Security Aspects of the Ecash™ Payment
System

Berry Schoenmakers

DigiCash
Kruislaan 419, NL-1098 VA Amsterdam, The Netherlands
berry@digicash.com

Abstract. Ecash is a payment system designed and implemented for
making purchases over open networks such as the Internet. In this paper
we review the main cryptographic techniques used throughout the ecash
system. We will focus on security aspects as well as some performance
related issues. The central notion of an electronic coin is treated in detail,
and the basic protocols manipulating coins are described.

1 Introduction

Behind the scenes, banks, credit card companies, and other financial institutions
have been processing transactions electronically for several decades now. Two
important developments are taking place however that will open up the field
of electronic payment systems to the general public. First, the prospect of elec-
tronic commerce over the ever-growing Internet is creating a large demand for
electronic payment methods that can be used over such an open network. Sec-
ondly, the introduction of nation-wide electronic purse schemes is creating many
more places and situations where smart cards can be used for cost-effective off-
line payments.

In this paper we will describe several aspects of the ecash system, mostly
security related, and discuss its place among other payment technologies. Ecash
finds its roots in the work by Chaum (see, e.g., [Cha83| [Cha90]), who invented
the notion of electronic coins as well as the basic protocols for electronic cash.
Electronic coins possess similar properties as metal coins, among which is the
unique feature that, due to the use of coins, a payment transaction leaves no trace
about (the identity of) the payer. Currently, ecash technology (as provided by
DigiCash, see http://www.digicash. com for more details) is used by a number
of banks around the globe. These banks issue ecash to their customers, who can
then spent it at affiliated merchants on the Internet.

We will focus on the core protocols that make up the ecash system. For
brevity, we will not mention all the details and alternative approaches that are
taken into account in the actual system. We do, however, consider some future ex-
tensions such as the extension to off-line ecash, where the use of smart cards and
the Internet are combined into a highly secure and versatile privacy-protecting
payment system.

B. Preneel, V. Rijmen (Eds.): COSIC’97 Course, LNCS 1528, pp. 3381352, 1998.
© Springer-Verlag Berlin Heidelberg 1998

Security Aspects of the Ecash™ Payment System 339

2 Characteristics of Electronic Payment Systems

Although more and more consensus is building up as to which properties are re-
quired of a payment system—and in any case what the properties are supposed
to mean—we are not going to list and describe these properties in this paper.
Instead, we take a bottom up approach, and describe some of the basic charac-
teristics of payment systems. From these characteristics one can then infer the
possibilities and impossibilities for the numerous combinations, and what their
impact is on the performance and flexibility of the system.

Payment by Instruction vs Prepaid Electronic Cash In the so-called
payment by instruction type of systems, a payer basically orders the bank to move
some sum of money from its account directly into a payee’s account. Examples
in this category are credit and debit cards as well as many forms of cheques. The
moment at which the money is actually moved from the payer’s account into the
payee’s account depends on the system, but at all times banks and credit card
companies will try to prevent discrepancies between accounts.

The central security aspect in these systems is to ensure that only legiti-
mate account holders are able to issue payment instructions. Of course, digital
signatures are the solution for doing this over a large, open network such as
the Internet. Since digital signatures only make sense if there is an infrastruc-
ture for certifying public keys, a lot of effort is devoted to just this. See, for
instance, the SET (Secure Electroncic Transaction) proposal, a joint effort by
MasterCard, VISA, and other influential partners, which specifies a hierarchy
of certification authorities on top of the payment protocols laid out in the iKP
system [BGHT95].

Prepaid systems are conceptually close to electronic equivalents of cash. Tele-
phone cards, smart card-based systems, as well as ecash are examples in this
category. The user’s account is debited as soon as the card or device is reloaded
with electronic cash. During payments the electronic cash is released again, and
only then the payee’s account will be credited. In the mean time the issuer keeps
a float corresponding to the outstanding cash.

The central security aspect in this type of system is to ensure that cards or
representations of cash cannot be forged. When forgery happens, the float will
ultimately be insufficient to credit the payee’s accounts for received payments.
Of course, it should also be ensured that only legitimate account holders can
reload cash from their accounts. However, this security aspect is now limited to
the infrequent withdrawal protocol, and is no part anymore of the more frequent
payment protocol.

