
Securing Proof-of-Work Ledgers via Checkpointing

Dimitris Karakostas
University of Edinburgh and IOHK

dimitris.karakostas@ed.ac.uk

Aggelos Kiayias
University of Edinburgh and IOHK

akiayias@inf.ed.ac.uk

Abstract

Distributed ledgers based on the Proof-of-Work (PoW) paradigm are typically most
vulnerable when mining participation is low. During these periods an attacker can mount
devastating attacks, such as double spending or censorship of transactions. Checkpoint-
ing has been proposed as a mechanism to mitigate such 51% attacks. The core idea is to
employ an external set of parties that securely run an assisting service which guarantees
the ledger’s properties and can be relied upon at times when the invested hashing power
is low. We realize the assisting service in two ways, via checkpointing and timestamp-
ing, and show that a ledger, which employs either, is secure with high probability, even
in the presence of an adversarial mining majority. We put forth the first rigorous study
of checkpointing as a mechanism to protect PoW ledgers from 51% attacks. Notably, our
design is the first to offer both consistency and liveness guarantees, even under adversarial
mining majorities. Our liveness analysis also identifies a previously undocumented attack,
namely front-running, which enables Denial-of-Service against existing checkpointed ledger
systems. We showcase the liveness guarantees of our mechanism by evaluating the check-
pointed version of Ethereum Classic, a blockchain which recently suffered a 51% attack, and
build a federated distributed checkpointing service, which provides high assurance with low
performance requirements. Finally, we prove the security of our timestamping mechanism,
build a fully decentralized timestamping solution, by utilizing a secure distributed ledger,
and evaluate its performance on the existing Bitcoin and Ethereum systems.

1 Introduction

During the early ’80s, the seminal work of Shostak, Pease, and Lamport introduced the consensus
problem [29, 41]. 30 Years later, Bitcoin [34] accelerated research and development in this area
by introducing an approach, frequently referred to as “Nakamoto consensus”, and the blockchain
data structure, which has been used in a wide range of distributed ledger systems in the past
decade. Similar to classic (synchronous) consensus protocols, blockchain systems depend on an
honest majority type of assumption. Contrary to them though, Bitcoin, and other Proof-of-
Work (PoW) blockchain systems, assumes over 50% of hashing power backing correct protocol
execution.

When the honest majority assumption is violated, an adversary can perform a wide range
of attacks, that includes reverting transaction finality. This family of attacks is particularly
devastating in this context, since it invalidates the immutability of the ledger. Specifically,
finality ensures that transactions which are published on the ledger are stable after some time, i.e.
cannot be reversed (unless with negligible probability). If finality is not ensured various problems
arise, the most prominent being the “double spend” attack. Simply put, if the adversary can
revert any transaction it wishes, then it can double spend the same assets by first issuing a
payment and then reverting it, after it is presumed final by its counterparty.

Double spending attacks pose a grave threat against cryptocurrencies. Such attacks have
been documented in cryptocurrency systems such as Horizen (formerly known as ZenCash) [47],
Vertcoin [42], Bitcoin Gold [23], and Ethereum Classic [35]. The Ethereum Classic attack is an
enlightening case of the dangers a cryptocurrency faces when the mining power drops. At its all
time high, the system’s mining difficulty, in other words the mining power which was protecting

1

it, was approximately 248 Th/s1; 4 months later, at the time of the attack, it had dropped
by more than half to 120 Th/s. Therefore, it may be stipulated that the attack was mounted
exactly when the difficulty dropped sufficiently enough and was brought within the range of
the adversary. In another telling case, protection against 51% attacks became prominent for
Bitcoin ABC. ABC is an implementation of Bitcoin Cash, a top-5 cryptocurrency by market
capitalization2. During the so-called “hash wars” [37], in fear of attacks against the system, ABC
introduced a software patch which allows chain reorganizations only for the last 10 blocks [1],
as a way to ensure transaction finality.

Importantly, Bitcoin ABC’s solution introduces a major “network split” hazard, which is
especially dangerous with a threshold as low as 10 blocks. Specifically, consider the following
scenario. A node N goes offline for 5 hours, i.e. more than enough time for 10 Bitcoin Cash
blocks to be created3. An adversary also creates 10 blocks in the span of these 5 hours4. When
N re-joins the network, it obtains (and adopts) the adversarial chain before the honest. Now,
N can never re-join the honest part of the network, since the honest chain is a fork older than
10 blocks compared to the adversarial chain, thus is rejected by N . In other words a network
split occurs, where the (honest) node N joins and remains on the adversarial part.

In addition to double spending attacks, cryptocurrency ecosystems occasionally face Denial-
of-Service (DoS) attacks. DoS attacks take various forms against different parts of the system,
e.g. flooding of blockchain clients or attacking cryptocurrency exchanges. A more dangerous
and nuanced DoS attack occurs when adversarial miners attempt to censor certain transactions.
In that case, the adversarial miner never includes a certain transaction in its blocks and thus
prevents the transaction from getting published, as long as no honest blocks are accepted for a
sustained period of time, More critically, such attacks are nearly impossible to identify reliably.
Therefore, it is highly desirable that blockchains offer strong censorship resistance guarantees;
with foresight, we stress the importance of the liveness property in countering such DoS attacks
on the blockchain level.

Evidently honest mining majority is not always a possible assumption for a PoW-based
distributed ledger. To mitigate attacks in these cases, we can introduce an external set of
parties, the majority of which is honest, to assist the system. The idea of external protection
is rather old in the blockchain community. During the early days of Bitcoin, the need for
faster client bootstrapping and protection against DoS attacks resulted in (centrally-issued)
checkpoints. Interestingly, this mechanism5, introduced by Bitcoin’s creator Satoshi Nakamoto,
was maintained until as late as 2014, with these old checkpoints remaining in Bitcoin’s code until
these days. However, the cryptographic literature lacks concise analyses regarding checkpointing
solutions, thus often forcing developers to produce ad-hoc designs. The network split hazard in
Bitcoin ABC exemplifies this problem.

Our work investigates such checkpointing mechanisms and provides a thorough analysis of
how they can be implemented. We explore the caveats and security guarantees, aiming to inform
practice on the formal guarantees achieved by checkpoint mechanisms w.r.t. the ledger’s desired
properties. Importantly, to enhance flexibility, our designs allow automatically activation, during
vulnerable periods, and disabling, when the system reaches a given level of security.
Our Contributions and Roadmap. Our work provides, to the best of our knowledge, the
first rigorous analysis of temporary assisting mechanisms for a Proof-of-Work blockchain that
mitigate 51% attacks. Moreover our mechanism, to the best of our knowledge, is the first to
provide liveness guarantees even under an adversarial mining majority. Our contributions are
summarized as: i) a federated checkpointing mechanism which periodically commits the state
of the ledger irreversibly; ii) a security analysis of checkpoints and the identification of front-
running, a novel attack against all existing checkpointing implementations; iii) a prototype,
signature-based checkpointing implementation which is provably secure and demonstrates high
performance; iv) a decentralized timestamping-based checkpoint mechanism, which depends on

1The Ethereum Classic parameters are retrieved from BitInfoCharts: https://bitinfocharts.com/

comparison/difficulty-etc.html
2https://coinmarketcap.com/ [September 2019]
3A Bitcoin Cash block is created every 10 minutes on average.
4This is achievable with as low as 1

3
of the total mining power.

5For a detailed discussion on checkpoints in the early versions of Bitcoin we refer to https://bitcointalk.

org/index.php?topic=437.msg3807

2

https://bitinfocharts.com/comparison/difficulty-etc.html
https://bitinfocharts.com/comparison/difficulty-etc.html
https://coinmarketcap.com/
https://bitcointalk.org/index.php?topic=437.msg3807
https://bitcointalk.org/index.php?topic=437.msg3807

a distributed ledger and is evaluated on Bitcoin and Ethereum.
Prior to introducing our solutions, Section 2 provides an overview of the preliminaries used

in our work, including the execution model of our protocols, the threat model, as well as the
distributed ledger’s properties and block production mechanisms. Following that, we define a
checkpointing “ideal functionality,” i.e. the security definition of a ledger’s chain resolution
mechanism secured by checkpoints.

The security analysis of the checkpointing functionality shows that the checkpointed ledger
satisfies the necessary properties, namely persistence and liveness, with high probability under
adversarial majority. The liveness analysis was particularly challenging, needing to employ a
Markov chain to achieve probabilistic guarantees that no prior work achieves. The analysis
also highlights an attack against liveness, namely the “front-running” attack, which, to the
best of our knowledge, has not been previously discussed in the context of checkpoints. The
key idea that enables liveness to be preserved and mitigates front-running attacks is that our
checkpointing mechanism also operates as an unpredictable “randomness beacon.”

Next, we proceed with two implementations of the checkpointing functionality. The key
interesting objective here is to obtain an implementation that does not trivialize the task of
maintaining the ledger. Our implementation, described in Section 3.3, uses an updatable state
that has (optimal) size O(κ), κ being the security parameter. Our checkpointing service relies
on an fail-stop protocol [38, 28] that enables checkpointing nodes to agree on a checkpoint and
collectively compute an unpredictable nonce; Appendix B relaxes this assumption by tolerating
byzantine faults via an interactive consistency [41] sub-protocol. We evaluate our scheme w.r.t.
Ethereum Classic, thus demonstrating a way to integrate our solution into a PoW ledger which
recently experienced double spending attacks. Finally, Section 3.4 provides a prototype imple-
mentation based on Raft [38], which achieves checkpoint issuance in the order of hundreds of
milliseconds with standard commercial system requirements.

Our second implementation, timestamping-based checkpointing, is laid out in Section 4. The
key idea is to use a second distributed ledger (presumably more reliable than the one we seek to
protect) and, via a timestamping protocol we describe, facilitate the checkpointing functionality.
This result demonstrates how to checkpoint a ledger with the help of another blockchain protocol,
thus achieving a potentially higher level of decentralization compared to our first solution, which
requires a (closed) set of dedicated servers. We also show a non-interactive (centralized or
federated) timestamping mechanism (cf. Appendix E) which requires state of size only O(κ).

