can be used

to evaluate the precision of analysis tools. The second dataset is

named sb
wild

and it contains 47,518 unique
5
contracts collected

through Etherscan. All contracts and tools are publicly available.

The collection methodology for sb
curated

is explained in this sec-

tion. For details about sb
wild

, we refer the reader to [3].

Our objective in constructing sb
curated

is to provide a reliable

dataset with a collection of vulnerabilities designed to be repro-

ducible, that follows a known taxonomy and that can serve as a

reference dataset to the research community. The dataset follows

4
Solidity v0.5.0 introduced breaking changes: https://bit.ly/2W0bY0x

5
We consider two contracts to be duplicates when their MD5 checksum is the same

after removing all the spaces and tabulations.

Table 1: Categories of vulnerabilities available in the

dataset sb
curated

. LoC computed using cloc 1.82.

Category Contracts Vulns LoC

Access Control 17 19 899

Arithmetic 14 24 304

Bad Randomness 8 30 1,079

Denial of service 6 7 177

Front running 4 7 137

Reentrancy 31 32 2,164

Short addresses 1 1 18

Time manipulation 5 7 100

Unchecked low level calls 53 78 4055

Other 3 3 115

Total 143 208 9,048

the taxonomy of DASP 10.
6
Since the category Unknown Unknowns

represents future and undiscovered vulnerabilities, we opted to

map vulnerabilities that did not fit any other of the nine categories

into this category (e.g. vulnerabilities such as uninitialized data and

the possibility of locking down Ether). For simplicity, we use the

nomenclature Other instead of Unknown Unknowns.
sb

curated
was created by collecting smart contracts from three

different sources: GitHub repositories, Blog posts that analyse con-

tracts and the Ethereum network. Most of contracts were collected

from GitHub repositories and the Ethereum network. We ensure

the traceability of each contract by providing the URL from which

they were taken and its author, where possible. Table 1 shows

how the 143 contracts are categorized. Each row contains a cate-

gory of vulnerability. For each category, we provide the number of

contracts available within that category and the total number of

vulnerabilities and number of lines of code of the contracts of that

category.

2.3 Methodology for Adding Tools

Addition of tools in SmartBugs is designed to be simple and practi-

cal, allowing the user to control the execution of the tools according

to their needs. Currently, all the tools in SmartBugs use Docker im-

ages pulled from Docker Hub. We use pre-existing Docker images

when available; otherwise, we create our own image (all Docker

images are made publicly available on Docker Hub). The choice to

use Docker images was made to ease the addition of tools, allow

the execution to be reproducible and use the same execution envi-

ronment for all tools, allowing the user to execute SmartBugs in

any environment where Python3 and Docker are installed.

Each tool plugin contains the configuration of the tool. The con-

figuration contains the name of the Docker image, the name of the

tool, the command to run the tool, and, optionally, the description

of the tool and the location of the output of results. Once a Docker

image providing the tool is available, adding the tool to SmartBugs

consists of adding a new configuration file (an .YAML file) such as

the following:

docker_image:
default: qspprotocol/securify-usolc
solc<5: qspprotocol/securify-0.4.25

cmd: --livestatusfile /results/output.json -fs

6
DASP 10 taxonomy: https://dasp.co

https://bit.ly/2W0bY0x
https://dasp.co
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output_in_files:
folder: /results/output.json

By default, SmartBugs extracts the results from the output printed

by each tool. If instead a tool stores the result of the analysis in a

file in the Docker image, the path of that file should be defined in

the configuration file using the optional configuration parameter

output_in_files, as shown above.

Finally, when adding a tool to SmartBugs, a parse method can

be implemented so that the output with the vulnerabilities detected

by the tool is normalized.
7

2.4 Methodology for Filtering Datasets

SmartBugs supports the definition of named datasets, which rep-

resent subsets of contracts that share a common property. For ex-

ample, a named dataset already provided by default is reentrancy:
it corresponds to contracts that are identified as being vulnera-

ble to reentrancy attacks. Named datasets can be specified in a

configuration file (config/dataset/dataset.yaml). To add a custom

named dataset, the user simply has to alter the configuration file

by adding a name and the correspondent list of paths. The path can

be a directory, a file, or a list of both. For example:

reentrancy: dataset/reentrancy
arithmetic:
- dataset/arithmetic
- dataset/reentrancy/reentrance.sol

2.5 Command-Line Interface

SmartBugs provides a command line interface that allows users to

run different analysis tools on the available datasets of contracts.

