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Abstract—Blockchains based on proofs of work (PoW)
currently account for more than 90% of the total market capital-
ization of existing digital cryptocurrencies. The security of PoW-
based blockchains requires that new transactions are verified,
making a proper replication of the blockchain data in the system
essential. While existing PoW mining protocols offer considerable
incentives for workers to generate blocks, workers do not have
any incentives to store the blockchain. This resulted in a sharp
decrease in the number of full nodes that store the full blockchain,
e.g., in Bitcoin, Litecoin, etc. However, the smaller is the number
of replicas or nodes storing the replicas, the higher is the
vulnerability of the system against compromises and DoS-attacks.

In this paper, we address this problem and propose a novel
solution, EWoK (Entangled proofs of WOrk and Knowledge).
EWoK regulates in a decentralized-manner the minimum number
of replicas that should be stored by tying replication to the
only directly-incentivized process in PoW-blockchains—which
is PoW itself. EWoK only incurs small modifications to existing
PoW protocols, and is fully compliant with the specifications
of existing mining hardware—which is likely to increase its
adoption by the existing PoW ecosystem. EWoK plugs an
efficient in-memory hash-based proof of knowledge and couples
them with the standard PoW mechanism. We implemented
EWoK and integrated it within commonly used mining protocols,
such as GetBlockTemplate and Stratum mining; our results
show that EWoK can be easily integrated within existing mining
pool protocols and does not impair the mining efficiency.

I. INTRODUCTION

In spite of their huge energy consumption and low perfor-
mance, Proof of Work based blockchains currently account for
more than 90% of the total market capitalization of existing digi-
tal cryptocurrencies [15] and are being used in a number of open
blockchains such as Bitcoin, Litecoin, Dogecoin, and Ethereum.

These blockchains implement a novel distributed consensus
scheme based on Proof of Work (PoW) that scales to a
large number of nodes. Here, participants “vote” with their
computing power on the next set of transactions to be added
by “mining” blocks—which effectively limits the power of
individual users and makes Sybil attacks difficult.

Recall that the current difficulty level of PoW mining
is prohibitively high that miners do not have incentives to
operate solo. Instead, joining a mining pool emerges as an
attractive option for miners to receive a portion of the block
reward on a consistent basis. Here, rewards are shared between
members of the mining pools, so called workers, based on the
computational resources that they commit. There are currently

a number of models for profit sharing in mining pools, such
as PPS, PPLNS, among others. In all these models, workers
do not connect directly to the blockchain; instead, they only
connect to the pool operator which defines their search space
parameters (e.g., workers are typically required to solve a
PoW with a reduced difficulty).

Although profitable, mining pools offer a clear
departure from the original model outlined in Nakamoto’s
whitepaper [39]. Namely, workers in a mining pool are
mostly incentivized by obtaining the block reward and do
not have strong incentives to store the blockchain, nor to
operate a full Bitcoin node. In fact, most existing workers run
dedicated mining protocols, such as Stratum mining [43] or
GetBlockTemplate [24], in which they solve specific outsourced
PoW puzzles without having to store any parts of the blockchain.
This resulted in a sharp decrease in the number of full nodes
that store the full blockchain (cf. Figure 4) and a considerable
surge in the number of workers and lightweight blockchain
clients (which only store a small subset of transactions).

Given that blockchain security relies on the availability of
all events (and their order of execution), we argue that the
lack of incentives to store the blockchain data poses a serious
threat to the security and sustainability of the PoW-based
blockchains. In theory, ensuring few ”trusted” replicas in
the system suffices for security; however, the essence of
blockchain is not to rely on ”trusted nodes”. Moreover, the
smaller is the number of replicas, the higher is the vulnerability
of the system against compromises and DoS-attacks.

In this paper, we address the problem and we propose a
solution, EWoK (Entangled proofs of WOrk and Knowledge),
to incentivize storing the blockchain data in the network. Our
solution effectively divides the blockchain into shards and
requires workers to locally store different shards in order to
correctly solve the standard hash-based PoW. EWoK increases
security by regulating in a decentralized-manner the minimum
number of replicas that should be stored. EWoK achieves this
by tying replication to the only directly-incentivized process in
PoW-blockchains—which is PoW itself. In this sense, EWoK
does not aim to increase the number of PoW-blockchains
replications but distributes the responsibility of storing the
blockchain ledger within those parties invested in making
PoW-blockchains successful, even against abuse [3].

Notice that the literature features a number of contributions



that propose a re-purposing of the PoW to e.g., prove storage
of archival data [19], [30], [35], [40]. Such re-purposing—
although beneficial—however obviates the need for hash-
optimized equipment (e.g., ASICs and FPGAs that have limited
RAM and storage capabilities) and would require investments in
different types of machinery (e.g., storage and exponentiation-
optimized machinery). Namely, one of the (many) reasons that
led to the sustainability of the Bitcoin blockchain was the large
investments made by several mainstream companies in large
data centers that are equipped with dedicated PoW mining
capabilities [32], [33]. Due to their large market cap, it is clear
that drastic changes to the rules governing the dynamics of the
PoW ecosystem will be widely resisted by the backing industry.

Unlike these approaches, EWoK does not require any modifi-
cation to PoW headers, is fully compliant with the specifications
of existing mining hardware, and only incurs minor changes
to the existing PoW protocols—which is likely to increase
its adoption within the existing PoW ecosystem. EWoK plugs
an efficient in-memory proof of knowledge into standard
hash-based PoW mechanism to force workers to store (in-
memory) a modest (but fixed) shard of the blockchain data. We
integrated EWoK within existing mining pool protocols, such
as GetBlockTemplate (GBT) and Stratum mining (STM); our
results show that EWoK does not require any modification to
these protocols and incurs marginal computational overhead to
the existing PoW protocol adopted in existing PoW blockchains.

By ensuring that individual workers store a small part
of the blockchain, EWoK emerges as the first workable
attempt to incentivize storage in the blockchain and to
practically amortize the costs of dispersing the blockchain data
amongst various workers. In summary, we make the following
contributions in this work:
• Formal Framework: We propose the first formal

framework and a security model for a PoW that
incentivizes storage of parts of the blockchain data.
Our model, dubbed p-covering blockchain, extends the
existing model of PoW and requires that each worker
independently stores a fraction p of the blockchain data.

• Concrete Instantiation: We describe a concrete scheme,
dubbed EWoK, which extends existing mining protocols
with efficient in-memory proofs of knowledge and couples
them with the standard PoW mechanism. EWoK leverages
two interconnected phases: in the first phase, the workers
reach consensus on the exact set (including order) of
transactions to be confirmed in a given block. In the second
phase, the workers solve a proof of work instantiation
based on this set of transactions that is entangled with
a proof of work over their specific shard. We show that
EWoK is secure in our generic p-covering model.

• Prototype Implementation: We implement and evaluate
a prototype based on EWoK using GPU mining and
integrate it with STM and GBT. Our results show that
EWoK does not require nor solicit changes in existing
mining hardware, and achieves a 2% higher hash rate than
GBT and only deteriorates the hash rate of STM by 1%.

The remainder of this paper is organized as follows. In

Section II, we briefly recall basic information about blockchains
based on Proofs of Work (PoW) and shed lights on their
shortcomings. In Section III, we introduce our extension of
PoW-based blockchains, p-covering blockchain, which ensures
that the blockchain is stored among the workers with a specified
level of redundancy. In Section IV, we present EWoK and
analyze its security. In Section V, we evaluate a prototype imple-
mentation based on the integration of EWoK with GPU mining
based on STM and GBT. In Section VI, we review related
work in the area, and we conclude the paper in Section VII.

II. BACKGROUND & PROBLEM STATEMENT

A. PoW-based Cryptocurrencies

PoW-based blockchains1 leverage Proofs of Work (PoW)
as a public timestamping mechanism in order to prevent
double-spending attacks. Namely, digital transactions are
included in blocks that are broadcasted in the entire network.
Note that when miners do not share the same view in the
network (e.g., due to network partitioning), they might work
on different block chains, thus resulting in “forks” in the block
chain. Block forks are inherently resolved by the system; the
longest block chain will eventually prevail. Although perfect
synchronization within the network is not required, the parties
are assumed to be loosely synchronized.

To prevent double-spending of the same coin, PoW-based
cryptocurrencies rely on the synchronous communication
assumption along with a hash-based PoW concept. More
specifically, to generate a block, miners must find a block header
that represents the solution of a PoW, i.e, when hashed, the
result fulfills a certain criterion; for instance, it must be below
a given target value (informally H(blockheader)≤ target.) If
such a block header is found, miners then include it (as well as
the additional fields) in a new block thus allowing any entity to
verify the PoW. Upon successfully generating a block, a miner
is granted a monetary reward (i.e., in the form of a coinbase
transaction that specifies the ID of the recipient of the reward).
The resulting block is forwarded to all peers in the network,
who can then check its correctness by verifying the hash com-
putation. If the block is deemed to be “valid”2, then blockchain
nodes append it to their previously accepted blocks. Since each
block links to the previously generated block, the Bitcoin block
chain grows upon the generation of a new block in the network.