On-line vs Off-line In the field of electronic payment systems, the notions on-
line and off-line refer to a specific property of the payment protocol. Although
the payment protocol is functionally a protocol between two parties (payer and
payee) many payment systems require that the payee contacts a third party (e.g.,
the bank or the credit-card company acting as an acquirer) before accepting a

340 Berry Schoenmakers

payment. If that is the case, the system is called an on-line payment system; the
communication between a payee and its acquirer may be using any communica-
tion medium (not necessarily the Internet). If such a contact with a third party
is not required during the payment protocol, the system is called off-line. In an
off-line system payees are required to contact their acquirer on a regular basis
for clearing all received payments.

Secret Key vs Public Key Authentication A basic requirement of a pay-
ment protocol is that it allows a payee to receive payments from any payer. A
payment can be seen as some sort of authentication of the payer towards the
payee (to show that the payment is authentic). The authentication can be based
on secret key cryptography or on public key cryptography. In the latter case, the
payee only needs to dispose of a public key in order to verify incoming payments.
Although the costs of equipping smart cards with crypto co-processors are ex-
pected to become marginal, it is important to note that the property of public
verifiability can be obtained using simple smart cards only, provided one applies
a method of what we call signature transport. In such a system, signatures are
created by the issuer only, and later endorsed by the payer during the payment
protocol, depending on a challenge from the payee. The trick is to achieve that
sufficiently many payments can be made between successive reloads, which re-
quires optimal use of the limited amount of EEPROM available on simple smart
cards.

In the case authentication is based on secret key (symmetric) cryptography,
however, the payer and the payee must dispose of a shared secret key in order
to complete a payment. A straightforward solution is to give all users the same
secret key, but this is generally considered insecure, as this would mean that
breaking a single smart card (i.e., extracting its secret key) will suffice to break
the complete system. The standard solution is therefore to break the symmetry
between payers and payees by equipping the merchants with a highly secure
tamper-proof box called a SAM that contains a masterkey. The payers’ keys are
derived from this master key in a process called diversification by applying a
cryptographic hash (e.g., SHA-1) to the concatenation of the master key and
the payer’s card number. The idea is that the SAM is more difficult to break
than a smart card, and also that it is possible to routinely check (as part of
the maintenance) if the SAMs have not been tampered with. A compromise is
the use of RSA certificates in the EMV standard. Each card carries a fixed RSA
certificate to show the validity of the card number. At the start of each payment,
the certificate can be verified against the public key stored in the POS terminal.
The remainder of the payment protocol again relies on a secret master key stored
in the SAM of the POS terminal.

Counters vs Coins The most direct way of representing electronic cash is to
use a counter stored on a smart card. Clearly, this is a very efficient and flexible
method, and any amount can be paid from the card as long as it does not exceed
the value of the counter. A more involved way is to represent electronic cash by

Security Aspects of the Ecash™ Payment System 341

a set of electronic coins. As with ordinary coins, each electronic coin has a fixed
denomination. Now, any amount can be paid as long as it can be obtained as a
sum of the denominations of a subset of the available coins. Hence it is possible
that a certain amount cannot be paid using the available coins although the total
value of the coins is larger than the required amount. In practice this problem
is alleviated by choosing a suitable distribution of the coin denominations upon
reloading, possibly as a function of the expected spending pattern.

The CAFE project (see, e.g., [BBCT94]) relies on a compromise between
these two basic methods. For each payment the required amount is debited from
a counter but at the same time one special coin is used up. The special coins have
no value by itself. Upon reloading the counter is credited with the withdrawn
amount and the supply of special coins is replenished.

As we will explain later on in this paper, an important property that sepa-
rates coins from counters is that electronic coins are the only way to achieve a
system that is secure (in the bank’s interest) and at the same time protects the
users’ privacy in a strong sense. Another argument that indicates a separation
between coin-based and counter-based systems is given by the following scenario.
Consider an off-line payment system that is capable of determining “after the
fact” which cards have been broken in case a fraud is detected. Suppose that
for this reason an attacker decides to work with stolen cards. Now, if the system
relies on a counter, it is no problem if the stolen cards are empty: the attacker
only needs to manipulate the counter (e.g., set its most significant bit to 1) and
may then start spending right away. For a coin system, however, it depends on
how many coins the stolen cards contain: if the cards are completely empty the
attack will fail completely, and in any case the attacker is limited to using the
coins that were present at the time the cards were stolen. Furthermore, since
payees can be instructed not to accept the same coin twice, the attacker can be
forced to visit different shops in order to be successful.