2 Preliminaries

2.1 The Protocol’s Execution Model

Our work is evaluated in a multiparty setting following Canetti’s formulation of the “real
world” [8]. Here an “environment” program Z drives the execution of a protocol Π by spawning
an instance of an “interactive Turing machine” (ITI) which executes the protocol, instantiating
a party P . The interaction between ITIs is controlled by a control program C, such that (Z, C)
form a system of ITMs, cf. [8]. We restrict our setting both to “locally polynomial-bounded”
systems of ITMs, thus ensuring polynomial-time execution, and to a sequential execution of
parties by the environment, i.e. first activating the adversary A and then the parties P1 . . . Pn
in order. The adversary A is an ITI which, upon activation, may “corrupt” a number of parties
by sending a corruption message to C, after the environment has instructed it to do so. Next,
whenever a corrupted party is supposed to be activated, A is activated instead. We also assume
a diffuse functionality which allows the parties to broadcast messages without the need of a
fully connected graph.

We assume that the ledger protocol is set in the synchronous setting. Specifically, it is
executed in rounds, such that each party is activated and performs a number of operations in
each round. We enforce that every message which is produced at round r is received by the other
parties on round r+ 1. Finally, we assume that the number of parties n is predefined and fixed
for the duration of the execution, similar to prior work (cf. [15]). We note that, although the
ledger protocol assumes a synchronous network, the checkpoint protocol may be asynchronous,

3

as we show in Section 3.3. Future work will focus on relaxing both assumptions, i.e. exploring
asynchronous networks as well as dynamic participation.

A party maintains two types of internal state, the local chain and the transaction memory
pool (mempool). The local chain is chosen from a pool of chains available on the network,
according to the chain decision rules. The mempool contains transactions which the party has
received or created. We assume that a party removes a transaction from its mempool either if it
is published on the chain or if u rounds pass since it received it. Also we impose no upper limit
on the size of the blocks; this assumption is rather helpful in conjunction with the mempool
strategy, since it implies that the honest miners include a transaction in the first block after the
transaction is diffused on the network.

2.2 Eligibility Mechanisms for Block Production

Every distributed ledger hinges on the eligibility mechanism for updates, e.g. creating a new
block and appending it to the existing chain. The core question, i.e. “which party is responsible
for updating the ledger next?”, has seen a number of answers, the most prominent being Proof-of-
Work (PoW). PoW is based on the computational power of the parties. Each party is identified
by an amount of hashing power and is elected to create a new block proportionally to it. In our
model, each party can perform a number q of queries to a random oracle; in practice, a miner
would repeatedly hash the block’s payload with a pseudorandom nonce. A party is successful if
the query’s response, i.e. the produced hash, adheres to a protocol-defined limit, i.e. is in line
with the protocol’s difficulty parameter p. Here p denotes the probability that a single query
to the random oracle is successful, thus the overall probability that a party produces a block
at any given round is q · p. Finally, there exist many alternatives to PoW, e.g. Proof-of-Stake
and Proof-of-Space; although our work considers only PoW-based ledgers, there is no obvious
barrier in applying our solutions to these mechanisms as well, as will be explored in future work.

2.3 The Ledger’s Properties

In our analysis we employ the ledger’s properties as defined in the Backbone model [15]. The
first property, persistence, ensures that the honest parties converge to a single accepted chain,
thus agreeing on the order of the transactions in the ledger. Therefore, if persistence holds,
the probability of reverting an old, “stable” transaction, i.e. changing the ordering of stable
transactions in the ledger, is negligible. The second property is liveness, which states that a
transaction which is valid, i.e. is not in conflict with a stable transaction, and is produced and
broadcast by an honest party for an adequate amount of time will eventually become stable.
Intuitively, this property ensures that the adversary cannot censor an honest party’s transaction.
The concrete definitions of the two properties used to evaluate the protocols are as follows:

Definition 1 (Persistence). A transaction which is part of a block at least k blocks away from
the ledger’s head, i.e. a block which is part of the chain which results from removing the last k
blocks of the current chain, is stable, i.e. every honest party reports it in the same position in
the ledger.

Definition 2 (Liveness). A transaction which is provided continuously as input to the parties
is stable after a number u of rounds.

Additionally, we assume that no insertions, copies, or predictions occur. These assumptions
imply that the employed hash function is secure and will prove particularly useful when we try
to minimize the state that the nodes maintain, in which case we rely on the assumption that
the same block cannot extend two different chains.

2.4 Threat Model

A core part in every security analysis is the adversarial model. We now define the assump-
tions which hold for all parties and the restrictions imposed on the adversary, as well as the
communication network.

4

The adversary A controls µA of the network’s mining power. As mentioned, in the case
of PoW µA corresponds to hashing power; we stress that it is possible that µA > 0.5, i.e. the
adversary might control the majority of the mining power. Our analysis w.r.t. the mining power
is conducted in terms of the number of parties, so given the total amount parties n it holds that
µA = t

n . Naturally, since the adversary controls t parties, the amount of honest parties is n− t.
Additionally, the adversary is “adaptive”, i.e. corrupts parties on the fly, and “rushing”, i.e. at
each round retrieves all honest parties’ messages before deciding its strategy.
A tries to break either persistence or liveness (or both). Regarding the former, A tries to

force two honest nodes to accept different chains as stable, i.e. to report different transactions as
stable in the same position in their respective ledger; Theorem 1 shows that checkpoints ensure
that such attacks are impossible. Regarding liveness, A attempts to prevent a transaction from
becoming stable within u rounds. However, such censorship attacks are notoriously hard to
detect. With hindsight, we note that a transaction becomes stable when it is reported in the
checkpointed chain. Thus we ensure that regardless of the adversarial strategy at least one
honest block, which by the assumptions of Section 2.1 includes the transaction, is checkpointed
within u rounds.

3 The Checkpointed Ledger

Our first assisted scheme is the checkpointed ledger. Checkpoints are messages issued by a
service and help the parties converge to a single chain, even in the presence of an adversary who
controls a mining majority. In the following paragraphs we provide the necessary definitions
and describe the checkpointing functionality. We focus on making the decision rules generic
enough in order to accommodate any PoW blockchain, rather than being constrained to specific
implementations. Finally, after analyzing the security of the checkpointed ledger, we realize it
using standard cryptographic primitives. We note that, although outside of the scope of this
paper, our mechanism can also help increase performance by minimizing the ledger’s state and
enabling clients to bootstrap faster.

3.1 The Checkpointing Functionality

As motivated in the introduction, our goal is to define a ledger which is resistant to attacks
from an adversarial mining majority. In this section we achieve this via the checkpointing
functionality FCheckpoint. FCheckpoint achieves this by establishing checkpoints, i.e. irreversible
chains. FCheckpoint maintains two chains: i) C, which is its local chain, and ii) Cc, which is
the latest checkpoint. Upon retrieving a new candidate from the network, it decides whether
to adopt it as its local chain by running maxvalid(·, ·), i.e. the chain decision rule algorithm
(cf. [15]); the inner workings of this algorithm depend on the blockchain, e.g. Bitcoin uses the
heaviest chain, i.e. the chain with most hashing power. When FCheckpoint adopts a chain which
is kc blocks longer than its local checkpoint, it issues a new checkpoint. Following, any chain
which is not an extension of the checkpoint is automatically rejected. Observe that, even if a
fork occurs right before a checkpoint issuing, the functionality checkpoints only one block, thus
all parties will converge to the canonical chain identified by this checkpoint.

kc identifies the rate of checkpoint production. For instance, larger kc results in sparse
checkpoints, but also less stress on the network communications. On the other hand, smaller
kc allows the parties to synchronize faster and restricts the adversary’s control over the chain’s
blocks, as shown in the security evaluation of Section 3.2. Additionally, checkpoints organize the
protocol’s execution in epochs, each beginning with the issuing of a checkpoint and consisting of
a specific number of blocks. Finally, since the network is asynchronous, A can choose to discard
candidate blocks and has full control of the scheduling of messages.

Every checkpoint is identified by an unpredictable nonce r. In order to model fail-stop faults,
which will be needed for the protocol of Section 3.3, the functionality produces a list of nonces
equal to the number of parties and allows A to discard a minority of them, before picking
a random nonce from the remaining. We note that, if the adversary discards a majority of
the messages (equivalently if a majority of checkpointing nodes crash), then the checkpointing
operation halts. The unpredictable nonce is paramount to the security of the system. As we

5

explore further in Section 3.2.2, if r is predictable or is not included in the chain, then an
adversary with a majority of the mining power can break the liveness property by mounting a
“front-running” attack and controlling the blocks of the chain in perpetuity.

Figure 1 defines the checkpointing ideal functionality FCheckpoint, parameterized by maxvalid
and kc. Here |C| denotes the length of a chain (in blocks), |V| the number of parties in V, || the
concatenation of blocks, chains of blocks, and strings, ≺ the prefix operation, e.g. if C = C ′|| · · ·
then C ′ ≺ C, \ the difference of two chains, e.g. if C = C ′||B|| · · · then C \ C ′ = B|| · · · , and
tail(C) the last block of a chain C.

Functionality FCheckpoint

FCheckpoint interacts with a set of parties V and holds the local chain C and the
checkpoint chain Cc, both initially set to ε. It is parameterized by kc, which defines
the number of blocks between two consecutive checkpoints, and the maxvalid(·, ·) algorithm.

Upon receiving (CandidateCheckpoint, C ′) from a party V, forward it to A. Upon
receiving (CandidateCheckpoint, C ′) from A, if Cc ≺ C ′ set C := maxvalid(C,C ′).

Next, if |C \ Cc| = kc compute a list R of |V| random values as rj
$←− {0, 1}ω and send

(Nonce, R) to A. Upon receiving from A a response (Nonce, R′), such that R′ is a list

of at least |V|2 values from R, pick a value ri ∈ R′, return (Checkpoint, tail(C)||ri) to V
and set C := Cc := C||ri.

Figure 1: The checkpointing ideal functionality.

3.2 Security of the Checkpointed Ledger

We now focus on the security of the functionality FCheckpoint and show that the checkpointed
ledger satisfies persistence and liveness w.r.t. the following parameters:

• k: the persistence parameter, i.e. the number of blocks after which a transaction is stable;

• u: the liveness parameter, i.e. the amount of time that a transaction needs to be continu-
ously provided to all parties before it becomes stable;

• kc: the checkpointing interval, i.e. the epoch’s length;

• q: the number of queries to the hashing oracle that a party can make during a single
round;

• p: the block difficulty, i.e. the probability that a single query is successful in producing a
block;

• n: the number of parties;

• t: the number of adversarial parties.