An example of a Bitcoin block header is depicted in Figure 8
in the Appendix. Notice that the hash function H and most of
the values in the block header as the hash of the previous block
LB and the (current) target target are system-wide parameters
or implicitly given and cannot be changed by the miner. In
the sequel, we refer to these parameters as πblckhdr. The only
input parameters to the hash function that the worker can vary
are directly a 4-byte nonce nonce and indirectly the 32-byte
root MR of the Merkle hash tree. The Merkle tree is built over
the transactions where the first leaf plays a special role by

1In Section III-B, we present a formal model for PoW blockchains.
2That is, the block contains correctly formed transactions that have not been

previously spent, and has a correct PoW.



Algorithm 1 Work flow for solving the PoW.
Input: Non-changeable block header parameters πblckhdr
1: while PoW not solved do
2: Choose a new value for CBnonce to specify the coinbase CB
3: Compute the Merkle root MR over the coinbase CB and the set of

transactions T
4: for nonce∈{0,1}32 do
5: Compute h :=H(πblckhdr,MR,nonce)
6: if h≤ target then
7: break; {Solution found.}
8: end if
9: end for

10: end while
Output: The solution sol=(CBnonce,nonce).
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Fig. 1: Sketch of a GBT work template and corresponding worker’s
response. The pool operator outsources to its workers a block template
that also contains the field CoinbaseAux. This field contains auxiliary
information given by the pool operator which is used by the worker
to populate parts of the coinbase transaction. Once a PoW solution is
found, the worker constructs and serializes the corresponding block.

containing the coinbase transaction. The coinbase contains on
the one hand information about the operator/worker (so that
the mining reward can be claimed afterwards) and also a field
(typically of 100 bytes) that can be fully changed depending on
the underlying mining pool protocol. This field is used as an
“extra nonce” to expand the search space available to workers
(since the 32-bit nonce space can be exhausted very fast by
dedicated mining hardware) without the need to frequently
contact the pool operator for additional parameters. We refer
to this field in the following by CBnonce. Note that CBnonce is
not directly input to the hash function but affects it implicitly
as it influences MR. Thus, we summarize the process of
solving the PoW in Algorithm 1. Notice that validation here
is straightforward: given the block header parameters πblckhdr
and the value CBnonce, one can compute the full block header
and check whether its hash value is below the target target.

The main intuition behind PoW is that for peers to double-
spend a given coin, they would have to replace the transaction
where the coin was spent and the corresponding block where
it appeared in, otherwise their misbehavior would be detected
immediately. This means that for malicious peers to double-
spend without being detected, they would not only have to redo
all the work required to compute the block where that coin was
spent, but also recompute all the subsequent blocks in the chain.

B. Mining Pool Protocols

The current difficulty level of mining valid blocks is so
prohibitively high that it reduces the incentives for miners to

operate alone. Joining a mining pool is an attractive option to re-
ceive a portion of the Bitcoin block reward on a consistent basis.

Namely, mining pools offer a way for miners to contribute
their resources to generate a block and to split the reward
between all the pool members following a certain reward pay-
ment scheme. Shares of the reward are assigned by the mining
pool to its members (referred to as workers in the sequel) who
presents valid proof-of-work. In more detail, a mining pool sets
target between 1 and the blockchain’s target difficulty (denoted
in the sequel as pool target level). Subsequently, a share is
assigned to those workers that provide a block header that
scores a difficulty level between the pools difficulty level and
the currency’s difficulty level. The main purpose of these block
headers is to show that the worker is contributing with a certain
amount of processing power. Appendix A outlines popular
revenue sharing models adopted by existing mining pools.

Most existing mining pools adopt two main mining
protocols: GetBlockTemplate [24] (cf. Figure 1) and Stratum
mining [43] (cf. Figure 2). These protocols are supported by
all existing hash-optimized mining hardware, such as ASICs,
FPGAs, and GPUs. Due to lack of space, we give a detailed
overview of these protocols in Appendix B.

C. Lack of Storage Incentives

PoW mining is strongly incentivized by coinbase transactions
and fee collections in the system. For example, each block
generation in Bitcoin currently awards miners a fixed revenue
of 12.5 BTCs and a variable profit of 0.7 BTCs. This has lead
to a considerable surge in the number of miners/workers over
the last couple of years (cf. Figure 3).

Unlike mining, where participants are rewarded for
confirming transactions, running a full node and storing the
full blockchain does not provide any incentive. The only
benefit to run a node is to help protect the network. As shown
in Figures 3 and 4, in the early years of adoption of PoW
blockchains, the system started in a well-balanced state; the
majority of miners were basically full nodes that store the full
blockchain. Later on, with the proliferation of dedicated mining

Job ID (V)

Merkle-Branch (V)

PrevBlockHash (32) Bits(V)

Current Time (4) coinb1 (V) coinb2 (V)

Other Fields

jo
b
 n

o
ti
fi
ca

ti
o
n

Extranonce1 coinbase tx coinb1 coinb2Extranonce2 

subscription
reply Extranonce1 (V) Subscription ID (V) Extranonce2_size (4) 

Fig. 2: Sketch of an STM work template and corresponding worker’s
response. Here, workers first receive the value of Extranonce1 and
the size of Extranonce2 from the pool operator right after the initial
subscription to the mining pool. Unlike GetBlockTemplate, the pool
operator fixes all the transactions to be confirmed in the PoW excluding
the Extranonce2 field in the coinbase transaction. The workers only
receive the sibling paths of the coinbase transaction in the transaction
Merkle tree, which is enough to compute the Merkle root once the
coinbase transaction is determined.



hardware, the surge of mining pools and lightweight clients, and
the increase of the blockchain storage size, the mining process
was almost completely decoupled from serving as a full node.
This ecosystem change then outlined a lack of foresight in
designing incentive mechanisms in existing PoW blockchains.

For instance, as shown in Figure 4, the number of full Bitcoin
nodes dropped from 200,000 in 2014 to approximately 5,000
in 2016. Given lack of incentives, this number is only expected
to decrease in the future. Although developers allow nodes to
“prune” the blockchain—thereby freeing considerable space on
their hard drive, nodes still need to download the full blockchain
before pruning actually happens. Most users nowadays run
lightweight clients which do not store the blockchain and only
seldomly verify transactions/blocks of interest [21].

D. Problem Statement

The decrease of the number of full nodes directly impacts the
security of the blockchain. As already stated, it is essential that
the full and correct blockchain is available within the system
at any time for validating new transactions. While in theory
one ”trusted” copy would suffice, this would contradict the
fundamental decentralization principle of existing blockchains.
Moreover, the less replicas are stored within the system, the
more susceptible it becomes for compromise and (DoS) attacks.

A promising idea is to tie the replication to the only
directly-incentivized process in PoW-blockchains—which is
mining itself. In fact, literature features a number of interesting
proposals for re-purposing PoW to prove the storage of
archival data, but as we show in the coming paragraphs, none
of these are applicable to the considered problem.

Most PoW-based blockchains, such as Bitcoin, use a
hash-based PoW that has the task to find an input that is
hashed to a value with certain properties (see Example 1 in
Section III-B). That is, a PoW usually requires many hash
executions over randomly chosen inputs. In Permacoin [30],
the PoW is replaced by a Proof of Retrievability (PoR) over
a large archival data file. This PoR essentially requires few
iterations of a hash function on selected inputs (parts of the
data file). Hence, Permacoin would require a drastic change
in current mining hardware and consequently is less likely to
be adapted by the community. Moreover, the archival data file
needs to be known a-priori in its entirety to get extended by a
maximum-distance-separable code and to allow the miners to
pick their own selection of file shares to be stored in their local
storage. That is, Permacoin does not support a dynamically
increasing file—such as the blockchain ledger. In Retricoin
[40], the authors adopt the basic approach of Permacoin but
aim for a more efficient solution in terms of storage overhead,
network bandwidth, and verification time. For the same reasons
as above, Retricoin is not applicable to the problem at hand.

Spacemint [35], Burstcoin [1], and Filecoin [19] aim to
replace PoW by a Proof of Space. This means that a miner
has to prove that a certain amount of storage has been invested
(instead of computation as in the case of a PoW). This would
require likewise drastic changes in existing mining hardware.
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Fig. 3: Evolution of the number of Bitcoin miners over time. Estimates
are adapted from [31].

This immediately raises the following question. How can
we ensure a minimum number of blockchain replicas without
relying on any trusted parties and while being fully compliant
to the current mining processes (cf. Section II-B)? An ideal
solution here should allow in a flexible manner to adjust the
system-wide minimum number of replicas without wasting
computational and storage resources.

III. p-COVERING BLOCKCHAIN

In this section, we introduce a formal model that extends
PoW-based blockchains, dubbed p-covering blockchain. In a
nutshell, a p-covering blockchain ensures that the blockchain is
stored among the workers with a specified level of redundancy.
We show at the end of this section how this solves the
problem stated in Section II-D. In Section IV, we build on this
model and propose a concrete instantiation of a p-covering
blockchain which is fully compatible with existing hash-based
mining hardware.

A. Notations

Throughout the rest of the paper, let λ denote the security
parameter that determines the level of security and we denote
by H a cryptographically secure hash function.