3 Money Flow

We briefly describe the money flow in the ecash system. Where appropriate we
will distinguish between the ecash bank (or issuer/acquirer) and the ecash mint.
The mint is the component of the ecash system where coins are created and where
the databases of spent coins are held. So-called ecash accounts form the interface
between the bank and the mint. In practice, several ways will be provided to
transfer money to and from an ecash account. For example, an ecash issuer may
provide a home-banking application that allows its customers to move money
between their bank accounts and their ecash accounts. Another possibility is
that the bank accepts credit card payments, by means of which users can feed
their ecash accounts.

We concentrate on the basic operations that manipulate ecash coins. Other
important ingredients of electronic commerce protocols, such as certificates and
receipts, are omitted as these parts are more or less independent of the way the
core protocols are implemented.

342 Berry Schoenmakers

Withdrawal By means of the withdrawal protocol, users are able to convert
money from their ecash accounts into ecash coins. Access to the ecash account
is only possible if the user is able to sign the withdrawal request, where the
signature is checked against the public key registered with the ecash account [1
The coins obtained in a withdrawal are stored on the user’s hard disk. By default
the coins are stored in a password-encrypted manner to prevent them from being
stolen (copied).

Payment To pay a certain amount, a set of coins is selected such that the values
add up to the required amount. In the on-line ecash system, this set of coins is
then encrypted for the bank, using the bank’s public key, to prevent that the
shop or anybody else can steal (copy) the coins. The shop deposits the payment
at the bank, who credits the shop’s ecash account if all coins are valid and none
of the coins has been spent before. Accepted coins are added to the database of
spent coins so that double-spending will be detected.

Payment Deposit In the on-line ecash system this protocol is part of the pay-
ment protocol as executed by the shop. In an off-line ecash system this protocol
is executed at a later moment, preferably in batch mode. An important prop-
erty of the payment protocol is that the payment deposit is made specific to the
payee. That is, a payment deposit for a specific payee cannot be deposited to
any other account than the account of the specified payee.

Coin Redemption It is possible to return coins directly to the mint without
using them in a payment. A natural restriction is that the number of coins
that a user redeems is not allowed to exceed the number of coins that has been
withdrawn by the user; a more refined way is to monitor this per coinage and
per denomination. This protocol is used when expired coins are refreshed, or to
improve the distribution of the coin denominations.

Recovery If desired, users are able to resurrect coins that have been lost, for
instance, because of a hard disk crash. By means of a special recovery protocol
executed between the user and the mint, all the coins that have been withdrawn
by the user since the previous checkpoint can be reconstructed. However, only
coins that have not been spent before will be usable for new transactions. (The
same effect can be achieved when users keep backups of their coins.)

1 A simple way to set-up ecash clients is to assume that the software and the bank’s
public key are presented to the user securely (e.g., on a sealed floppy disk). The user
also gets an account number and a PIN code from the bank. At home the user installs
the ecash client, generates its own private key/public key pair, and registers it with
its ecash account by sending it to the bank together with the PIN code (everything
encrypted with the bank’s public key). The user’s private key can be stored in a
password-encrypted manner on the hard disk.

Security Aspects of the Ecash™ Payment System 343
4 Preliminaries

RSA Signatures For authentication of messages we currently use the RSA
public key cryptosystem. Each participant picks its own RSA key pairs at ran-
dom. The public key consists of a modulus n = pq of prescribed size, where p, g
are two randomly generated primes of equal size, and an exponent e, which is
co-prime with ¢(n) = (p — 1)(¢ — 1). The private key d is the multiplicative in-
verse of e modulo ¢(n), that is, the unique number d satisfying de = 1 mod ¢(n),
which we denote by 1/e.

To sign a message m € Z,,, where the signer has private key d and public key
(e,n), the signer computes the signature s = m¢ mod n. To verify the signature
we check that s® = m mod n; this identity must hold as we have the identity
md = m mod n, since m?™ = 1mod n for all m € Z;. Actually, it can be
proven that m% = m mod n for all m € Z,,.

For various reasons (e.g., because RSA signatures can be existentially forged
as described above: select an arbitrary s and take m = s® mod n, then s is a valid
RSA signature on the “message” m), the actual message is usually first trans-
formed into a related message by applying a one-way hash and/or redundancy-
adding function f to it and then signing the result f(m). In the next section we
will see an example of such a function f.

Hybrid Encryption The RSA cryptosystem can be used for encryption as
well. To encrypt a message m, 0 < m < n, for a receiver with public key (e, n),
the sender computes the ciphertext ¢ = m® mod n and sends c¢ to the receiver.
To decrypt the message, the receiver uses its private key d to compute ¢? mod n,
which is equal to m%® mod n = m.