The user can also get information about the tools, if provided,

skip an execution that already has results, specify the number of

processes to use during the analysis (by default 1) and list the named

datasets and tools available. SmartBugs command-line interface

can be invoked as:

smartBugs.py [-h, --help]
(--file FILES | --dataset DATASETS)
--tool TOOLS --info TOOLS
--skip-existing --processes PROCESSES
--list {tools, datasets}

Usage Example To run the tools Oyente and Mythril against the

contracts in the named dataset reentrancy, we can execute:

smartBugs.py --tool oyente mythril --dataset reentrancy

This command creates an output folder with the results of the

analysis for each tool executed. By inspecting the output files, we

can determine very quickly which contracts are identified as having

vulnerabilities. Since all the tools added to SmartBugs come with

a parser mechanism to normalize the output, a json file, with all

vulnerabilities detected by the tool is created. A file containing

the raw output of the tool executed is also generated in the same

folder. Also, the SmartBugs logs are stored in a folder called logs
composed of files named with the date and hour of the execution.

7
For example, the parser for SmartCheck is defined here: https://bit.ly/3exxeRW.

Figure 2: SmartBugs Web Dashboard

2.6 WUI Dashboard

We also provide a Web-based UI (WUI) that interacts with Smart-

Bugs.
8
This dashboard provides the user easy access to the list

of tools, named datasets available and the vulnerabilities detected

by each tool available mapped to a category of DASP 10. Figure 2

shows a screenshot of the dashboard. It offers three options to

analyse smart contracts: (1) The user can paste or write a smart

contract directly in the browser; (2) The user can import a smart

contract by uploading a file; (3) The user can run the available

tools on pre-defined datasets (from sb
curated

). After execution, the

dashboard shows a graph with the number of security issues found

by each tool, and for each tool it presents the issues found.

3 USE CASES

The primary envisaged users of SmartBugs are researchers who

are interested in automated analysis and debugging of Solidity

smart contracts. In this section, we present two typical use cases.

First, we summarize an empirical evaluation that was supported

by SmartBugs [3]. We then show how SmartBugs can support tool

developers by discussing how a new extension of SmartCheck [8]

can be easily compared with the original tool.

3.1 Supporting Empirical Evaluations

SmartBugs can support researchers who are interested in doing

large empirical evaluations. The command-line interface and the

options --skip-existing and --processes are particularly help-

ful. We have recently used SmartBugs to obtain an overview of

the current status of automated analysis tools for Solidity smart

contracts and to support the largest experimental setup to date

both in the number of tools and in execution time [3]. We eval-

uated 10 state-of-the-art automated analysis tools on sb
wild

and

on a subset of sb
curated

that contained 69 contracts (since then,

the number of contracts in sb
curated

has increased). In total, we

ran 428,337 analyses that took approximately 564 days and 3 hours.

We found that only 42% of the vulnerabilities from the annotated

dataset are detected by all the tools, with the tool Mythril having
the higher accuracy (27%). When considering the largest dataset,

sb
wild

, we observed that 97% of contracts are tagged as vulnerable,

thus suggesting a considerable number of false positives.

The use of SmartBugs made the task easier and was crucial to

ensure that the work can be completely reproduced.

8
SmartBugs Dashboard: https://github.com/smartbugs/smartbugs-dashboard

https://bit.ly/3exxeRW
https://github.com/smartbugs/smartbugs-dashboard
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3.2 Supporting Developers of Analysis Tools

The empirical evaluation described above showed that there is room

for improvement for automated analysis tools to detect more vul-

nerabilities. For example, Bad Randomness was one of the categories
that all of the tools failed to detect. In this section, we describe a

simple extension of the tool SmartCheck [8] that enables the de-

tection of vulnerabilities related to Bad Randomness and improves

detection of Time Manipulation and Access Control vulnerabilities.9

We refer to our extension as SmartCheck Extended.