For a probabilistic algorithm A, we denote by y←A(x) the
event that A on input x outputs y. To capture the notion of
effort, we use the notation of steps as follows. Let StepsA(x)
denote the number of steps (i.e., machine/operation cycles)
executed by algorithm A on input x. This includes also idle
steps, e.g., when an algorithm has to wait for some data.

B. Puzzle-Based Blockchains

We proceed with a short explanation of the basics of
puzzle-based blockchains. A blockchain refers to a sequence
of data entries, called blocks. A blockchain is maintained by
a set of stateful parties P and represents a data storage where
the content is trusted by anyone in P without the need of
a centrally trusted instance. A blockchain is dynamic in the
sense that new data, i.e., blocks, are continuously appended
(within each time epoch). Formally, we see a blockchain BC
as an array and denote the i-th block of BC by BC[i].

Definition 1 (Blockchain System): A blockchain system is
composed of a blockchain BC, a setW of workers (i.e., differ-
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Fig. 4: Evolution of the number of Bitcoin full nodes over time.
Estimates are adapted from [20], [21].

ent machines) who maintain the blockchain3, and an interactive
algorithm Consensus. At each point in time, the blockchain is a
sequence of blocks where s=length(BC) denotes its current
length. The Consensus protocol is executed between the parties
inW to commonly agree on the next block Bl of the blockchain.
To increase the costs for appending incorrect content to
the blockchain, most existing (open) blockchains (e.g.,
Bitcoin, Litecoin, Ethereum) require the worker to solve a
cryptographic puzzle first before appending a block.

Cryptographic Puzzle: Roughly speaking, a cryptographic
puzzle should be easy to generate, hard to solve, and easy to
verify. We adapt and extend the model from [6].

Definition 2 (Puzzle System): Let λ denote the security
parameter. A puzzle system is defined by several spaces and
procedures. It comprises a puzzle parameter space PPPS(λ),
a puzzle space PSPS(λ), a solution space SSPS(λ), and a
hardness space HSPS(λ). These spaces specify a publicly
known verification parameter πveri. Moreover, there exist three
algorithms SamplePS, SolvePS, and VerifyPS defined as follows:
• SamplePS(λ,h,πpuz) is a (possibly probabilistic) puzzle

instance sampling algorithm. On input the security parame-
ter λ, a hardness factor h∈HSPS, and a puzzle parameter
πpuz∈PPPS, it outputs a puzzle instance puz∈PSPS.

• SolvePS(λ, h, puz) is a probabilistic puzzle solving
algorithm. On input the security parameter λ, a hardness
factor h ∈HSPS and a puzzle instance puz ∈ PSPS, it
outputs a potential solution sol∈SSPS.

• VerifyPS(λ, h, πveri, puz, sol) is a deterministic puzzle
verification algorithm. On input the security parameter
λ, a hardness factor h ∈ HSPS, a puzzle instance
puz∈PSPS and a potential solution sol∈SSPS it outputs
TRUE or FALSE.

A value puz is called a valid puzzle if there exists a puzzle
parameter πpuz∈PPPS such that:

Pr[puz←SamplePS(λ,h,πpuz)]>0.

For a given puz, one can efficiently, i.e., with an effort
polynomial in λ, decide whether puz is a valid puzzle.
The hardness factor h specifies the effort to solve a puzzle
using the SolvePS algorithm while λ specifies the difficulty
to cheat on the system, i.e., to violate the soundness. To make

3For the sake of simplicity, we restrict to the case that the set of workers
W is fixed. It is straightforward to extend the definition (and the follow-up
discussion) to capture dynamic sets of workers.

the notation more simple, we omit in the sequel the security
parameter λ and the hardness factor h if they are clear from
the context. That is, we write SamplePS(πpuz) instead of
SamplePS(λ,h,πpuz) and so on.

Naturally, a puzzle system should be complete and sound.
Completeness means that a solution found by SolvePS for a
correctly sampled puzzle will always be accepted:

Definition 3 (Completeness): We say that a puzzle system PS
is complete, if for every hardness factor h∈HSPS it holds that:

Pr

 puz←SamplePS(πpuz);sol←
SolvePS(puz) :VerifyPS(πveri,puz,sol)
=FALSE

=negl(λ)

While the notion of completeness is the same for all puzzle
systems that we consider, the definition of soundness may
vary. Recall that most public blockchains are currently based
on cryptographic puzzles that require a certain amount of
work to be solved, i.e., to provide so-called proof of work.

Proof of Work: A Proof of Work (PoW) system is a puzzle
system as defined in Definition 2 that requires a certain
amount of work, i.e., computational effort, to be solved. Here,
soundness means that for any attacker A, the effort to solve
a puzzle cannot be lower (up to a function g) than the effort
for running the ”official” solving algorithm SolvePoW .

Definition 4 (PoW Soundness): A PoW system is g-sound
if for every PPT adversary A, any h ∈ HSPoW and every
πpuz∈PPPoW , it holds that:

Pr


puz←SamplePoW (πpuz);sol←
A(puz) :VerifyPoW (πveri,puz,sol)=
TRUE ∧StepsA(h,puz)≤
g(StepsSolvePoW

(h,puz))

=negl(λ).

The definition of PoW-based blockchains is straightforward:
Definition 5 (PoW-based Blockchain): A g-sound PoW-based

blockchain is a blockchain system where the process of append-
ing a new block requires to solve at least one g-sound PoW.

We stress that the underlying PoW system is part of the
system parameters of the blockchain system. That is, we
assume that all parties participating into the blockchain system
use the same PoW system and in particular the same puzzle
sampling algorithm. Consequently, a potential solution sol
provided by one worker for a puzzle puz is only accepted if
VerifyPoW (πveri,puz,sol) = TRUE. However, any worker can
select the puzzle parameter πpuz from a given range.

Example 1 (Hash-Based PoW—HPoW): Most PoW-based
blockchains, such as Bitcoin, use a hash-based PoW as
follows. Given a cryptographically secure hash function H
and a bitstring puz, the task is to find a bitstring sol such that
H(puz,sol)≤ target for a pre-defined target target. We dub
this PoW as HPoW and we give a more formal description
of HPoW in Appendix C. In particular, we argue that HPoW
is id-sound where id refers to the identity mapping. We will
refer to HPoW multiple times within this paper.

C. Rational Workers

In the remainder of this paper, we assume rational workers
in the following sense. We model a worker as a machine that



comprises one or several processing units and one local memory.
That is, a worker can fetch data and store data to the local
memory and can process data units. In addition, a worker can
also request data from external data sources but as this requires
network communication, downloading data takes significantly
more time than simply reading it directly from local memory.
The overall goal of a rational worker (i.e., the operator of the
machine) is to maximize his probability in solving the PoW
while minimizing his effort (which translate into costs).

Moreover, a worker is unlikely to alter its mining hardware
characteristics unless such a move would drastically increase
its advantage in solving PoW. Existing solutions that require
the re-purposing of PoW, such as Permacoin, Filecoin,
Retricoin [19], [30], [35], [40] are less likely to be adopted
by workers since they obviate the need for hash-optimized
ASICs and FPGAs equipment (that have limited RAM and
storage capabilities) and would require investments in different
types of machinery (e.g., storage and exponentiation-optimized
machinery). For example, the hardness of solving a puzzle used
in Permacoin [30] and Retricoin [40] relies on the assumption
that a worker can only store part of the file—directly putting
machines with larger RAM into strong advantage.

D. p-Covering Blockchain
As mentioned earlier, PoW mining is strongly incentivized

by monetary rewards, gives no direct incentives to store the
blockchain data. In this respect, we argue that any secure
PoW-based blockchains should ensure a minimum level of
replication of blockchain data in the system. Otherwise, there
might be not enough information to verify PoW solutions.

A promising approach would be to couple the notion
of blockchain data storage with the well-incentivized PoW
mining process in order to offer an inherent incentive for
workers to continuously support the system by storing parts of
the blockchain. We capture this by requiring each worker to
store at least parts of the blockchain data in its local memory
in order to produce a possible PoW solution.

To capture the notion of storage, we adopt the common con-
cept of knowledge extractors. A knowledge extractor algorithm
K is given access to an algorithm A, represented by KA. Note
that this access is non-black-box, e.g., K is allowed to rewind A.
It is important to stress that both, K and A, have only access to
the state of A, i.e., no external inputs are allowed. The interpre-
tation is that K extracted the produced output from algorithm A.

Definition 6 (p-Covering Blockchain): Consider a PoW-
based blockchain system with respect to a g-sound PoW
system and a blockchain BC. This blockchain system is said
to be p-covering for 0≤ p≤ 1 if it holds for any block that
it can be reconstructed from a uniformly selected worker with
a probability ≥p. Formally, there exists a knowledge extractor
K such that it holds any block BC[i] that:

Pr
[
W

uniform← W :BC[i]←KW
]
≥p. (1)

where W uniform← W means that W is uniformly sampled from
W . Note that when interacting with K, a worker has no access
to external inputs and has access to local memory only.

Notice that the case where p= 0 corresponds to existing
PoW-based blockchain systems (see Definition 5). That is, a
p-covering blockchain clearly generalizes PoW-based block-
chain systems. Our goal in this paper is to devise an efficient
p-covering blockchain where p>0 while (i) requiring minimal
changes to existing PoW blockchains and (ii) while being
compliant with the specifications of existing mining hardware.