In practice, the use of public key encryption is often limited to the encryption
of session keys. A symmetric encryption algorithm is then used to encrypt the
actual message with the session key. In the ecash system, we also use such a
hybrid encryption method (or, “envelope method” as it is sometimes called),
where we combine RSA with 3-DES (with 112 bit keys). For reasons of efficiency,
it is often advantageous to use public exponent e = 3; encryption of the session
key then amounts to two modular multiplications, and poses no security risk as
long as some well-known attacks are taken into account.

5 Ecash Coins

We will now have a closer look at the internal structure of ecash coins. For each
coinage (short for a “generation of coins”), the mint will randomly generate a
fresh RSA modulus N = pq, keeping the primes p, ¢ secret by storing them in a
safe place. Preferably the mint’s private keys are only used within the boundaries
of tamper-resistant devices, while backups are kept between several entities using
secret-sharing techniques. In this way, it is prevented as much as possible that
private keys are compromised through attacks by insiders.

344 Berry Schoenmakers

3 5 7 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 41
D, ||$0.005($0.01{$0.02|$0.04[$0.08|$0.16|$0.32|$0.64 |$1.28|$2.56|$5.12($10.24

<

Table 1. A binary scheme with & = 12 different denominations

The denominations of a coinage are encoded by using different public expo-
nents (but the same modulus). Let k& denote the number of different denomina-
tions, and let {v;}¥_, denote the first & odd primes. In order that each v; is a
valid RSA exponent, we have the condition that each v; is co-prime with ¢(N),
that is, ged(vi, ¢(N)) =1fori=1,..., k[We denote the denomination that is
associated with public exponent v; by D,,; see Table[] for an example.

To limit the storage space required for ecash coins we take full advantage
of the message recovery facility of RSA signatures. This is particularly useful
because ecash coins are in fact RSA signatures on small messages. Thus we get
the following form, where an ecash coin C' of denomination D, consists of an
RSA signature only:

C = f(z)"? mod N. (1)

For concreteness assume that = is 160 bits long, and let H denote a one-way
hash function whose output length is 160 bits as well (like SHA-1). Function f
is a redundancy-adding function defined by

f@) =i |- [l @[] o,

with 9 = z and ;11 = H(zo || -+ || ;). Parameter ¢ is fixed such that the
total length of f(z) is about equal to the size of the modulus N. (Actually, the
bit string f(x) is truncated such that the corresponding integer is always less
than N.) Note that function f may alternatively be defined by f(z) = y;, with
Yo =z and yir1 = H(y;) || vi-

In current ecash implementations RSA moduli used for ecash coins are at
least 768 bits long; for this size forgery of ecash coins is considered entirely
infeasible—certainly within the limited time-frame that a coinage is valid. Hence,
a storage of about 100 bytes per coin on the user’s side is required. With today’s
hard drives and memory chips there is absolutely no problem of storing any
sensible number of coins. Over time this will only improve as the required key
length for RSA is expected not to double every year or so, while the storage
capacity of modern devices does.

As for the coin storage on the mint side, we have the important observation
that after checking the validity of a coin signature, and checking that the coin
has not been spent before, it suffices to store the coin number only. As described

2 This condition may be tested efficiently by precomputing Vi = Hle v;, and verifying
whether ged(Vi,p — 1) = 1 and ged(Vi, ¢ — 1) = 1. Note that this condition on the
primes p, g can easily be met by choosing them from the set of safe primes (p = 2p’+1,
q = 2¢’ +1 with p’, ¢’ prime), but we do not want to limit the set of candidate primes
more than necessary.

Security Aspects of the Ecash™ Payment System 345

above, we have fixed the size of the coin number at 20 bytes. The only condition
on the size of the coin numbers is that it is large enough to prevent that the
same coin number is accidently generated for coins of the same coinage. (As
a slight refinement, note that it suffices that the coin numbers are unique per
denomination.) By the standard result of the birthday paradox, the probability
that two coins will be equal when the coin numbers are picked uniformly at
random from {0,1}16 is bounded by e=B(B=1/2""" 45 Jong as at most B coins
of the same type are generated. This shows that the probability that two coin
numbers collide is truly negligible for any practical number of coins B. Since the
number of coins per coinage is limited anyway (see Section [§]), this analysis in
fact shows that the size of the coin numbers can also be limited to 64-80 bits
(8-10 bytes), say, if desired. Hence, a 1Gbyte hard disk can already store more
than 100 million coin numbers.