SmartCheck runs lexical and syntactical analysis on Solidity

source code. It uses a custom Solidity grammar to generate an

XML parse tree as an intermediate representation (IR). SmartCheck

detects vulnerability patterns by using XPath patterns on the IR.

Our approach to improve SmartCheck vulnerabilities detection was

to add new rules, in the form of XPath patterns.

We added three new rules to SmartCheck. The first rule is named

SOLIDITY_BAD_RANDOMNESS and aims at detecting issues re-

lated to the category Bad Randomness. For this, we created an

XPath pattern to detect the use of environment variables such as

block.number, block.coinbase, block.difficulty, block.gaslimit, block-
hash, and block.blockhash. For the second rule, we followed a simi-

lar approach to update the rule SOLIDITY_EXACT_TIME, already
included in SmartCheck. We modified the pattern to look for expres-

sions that contain block.timestamp or now, extending the previously
defined rule for cases more general than comparisons. These rules

are straightforward lexical analyses whose goal is to simply detect

the use of the referred environment variables and to flag their use,

acting as a warning.

Regarding Access Control, SmartCheck’s default rule is restricted

to tx.origin issues. To improve this, we added a pattern to search for

‘suicides’ (uses of selfdestruct) and ownership transfers where the

functionmisses proper protection.We constructed two rule patterns

inside a single rule named SOLIDITY_UNPROTECTED. To detect

unprotected issues we created a pattern to look for all functions

defined, excluding constructors, that do not have standardmodifiers
defined, as onlyOwner, or require statements protecting a value

assignment to a variable defined as owner or selfdestruct calls.
The source code of SmartCheck Extended is available onGitHub

10

as a fork of the original SmartCheck. It is also included in SmartBugs

and ready to executed.

3.2.1 Results. We used SmartBugs to compare our extension with

the original tool. Table 2 compares the results obtained for SmartCheck

in the empirical evaluation described in Subsection 3.1 with the

results obtained from executing our extension on the same dataset

of contracts. The results shown in the table only consider the 69

contracts used in the empirical study mentioned above [3], so that

we can perform a fair comparison. We can observe that SmartCheck

Extended is capable of detecting a total of 15 more issues, more than

doubling the capability of detection when compared to SmartCheck.

With our proposed extension we can detect 24% of the vulnerabil-

ities annotated in sb
curated

, instead of the previous 11%. More

details about this extension, including evaluation on its precision,

are presented in [2].

9
Descriptions of these vulnerabilities can be found in DASP’s website: https://dasp.co

10
SmartCheck Extended: https://github.com/pedrocrvz/smartcheck

Table 2: Vulnerabilities identified per category by

SmartCheck and SmartCheck Extended in sb
curated

Category SmartCheck SmartCheck Extended

Access Control 2/19 11% 4/19 21%

Arithmetic 1/22 5% 1/22 5%

Bad Randomness 0/31 5% 10/31 32%

Denial of Service 0/7 0% 0/7 0%

Front Running 0/7 0% 0/7 0%

Reentrancy 5/8 62% 5/8 62%

Short Addresses 0/1 0% 0/1 0%

Time Manipulation 1/5 20% 4/ 5 80%

Unchecked Low Level Calls 4/12 33% 4/12 33%

Other 0/3 0% 0/3 0%

Total 13/115 11% . 28/115 24%

4 CONCLUSION

This paper presents SmartBugs, an extensible and easy-to-use ex-

ecution framework that simplifies the execution of analysis tools

on Solidity smart contracts. One of the main goals of SmartBugs is

to facilitate the reproducibility of research in automated reasoning

and testing of smart contracts. To demonstrate that integration of

new tools and comparison with existing tools is easy, we extended

SmartCheck and used SmartBugs to show that our extended version

improves substantially the detection of vulnerabilities related to

Bad Randomness, Time Manipulation, and Access Control.

We believe that SmartBugs can be a valuable asset for driving

research in automated analysis of smart contracts. Future work in-

cludes i) addition of new analysis tools, ii) expansion of the datasets

with more contracts, iii) improved documentation (e.g. contribution

guidelines), and iv) new empirical studies supported by SmartBugs.
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