Such a p-covering blockchain would provide a solution to
the problem stated in Section II-D as follows. A p-covering
blockchain ensures for any randomly selected block to be
stored by a p-fraction so that the expected number of replicas
per block is p · |W| where |W| is the number of workers.
Moreover, the probability that a block is not included in any
shard is at most (1− p)|W|. This ensures for any block a
minimum number of decentralized replicas distributed over
randomly selected miners. Note that these replicas are not
meant to be frequently involved into the verification process
but should be seen as a backup copy.

IV. EWOK: A PRACTICAL p-COVERING BLOCKCHAIN

In this section, we present our solution, EWoK, and analyze
its security. We do this iteratively; namely, we start by
presenting and formalizing our approach, before detailing the
specifications of EWoK.

A. A Strawman Solution

We start by considering the following strawman design
which combines the notion of proofs of knowledge [19], [30],
[35], [40] with the standard PoW mechanism. To this end, we
first introduce an extension of the PoW-notion that binds a
PoW to a file. The core idea is that an algorithm can only
efficiently solve a PoW if it has stored a certain file F.

Definition 7 (File-Bound PoW): A PoW is g′-bound to some
file F if there exists a knowledge extractor K such that it
holds for every PPT adversary A and every puzzle parameter
πpuz∈PPPoW that:

Pr


puz←SamplePoW (πpuz);sol←A(puz);
VerifyPoW (πveri,puz,sol)=TRUE;
StepsA(puz)≤g′(StepsSolvePoW

(puz)) :
F∗←KA :F∗ 6=F

=negl(λ).

Note the difference to the g-soundness of a PoW. There,
the definition actually gives a lower bound specified by a
function g on the effort of any attacker. Here, the definition
says that if an attacker aims to have an effort that is below
a certain upper bound, specified by g′, it has to store the file
F. Namely, we see different types of thresholds with respect
to the time effort an attacker can achieve:

1) StepsA(puz) ≤ g(StepsSolvePoW
(puz)) is practically

impossible if the blockchain system is g-sound.
2) g(StepsSolvePoW

(puz)) < StepsA(puz) ≤
g′(StepsSolvePoW

(puz)) is possible but only ifA stores the
file F if the blockchain system is g′-bound to the file F.

3) g′(StepsSolvePoW
(puz))<StepsA(puz) could be possible

even without storing the file F.



A strawman solution to realize a file-bound PoW is to
couple the PoW with a proof of knowledge (PoK) with respect
to a file F, being the blockchain BC in our case. Since
checking knowledge of the full blockchain is infeasible, a
reasonable approach is to challenge a random selection of
blocks of the blockchain such that the response can only be
computed if these blocks are presented. For coupling both
concepts, a PoW and a PoK, one can proceed as follows:

1) A worker has to solve a PoW puzzle puz. We denote the
solution found by the worker by sol.

2) Compute from sol a PoK-challenge over BC, e.g., by
means of a pseudorandom function.

Since the ”file”, i.e., the blockchain, is publicly known,
conceptually simple proofs of knowledge are possible. For
instance, a straightforward approach is to require the hash
over a pseudorandom selection of blocks. A summary of this
strawman solution is given in Algorithm 4 in the Appendix.

Note that existing schemes that re-purpose PoW to prove
storage of a file F [19], [30], [35], [40] follow a similar
approach but cannot be directly used in our case where F is
the entire blockchain. Namely, in these solutions, any worker
that stores the full blockchain can immediately solve the
puzzle and produce a new block. Given the still moderate size
of the blockchain, machines equipped with large RAM space
would have more advantage over a fast Gigahash worker.
Moreover, these solutions typically assume that the file is fixed
(e.g., Permacoin extends the file with an erasure code) which
is not the case in the blockchain that constantly grows in size.

Although the aforementioned strawman solution already
overcomes these limitations, we stress at this point that it
does not necessarily satisfy Definition 6. Namely, although this
solution ensures that it is g-bound to the blockchain in case that
the underlying PoW is g-sound, it does not enforce that different
workers store a replicated version of the blockchain. Namely,
workers are typically equipped with dedicated mining hardware
that only possess limited storage capabilities (typically few GBs
of storage and RAM) and cannot store the full blockchain. As
a consequence, this solution only ensures that the pool operator
(or any other central entity) stores the full blockchain. In fact,
one may consider one party that is only dedicated to solving
the PoK at the end of the mining process. In any case, there is
no guarantee that the workers store any parts of the blockchain.
Notice that there are currently a handful of mining pools [22]
whose operators already typically store the full blockchain.

In addition, any solution should be compatible with existing
mining protocols. For example, in PoW blockchains, miners
are rewarded by the transaction specified in the coinbase (cf.
Section II-B)—which overcomes the need for a cumbersome
key management process. Solutions such as Permacoin
however deploy specific types of keys that eventually are used
for signing the rewarding transaction. Note that these keys
need to be updated regularly, incurring further computational
effort incompatible on the hashing machines.

B. Sharding the Blockchain Storage

To overcome the limitations of the aforementioned strawman
solution, we now introduce a further extension. Namely, we
demand that each worker has to store a part of the file only,
called a shard, which is determined by a sharding function. In
EWoK, the shard is determined by data that is connected to
the worker (to realize a distributed storage of the blockchain)
but is independent of the puzzle (to encourage the storage
in local memory). For the sake of generality, we define a
sharding function over an abstract input space S.

Definition 8 (Sharding Function): Consider a file F, divided
into ` blocks F[i]. A sharding function shrd is a mapping
that accepts inputs x from some input space S and outputs
a fraction of the file, i.e., shrd(s) = [F[i1],...,F[i`′ ]] where
0≤ i1<...<i`′ and `′≤`. Slightly abusing notation, we say for
a block F[i] that F[i]∈ shrd(s) if shrd(s)= [F[i1],...,F[i`′ ]]
and there exists an index ij such that ij= i.

We say that the sharding function is p-covering with
0≤p≤1 if it holds for any block F[i] that:

Pr
[
x

$←S :F[i]∈shrd(s)
]
≥p.

where x $←S means that x is uniformly sampled from S.
We consider now a variant of file-bound PoW where

efficiently solving a puzzle puz requires to solve a shard of
the file F only. This is covered by requiring that a solving
algorithm can only be time-optimal, i.e., the effort being
below a certain threshold, if the algorithm has direct access
to the involved shard.

Definition 9 (Shards-Bound PoW): Consider a PoW that
is file-bound to some file F. Moreover, assume a sharding
function shrd that is defined on PSPoW . That is, the input
space of shrd is the puzzle space of PoW. The PoW is said to
be g′-bound to (F,shrd) (or shards-bound for short) if there
exists a knowledge extractor K such that it holds for every PPT
adversary A, every πpuz∈PPPoW , and any h∈HSλ that:

Pr


puz←SamplePoW (πpuz);sol←A(puz);
VerifyPoW (puz,sol)=TRUE;
StepsA(puz)≤g′(StepsSolvePoW

(puz)) :
F∗←KA :F∗ 6=shrd(puz)

=negl(λ).

Notice that by setting shrd(x)=F for all x∈S , a shards-bound
PoW becomes a file-bound PoW. The definition does not
prevent A to access external data sources, but this would imply
higher time effort. Hence, a rational worker (cf. Section III-C)
has strong incentives to store the whole shard locally.

Definition 10 (Independent Shards): Consider a shards-bound
PoW-based blockchain system. We say that this blockchain
system ensures independent shards if it holds for any block
that the probability of being part of one shard is practically
independent of whether it is part of another shard. More
precisely, let E(W,Bl) denote the event that block Bl is part
of shard stored by worker W . Ensuring independent shards



means formally that any two different rational W,W ′∈W and
any block Bl :=BC[i] it holds that:

|Pr[E(W,Bl)∧E(W ′,Bl)]
−Pr[E(W,Bl)]·Pr[E(W ′,Bl)]| = negl(λ).

Our main goal is to devise a PoW-based blockchain system
that is shards-bound with respect to a p-covering sharding
function and with independent shards. This is motivated by
the following result:

Theorem 1: A PoW-based blockchain system that is
shards-bound for the identity function g′=id with respect to
a p-covering sharding function and that ensures independent
shards is a p-covering blockchain (see Definition 6).
We show the theorem informally. Recall that we consider only
rational workers that aim to solve the underlying PoW as fast
as possible to compete with other workers. As the PoW is
id-bound to the shard, a rational worker practically realizes the
SolvePoW algorithm with continuous access to the shard to his
specific puzzle. Notice that the best strategy for the worker is
to have the shard loaded in RAM in order to minimize memory
access overhead (from the network or from disk). The fact
that the system ensures independent shards with respect to a p-
covering sharding function ensures that each worker is storing
a different p-fraction of the blockchain and hence is p-covering.

Notice that maintaining “correct replicas” within the RAM
of individual miners in EWoK does not necessarily give more
control to mining pools. Individual miners have shown great
awareness of the dangers of centralization in the past and
they are likely to change mining pools (to preserve their
investments) whenever they feel that the pool operator is not
acting in the interest of the system: see [3] for example. As
such, we believe that EWoK places the additional responsibility
of storing parts of the blockchain data within those nodes
who are truly invested in making PoW blockchains successful.