3.2.1 Persistence

First, we show that our scheme satisfies persistence, an expected result given that it is a direct
outcome of the nature of checkpoints. Theorem 1 formally proves this intuition; Cdk denotes
the chain which is output by removing the k last blocks from C.

Theorem 1 (Persistence). The checkpointed chain resolution protocol of Section 3.1 satisfies
persistence (cf. Definition 1) for parameter k ≥ kc.

Proof. It suffices to show that, at any round r, for two honest parties V1,V2 with chains C1, C2

respectively, where |C1| ≤ |C2|, it holds that C
dk
1 ≺ C

dk
2 . In that case, a transaction in C

dk
1 is

also reported by V2 in the same position, since C
dk
1 is a prefix of its own chain. We observe

6

that, if k ≥ kc, at least one of the last k blocks in both chains C1, C2 is a checkpoint. Assume
that this checkpoint is the l1-th block from the head of C1 and the l2-th from the head of C2;

by definition of the chain decision rule, C
dl1
1 = C

dl2
2 .

As we see next, to provide adequate liveness guarantees, the parameter kc typically needs
to be small. Therefore, persistence is achieved for relatively low values of k, while our scheme
ensures that blocks, and consequently transactions, are finalized after a short amount of time.

3.2.2 Liveness

We now focus on liveness in the checkpointed setting. The first step of our analysis is to
determine the necessary conditions such that liveness holds. Theorem 2 shows that, as long
as at least a single honestly-generated block is checkpointed, liveness holds regardless of the
adversarial strategy.

Theorem 2. For any execution of a checkpointed chain resolution protocol which securely real-
izes FCheckpoint of Section 3.1, a transaction τ is stable if at least one honestly-generated block,
which is mined after the creation of τ , is part of the checkpointed chain after u rounds since τ
is diffused on the network.

Proof. Assume a block B which is honestly produced after τ is diffused on the network and
extends a chain C. By definition of the model of Section 2.4, τ is part either of C or B.
Next, assume that B is part of the checkpointed chain. By definition of the checkpointing
functionality FCheckpoint, the miners reject any chain which does not extend the checkpointed
chain, i.e. which does not include B. Therefore, regardless of the adversarial strategy, after this
point τ is necessarily in the checkpointed chain, i.e. is stable.

As discussed in the introduction, liveness is pivotal in countering DoS attacks. Proving
that the checkpointed ledger satisfies liveness against every adversary was significantly more
challenging compared to the persistency analysis. A major difficulty here is that, if an adversary
controls a mining majority, it has an inherent advantage over the honest parties regarding
the chain’s growth rate and which transactions are included in the ledger. Constraining this
advantage is central in our analysis, as illustrated by the front-running attack of Figure 2. This
attack is similar to Selfish Mining [14, 44]. An adversary that employs selfish mining can gain
an advantage by mining in a “private” setting, i.e. withholding newly-mined blocks until it
becomes necessary to publish them, e.g. until a competing block is observed. In our scheme, the
unpredictable random value r mitigates this attack by preventing A from retaining an advantage
and “refreshing” the execution with the issuing of every checkpoint, thus ensuring liveness is
guaranteed with adequate probability. To the best of our knowledge, this attack has not been
previously discussed or taken into consideration in existing checkpointing mechanisms, which
thus fail to provide any liveness guarantees in the presence of adversarial mining majorities.
Figure 3 also provides intuition on the front-running attack vector.

The Front-Running Attack

Assume an adversary A which controls µA of the mining power. If µA > 0.5, i.e. if A
controls a mining majority, A produces (on average) more blocks than the honest parties.
Assume the following adversarial strategy: A extends a private chain, while not adopting
any honest blocks, and, for every produced block which extends the longest honest chain,
A reveals a block, while keeping all other adversarial blocks hidden. Since µA > 0.5, the
adversary will eventually have produced more blocks than the honest parties, so it will be
able to counter every honest block. Since A is rushing, the adversarial blocks are always
adopted over the conflicting honest blocks. Thus, eventually all blocks in the chain are
adversarial.

Figure 2: The front-running attack against liveness.

7

Figure 3: The front-running attack, where the adversary produces a private chain which spans
multiple epochs. Upon publishing this chain, the adversary can checkpoint all black blocks.
However, this chain also contains a red block, which extends the soon-to-be checkpointed chain
prior to the issuing of the future checkpoint, allowing the adversary to build an advantage into
the next epoch. Mitigating front-running would render the red block (and each subsequent
block) invalid and restrict the advantage of the adversary.

8

In the remaining of this section we will analyze the conditions under which an adversary
can break liveness. The tool we will use is an absorbing Markov chain, parameterized by kc,
where each state identifies the progress of the parties in producing enough blocks to reach a
checkpoint. We then prove that reaching the absorption state translates into checkpointing an
honest block, hence we can argue about the minimum liveness probability of the checkpointed
protocol (using the chain’s stochastic transition matrix, cf. Appendix A).

Each state of the Markov chain is identified by (i, j). i denotes the number of blocks that
an honest party needs to produce in order to reach the next checkpoint, assuming the honest
parties advance without any adversarial interference6. j is the number of blocks the adversary
necessarily needs to produce in order to reach the next checkpoint without adopting any honest
non-checkpointed blocks, thus restricting a transaction from getting checkpointed. In the first
round of an epoch, all parties need to produce exactly kc blocks to reach the next checkpoint,
so each epoch starts on state (kc, kc).

The absorbing state is the state that compounds all pairs of the form (0, j) with j > 0.
Other pairs of the form (i, j) with i > 0 are transitional. Transitions represent the accumula-
tion of honest and adversarial blocks, as per the execution model. Note that if honest parties
simultaneously produce a block in a single round it will be counted once, therefore, the only
allowed transitions from state (i, j) are towards states (i − α, j − b) with α ∈ {0, 1}, b ∈ [0, j].
Before exploring the transition probabilities between any two states, we first provide some useful
definitions. Similar to Bitcoin Backbone [15], we define the following random variables:

• H: if at least one honest party produces a block at a given round, then H = 1, else H = 0;

• M (i): if all adversarial parties produce exactly i blocks at a given round, then M (i) = 1,
else M (i) = 0;

for which the following hold:

• E(H) = h = 1− (1− p)q·(n−t);

• E(M (i)) = m(i) =
(
q·t
i

)
· pi · (1− p)q·t−i for any i.

Lemma 1 defines the transition probabilities from a state (i, j) to a state (i − a, j − b), a ∈
{0, 1}, b ∈ [0, j − 1]. Next, Lemma 2 explores the special cases, where either i or j of a state

(i, j) is equal to 0. We denote m̂l =
∑l
φ=0m

(φ).

Lemma 1 (Transition Probabilities). For any execution, the following hold for transitions from
round (i, j) with i, j > 0:

• transition to (i, j − b) occurs with probability h̄ ·m(b);

• transition to (i− 1, j − b) occurs with probability h ·m(b);

for every b ∈ [0, j − 1] and h̄ = 1− h.

Proof. The proof is straightforward by observing that, at state (i, j), the first coordinate is
reduced by 1 if and only if at least one honest party exists that computes a block in a round,
while the second coordinate is reduced by b if and only if all adversarial parties produce exactly
b blocks.

Lemma 2. The following hold:

i) the state (0, 0) is equivalent to the state (kc, kc);

ii) transition from round (1, j), where j > 0, to the absorbing state occurs with probability
h · m̂j−1;

iii) from round (i, j), where i, j > 0, the following hold:

• transition to (i, 0) occurs with probability h̄ · (1− m̂j−1);

6Adversarial interference refers to censorship of queries to the hashing oracle or messages exchanged between
the parties.

9

• transition to (i− 1, 0) occurs with probability h̄ · (1− m̂j−1);

iv) from round (i, 0), where i > 0, the following hold:

• transition to (i− 1, 0) occurs with probability h;

• transition to (i, 0) occurs with probability 1− h.

Proof. i) If both the honest parties and the adversary produce enough blocks, then, since the
adversary is rushing, it can control the message delivery to the functionality and checkpoint
its chain. So the round (0, 0) corresponds to checkpointing an adversarial chain and the
beginning of a new epoch, i.e. the state (kc, kc).

ii) If the honest parties produce a block and the adversary produces strictly less than j blocks,
then the execution reaches state (0, l) with l > 0, i.e. the absorption state.

iii) If at round (i, j) the adversary produces at least j blocks, the reached state is (i, 0) if the
honest parties don’t produce a block (resp. (i− 1, 0) if they do).

iv) When j = 0, the adversary has already produced enough blocks to reach the checkpoint. So,
the only possible transition (i.e. to state (i− 1, 0)) depends on the honest block production
probability h.

Algorithm 1 collects the above rules for the construction of the Markov chain. In order to
produce the graph we run createGraph(kc, kc); this function is also parameterized by addEdge,
which creates a new edge in the Markov chain given the source node, destination node, and
transition probability. The connection of the Markov chain to liveness is established in Theo-
rem 3.

Theorem 3 (Liveness). The Markov chain defined in Algorithm 1 has the property that, when-
ever it reaches the absorption state, an honest block is guaranteed to be checkpointed in the
corresponding execution with error probability L · 2−ω, L being the protocol’s execution total
length.

Proof. The proof relies on two observations. We recall that the absorption state is defined
as (0, j) for j > 1, i.e. in the current execution, and since the last checkpoint, the honest
parties have produced enough blocks to reach the next checkpoint, while the adversary has
produced at least one block less. The first observation is that, whenever an honest block is
produced in a round, the chain of all honest parties is guaranteed to advance irrespectively of
the adversarial strategy; as a result, when the absorption state is reached, one honest party
possesses a chain sufficiently long to be checkpointed. Next, we would like to show that such
chain will have at least one honest block. We can derive this from the second observation,

i.e. the fact that each checkpoint introduces unpredictable randomness r
$←− {0, 1}ω. Thus any

adversarial blocks produced prior to the calculation of the last checkpoint cannot contribute to
the chain that an honest party possesses (unless the adversary correctly guesses the random
nonce r of the checkpoint, prior to its introduction, an event which is conveyed in the error
term of the theorem). It follows that, by definition, the absorption state puts the adversary at
a position where it lacks a sufficient number of blocks to match the blocks in an honest party’s
chain and thus at least one honest block will be checkpointed.