6 Protocols

We consider the withdrawal protocol, the payment protocol (including the pay-
ment deposit), and the recovery protocol. Each protocol is described at a level of
detail that permits us to explain the main security features of the ecash system.

6.1 Withdrawal

For each ecash coin to be withdrawn from a user’s bank account, the user and
the mint execute an instance of Chaum’s blind signature protocol [Cha83|. This
protocol is executed in parallel as many times as required to withdraw the desired
amount. The distribution of the coin denominations is chosen in such a way that
it is guaranteed that—mo matter how the money is spent—at least a certain
number of payments can be made. The protocol for one coin is depicted in
Figure [l Apart from the random coin number z, the user also picks a random
number 7 € Z};, which is used to blind the “message” f(x) to be signed by
the mint. Since r € Z}; its inverse 1/r exists, hence the blinding factor can be
removed again to obtain the coin C' = f(x)'/* mod N.

Regarding the security of this part of the ecash system, the important ques-
tion that needs to be answered is whether it is infeasible to obtain more or
other coins than prescribed by the withdrawal protocol of Figure [l The answer
is that an in-depth security analysis shows that (in a reasonable model) any
way to obtain more or other coins than prescribed by the withdrawal protocol
is equivalent to breaking the RSA assumption (which roughly states that it is
infeasible to compute y'/? for randomly selected y € Z}). For the scope of this
paper, we will confine ourselves to two aspects of this analysis that are specific
to the ecash system.

First, there is the fact that we use not just one, but a number of public
exponents with the same RSA modulus to encode the different denominations
within a coinage. This raises the question whether, for instance, coins of lower
denominations cannot be combined into coins of higher denominations. More

346 Berry Schoenmakers

User Mint
[N = pq]

z €r {0,1}*° (coin number)
re€rfy (blinding factor)
M — f(z)r" mod N
M

N

Debit account with D,
S — MY? mod N

C — S/rmod N
o = f(z) mod N

Store coin C'
Fig. 1. Withdrawal of a coin C' = f(z)*/* mod N of denomination D,

formally, the question is whether for randomly selected M € Z7;, it is feasible to
compute, say, M'/V from the values {M, M'/¥1 ... M'/"-1} Recall that the
v;'s are pairwise co-prime. For a very different purpose, but equally applicable
to our setting, Shamir has shown that this question is answered in the negative:
he showed that given the values {M, MY/ Ml/”’ffl} the computation is
just as difficult as if these values weren’t given at all.

Secondly, there is the fact that the mint will just accept any message M, and
return S = M'/* mod N to the user—but each time debiting the user’s account
with D,, even if the user picks the message M of the wrong form. So, there is no
guarantee that the message M is of the prescribed form f(z)r?, where the user
knows x, r, which contrasts with the usual setting for RSA signatures, where the
signer will ensure that each message signed is of the required form f(m), say. In
fact, by means of an example we will now show that it is possible to obtain valid
coins although we deviate from the prescribed protocol.

Consider the following approach. We are going to obtain two coins Cy =
f(z1)" and Cy = f(x2)"? of denominations v; and vy respectively. However,
instead of just asking the mint to sign f(x1) and f(x2), respectively, we do it as
follows.

1. Ask the mint to sign My = f(z1)"2f(a2)"* for denomination D,,, which
results in Sy = M,/"".

2. Subsequently, ask the mint to sign My = S; for denomination D,,, which
results in Sy = M21/v2 = Mll/vlv2 = fa1)V f(we)t/ 2.

3. Finally, using the fact that ged(vi,v2) = 1, hence there exist t1, 2 such that
tiv1 4 tave = 1, we extract the coins C7 and Cs from Ss:

837 () fa2) ™" = flan) et/ = ¢y,
S50 f(w1) T f(w2)" = fwa) BT/ = Oy,

Security Aspects of the Ecash™ Payment System 347

So, although we do not follow the protocol as described in Figure[ll, we are able
to obtain two valid coins anyway. (If desired, it is possible to blind the second
request to the mint (step 2), such that the mint cannot detect the deviation.)
The net result, however, is not very encouraging: we have obtained two coins
for a total value of D,, + D,,, but also the account has been debited with this
amount.