In what follows, we present a concrete instantiation, EWoK,
that practically instantiates a shard-bound PoW.

C. EWoK: Protocol Specification

We start by describing the sharding function (see
Definition 8) that are used in EWoK, i.e., that are part of the
specification of EWoK. Afterwards, we explain how to turn
the Bitcoin PoW into a shards-bound PoW (see Definition 9).

1) Specification of the Sharding Function:
Recall that BC denotes the blockchain of size s and BC[i]

the i-th block. For the specification of the sharding function,
EWoK divides the blockchain into chunks with equal chunk
size N , i.e., the first N blocks form the first chunk and so on.
The shard function selects pseudorandomly (with H) exactly
one block per chunk. A complete description is given in
Algorithm 2. The description is generic based on some input
x; in the following paragraphs, we discuss the specification
of the input x.

This sharding function provides various advantages:
• It is p-covering (see Section IV-D).
• It is independent of the current size of the blockchain.

Algorithm 2 Sketch of the sharding function shrd in EWoK.
Input: Value x∈S
1: shard :=[] {Initialize an empty shard}
2: for i=1,...,d s

N
e do

3: Compute j :=H(x,i) modN {Specifies which block within the i-th
chunk is to be appended to the shard.}

4: Compute ind :=(i−1)·N+j {Gives the total index of the block to
be appended.}

5: Append(shard,BC[ind]) {Appends the selected block to the shard.
If BC[ind] does not exist yet, this command is ignored.}

6: end for
Output: Shard shard.

• Although the shards grow over time (this is a consequence
of the p-covering requirement), this does not affect or mod-
ify the storage of blocks already contained in the shard.

• The parameters can be reasonably chosen to ensure that
shard’s size fit within the available memory of existing
dedicated mining hardware (see Section V).

• It does not require any involved computation and supports
mechanisms already contained in existing PoW-based
blockchains. We confirm this by means of implementation
in Section V.

2) Specification of the Shards-Bound PoW:
The shards-bound PoW in EWoK is composed of two

phases, each using a variant of the hash-based PoW HPoW (cf.
Section II-A) with targets target1 and target2, respectively.
In the first phase, the workers reach consensus on the exact
set (including order) of transactions to be confirmed in a given
block. In the second phase, the workers solve a variant of HPoW
based on this set that entangles the proof of work with a proof
of knowledge on their specific shard. While this entanglement
of PoW with PoK ensures that the PoW is shard-bound, it
does not guarantee that different workers store independent
shards. Since PoW (by design) does not embed any notion
for coupling workers with a unique system-wide identity, the
straightforward approach of coupling identities to shards is
not possible4. Instead, EWoK gives economic incentives to
the workers to store independent shards by ensuring that two
workers operating over the same shard effectively decrease
their mining capabilities. This is achieved by selecting the
parameters such that on average, only one solution can be
expected in the second phase. As a worker can vary both the
set of transactions and the nonces, EWoK restricts the set of
transactions in phase 1 and the set of allowed nonces in phase 2.

In what follows, we explain EWoK in detail. We focus
here on the description of the algorithms and discuss concrete
suitable choices in subsequent sections.

Fixing the shard: Recall that the transactions exclude the coin-
base transaction CB. In the sequel, we assume that the coinbase
transaction is divided into two parts CB = (CB1, CB2)
such that CB1 contains all information that specify the
rewarding transaction for the miner. This is conforming with
the operation of GBT and STM (cf. Section II). Each of these

4Notice that permission-based blockchains (e.g.,Hyperledger Fabric [4])
(where workers have a clear identity) allow to directly enforce the property of
independent shards, i.e., by coupling them to the identity of the worker.



parts of CB plays a different role in EWoK. The first part,
CB1, determines the shard to which the PoW is bound. We
have shard :=shardCB1 :=shrd(H(CB1)). The second part,
CB2, is used as input for solving the PoW in the second phase.

First phase — fixing the transactions: Assume a set of
transactions T ∗ that are candidate for inclusion in the next
block. The goal of this first phase is to reach consensus amongst
workers of the same mining pool on the set of transactions
(including order) to be used in the second phase. We will show
in Section IV-D that this phase particularly enforces workers to
operate all over the same set of transactions. To achieve such
consensus while leveraging existing mining hardware/software,
EWoK deploys HPoW with target target1. That is, a set of
transactions T together with a specified order is said to be
valid with respect to a nonce noncetrans if it holds:

H(T,noncetrans)≤ target1. (2)

In summary, the task of a worker in the first phase is to find
a valid set of transactions together with the corresponding
nonce noncetrans.

Second phase — mining a block: Given block header
parameters πblckhdr and a valid set of transactions T together
with an appropriate value noncetrans, the second phase
mainly deals with the generation of the appropriate block
header that solves a specific hash-based proof of work with
respect to T . To this end, EWoK adopts the core idea from
HPoW but entangles it with in-memory proofs of knowledge
of the shard shardCB1

:= shrd(H(CB1)). Let MR(CB,T )
denote the root of the Merkle tree where CB defines the first
leaf and the following leaves are specified by T . Recall that
CB1 (part of CB) determines the shard per worker. The task
is now to find a value CB2 and a value nonce such that:

H(πblckhdr, MR((CB1,CB2),T ), nonce)≤ target2. (3)

Here, the value CB2 has the form CB2 =
(noncetrans,CBnonce), where noncetrans is output by the first
phase and only the second value, CBnonce, can be varied. To cou-
ple this PoW with a PoK over the shard shardCB1

, the values
of CBnonce are derived from the blocks of the shard as follows.

Let ftrans denote a function (e.g., a cryptographic hash) that
derives from a given set of transactions T a characteristic value
vT =ftrans(T ). We assume that vT is computed once initially.
The computation of CBnonce involves vT , the blocks comprising
the shard, and a value pn called the pre-nonce (to reflect the
fact that it will be used as a seed to determine another nonce):

CBnonce :=(H(vT ,shardCB1
[index],pn), pn). (4)

Analogous to the first phase, we restrict the space of possible
pre-nonces to enforce independent shards (cf. Definition 10).
As the PoW is tied to a shard, workers who operate over
the same shard share the same restricted nonce space and
hence reduce their probability of success. As we show in
Section IV-D, this gives incentives to rational workers to

Algorithm 3 The algorithm SolveEWoK.
Input: The block header parameters πblckhdr including hash function H :
{0,1}∗→{0,1}n, set of transactions T ∗, thresholds target1, target2,
and δpre−nonce

Compute Shard
Split the coinbase CB=(CB1,CB2)
Compute shard :=shrd(H(CB1)).

Find valid set of transactions (first phase)
while No valid set of transactions found do

Choose a set of transactions T from T ∗ (including an order)
Choose value noncetrans

if H(T,noncetrans)≤ target1 then
Valid set of transactions found. Break WHILE-loop.

end if
end while

Solve Proof of Work (second phase)
Compute vT =ftrans(T )
while Proof of Work not solved do

Choose a pre-nonce pn≤δpre−nonce

Compute index index :=find(vT ,pn)
Compute CBnonce :=(H(vT ,shard[index],pn), pn)
Set CB=(CB1,(noncetrans,CBnonce))
for nonce∈{0,1}32 do

Compute h :=H(πblckhdr, MR(CB,T ), nonce).
if h≤ target2 then

PoW-solution found. Break WHILE-loop.
end if

end for
end while

Output: Solution (T,CB,nonce).

choose different shards. To restrict the nonce space, EWoK
enforces an upper bound δpre−nonce when choosing pn:

pn valid ⇔ pn≤δpre−nonce. (5)

It remains to explain how the index index that determines
which block of the shard of length `shrd is involved in the
computation of CBnonce (see Equation 4) is computed. To this
end, we simply set

index :=find(vT ,pn) :=H(vT ,pn) mod`shrd. (6)

An overview of these steps is given in the last part of Algo-
rithm 3. If h≤ target2, a solution is found. The complete solu-
tion is then given by CB and nonce together with the valid set
of transactions T . The validation of a solution (T,CB,nonce)
is straightforward and given in Algorithm 5 in the Appendix.

3) Practical Considerations:
Parameter Selection: To ensure a smooth migration from
an HPoW-based blockchain to a EWoK-based blockchain,
the overall computational effort for successful mining should
remain the same. To this end, we suggest to set both target1
and target2 to 2× target where target denotes the target
used in HPoW. This ensures that the work efforts for the
proofs of work in phase 1 and 2, respectively, are about half
the effort of the HPoW each.

In addition, we restrict the nonce space for the second phase
such that, on average, only one solution can be expected in the
second phase for two reasons. First, this approach discourages
different workers to operate over the same shards and hence



gives incentives for storing independent shards. Second, one
needs to take into account that two-phase PoW protocols tend
to favor large mining pools when implemented in a naive
way [16], [34]. The reason is that finding a solution to the
two-phase puzzle is no longer a Poisson process, where every
miner has in every moment the same probability to succeed.
Instead, a solution can only be found in the second phase,
and large mining pools will typically progress faster to the
second stage. For example, assuming a 2-stage PoW (where
both phases have equal difficulty) and only two miners where
one miner has the double computing power of the other, the
winning probability of the more powerful miner increases to
74% instead of the default 66.6%. Similar to [34], we mitigate
this by ensuring that for any Phase 1 solution, there is only one
possible Phase 2 solution. For example, assuming the difficulty
in the Bitcoin network on the 10th of August 2017, this can
be achieved by restricting the nonce space to approximately
70 bits. Note that a worker can control two values in phase
2, the 32-bit value nonce and the pre-nonce value pn, so that
we restrict the freedom of the latter to 38 bits. We validate
this choice of parameters experimentally in Section V.