Using the Markov chain of Algorithm 1, we can produce its stochastic transition matrix, in
order to compute the liveness w.r.t. u, as well as the expected number of rounds before being
absorbed. We also assume a sufficiently large value of ω, such that the probability of error (cf.
Theorem 3) is negligible.
Liveness Evaluation of a Checkpointed Ledger. To evaluate our mechanism we took
a snapshot of Ethereum Classic7. In order to realize our model, we assume that each hash

7All data regarding Ethereum Classic were provided by https://bitinfocharts.com [6 February 2019].

10

https://bitinfocharts.com

Algorithm 1 The absorbing Markov chain construction algorithm, defined by
createMarkovChain and parameterized with kc and the recursive helper function createGraph.

function createMarkovChain(kc)
createGraph(kc, kc)
addEdge(final,final, 1)

end function
function createGraph(i, j)

if j > 0 then
for l ∈ [0, j − 1] do

addEdge((i, j), (i, j − l), h̄ ·m(l))
if l > 0 then

createGraph(i, j − l)
end if
if i > 1 then

addEdge((i, j), (i− 1, j − l), h ·m(l))
createGraph(i− 1, j − l)

end if
end for
addEdge((i, j), (i, 0), h̄ · (1− m̂j−1))
createGraph(i, 0)
if i = 1 then

addEdge((i, j),final, h · m̂j−1)
addEdge((i, j), (kc, kc), h · (1− m̂j−1))

else
addEdge((i, j), (i− 1, 0), h · (1− m̂j−1))
createGraph(i− 1, 0)

end if
else

addEdge((i, j), (i, j), h̄)
if i = 1 then

addEdge((i, j), (kc, kc), h)
else

addEdge((i, j), (i− 1, j), h)
createGraph(i− 1, j)

end if
end if

end function

11

0 5 10 15 20 25 30 35 40 45 50
kc (blocks)

0

338

677

1016

1354

u
(1

2
se

cr
ou

nd
s)

Adversarial
mining power

33%
50%+1
66%

0.000

1.042

2.085

3.127

4.169

u
(1

2
se

cr
ou

nd
s)

×107

Figure 4: The expected number of steps before absorption for the checkpointed Ethereum
Classic w.r.t. kc, i.e. the expected u before liveness is achieved with probability at least 2

3 . The
primary (left) axis identifies the liveness parameter u for 33% and 50% + 1 adversarial control,
while the secondary axis corresponds to 66% adversarial power. Our model is parameterized
with q = 12 · 237 · 106, n = 33755, p = 9.1 · 10−15, and 12-second rounds.

corresponds to a query and that each party performs 237 MH/s.8 Furthermore, the total hash

rate is on average 8 TH/s. Therefore, the total number of parties is n = 8·1012

237·106 = 33755. We
use 12 seconds as our round’s length and also have q = 12 · 237 · 106. The final parameter is
the difficulty of the network. The difficulty implies the threshold to which the hashes should
comply in order to be accepted, specifically the required number of most-significant bits of the
hash being equal to 0. In our case, the difficulty is 110 TH, i.e. 1 out of every 110 · 1012 hashes
is successful on average, so the probability that a single hash is successful is p = 9.1 · 10−15.

Figure 4 depicts the expected number of steps before absorption w.r.t. kc, for Ethereum
Classic’s parameters above. This metric provides an estimation of the number of rounds, i.e.
the value of u, needed to achieve liveness with probability at least 2

3 . As expected, the number
of steps increases with the adversarial power. u increases linearly with kc, as long as the
adversary controls a minority of the mining power. However, if the adversary controls a mining
majority, the expected number of steps increases exponentially with kc, to the point where a
66% adversary is orders of magnitude more powerful (and we need a different axis to make the
figure intelligible).

Figure 5 shows the liveness probability w.r.t. u for various values of kc. Naturally, the
liveness probability depends on the initial state of the graph, i.e. the state of the system when
the transaction is published for the first time. Therefore, the minimum liveness probability can
be extracted as the minimum probability over all possible transient states; our simulations have
shown that, as expected, this state is (kc, 0), i.e. when the adversary has the biggest advantage.

In order to evaluate the liveness probability, we fix the adversarial mining power to 50% + 1.
We observe that liveness is achieved with high probability after a relatively small amount of
rounds for kc = 1; specifically after 50 rounds, i.e. after 10 minutes, the liveness probability is
0.9975. However, the liveness probability decreases significantly as the epoch length increases;
for instance, again for 10 minutes, when kc = 5 the liveness probability is 0.5836, whereas when
kc = 10 it drops significantly to 0.1434. This behavior is expected since, as kc →∞ the system
downgrades to the standard non-checkpointed setting, where an adversary with majority can
break liveness with probability 1.

8This corresponds to the popular mining hardware “PandaMiner B1 Plus”, thus we assume each party is
realized by a single such machine.

12

0 30 60 90 120 150 180 210 240 270 300
u (12 sec rounds)

0.00

0.25

0.50

0.75

1.00

Liv
en

es
sp

ro
ba

bil
ity

kc
1
3
5
10

Figure 5: The liveness probability of a checkpointed Ethereum Classic w.r.t. u and kc. The
vertical axis identifies the liveness probability, while the horizontal axis defines u, i.e. the
number of consecutive rounds for which the transaction is supplied to the miners. Our model
is parameterized with rounds which last 12 seconds, q = 12 · 237 · 106, n = 33755, and p =
9.1 · 10−15.The adversarial mining power is 50% + 1 so t = 16877.

3.3 The Checkpointed Chain Resolution Protocol

In this section we realize the checkpointing authority as a federated service distributed among
parties communicating over an asynchronous network. To make our design most efficient we
assume that the checkpointing service runs among a set of parties that trust each other, while
tolerating benign faults e.g. crashes, message reordering, etc. Although not fully decentralized,
like the timestamping solution of Section 4, our scheme is in line with similar real-world check-
pointing mechanisms, e.g. Bitcoin, Peercoin, and Feathercoin, where checkpoints were issued
by the software’s developers. In our prototype implementation of Section 3.4 we consider a
scenario where 5 coordinating organizations, such as development companies and/or commu-
nity foundations directly linked to the ledger’s ecosystem, employ 3 nodes each (for redundancy
purposes). In Appendix B we relax this trust assumption by defining a protocol that tolerates
Byzantine Faults, although at the cost of using an expensive interactive consistency protocol
over a synchronous network.

The checkpointing protocol is parameterized by a number of subroutines. First, it is param-
eterized by a validation predicate Validate. This predicate identifies whether a chain is valid,
e.g. verifies the signatures and the Proof-of-Work of the chain’s blocks, similar to the maxvalid
function of the Bitcoin Backbone. Second, the parties coordinate via a fail-stop subprotocol
πFS, like RAFT [38] or Paxos [28]. This protocol enables the parties to both reach agreement
on which block to checkpoint and the value of the unpredictable nonce r. Each party Vj inputs

〈Bj , rj〉, where Bj is a (valid) block and rj
$←− {0, 1}ω is a random nonce. At the end of πFS,

each party outputs 〈B′, r′〉, i.e. one of the input block and nonce. The checkpointing protocol is
defined in Figure 6, where C[i] denotes the i-th block of chain C. Theorem 4 formally shows that
πCheckpoint securely realizes FCheckpoint, as long as the fail-stop protocol completes, i.e. a majority
of parties is live. We note that the theorem restricts to environments that, when corrupting a
party, they may force it to fail, rather than behave arbitrarily.

Theorem 4. Protocol πCheckpoint securely realizes FCheckpoint if a majority of parties in V is
available, such that πFS terminates successfully.

Proof. Since we assume only crash faults, each party either follows the protocol or is unre-
sponsive. Firstly, the blocks which are proposed for checkpointing are valid, since the protocol

13

Protocol πCheckpoint

A checkpointing party which runs πCheckpoint is parameterized by the list V of n check-
pointing parties, a (fail-stop) consensus protocol πFS, a validation predicate Validate, the
function maxvalid, and kc. It keeps a local checkpointed block, Bc, initially set to ε.

Upon receiving (CandidateCheckpoint, C ′) from a party V, check:

• ∃i : C ′[i] = Bc (i.e. if C ′ extends the checkpoint);

• Validate(C ′) = 1 (i.e. if C ′ is valid);

• |C ′| − i = kc (i.e. if C ′ is long enough).

If all hold do:

1. pick rj
$←− {0, 1}ω;

2. pick input 〈C ′, rj〉 for the protocol πFS;

3. execute πFS with the parties in V to agree on an input 〈C ′, r′〉, such that ∀〈Ĉ, r̂〉 ∈
I : maxvalid(C ′, Ĉ) = C ′ with I the set of inputs, i.e. choose the output according to
maxvalid;

4. set Bc := tail(C ′)||r′.

Finally, return (Checkpoint, Bc) to V.

Figure 6: The protocol run by the parties of the checkpointing authority.

employs the validation predicate Validate before providing them as input to πFS. Secondly, the
value rj , which is picked by each party at random, is unpredictable and thus indistinguishable
from the value ri chosen by FCheckpoint. Therefore, the inputs to the protocol πFS are well-
structured, i.e. indistinguishable from the inputs in FCheckpoint. Finally, since a majority of
parties is available, πFS is guaranteed to output a checkpoint, which will be chosen according
to maxvalid as in FCheckpoint. We note that, in the ideal world, the simulator A can control the
delivery of messages to FCheckpoint, such that the first valid candidate block which is proposed is
also the heaviest (according to maxvalid).

Naturally, if the availability guarantee fails, i.e. if a majority of parties is unavailable, then
πFS will stop. In that case, checkpoint consistency is guaranteed, i.e. no conflicting checkpoints
will be issued, but also no new checkpoints are produced. In turn, the ledger downgrades to the
plain execution model, so persistence is guaranteed only for the chain up to the last checkpoint,
whereas liveness is no longer guaranteed, if the adversary controls a mining majority.