Extending work by Shamir [Sha83] and work by Akl and Taylor [AT83],
Evertse and van Heyst showed that for a very general class of deviations from the
prescribed protocol, nothing is to be gained [EH92, [EH93]. As shown by Chaum
[Cha90], however, “deviations” as exemplified above can be used to improve the
efficiency of the withdrawal protocol. For example, it is perfectly safe to collapse
steps 1 and 2 in the above protocol, where the mint issues a signature w.r.t.
exponent vivy (charging, of course, D,, + D,, for this service). This cuts the
communication costs with the mint by a factor of two, and also saves the mint
from performing one signature. Needless to say, this method can be extended to
collapse the withdrawal of any number of coins, as long as each denomination
does not occur more than once.

6.2 Payment

Before a payment actually takes place, payer and payee have to come to an
agreement about what the object is that is going to be puchased and for which
amount X. We assume that the result of this negotiation is recorded in the string
pay-spec. For later reference, the payer will also assign a random transaction
number I Dyqns to the payment (the use of successive transaction numbers might
enable the bank to link successive payments made by the same user).

Next, the payer will select a set of coins (', ..., C; from its coin supply, such
that the total value of these coins equals the requested amount X. To pay a
payee with identity IDgp0p, the payer then assembles a payment message that
consists of the concatenation of pay-spec, I Dy qns and an encrypted message
Y for the bank:

Y = Erk,qn (I Dtrans || IDspop | H(pay-spec) || H(pay-code) || C1 || ... || C1),

where F denotes a hybrid RSA encryption method (using 3-DES), as explained
in Section Ml Upon receiving this message, the payee will then sign and forward
a payment deposit message consisting of H(pay — spec), IDirans and the en-
crypted message Y to the bank. Finally, the bank decrypts Y and checks the
values of ID¢rans, I Dshop, and H(pay — spec), and then proceeds to check the
validity and freshness of the coins C, ..., ;. Only if all coins are accepted, the
payment is accepted as well, and the coins are stored for future double-spending
checks.

A few remarks regarding security. It is important that neither the payee
nor any eavesdropper can extract the coins from the payment message. For this
reason, the coins are encrypted with the bank’s public key. (Note that public
key encryption is required in this case, because the bank and payer cannot use

348 Berry Schoenmakers

a shared secret key, as the payer needs to remain anonymous.) Also, note that
although the string pay-spec itself is never shown to the bank, the payee is sure
that the payer used the same string, since the bank compares the hash values
provided by the payer and payee, respectively. In this way the transaction details
remain hidden from the bank; if required, however, either the payer or the payee
can later reveal the string pay-spec which can then be checked against the data
stored at the bank.

Finally, let us briefly describe how interrupted payments can be resolved, in
case the payer and payee aren’t able to recover from the interruption by normal
means. Due to network problems, the payment protocol may be interrupted
at several stages, but to the payer it only matters whether (i) the payment
wasn’t processed by the bank, or in any case it was not credited to the payee’s
account, or whether (ii) the payment was processed by the bank and credited to
the payee’s account. To find out about the status of a payment, the payer can
either redeem the coins C,...,C; on an individual basis, or find out about the
complete payment by sending message Y to the bank.

In the latter case, the payer proves to be the owner of the payment by
revealing the value of pay-code, to which the user committed by including
H(pay-code) in the message Y. If the payment turns out to be credited to
the payee’s account, the bank signs a statement to this effect, which the user
can then show to the payee to prove that the payment arrived at the payee after
all.

7 Privacy

We present the by now standard argument why the ecash system protects the
privacy of its users. To fully protect the users’ privacy, the system must not only
satisfy the requirement of untraceability, but also the stronger requirement of
unlinkability; a system in which each user gets a pseudonym is not sufficient to
protect the privacy of its users.

Untraceability More precisely, this property is called payer-untraceability (or,
payer-anonymity). This means that individual payment transactions are not
traceable to the user who acted as the payer in such a transaction. The in-
formation that the payee and its acquirer obtain from the transaction details
does not contain any information as to which user took part as the payer.

Unlinkability This property says that it should even be impossible to link any
two payment transactions originating from the same user.