Note that while a worker could in addition also vary the
timestamp, this is possible within a very small range only
as otherwise the block becomes outdated. Thus, the impact
of varying the timestamp can be neglected. Clearly, other
tradeoffs are possible as long as the total effort of both phases
equals approximately the effort of the HPoW and as long the
set of allowed pre-nonces in phase 2 is not too large.

Work Flow: We stress that, in practice, the computation
of the shard will be done only once by each worker. To
ensure efficient execution of phases 1 and 2, the workers are
likely to load their respective shards in RAM. We show in
Section V that this is a reasonable assumption; namely, we
show how to realize modest shard sizes (with approximately
few hundred MBs) that can easily fit into the available RAM
of most existing mining hardware. Notice, however, that the
shard size will grow with the length of the blockchain. In
this case, workers will continuously update their shards using
the non-interactive deterministic sharding function specified
in Algorithm 2. However, although the shards grow over time,
EWoK ensures that this does not affect or modify the storage of
blocks already contained in the shards stored by each worker.

Moreover, as we show in Section IV-D, it is a good strategy
for the operator to distribute the search for a valid set of trans-
actions (phase 1) among the workers in the mining pool, e.g.,
by splitting the space of noncetrans values. Once one worker
succeeded, the solution of phase 1 (i.e., the fixed transaction
set) is forwarded to the others who can then immediately start
with phase 2. In this sense, Algorithm 3 should not be seen
as a representation of the work of a single worker; instead, it
summarizes all single processes occurring within a mining pool.

As motivated in Section IV-A, we assume that the verification
of the blocks is done by parties that store the full, public block-
chain. Recall that pool operators currently store the full block-
chain in order to verify new blocks and outsource new puzzles.

Instantiation: This aforementioned process can be best
instantiated practically by first requiring all workers to solve a
GBT work template where all other fields—besides the worker
ID, the target difficult, and the set of transactions—are set to
zero. Once a worker finds a solution for phase 1, he reports it
in the serialized block output in GBT. For all practical reasons,
if a worker is able to find a nonce for the exact set (and order)
of transactions reported in the GBT work template, he can
only submit the nonce and his worker ID back—without the
need to serialize the entire resulting block.

Given the output of GBT in phase 1, the operator quickly
constructs the sibling paths associated with the Merkle
root and proceeds similarly to STM. Namely, the operator
outsources a work template asking workers to solve the
corresponding solution for phase 2. This process is detailed
in Figure 9 in the Appendix. We stress at this point that this
process does not necessarily require a large mining pool and
can be equally applied e.g., by a solo miner.

While phase 2 of EWoK is compatible with all current
mining hardwares, phase 1 might require some tailoring to make
it compatible with existing non-programmable mining hardware
in the market. For example, ASIC-based gigahash machines are
optimized to compute hashes on inputs of 80 bytes while the
transaction set T has typically a larger size. To accommodate
this, one could first compute the hash of T before handing
it over to the gigahash machine and pad the 32-byte output
along with noncetrans to be 80 bytes. The security analysis
can be transported to this case in a straightforward manner.

D. Security Analysis

In this section, we analyze the security of our solution with re-
spect to the model outlined in Section III. More precisely, we ar-
gue that EWoK is a shards-bound blockchain system (Lemma 2)
with respect to a p-covering sharding function (Lemma 1) and
that it provides independent shards (Lemma 3). Based on this, it
follows from Theorem 1 that EWoK is a p-covering blockchain.

We base our arguments on the random oracle model with
respect to the deployed hash function H . That is, the outputs of
the hash function for pairwise different inputs are independent
and uniformly distributed in {0,1}n. Notice that, in EWoK, the
hash function is used in different contexts, e.g., for checking
the validity of a set of transactions (cf. Equation 2) or when
a solution for the PoW in the second phase has been found
(cf. Equation 3). We assume a distinguished input message
format in each context to have formally independent H-calls
in the different phases.

Lemma 1: The sharding function in Algorithm 2 is
( 1
N −

N
2n )-covering, where N denotes the chunk size and n

the output size of the hash function. If 2n�N , the sharding
function is practically 1

N -covering.
Proof: Recall that the sharding function splits the

blockchain into chunks of size N and selects exactly one
block per chunk. If the number is a multiple of the chunk
size, then the probability for each index j ∈{0,...,N−1} to
be selected is exactly 1

N under the assumption that the outputs
of the hash function are uniformly distributed. In case the



number of possible outputs of the hash function is not a direct
multiple, the higher indexes have a smaller probability of at
least 1

N −
N
2n to be selected.

Lemma 2: EWoK is id-bound to (shardCB1
,shrd).

Proof: We now show that the PoW used in the second
phase of EWoK is id-bound to (shardCB1

,shrd). Let Solve2
denote the algorithm that solves this PoW of the second phase,
i.e., the last part of Algorithm 3. Notice that this PoW is
actually a variant of HPoW (cf. Section III-B) that we showed
to be id-sound. More precisely, the considered PoW is based
on the task to find an input of a certain form to the hash
function such that the output fulfills a certain condition. As
the hash function invocations are independent and hence the
outputs unpredictable, uniformly distributed values, the success
probability of any solution-finding algorithm can be expressed
by the number of hash queries based on different inputs. That
is, the optimal solving algorithm consists of checking as many
hash inputs as possible, being exactly the work flow of Solve2.

Now, let SolveW denote the solution-finding algorithm
implemented by some worker W . In case of a rational attacker,
it requires finding an appropriate value CBnonce such that
H(πblckhdr, MR(CB,T ), nonce) ≤ target. Recall that the
values for CBnonce are indirectly given by

CBnonce :=(H(vT ,shard[index],pn), pn)

where only the value pn is under full control of the worker.
Notice that a worker who does not select the values CBnonce

as given above will eventually fail as pn is part of the solution
to be published but H is preimage-resistant. Whenever a new
value CBnonce is to be determined based on a new pn, it requires
the execution of the hash function H over shard[index].
Similar to the above, a worker who does not use shard[index]
will not be able to eventually produce a valid solution. While
in principle the worker could fetch the block shard[index]
from external sources, this increases the total number of steps
due to additional idle steps when the algorithm waits for
shard[index]. Thus, the most efficient strategy for a worker
is to store the necessary shard blocks shard[index] in its
local memory. Moreover, we point out that the indexes index
are pseudorandomly generated, i.e., index := find(vT , pn);
these indexes also differ between epochs due to vT . Therefore,
the indexes index cannot be predicted in the random oracle
model, making all blocks of the shard equally necessary.

Lemma 3: EWoK ensures independent shards.
Proof: (Sketch) The mining process of EWoK includes

two phases and each phase requires to solve a PoW. Consider
an worker W implementing algorithms Solve1 and Solve2 to
solve the PoW in phase 1 and 2, respectively. Using the same
arguments as in the proof of Lemma 2, it holds that both Solve1
and Solve2 execute continuously different attempts to solve the
respective PoW by selecting and trying different possible solu-
tions. We call an attempt in Solve1 to solve the PoW of the first
phase a type-1-attempt and define type-2-attempts analogously.
As the probability for successful mining grows linearly with
the number of type-2-attempts only, the optimal strategy for
any worker is to minimize the number of type-1-attempts and

to maximize the number of type-2-attempts. This encourages
the strategy that once one worker has found a solution for the
PoW in phase 1, it is shared with the other workers among
the mining pool so that all workers proceed to phase 2.

Notice that the nonce space restriction deployed in phase
2 actually limits the number of possible type-2-attempts with
respect to one choice of CB1. Once all nonces have been used
with respect to CB1, one can either try to change to another
valid set of transactions or change CB1. The first requires to run
further type-1-attempts—contradicting the optimal strategy. The
second makes it necessary to determine and load another shard
(as shard=shrd(CB1) into local memory (see arguments in
the proof sketch of Lemma 2)—preventing the worker to run
further type-2-attempts. Thus, the best strategy is to allow for
as many type-2-attempts as possible; this means that different
workers should operate on different choices of CB1. As CB1

fixes pseudorandomly the shard, different values CB1 lead to
shards that are computationally indistinguishable from indepen-
dently randomly selected shards. Moreover, since CB1 specifies
the rewarding transaction, a miner cannot outsource this compu-
tation to a different party as this party would have no incentives
to run the computation on behalf of this miner. This ensures
that the shards are stored independently in different RAM.
It follows from Lemma 1, 2, and 3 that the prerequisites of
Theorem 1 are given and hence that EWoK is an instantiation
of a p-covering blockchain.