To incorporate checkpoints in the consensus protocol run by miners, we slightly adapt Bitcoin
Backbone for the checkpointed setting. Specifically, instead of using maxvalid directly for chain
resolution, a miner now utilizes the checkpointing mechanism. Next, we define the protocol
which is run by the miners and realizes the chain resolution functionality. When a miner creates
a new block, they submit it to all checkpointing parties via the CandidateCheckpoint interface
of πCheckpoint. When the new checkpoint is issued, they accept it and, following, they adopt a
new chain only if it contains a newly-issued checkpoint. The chain resolution protocol in the
checkpointed setting is defined in Figure 7; in addition to previous notation, C[: i] denotes the
chain consisting of the first i blocks of C.

πCheckpoint checkpoints valid chains, i.e. validates both the block’s headers and transactions
before selecting a chain. We can relax this assumption by requiring πCheckpoint to validate only
the block’s headers. This change would reduce the computation requirements of πCheckpoint, but
also allow invalid transactions in the chain; specifically, a block with invalid transactions may
have valid headers, i.e. extend the hash chain per the PoW rules, thus a party which does

14

Protocol πCheckpointMiningRes

A party which runs πCheckpointMiningRes is parameterized by maxvalid, the n checkpointing
parties V which run πCheckpoint, and kc. It keeps a local chain C and the checkpoint index
ic, initially set to ε and 0.

Upon receiving (CandidateChain, C ′), set C := maxvalid(C,C ′). If |C| ≥ ic + kc
set ic := ic + kc and send C[: ic] to all parties in V. Upon receiving dn2 e messages
(Checkpoint, B||r) from different checkpointing parties, if C[ic] = B||r set C := C[: ic]||r.

Upon receiving (Read) return (Chain, C).

Figure 7: The checkpointed mining chain resolution protocol.

not validate each transaction would accept it. In this case, the ledger’s consensus mechanism
should be adapted to accept only the first of the potential conflicting transactions, rather than
rejecting the chain which contains invalid transactions altogether, as is the case in current
blockchain systems.

As motivated in the introduction, we aim to secure a blockchain only temporarily. There-
fore, once the ledger can securely exist without assistance, the shut down of the checkpointing
service is initiated. Shutdown is parameterized by a security threshold, such that, after it is
reached, the checkpoint authority halts and the ledger transitions to the decentralized mode.
This security threshold is outside of the scope of this work, though potential candidates include
the network’s hash rate or the profitability of attacks. The system though is at a risk if the
service is compromised at a future point, as an adversary that compromises the service after the
shut down could issue new checkpoints. This risk can be mitigated in two ways: i) if the security
threshold is publicly computable, then the miners know whether it has been reached and ignore
future checkpoints, ii) the authority produces a specific “shut down” message to alert the miners
of the operation halting. Future work will explore additional mechanisms for future-proofing
the checkpoint authority.

3.4 Prototype Implementation

We implemented a prototype of the checkpointing service and evaluated its performance. We
assume a PKI for the checkpointing nodes which, after agreeing which block to checkpoint,
produce and publish signatures. Given that the honestly-produced signatures are unpredictable,
since otherwise an attacker could produce forged signatures, the necessary unpredictable nonce
consists of the aggregated checkpointing signatures. Therefore, the miners can now verify in a
non-interactive manner whether the checkpointing service has issued a checkpoint on a given
block.

Our experiments ran on a private Ethereum network set up on Amazon’s EC2 platform
with t2.micro instances9 running Ubuntu 18.04 LTS. The network consisted of 3 mining nodes,
which coordinated via a “bootnode” node. Our network replaced the costly Proof-of-Work
mechanism of the vanilla Ethereum with Parity’s Proof-of-Authority (PoA) [13], which uses
the Clique algorithm. All nodes were launched within the same geographical region (EU) and
produced blocks on a 10 second interval (as opposed to the 15 second interval of the real-world
Ethereum mainnet).

The checkpointing federation, consisting of 15 nodes, was built utilizing a number of existing
tools. First, each node ran a full Ethereum client which connected to the private network and
retrieved the newly-mined blocks from the mining nodes. Second, in order to coordinate the
checkpointing nodes we used etcd10, a distributed file system. etcd employs Raft [38] in order
to resolve conflicts, such that all nodes maintain the same file contents. In our setting, we used
etcd such that the federation nodes agree on which block to checkpoint and also to exchange

9t2.micro instances use 1 virtual CPU and 1 GB of memory.
10https://etcd.io/

15

https://etcd.io/

0 320 640 960 1280 1600 1920 2240
Checkpoint index

0

500

1000

1500

2000

La
te

nc
y

(m
s)

Figure 8: Evaluation of latency, i.e. the time between retrieving a block and accepting it as a
checkpoint, for the prototype checkpointing implementation. Each graph point corresponds to
an independent checkpoint, over a period of more than 24 hours.

and store signatures on newly-issued checkpoints. Third, each node was identified by a public
key — we assume that the public keys are well-known, e.g. are part of the genesis block of the
system. In order to generate the keys and the signatures we used the JavaScript cryptographic
library TweetNaCl11.

In order to checkpoint a block, a node connected to an Ethereum client and observed the
blocks, until at least kc blocks had been mined on top of the latest checkpoint (in the bootstrap-
ping case since the genesis block); our implementation defined kc := 4. When such block was
observed, the node signed its hash and then stored on etcd both the hash and the signature.
Therefore, a valid checkpoint consisted of at least 8 (i.e. a majority of) federation signatures
on a block’s hash. In case the federation nodes did not agree on which block to checkpoint, i.e.
produced signatures on conflicting blocks such that no block was supported by a majority, the
nodes dismissed the checkpoint and proceeded to checkpoint the next candidate block (after kc
blocks).

Our simulations focus on the following metrics: i) the network latency, i.e. the time between
the transmission of a block and its acceptance as a checkpoint; ii) the storage overhead of
checkpoints in the ledger.

Regarding (i), we deployed a checkpointing client outside of Amazon’s service and connected
it both to the Ethereum private network and the checkpoint federation. To estimate latency we
measured the elapsed time between retrieving a block eligible for checkpointing and obtaining a
majority of valid federation signatures for the block’s hash. Our simulation lasted more than 24
hours, spanning over 2200 checkpoints. Figure 8 depicts our results, which are rather positive.
Specifically, latency was on average 679 ms — occasionally, a checkpoint would need more time
to be published, although no more than 1.5 seconds. Additionally, we observed cases when the
federation nodes would not produce a checkpoint, with this failure rate being approximately
15%. Each fail resulted in a 40 second delay, i.e. until a following checkpoint was issued.
However, we expect production-grade implementations to minimize such fails.

However, latency depends on the location of the node to which the client connected, as
longer distance results in worse latency. Specifically, for a client residing in the United Kingdom
latency was as follows, when connecting to checkpointing nodes in different geographical regions:

• London (EU): 557 ms

• N. California (US West): 620 ms

• São Paulo (South America): 711 ms

11https://tweetnacl.js.org

16

https://tweetnacl.js.org

• Tokyo (Asia Pacific): 723 ms

• Singapore (Asia Pacific): 779 ms

Regarding (ii), a checkpoint consists of the concatenated signatures of federation nodes. Since
each TweetNaCl signature consists of 64 bytes, each checkpoint amounts to 8 · 64 = 512 bytes,
thus checkpointing results in a 0.6% increase in the ledger’s size. 12 We expect production-
grade implementations to offer better results, e.g. utilizing multi-signature schemes, like the
ASM scheme of [4], to reduce the checkpoint’s size.

4 The Timestamped Ledger

Our second scheme, timestamping, is motivated by the need to fully decentralize the checkpoint
mechanism. As we show, timestamping allows us to relax our assumptions, while still achieving
the same guarantees as above. Following, we first model timestamping as an ideal functionality
and then realize it as an interactive decentralized service built on top of an existing distributed
ledger.

4.1 The Timestamping Functionality

First, we define the global timestamping functionality in Figure 9. FTimestamp issues timestamps
by keeping a monotonically increasing counter and a list of timestamped strings. It allows a
party to timestamp a string s by submitting the message (Timestamp, s); afterwards, every
party can verify it via the Verify interface. We stress that the timestamping functionality is
global, i.e. timestamps are not issued privately. Therefore, when a party timestamps a string,
every other party can access both the string and its timestamp. We also note that the timestamp
consists of both a counter and a random value. The latter helps mitigate the front-running attack
(cf. Figure 3). In the decentralized implementation of Section 4.4, where the timestamping
functionality is realized as a distributed ledger, the random value will be the hash of the block
which timestamps a given string.

Functionality FTimestamp

FTimestamp holds the following items:

• T[]: an initially empty list of timestamped strings;

• τ : a counter initially set to 0;

Upon receiving (Timestamp, s), if ∀(s′, ·) ∈ T[] : s′ 6= s, set τ := τ + 1. Then compute a

list R of p(κ) random values as rj
$←− {0, 1}ω and send (Nonce, R) to A. Upon receiving a

response (Nonce, ri), such that ri ∈ R, add (s, τ, ri) to T[].

Upon receiving (Verify, s, τ), if ∃(s, τ) ∈ T[] then return (VerifyTimestamp,>).

Figure 9: The timestamping ideal functionality.

4.2 The Timestamped Chain Resolution Protocol

Using FTimestamp we can now construct the timestamped ledger. Similar to Section 3, we define
the timestamped mining protocol, which leverages FTimestamp and picks a chain among the set
of all possible candidates. A miner can timestamp a new block by submitting it to FTimestamp;

12The size of each Ethereum block is on average 20 KB (cf. https://etherscan.io/chart/blocksize).

17

https://etherscan.io/chart/blocksize

Figure 10: A graph of (potentially) timestamped blocks. A chain is chosen by traversing the
graph, starting with a which has children b and d. Since b is not timestamped, the tree of b
is traversed until timestamped blocks are encountered. So the decision is among a||d, 0||b||c,
and a||b||e||f ; since block c has an older timestamp than d and e, a||b||c is chosen. However,
if block b is later checkpointed, the canonical chain will become a||d, which is the reason why
timestamping as soon as possible is paramount.

a timestamped block is the tuple Bt = (B, τ), where B is the block created by the miner and τ
is the timestamp issued by FTimestamp; B.τ denotes the timestamp of the block B.