To appreciate the difference between untraceability and unlinkability consider
the following scenario. When you buy a prepaid telephone card you can do this
completely anonymously at a newsstand (paying the card with cash). Later when
you use the card in a public phone the telephone company will have no clue that
it is you making the phone call because you bought it anonymously. That is,

Security Aspects of the Ecash™ Payment System 349

distkribute .
I ey I regular use I no withdrawal Iredemptlon onlyI on tape I worthless
generate activate deactivate key deactivate key deactivate key remove
key key for withdrawal for payment for redemption key

Fig. 2. Life-cycle of a coinage

the individual telephone calls are untraceable, as they cannot be connected to
your identity. Suppose however that the telephone company gives every card a
unique number, which is quite realistic as this is a basic mechanism to detect
fraud (i.e., to find cards on which the total spent is larger than the card’s value).
Then it is easy to keep a file per card of all phone numbers called from that
card (and possibly the time and date of the calls as well). Since a similar file is
kept per home-phone as well, a simple pattern matching procedure will in many
cases reveal the identity of a card’s owner. Thus, although the card is obtained
anonymously, the identity of the card’s owner can be revealed anyway because
all calls from the same card are linkable.

We now argue why the ecash withdrawal protocol protects the users’ privacy
in an information-theoretic sense. As untraceability is weaker than unlinkability
we only have to show that the ecash coins are unlinkable. Consider a fixed
denomination D, . Let S4 denote a signature of denomination D, that has been
issued to some user A, and let Cg denote a coin of denomination D, that has
been spent by some user B (A and B are not necessarily different). For any
such pair (S4,Cp) there exists a unique blinding factor rap € Z3 that satisfies
Cp = Sa/rap mod N.In other words, each signature issued by the mint matches
equally likely with any of the coins spent. So, in an information-theoretic sense,
there is no way the bank will be able to link coins that belong to the same user.

8 Coinages

Key Schedule In practice, an ecash mint will work with several coinages at
the same time. For each coinage the mint generates a fresh RSA modulus, as
described in Section Bl Hence, there is a one-to-one correspondence between
the RSA moduli and the coinages. Apart from the RSA modulus, a coinage
has at least the following attributes: the identity of the mint, the sequence of
denominations, the currency, and a key schedule (i.e., expiration dates) as in
Figure These attributes are distributed with each coinage. Note that the
private key can in fact be removed as soon as withdrawals are deactivated, while
the public key must be available until the coinage becomes invalid.

There are two main reasons why coinages are refreshed on a regular basis,
say every three months. First, there is the standard reason for refreshing keys,
namely to limit the risk that the secret key is compromised. There are two direct

350 Berry Schoenmakers

ways this may happen. In the first method, the attacker will try to find the secret
key from the public key only, possibly using the mint as a signing oracle. In the
second method, the attacker simply tries to get hold of the secret key by breaking
into the bank or into its computer network, possibly assisted by insiders.

The other important reason is to limit the size of the “spent coin” databases.
Using a scheme like that of Figure Bl spent coins are first stored on hard disk
to enable fast checking for duplicates. After some time the coins are moved to
tape, and during that period it will still be possible to check for duplicates, but
using a slower procedure (which is only available so that users can return coins
when they haven’t used their ecash for a longer period of time). Eventually, a
coinage will become invalid and the tapes can be removed.

Clustering Apart from a division in time, where coinages are refreshed every
three months say, we can also use a division in space. That is, instead of viewing
all users as one big set of users, it makes sense to divide the users in clusters.
Each cluster is chosen sufficiently large such that the behaviour of the individual
users is not visible. The advantage is that by limiting the size of a cluster that
the corresponding parts of the “spent coin” database are independent of each
other. This enhances the scalability of the system considerably. The way the
bank divides its users into clusters should be publicly verifiable, and not at
the discretion of the bank (to prevent the bank from introducing a few small
clusters). There are many ways to accomplish such a fair division into clusters. A
simple idea is to first take a cryptographic hash of the user’s identities, and then
define 2¢ clusters, t > 0, by looking at the first ¢ bits of the hash value. Assuming
that the bank cannot influence (the representation of) the user’s identities, the
users are thus evenly spread over the clusters.

If so desired, other types of clusters like age-groups can also be encoded as
different coinages. Certain shops could then be made to accept ecash from certain
age-groups only. This is an example of the token functionality that can also be
achieved with the same core protocols of ecash. The token functionality is in
turn subsumed in the general notion of electronic credentials, which encompasses
things as diverse as theatre tickets, driver’s licenses, passports, diplomas, etcetera
(e.g., see [Cha92]).