V. IMPLEMENTATION & EVALUATION

In what follows, we evaluate a prototype implementation of
EWoK integrated within GPU mining. The purpose of our eval-
uation is to validate the feasibility of integrating EWoK within
existing mining protocols such as STM and GBT. By showing
that EWoK can be instantiated within these protocols without
modifications, we stress that EWoK can be immediately instanti-
ated on other mining hardware, such as ASIC and FPGA mining.
Notice that, in our implementation, we only focus on GPU min-
ing owing to its popularity and reasonable value for the money.

A. Implementation Setup

We integrate EWoK within the popular open-source
mining tool BFGMiner [8] implemented in C. BFGMiner is a
middleware which resides on a host machine and communicates
with the mining pool(s) to retrieve the work template. More
specifically, BFGMiner uses OpenCL to define and assign the
mining tasks to GPU. To this end, it first pre-calculates the
intermediate state of the SHA-256 computation over parts of
the PoW input data (i.e., the block header) and then feeds this
intermediate state to the GPU worker which finalizes the hash
function computations over different nonces in parallel.

We deploy our implementations on an Intel Core i5-7400
equipped with 8GB of RAM which implements the BFGMiner
orchestration, and on an AMD Radeon RX480 GPU featuring
1120 MHz of clock frequency and 4GB of RAM.

We instantiate EWoK by leveraging functionality from GBT
and STM as described in Section IV-C3. Namely, we assume
that the operator distributes the search for a valid set of
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GBT and STM.

transactions (phase 1) among the workers using GBT. Given
the output of GBT in phase 1, the operator quickly constructs
the sibling paths associated with the Merkle root and proceeds
similarly to STM to solve the corresponding solution for phase
2. When benchmarking EWoK, we prepare a local pool by
leveraging the BFTMiner implementation of the work templates.
We only measure the performance of EWoK witnessed by the
worker and do not evaluate the overhead incurred by EWoK
on the operator (since this overhead is exactly similar to that
witnessed by operators executing GBT and STM). In our
setup, we assume a 1 MB block size and transaction sizes
of approximately 250 Bytes conforming with the Bitcoin
blockchain [11]. Each data point in our plots is averaged over
10 independent measurements; where appropriate, we include
the corresponding 95% confidence intervals.

B. Performance Evaluation

We evaluate the performance of EWoK with respect to
the achieved hash rate, the number of PoW solutions found
per minute, and the GPU usage, when compared to existing
mining protocols based on GBT and STM. We also evaluate
the effective number of blockchain replicas enforced by EWoK
within existing PoW-based blockchain deployments, such as
Bitcoin, Litecoin, Dogecoin, and Ethereum.

Hash rate performance: In Figure 5, we evaluate the hash
rate performance of EWoK when compared to GBT and STM
as follows. We measure the time that the worker spends in
preparing the block headers (in GBT) and searches for the
corresponding PoW solutions (GBT and STM), and we count
the number of hashes that the worker computed for each
puzzle. Notice that EWoK is composed of two phases: phase
1 which is instantiated with GBT and phase 2 which we
instantiate with STM. The runtime for phases 1 and 2 are
similar since the target difficulty in both phases is the same.
Therefore, we compute the hash rate of EWoK as the average
hash rate exhibited by phases 1 and 2. Our results show that
EWoK achieves 712 hashes per second and is almost 2% faster
than GBT. Notice that phase 1 in EWoK incurs less hash
computations than GBT since the worker only needs to compute
the hash over the ordered transaction set instead of building the
entire Merkle tree. Recall that STM achieves a higher hash rate
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Blockchain Size Growth Shard size
(GB) (GB/year) Initial 50MB 200MB 500MB

Bitcoin 136.34 38.24
Replicas 35.81 143.25 358.13
Growth 14.02 56.10 140.25(MB/year)

Litecoin 46.27 1.63 Replicas 105.53 422.11 1055.29
Growth 1.77 7.06 17.66(MB/year)

Dogecoin 21.57 2.68 Replicas 226.37 905.48 2263.71
Growth 6.21 24.82 62.05(MB/year)

Ethereum 7.7 3.69 Replicas 634.13 2536.53 6341.31
Growth 23.93 95.72 239.3(MB/year)

TABLE I: Number of blockchain replicas incurred by EWoK when
integrated with Bitcoin, Litecoin, Dogecoin, and Ethereum assuming
100,000 workers.

performance than GBT since it only outsources to the worker
a small number of additional information for computations to
construct the Merkle root. Despite the additional operations in
phase 2 when compared to STM, EWoK is only 1.1% slower
than STM; our results therefore show that EWoK emerges as
a strong tradeoff between the performance of GBT and STM.

Number of solutions per minute: We measure the number
of effective solutions computed by EWoK when compared to
GBT and STM. Here, we set the pool target difficulty [17] to
be 2 (target 0x1d007fff) for GBT and STM. Following EWoK’s
specification in Section IV-C, phases 1 and 2 in EWoK each
exhibit half the difficulty (set to 1 with target 0x1d00ffff). Our
results show that on average both phases 1 and 2 in EWoK
achieve approximately double the number of effective PoW
solutions due to the higher target: 9.9 solutions/min compared
to 5 and 4.6 solutions/min for GBT and STM.

GPU usage: In Figure 7, we evaluate the GPU usage incurred
on a EWoK worker when compared to GBT and STM. We use
the RadeonTop tool [38] to fetch the utilization of the GPU
with a sampling interval of 1 second. Our results suggest that
the switch between phases 1 and 2 in EWoK exhibit a smooth
transition that mimics the work template transition exhibited
by GBT and STM since the new work templates (for the
various phases) are fetched in the background in parallel to
the PoW mining. We additionally note that GBT exhibits the
highest variance in GPU utilization when compared to EWoK
and STM. We also point out that the VRAM consumption
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in EWoK, GBT, and STM is fixed at 113.80 MB, compared
to the memory usage of 85.65 MB in the idle state. That
is, in all investigated protocols, the worker only consumes
approximately 30 MB even when mining.

Number of effective replicas: Table I shows the number of
effective blockchain replicas achieved by EWoK with respect
to the shard size when integrated with the Bitcoin, Litecoin,
Dogecoin, and the Ethereum blockchains. Here, we assume
that there are a total of 100,000 workers (adapted from [31])
and we vary the shard size in EWoK between 50 MB, 200 MB,
and 500 MB by setting the chunk size accordingly. We
measure the data growth per year for each of the investigated
blockchains by analyzing their respective publicly available
blockchain datasets. We implement the sharding routine
described in Algorithm 2 which results in a pseudorandom
distribution of shards amongst workers. We then compute
the shard size averaged over all considered 100,000 workers.
Our results show that assuming shard sizes of 200 MB and
500 MB results in the replication factor of almost 143 and 358
times, respectively, in the case of the Bitcoin blockchain, and
almost 2500 and 6300 times (respectively) in the case of the
Ethereum blockchain. Even small shard sizes of 50 MB result
in a reasonable replication by 35 times in Bitcoin, 105 times in
Litecoin, 226 times in Dogecoin, and 634 times in Ethereum.

As mentioned earlier, EWoK enables workers to grow their
shard sizes over time without affecting their existing stored
shard. For example, given that the growth rate of the Bitcoin
network is 38 GB per year, each worker’s shard grows almost
by 140 MB per year in EWoK when current shard size is
set to 500 MB. Table I summarizes the shard growth rate in
the investigated blockchains. Our results confirm that EWoK
can be easily integrated within existing dedicated mining
hardware; most dedicated hardware mining are equipped with
at least 500 MB RAM capacity and the growth rate of the
shard sizes in EWoK is slow enough to easily fit into planned
growth in RAM capacities in the foreseeable future.

VI. RELATED WORK

Alternatives to PoW-based blockchains: In the recent years,
a number of alternatives to PoW have been proposed [23].
For instance, Proof of Stake (PoS) [37] suggests to bias the

vote impact of participants based on the amount of “stake”
they own in the respective blockchain system. The literature
features a number of additional proposals [18], [28], [29], [36],
[44] that rely on classical Byzantine fault tolerant consensus
protocols in the hope to increase the consensus efficiency and
achieve high transactional throughput.

Some proposals [14], [42] aim to replace the linear structure
of a blockchain by other structures, e.g., a directed-acyclic-
graph. PieceWork [2], [16] leverages a 2-phase PoW protocol
similar to EWoK; none of these schemes are designed to
incorporate proofs of knowledge over blockchain data shards.

A number of other proposals propose to re-purpose PoW
to prove storage of archival data [19], [30], [35], [40]. As
discussed in Section II-D, all of these schemes are however
not suited for ensuring the storage of the blockchain in
existing PoW blockchains since they obviate the need for
hash-optimized ASICs and FPGAs equipment (that have
limited RAM and storage capabilities).

Proofs of Knowledge: Proofs of Knowledge (PoK) are crypto-
graphic protocols in which a verifier is convinced that the prover
knows some secret [7]. PoK are often based on zero-knowledge
proofs, which have the property that the proof does not disclose
any information not already known to the verifier [25]. Another
line of work provides proofs that a certain file is stored without
enforcing the verifier to keep a local copy, e.g. PDP and POR
[5], [13], [26], [41]. Notice that the requirements in EWoK
differ from these. One the one hand, we can assume that the
knowledge, i.e. the blockchain, is fully known to the verifier. On
the other hand, EWoK plugs a PoK that does not prove the avail-
ability of the knowledge but rather the existence of a local copy.