When a miner is given a new candidate chain, they compare it with their local chain. Starting
from the genesis block, it parses both chains until it finds the timestamped position where the
two diverge, i.e. the oldest timestamped block in each chain which does not exist in the other.
If such point exists, then we adopt the chain with the oldest diverging block. Otherwise, i.e.
if the last checkpointed block in both chains is the same, we employ the maxvalid algorithm.
Finally, between timestamped and non-timestamped blocks, the former are preferred. Figure 10
provides intuition for the timestamped chain decision rules, showcasing a basic timestamped
block graph, with the timestamped mining chain resolution protocol πTimeMiningRes defined in
Figure 11.

4.3 Security of the Timestamped Ledger

We analyze timestamping in Theorem 5, observing that it is equivalent to checkpoints with
kc = 1.

Theorem 5 (Timestamping). The timestamped resolution protocol πTimeMiningRes and the times-
tamping functionality FTimestamp of Section 4.1 guarantee persistence and liveness with parameter
kc = 1 (cf. Theorems 1 and 3).

Proof. Assume a round where all parties hold the same chain C. It suffices to show that the
first block which extends C (and gets timestamped) acts as a checkpoint. Assume the first such
block B1 extends C and is assigned a timestamp t1. Any subsequent block Bi which extends
C is assigned a timestamp ti strictly larger than t1, by definition of the timestamping mecha-
nism. Thus, an honest miner will always adopt the chain C||B1 over C||Bi. Regardless of the
adversarial strategy, if the honest parties produce a block first, its timestamp is irreversible and
older than any subsequent adversarial block. Also since the adversary cannot censor timestamp
requests, honest blocks always get timestamped. Therefore, the timestamp produced for the
first block that extends a chain acts as a checkpoint. Finally, the randomness r which mitigates
front-running is constructed in a similar manner as FCheckpoint, thus the adversary cannot pro-
duce multiple future blocks unless it can predict r, which is possible with probability L · 2−ω, L
being the protocol’s execution length.

There are two important caveats that need to be stressed. First, following the protocol
and quickly timestamping new blocks is crucial for security. Given that timestamped blocks

18

Protocol πTimeMiningRes

A party which employs πTimeMiningRes holds the local chain C, initially set to ε, and is
parameterized by the maxvalid(·, ·) algorithm.

Upon receiving a message (CandidateChain, C ′), for every timestamped block B ∈ C ′,
send (Verify, B,B.τ) to FTimestamp and wait for (VerifyTimestamp,>). Next, do:

i) set i := 0;

ii) while C[i] = C ′[i] do i := i+ 1;

iii) set i′ := i, c := i− 1;

iv) while C[i] is not timestamped and i < |C| do i := i+ 1;

v) while C ′[i′] is not timestamped and i′ < |C ′| do i′ := i′ + 1;

vi) if i = |C| and i′ = |C ′| set C := maxvalid(C \ C[: c], C ′ \ C ′[: c]),

vii) else if i = |C| or C ′[i′].τ < C[i].τ then set C := C ′.

Upon receiving (Read) return (Chain, C).

Figure 11: The timestamped mining protocol for chain resolution.

are prioritized over non-timestamped, an adversary can discard an arbitrarily long, honestly-
created, but non-timestamped chain. Additionally, the protocol which realizes FTimestamp needs
prevent the adversary from producing forged timestamps. As we show next, we can create such
decentralized mechanism via a secure distributed ledger. Second, it is necessary to timestamp the
entire block, so that the honest parties can immediately access it. For example, timestamping
only a hash does not suffice, as an adversary could timestamp the hash and keep the block
secret. Following, either the honest miners would halt until the adversary reveals the block,
i.e. resulting in a DoS, or they would extend a block with a newer checkpoint, in which case
the adversary could drop the honest chain by simply revealing its own block, i.e. breaking
persistence and liveness. Alternatively, we can timestamp only the block header and properly
handle invalid transactions (cf. Section 3.3).

4.4 Decentralized Implementation

We now implement fully decentralized timestamping using a distributed ledger L; Appendix E
also provides a centralized solution similar to checkpoints.To timestamp a string d, a user submits
a transaction τ to L which contains d. L is an append-only ledger, so a unique, monotonically
increasing index can be assigned to every transaction in L, thus providing a total ordering
of transactions. We observe that, as long as L satisfies persistence, the ordering of stable
transactions is irreversible. We can thus use this index as the timestamp of τ and, consequently,
d. If L also satisfies liveness, then it is infeasible for the adversary to censor an honest party’s
request to timestamp their data. Finally, the hash of the block in L which timestamps d is used
as the unpredictable nonce that mitigates front-running.

Here d is the headers of a block. Specifically, a miner publishes a transaction to L which
contains the headers of a newly-mined block. Following, the block’s timestamp can be retrieved
by parsing L and identifying the index of the timestamping transaction in the ledger. It is evident
that the length of the required public state is O(n·|d|), corresponding to the timestamped blocks’
headers.

Naturally, the adversary may attempt to gain an advantage given the rate of timestamping
of the assisting ledger. For example, it can use excessive fees to incentivize L’s miners to
prioritize its transaction over an honest transaction or attempt to perform a DoS attack using

19

“spam transactions” [45]. Additionally, migrating to a non-timestamped setting is no longer as
straightforward as with the federated checkpoints. For instance, if the honest parties simply stop
timestamping their blocks, the adversary can continue to do so and thus revert any honestly-
generated chain. Therefore, the transition to the non-timestamped setting necessitates a hard
fork, i.e. hard-coding the final timestamped block, such that the honest parties ignore all
subsequent timestamps.
Evaluation of Decentralized Timestamping. We implement the timestamping service on
two major blockchain systems, Bitcoin and Ethereum. The results of our constructions are
demonstrated in Table 1. Our Ethereum implementation is a contract which receives the header
of a block to be timestamped and emits an event.13. BTC? denotes a ledger with Bitcoin-like
block headers and ETH? a ledger with Ethereum-like headers; a Bitcoin header is 80 bytes14,
whereas an Ethereum header is about 600 bytes [46]. The timestamping cost is identified as
the gas cost per operation and is evaluated in USD15. Deploying our contract costs 176569 gas
(0.4 USD), whereas timestamping a BTC? and an ETH? header cost 30302 gas (0.07 USD) and
71137 gas (0.16 USD) respectively.

Cost

Ethereum

Smart contract deployment $0.4

BTC? header timestamping $0.07

ETH? header timestamping $0.16

Bitcoin
BTC? header timestamping $0.45

ETH? header timestamping $3.6

Latency

Ethereum
Stable timestamp 9 minutes

Unstable timestamp 15 seconds

Bitcoin
Stable timestamp 60 minutes

Unstable timestamp 10 minutes

Proof size

Ethereum

Full node 181 GB

SPV implementation 5 GB

NIPoPoW implementation 6 MB

FlyClient implementation 3 MB

Bitcoin
Full node 240 GB

SPV implementation 48 GB

Table 1: Decentralized timestamping performance, using Ethereum and Bitcoin to timestamp
ledgers with Bitcoin-like (BTC?) or Ethereum-like (ETH?) headers.

Latency is expectedly worse in the decentralized case. Ethereum assumes (on average) 9
minutes until a transaction is stable, corresponding to 35 confirmations16, i.e. new blocks
mined “on top” of the transaction. However, users could accept unstable timestamps and mine
immediately after they are issued, thus reducing latency to 15 seconds; in the off chance an
unstable timestamp is reverted, they would update their chain and start afresh.

We also evaluate the storage verification requirements of timestamping. Typically the miner
acquires a full copy of the ledger L, parses it, and verifies the timestamps. However, running a

13The contract is deployed on the Ropsten testnet: https://ropsten.etherscan.io/address/

0xf95c1b1caefe5f2b5050844f64cac906f15a78f1
14https://bitcoin.org/en/glossary/block-header
151gas = 1.3135247596·10−8 ETH, 1ETH = 172 USD (cf. https://etherscan.io/chart/gasprice [September

2019])
16The reference numbers of confirmations used by the Coinbase exchange: https://support.coinbase.com/

customer/portal/articles/593836

20

https://ropsten.etherscan.io/address/0xf95c1b1caefe5f2b5050844f64cac906f15a78f1
https://ropsten.etherscan.io/address/0xf95c1b1caefe5f2b5050844f64cac906f15a78f1
https://bitcoin.org/en/glossary/block-header
https://etherscan.io/chart/gasprice
https://support.coinbase.com/customer/portal/articles/593836
https://support.coinbase.com/customer/portal/articles/593836

full node is an intensive task, e.g. the Ethereum chain is 181 GB17, thus storing and parsing it
assumes significant hardware requirements. Alternatively, we can utilize the Simplified Payment
Verification (SPV) mode [34]. SPV clients retrieve only the blocks’ headers, instead of the entire
chain. Since the timestamp of a string is the index of its transaction in the ledger, in order to
verify that the timestamp of a string d is τ , the miner verifies the chain’s headers in a standard
SPV fashion and additionally obtains the full block which contains the transaction of interest.
As of September 2019, the data which an SPV Ethereum client needs to retrieve and parse
amount to about 5 GB. Finally, we can utilize super-light client modes such as NIPoPoW [24]
and FlyClient [5]. Super-light clients employ succinct proofs of synchronization, thus allowing
a client to verify the timestamp of a block using a proof of O(polylog(n)) size on the chain’s
length n. A super-light Ethereum-based timestamping client retrieves about 6 MB and 3 MB
for NIPoPoW and FlyClient respectively (cf. [5]).

Alternatively, we can use special transactions to coordinate timestamping. Every blockchain
which allows arbitrary data inclusion in the transaction’s payload can be used instead of Ethereum,
although Ethereum’s smart contracts do provide a helpful interface in tracking the timestamps.
Such blockchain is Bitcoin, which allows via the OP RETURN opcode [3] to timestamp arbitrary
data up to 80 bytes18. Therefore, using the Bitcoin blockchain, timestamping would cost 0.45$
for BTC? headers and 3.6$ for ETH? headers (using multiple transactions). Finally, latency in
Bitcoin is 10 minutes for unstable timestamps, i.e. the average block production time, and 60
minutes for stable, whereas the size for a full node is 240 GB and an SPV node is 48 GB19.