9 Off-line Ecash

It is interesting to consider the development of privacy-protecting off-line cash
protocols. Since the introduction of Chaum’s double-spending paradigm for such
protocols and the first solutions for the problem ten years ago [CEN90|, the
protocols have developed into an efficient and relatively simple system for off-
line cash. Chaum’s double-spending paradigm says that the privacy of a user is
completely protected as long as the user spends each coin not more than once.
However, if a user is able to manipulate its payment device such that some coins
are used more than once, the protocols are such that the identity of the double

Security Aspects of the Ecash™ Payment System 351

spender can be computed. In other words, the protocols satisfy the property
“once concealed, twice revealed” (courtesy Franklin and Yung [FY93]).

[FY93], [Fer94| eliminates withdrawal protocol, [Bra94al, Bra94b] introduces,
and [Sch95]

Recently, several extensions to the basic protocols have been proposed, such
as an efficient method of making the privacy revokable by a trusted third party.

References

[ATS3]

[BBC194]

[BGH'95]

[Bra94a|

[Bra94b)]

[CFN9(]

[Cha83]

[Cha90]

[Cha92]

[EH92]

[EHO3]

[Fer94]

S. Akl and P. Taylor. Cryptographic solution to a problem of access control
in a hierarchy. ACM Transactions on Computer Systems, 1:239-248, 1983.
J.-P. Boly, A. Bosselaers, R. Cramer, R. Michelsen, S. Mjglsnes, F. Muller,
T. Pedersen, B. Pfitzmann, P. de Rooij, B. Schoenmakers, M. Schunter,
L. Vallée, and M. Waidner. The ESPRIT Project CAFE — High Security
Digital Payment Systems. In Computer Security — ESORICS 94, volume
875 of Lecture Notes in Computer Science, pages 217-230, Berlin, 1994.
Springer-Verlag.

M. Bellare, J. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner,
G. Tsudik, and M. Waidner. iKP — a family of secure electronic payment
protocols. In First USENIX Workshop on FElectronic Commerce, 1995.

S. Brands. Untraceable off-line cash in wallet with observers. In Advances
in Cryptology—CRYPTO 93, volume 773 of Lecture Notes in Computer
Science, pages 302-318, Berlin, 1994. Springer-Verlag.

S. Brands. Off-line cash transfer by smart cards. In V. Cordonnier and J.-J.
Quisquater, editors, Proceedings First Smart Card Research and Advanced
Application Conference, pages 101-117, 1994. Also as report CS-R9455,
Centrum voor Wiskunde en Informatica.

D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Advances
in Cryptology—CRYPTO 88, volume 403 of Lecture Notes in Computer
Science, pages 319-327, Berlin, 1990. Springer-Verlag.

D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R.L.
Rivest, and A.T. Sherman, editors, Advances in Cryptology—CRYPTO ’82,
pages 199203, New York, 1983. Plenum Press.

D. Chaum. Online cash checks. In Advances in Cryptology—EUROCRYPT
’89, volume 434 of Lecture Notes in Computer Science, pages 288-293,
Berlin, 1990. Springer-Verlag.

D. Chaum. Achieving electronic privacy. Scientific American, pages 96-101,
August 1992.

J.-H. Evertse and E. van Heyst. Which new RSA-signatures can be com-
puted from certain given RSA-signatures? Journal of Cryptology, 5(1):41—
52, 1992.

J.-H. Evertse and E. van Heyst. Which new RSA-signatures can be com-
puted from RSA-signatures, obtained in a specific interactive protocol? In
Advances in Cryptology—EUROCRYPT ’92, volume 658 of Lecture Notes
in Computer Science, pages 7777, Berlin, 1993. Springer-Verlag.

N. Ferguson. Single term off-line coins. In Advances in Cryptology—
EUROCRYPT ’93, volume 765 of Lecture Notes in Computer Science, pages
318-328, Berlin, 1994. Springer-Verlag.

352 Berry Schoenmakers

[FY93] M. Franklin and M. Yung. Secure and efficient off-line digital money. In
Automata, Languages and Programming, ICALP 93, volume 700 of Lecture
Notes in Computer Science, pages 265-276, Berlin, 1993. Springer-Verlag.

[Sch95] B. Schoenmakers. An efficient electronic payment system withstanding par-
allel attacks. Report CS-R9522, Centrum voor Wiskunde en Informatica,
March 1995.

[Sha83] A. Shamir. On the generation of cryptographically strong pseudorandom
sequences. ACM Transactions on Computer Systems, 1:38-44, 1983.

	Introduction
	Characteristics of Electronic Payment Systems
	Money Flow
	Preliminaries
	Ecash Coins
	Protocols
	Withdrawal
	Payment

	Privacy
	Coinages
	Off-line Ecash