VII. CONCLUSION

In this paper, we propose a solution, EWoK, to incentivize
storing the blockchain data in the network. Our solution plugs
an efficient proof of knowledge into standard hash-based PoW
mechanism to force workers to store (in-memory) a modest
(but fixed) shard of the blockchain data. EWoK leverages
two sequential phases: in the first phase, the workers reach
consensus on the exact set (including order) of transactions
to be confirmed in a given block. In the second phase, the



workers solve a proof of work instantiation based on this set
and on their specific shard.

We analyzed the security of EWoK and showed that it only
incurs small modifications of existing PoW protocols, and
is fully compliant with the specifications of existing mining
hardware. Our implementation results show that EWoK can be
easily integrated within GBT and STM and does not impair
their mining efficiency. This makes EWoK as one of the
few economically-viable and workable solutions that strongly
incentivize the sharding of the blockchain data among mining
pool workers. We therefore hope that our results motivate
further research in this area.
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APPENDIX

A. Mining Pool Revenue Sharing

As mentioned earlier, most existing PoW-based blockchains
are populated by mining pools. Namely, mining pools offer
a profitable alternative for individual workers to contribute
their computing resources and to split the reward between all
the pool members following a certain reward payment scheme.
Shares of the reward are assigned by the mining pool to its
members who presents valid proof-of-work. More specifically,
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Fig. 8: Sketch of the PoW block header structure in Bitcoin adapted from [12].

a mining pool sets a difficulty level between 1 and the
currency’s difficulty. Subsequently, a share is assigned to those
miners that provide a block header that scores a difficulty level
between the pool’s difficulty level and the currency’s difficulty
level. The main purpose of this step is to show that the miner
is contributing with a certain amount of processing power [27].

The most basic reward payment scheme is the Pay Per
Share that offers an instant, guaranteed payout for each share
that is solved by a miner. On the other hand, Equalized Shared
Maximum Pay Per Share requires that payments are distributed
equally among all miners in the pool. Recent Shared Maximum
Pay Per Share, on the other hand, gives priority to the most
recent Bitcoin workers.

A different approach is that offered by the Proportional
scheme which proposes a proportional distribution of the
reward among all workers when a block is found—based on the
number of shares they have each found. A well-known variation
of this technique is the Pay Per Last N Shares, where rather
than counting the number of shares in the round, only the last
submitted correct N shares are taken into account. Additional
details on pool revenue sharing techniques can be found in [27].

B. Mining Protocols

Most existing mining pools adopt two main mining
protocols: GetBlockTemplate [24] and Stratum mining [43].
In what follows, we give a brief overview of these protocols.

1) GetBlockTemplate (GBT): GetBlockTemplate (GBT) [9],
[10], [24] is a mining pool protocol natively supported in
Bitcoin. In this protocol, the mining pool operator orchestrates
task assignment to the various connected workers. The
GetBlockTemplate protocol gives workers some degrees of
freedom in choosing some PoW parameters while still ensuring
that no two workers work on towards the same PoW solution.

More specifically, upon request, the pool operator outsources
to its workers a block template (cf. Figure 1) that contains
the following fields: previous block hash, block height, list
of transactions, the target, the coinbase transaction, and time,
among others. The field CoinbaseAux contains auxiliary
information given by the pool operator which is used by the
worker to populate parts of the coinbase transaction.5 Notice
that the worker can add up to around 100 bytes of arbitrary
data to the coinbase transaction, which is commonly used by
workers as an extra nonce when searching for PoW solutions.

The worker then constructs the Merkle root of all
transactions (including the modified coinbase transaction)
and searches for a 4 byte nonce (cf. Section II-A) to solve
the PoW according to the pool difficulty specified in the

5More specifically, CoinbaseAux contains auxiliary information guiding
the worker in creating the scriptSig field of the coinbase transaction.

field Target. If no solution can be found, the worker restarts
as shown in Algorithm 1. Notice that a worker can freely
modify or shuffle the transactions in the block and compute
the corresponding Merkle tree accordingly; this gives workers
additional flexibility when solving their tasks.

Once a solution is found, the worker constructs the
corresponding block header (cf. Figure 8), appends it to the
full corresponding block (including all transactions), serializes
the result, and submits the serialized block along with his
worker ID back to the pool operator.

2) Stratum Mining (STM): Stratum (STM) is one of the
most commonly adopted mining pool protocols. In Stratum,
workers first receive the value of Extranonce1 and the size
of Extranonce2 from the pool operator right after the initial
subscription to the mining pool. Subsequently, the workers
are regularly notified of new mining work with templates
consisting of coinbase data, the block version, the difficulty,
the time, the prefix (coinb1), suffix (coinb2) of the coinbase
transaction, and the Merkle tree branches among other
information (cf. Figure 2). Unlike GetBlockTemplate, the
pool operator here fixes all the transactions to be confirmed
in the PoW excluding the coinbase transaction. The workers
only receive the sibling paths of the coinbase transaction in
the transaction Merkle tree, which is enough to compute the
Merkle root once the coinbase transaction is determined.

The worker then proceeds to searching for the value
Extranonce2 which results in a Merkle root that solves the
PoW. The resulting coinbase transaction is then formed by
appending the following information: (coinb1|| Extranonce1||
Extranonce2|| coinb2), where Extranonce2 is generated
locally by each worker.

As such, the Stratum protocols gives workers the flexibility
to cycle through the 32-bit nonce and the Extranonce2 field
in the coinbase transaction whose size is determined by the
pool operator during the subscription stage. Similar to GBT,
workers can additionally adjust the timestamp and the nonce
in the block header to gain additional flexibility.

C. HPoW

HPoW is a reformulation of the PoW used in Bitcoin. It
deploys a cryptographically secure hash function H :{0,1}∗→
{0,1}n. The core idea is that the hardness factor h determines
a threshold δ, called the target, with 0≤δ<2n. For instance,
one could define the hardness space to be a set of integers
HSHPoW ={0,...,2n} and set the target as target :=2n−h.

The sampling algorithm SampleHPoW takes as input πpuz
which are the non-flexible parts of the coinbase and combines
these with the remaining public, fixed block header values
to formulate a puzzle puz. The solving algorithm SolveHPoW
is depicted in Algorithm 1. It repeatedly tries (previously
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Fig. 9: Instantiating EWoK using GBT and STM work templates.

untried) values sol∈SSHPoW :={0,1}r with r being the size
of CBnonce until

H(puz,sol)≤δ. (7)

Notice that HPoW is a id-sound proof of work system
in the random oracle model (ROM) where id refers to the
identity function, i.e., id(x)=x for all inputs x.

To see why, observe that the probability for any
sol∈SSHPoW to be a valid solution is δ+1

2n , independent of
the hash values of the other values in the solution space. As
an adversary can only win if she queries the ROM oracle,
it follows that an adversary that the success probability of
any solving algorithm is directly tied to the number of hash
function calls. Thus, the optimal strategy is to retry different
hash inputs—which is exactly the procedure of SolveHPoW .

Note that the description of HPoW is not a direct
one-to-one mapping with the procedure given in Section II as
we omitted in the description the step of computing the Merkle
tree. Security-wise, this does not have any impact. To see why,
one could define a procedure H∗ based on a hash function
H where in H∗, first the Merkle tree is computed and then
H is applied. It is easy to see that if H is indistinguishable
from a random oracle, so is H∗. Otherwise, one could use
the construction of H∗ to run a distinguishing attack on H .

D. Additional Pseudocodes

Algorithm 4 Informal work flow for solving the strawman
solution.
Input: Non-changeable block header parameters πblckhdr
1: while PoW not solved do
2: Choose a new value for CBnonce to specify the coinbase CB
3: Compute the Merkle root MR over the coinbase CB and the set of

transactions T
4: for nonce∈{0,1}32 do
5: Compute h :=H(πblckhdr,MR,nonce)
6: if h≤ target then
7: break the WHILE-loop; {Solution found.}
8: end if
9: end for

10: end while
11: Set IND :=[]; {Index set of challenges}
12: for i=1,...,` do
13: Compute index ind :=H(CBnonce,i) mods {s denotes the current

size of the blockchain}
14: Append ind to IND.
15: end for
16: Let IND=[i1,...,i`]
17: Compute h :=H(BC[i1],...,BC[i`])
Output: The solution sol=(CBnonce,nonce,h).

Algorithm 5 The verification algorithm VerifyEWoK.
Input: Block header parameters πblckhdr, possible solution (T,CB,nonce)

Check if set of transactions is valid (first phase)
Parse from CB the value noncetrans

if H(T,noncetrans)>target1 then
Solution invalid. Abort.

end if

Check Proof of Work solution (second phase)
if H(πblckhdr, MR(CB,T ), nonce)>target then

Solution invalid. Abort.
end if

Check validity of parameters (second phase)
Check if nonce restriction applies
Parse from CB the value CBnonce

Parse pn from CBnonce

if pn>δpre−nonce then
Solution invalid. Abort.

end if
Check if correct shard block involved.
Compute vT =ftrans(T )
Compute index index :=find(vT ,pn)
if CBnonce 6=(H

(
vT ,shardCB1

[index],pn
)
, pn) then

Solution invalid. Abort.
end if