5 Related work

Checkpointing precedes blockchains as a method of stabilizing a consensus protocol. In their
seminal paper on Practical Byzantine Fault Tolerance [9], Castro and Liskov describe such mech-
anism in a replicated setting to bring up to date a replica “left behind”. In the blockchain space,
checkpoints are often used against network attacks and to enhance performance. Both Bitcoin
and Bitcoin Cash introduced checkpoints at different stages of development, in order to speed up
the bootstrapping of network nodes and mitigate DoS and 51% attacks. Bitcoin’s checkpoints
were issued in an entirely centralized manner, a method also employed by Peercoin [27] and
Feathercoin [18]. Our work proposes a similar checkpointing solution, albeit federated rather
than fully centralized, as well as a fully decentralized mechanism in the form of timestamping.
In contrast, Bitcoin Cash ABC restricted chain re-orderings to a maximum depth of 10 blocks,
while, similarly, Nxt [36] applies a maximum re-ordering depth of 720 blocks. However, these
solutions introduce the major “network split” hazard described in Section 1. In comparison, our
checkpointing mechanism formalizes these previous attempts, thus preventing hazards like the
network split and enabling us to provide rigorous security proofs regarding persistence and live-
ness. Finally, RSK [30] proposes a checkpoint system similar to Bitcoin, which is constructed
as a federation. Notwithstanding, all mechanisms fail to counter the front-running attack of
Section 3.2.2, since the checkpoints exist outside of the chain; instead, our design provides
probabilistic liveness guarantees even in the presence of an adversarial mining majority.

The blockchain academic literature has primarily considered checkpoints in the context of
preventing long-range attacks in Proof-of-Stake (PoS), rather than protecting Proof-of-Work
(PoW) systems. PoS protocols replace mining power with “stake”, i.e. the subset of the coins
that the block producer owns. Although such systems replace the costly mining operations with
a more environmentally friendly mechanism, they also enable an adversary to produce blocks at
effectively no-cost, which in turn results in a number of threats against PoS protocols, such as the
nothing-at-stake [12], long range [6], and stake bleeding [16] attacks. Checkpoints are utilized to
prevent such attacks in protocols like Ouroboros [25], Snow White [2], and Ouroboros Praos [10],
in the latter also being used as a mechanism to mitigate adaptive corruptions. However, these

17https://etherscan.io/chartsync/chaindefault [September 2019]
18Although Bitcoin’s consensus rules do not impose such limit, the 80 byte threshold is a relay standard, thus

most miners enforce it. The Bitcoin dust fee for OP RETURN transactions is 546 satoshis (0.05$) and the me-
dian transaction fee is 0.4$ (https://bitinfocharts.com/comparison/bitcoin-median_transaction_fee.html
[September 2019]).

19https://www.blockchain.com/charts/blocks-size [September 2019]

21

https://etherscan.io/chartsync/chaindefault
https://bitinfocharts.com/comparison/bitcoin-median_transaction_fee.html
https://www.blockchain.com/charts/blocks-size

works lack both our probabilistic analysis and, most importantly, provide no liveness guarantees
against front-running attacks.

Checkpoints have also been used to improve finality, i.e. to reduce the time until a transaction
is deemed stable. Casper the Friendly Finality Gadget [7] defines a fine-grained checkpointing
mechanism, which is applied in conjunction with a PoW blockchain, allowing to both protect
against block reversions and (financially) penalizing misbehaving parties. Afgjort [32] describes
a generic finality layer, which is run by a sub-committee and can be applied on top of an arbitrary
blockchain. However, both systems assume a secure underlying blockchain, i.e. a blockchain
which already satisfies persistence and liveness, and aim at a performance boost in finality. In
comparison, our analysis allows an adversary to hold a mining majority and aims at securing a
temporarily insecure ledger.

The idea of employing sub-selection to run an agreement protocol that commits transactions
irreversibly has also been explored in various settings. On the PoW side, notable works are
hybrid consensus [39], which integrates a permissioned protocol with a decentralized blockchain
to elect rotating committees, and Thunderella [40], which optimistically confirms transactions
via an asynchronous consensus protocol that tolerates 1

4 faults of an elected committee while
using PoW as a fallback mechanism. On the PoS side, Algorand [17] uses a combination of
a Verifiable Random Function to elect a committee which runs a Byzantine Agreement (BA)
protocol to produce blocks. However, these systems assume a secure ledger, on top of which the
BA protocol is run; in contrast, our mechanisms take effect in insecure environments, i.e. when
an adversary controls more than 50% of the mining power. Additionally, our mechanism can
both be seamlessly integrated in existing blockchains and also easily and automatically removed
when the system matures.

An alternative design, Stellar [33, 31], operates based on quorum slices, i.e. subsets of users,
within which specific validator nodes are selected. Validators assign trust relationships among
each other and agreement is guaranteed between mutually trusted validators. Stellar tolerates
at best 33% Byzantine Faults while, as shown by Kim et al. [26], the Stellar network is effectively
centralized around a few validators operated by the same foundation. If a Stellar-like system
is vulnerable, we could employ checkpointing by establishing a small number of quorums, each
operated by a trusted entities to issue checkpoints as above. Honest nodes could join them,
effectively forming a centralized setting as the one identified in [26], although transparent and
strictly confined to issuing checkpoints.

Regarding our second scheme, secure timestamping is an old topic of interest in the cryp-
tographic community. In a representative piece of literature, Haber and Stornetta [21] propose
timestamping based on hashes and digital signatures; we utilize similar ideas in constructing
a centralized and non-interactive timestamping solution in Appendix E. Blockchains increased
interest in secure timestamping with distributed ledgers acting as timestamping services. For
instance, Gipp et al. [19] explored trusted timestamping using the Bitcoin blockchain, while
projects such as OriginStamp [22] aim to allow users to timestamp arbitrary data using Bit-
coin’s blockchain. Additionally, Veriblock [43] employs a mechanism, dubbed “Proof-of-Proof”,
which leverages Bitcoin’s blockchain to secure its own chain. However, this system assumes an
elaborate mechanism, while relying entirely on Bitcoin’s security. In comparison, the scheme
of Section 4.4 serves only as a temporary solution, while ensuring that transition to the non-
timestamped setting is achieved securely.

6 Conclusion

This paper investigates securing distributed ledgers against attacks by an adversarial mining
majority. The core idea is to introduce an external set of parties to guarantee the ledger’s
security. Motivated by the increasing rate of mining attacks and the threat they pose against the
early stages of all systems, we provide a rigorous treatment of two mechanisms, checkpointing
and timestamping, which ensure a good level of protection and performance under standard
security assumptions. Our analysis highlights a novel attack against liveness, front-running, and
our solutions are the first to achieve probabilistic liveness guarantees under adversarial majority.
Our timestamping solution achieves a high level of decentralization by relying on an existing,

22

secure distributed ledger.
Our work poses a number of questions that require further research. On the theoretical part,

the ledger can be analyzed in the asynchronous setting under dynamic participation. In practice,
we can also explore automatic shutdown for the checkpointing service, e.g. from a game theo-
retical perspective, while also future-proofing it. Regarding timestamping, future research can
focus on thoroughly evaluating the implications of using a ledger for timestamping, e.g. tackling
incentive-based and network attacks. Additionally, further analysis is needed regarding latency
in decentralized timestamping vis-à-vis the probability of reversal of an unstable timestamp.
Finally, we can explore performance enhancements, e.g. reducing the checkpoint length and
improving client bootstrapping, as well as the applicability of checkpoints on non-PoW systems,
e.g. PoS systems like Algorand and Ouroboros or complex designs like Stellar.

References

[1] Bitcoin ABC. Bitcoin abc 0.18.5 released, 2018. https://www.bitcoinabc.org/

2018-11-20-bitcoin-abc-0-18-5/.

[2] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake.
IACR Cryptology ePrint Archive, 2016:919, 2016.

[3] Bitcoin. Op return, 2019. https://en.bitcoin.it/wiki/OP_RETURN.

[4] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. pages 435–464, 2018.

[5] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-light clients
for cryptocurrencies. IACR Cryptology ePrint Archive, 2019:226, 2019.

[6] Vitalik Buterin. On stake. Ethereum Blog, 5, 2014.

[7] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437, 2017.

[8] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067.

[9] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, vol-
ume 99, pages 173–186, 1999.

[10] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 66–98.
Springer, 2018.

[11] Panos Diamantopoulos, Stathis Maneas, Christos Patsonakis, Nikos Chondros, and Mema
Roussopoulos. Interactive consistency in practical, mostly-asynchronous systems. In 2015
IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), pages
752–759. IEEE, 2015.

[12] Ethereum. Proof of stake faqs, 2018. https://github.com/ethereum/wiki/wiki/

Proof-of-Stake-FAQs.

[13] Parity Ethereum. Proof-of-authority chains, 2019. https://wiki.parity.io/

Proof-of-Authority-Chains.

[14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In International conference on financial cryptography and data security, pages 436–454.
Springer, 2014.

23

https://www.bitcoinabc.org/2018-11-20-bitcoin-abc-0-18-5/
https://www.bitcoinabc.org/2018-11-20-bitcoin-abc-0-18-5/
https://en.bitcoin.it/wiki/OP_RETURN
http://eprint.iacr.org/2000/067
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs
https://wiki.parity.io/Proof-of-Authority-Chains
https://wiki.parity.io/Proof-of-Authority-Chains

[15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 281–310. Springer, 2015.

[16] Peter Gaži, Aggelos Kiayias, and Alexander Russell. Stake-bleeding attacks on proof-of-
stake blockchains. In 2018 Crypto Valley Conference on Blockchain Technology (CVCBT),
pages 85–92. IEEE, 2018.

[17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-
gorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 51–68. ACM, 2017.

[18] David Gilson. Feathercoin secures its block chain with ad-
vanced checkpointing, 2013. https://www.coindesk.com/

feathercoin-secures-block-chain-advanced-check-pointing.

[19] Bela Gipp, Norman Meuschke, and André Gernandt. Decentralized trusted timestamping
using the crypto currency bitcoin. arXiv preprint arXiv:1502.04015, 2015.

[20] Charles M Grinstead and J Laurie Snell. Markov chains. Introduction to probability, pages
405–470, 1997.

[21] Stuart Haber and W Scott Stornetta. How to time-stamp a digital document. In Conference
on the Theory and Application of Cryptography, pages 437–455. Springer, 1990.

[22] Thomas Hepp, Patrick Wortner, Alexander Schönhals, and Bela Gipp. Securing physical
assets on the blockchain: Linking a novel object identification concept with distributed
ledgers. In Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Dis-
tributed Systems, pages 60–65. ACM, 2018.

[23] C. Edward Kelso. Bitcoin gold hacked for $18 million, 2018. https://news.bitcoin.com/
bitcoin-gold-hacked-for-18-million/.

[24] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-
of-work. Cryptology ePrint Archive, Report 2017/963, 2017. http://eprint.iacr.org/

2017/963.

[25] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology
Conference, pages 357–388. Springer, 2017.

[26] Minjeong Kim, Yujin Kwon, and Yongdae Kim. Is stellar as secure as you think? arXiv
preprint arXiv:1904.13302, 2019.

[27] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.
self-published paper, August, 19, 2012.

[28] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[29] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,
1982.

[30] Sergio Demian Lerner. Rsk white paper overview, 2015. https://docs.rsk.co/RSK_

White_Paper-Overview.pdf.

[31] Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli Gafni,
Jonathan Jove, Rafa l Malinowsky, and Jed McCaleb. Fast and secure global payments with
stellar. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages
80–96. ACM, 2019.

24

https://www.coindesk.com/feathercoin-secures-block-chain-advanced-check-pointing
https://www.coindesk.com/feathercoin-secures-block-chain-advanced-check-pointing
https://news.bitcoin.com/bitcoin-gold-hacked-for-18-million/
https://news.bitcoin.com/bitcoin-gold-hacked-for-18-million/
http://eprint.iacr.org/2017/963
http://eprint.iacr.org/2017/963
https://docs.rsk.co/RSK_White_Paper-Overview.pdf
https://docs.rsk.co/RSK_White_Paper-Overview.pdf

[32] Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi. Afgjort: A
partially synchronous finality layer for blockchains. Cryptology ePrint Archive, Report
2019/504, 2019. https://eprint.iacr.org/2019/504.

[33] David Mazieres. The stellar consensus protocol: A federated model for internet-level con-
sensus. Stellar Development Foundation, page 32, 2015.

[34] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[35] Mark Nesbitt. Deep chain reorganization detected on
ethereum classic (etc), 2019. https://blog.coinbase.com/

ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de.

[36] Nxt. Nxt whitepaper, 2014. https://nxtwiki.org/wiki/Whitepaper:Nxt.

[37] Stephen O’Neal. Bitcoin cash hard fork battle: Who is win-
ning the hash war, 2018. https://cointelegraph.com/news/

bitcoin-cash-hard-fork-battle-who-is-winning-the-hash-war.

[38] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm.
In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14), pages 305–319,
2014.

[39] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless
model. Cryptology ePrint Archive, Report 2016/917, 2016. http://eprint.iacr.org/

2016/917.

[40] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation.
Cryptology ePrint Archive, Report 2017/913, 2017. http://eprint.iacr.org/2017/913.

[41] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[42] Jamie Redman. Vertcoin network suffers 300-block re-
org following 51% attacks, 2018. https://news.bitcoin.com/

vertcoin-network-51-attacked-and-suffers-from-a-reorg-300-blocks-deep/.

[43] Maxwell Sanchez and Justin Fisher. Veriblock whitepaper, 2018. https://www.veriblock.
org/wp-content/uploads/2018/03/PoP-White-Paper.pdf.

[44] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strate-
gies in bitcoin. In International Conference on Financial Cryptography and Data Security,
pages 515–532. Springer, 2016.

[45] Bitcoin Wiki. Spam transactions, 2019. https://en.bitcoin.it/wiki/Spam_

transactions.

[46] Gavin Wood. Ethereum yellow paper. Internet: https://github.
com/ethereum/yellowpaper,[Oct. 30, 2018], 2014.

[47] ZenCash. Zencash statement on double spend attack, 2018. https://blog.zencash.com/
zencash-statement-on-double-spend-attack/.

A Mathematical Background

In this section we cover the basic mathematical tools used for our security analysis, namely the
properties of the absorbing Markov chains cf. [20].

The Markov chain. A Markov chain is identified by a set of states S = {s1, s2, . . . }.
An execution starts at one of the states in S and progresses in steps, each corresponding to a
transition from a state si to a (different or the same) state sj . Each transition is identified by
a probability pij , which is independent of the history of the execution, but only depends on the

25

https://eprint.iacr.org/2019/504
https://blog.coinbase.com/ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de
https://blog.coinbase.com/ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de
https://nxtwiki.org/wiki/Whitepaper:Nxt
https://cointelegraph.com/news/bitcoin-cash-hard-fork-battle-who-is-winning-the-hash-war
https://cointelegraph.com/news/bitcoin-cash-hard-fork-battle-who-is-winning-the-hash-war
http://eprint.iacr.org/2016/917
http://eprint.iacr.org/2016/917
http://eprint.iacr.org/2017/913
https://news.bitcoin.com/vertcoin-network-51-attacked-and-suffers-from-a-reorg-300-blocks-deep/
https://news.bitcoin.com/vertcoin-network-51-attacked-and-suffers-from-a-reorg-300-blocks-deep/
https://www.veriblock.org/wp-content/uploads/2018/03/PoP-White-Paper.pdf
https://www.veriblock.org/wp-content/uploads/2018/03/PoP-White-Paper.pdf
https://en.bitcoin.it/wiki/Spam_transactions
https://en.bitcoin.it/wiki/Spam_transactions
https://blog.zencash.com/zencash-statement-on-double-spend-attack/
https://blog.zencash.com/zencash-statement-on-double-spend-attack/

Figure 12: The example Markov chain.

s0 s1 s2

s0 0.5 0.2 0.3

s1 0.4 0.6 0

s2 0 0 1

Table 2: Example transition matrix.

current state si. Figure 12 depicts an example Markov chain with 3 states, which we will use to
provide intuition in the following paragraphs.

The absorbing state. A state si is absorbing if for the transition probabilities it holds
pii = 1 and pij = 0, i 6= j; in other words, if the execution reaches an absorbing state it will
never transition to a different state after. Every state which is not absorbing is transient.

The transition matrix. The stochastic transition matrix of a Markov chain is a matrix
which comprises of the transition probabilities between any two states of the Markov chain.
Specifically, it is a n×n square matrix M , where n is the number of states of the Markov chain,
such that the entry Mij = pij ; in other words, the ij-th entry in M contains the probability of
transition from state si to sj . The canonical form of the transition matrix M is:

M =

(
Q R
O Ir

)
where Q is the t× t matrix, where each column corresponds to one of the t transient states, and
R is the r× t matrix, where each column corresponds to one of the r absorption states; O is the
r × t zero matrix and Ir is the r × r identity matrix.

Table 2 depicts the canonical form of the transition matrix of an example Markov chain with
3 states, where s2 is the absorption state and s0, s1 are transient states.

Absorption probability after u rounds. Assume a transition matrix M of an (absorbing)
Markov chain. The ij-th entry of matrix Mu identifies the probability that starting from state
si the execution is at state sj after exactly u steps.

Table 3 depicts the canonical form of the transition matrix of the above Markov chain after
5 steps. Therefore, if the execution starts from the state s0, the probability of absorption in
state s2 after 5 steps is 0.68661.

The fundamental matrix and expected number of steps until absorption. For
an absorbing Markov chain with transition matrix M as above, it holds (I − Q)−1 = N =
I + Q + Q2 + · · · ; the matrix N is called the fundamental matrix for M . The ij-th entry in
N denotes the expected number of times that the execution is in state sj having started from
state si.

Given the fundamental matrix N as above, the expected number t of steps before absorption
is t = d

∑t
j=0Nije, when the execution starts from the state si.

Table 4 depicts the fundamental matrix of the example Markov chain. The expected number
of steps until absorption from the initial state s0 is 5.

26

s0 s1 s2

s0 0.17061 0.14278 0.68661

s1 0.28556 0.242 0.47244

s2 0 0 1

Table 3: Example transition matrix after 5 steps.

s0 s1

s0 3.333 1.667

s1 3.333 4.167

Table 4: Example fundamental matrix.

B A Checkpointed Protocol That Tolerates Byzantine Faults

In this section we relax the trust assumption between the parties that realize the checkpointing
authority. In Section 3.3 we assumed that a party may only fail by crushing. In order to allow
arbitrary behavior, i.e. Byzantine Faults, instead of a fail-stop protocol we now employ an
interactive consistency subprotocol πIC, such as the schemes of [11]. This protocol enables the
parties to both reach agreement on which block to checkpoint and also collectively produce the
unpredictable nonce r.

Now, we need to slightly modify the ideal functionality FCheckpoint to express the byzantine
behavior. In FCheckpointBFT of Figure 13, the adversary has more power by choosing among a
polynomial number of potential random values rj . This change models the ability to produce a
(polynomial-bounded) number of random values to pick from and participate in the interactive
consistency protocol.

Functionality FCheckpointBFT

FCheckpoint interacts with a set of parties V and holds the local chain C and the
checkpoint chain Cc, both initially set to ε. It is parameterized by kc, which defines
the number of blocks between two consecutive checkpoints, and the maxvalid(·, ·) algorithm.

Upon receiving (CandidateCheckpoint, C ′) from a party V, if Cc ≺ C ′ set C :=
maxvalid(C,C ′). Next, if |C \ Cc| = kc compute a list R of p(κ) random values as

rj
$←− {0, 1}ω and send (Nonce, R) to A. Upon receiving from A a response (Nonce, ri),

such that ri ∈ R, return (Checkpoint, tail(C)||ri) to V and set C := Cc := C||ri.

Figure 13: The checkpointing ideal functionality that tolerates byzantine faults.

As before, the checkpointing protocol is also parameterized by a validation predicate Validate,
which identifies whether a chain is valid. Each party Vj inputs 〈Bj , rj〉, where Bj is the block
which it wishes to checkpoint and rj is a random nonce. At the end of πIC, each party outputs
an ordered list [〈B1, r1〉, . . . , 〈Bn, rn〉], which contains the inputs of all parties; in case a party
aborts a default value 〈⊥,⊥〉 is chosen as its input. Following, the parties pick the block that has
plurality among the blocks that are output, breaking ties in lexicographical order. Additionally,
they produce the collective nonce as r = H(r1|| . . . ||rj), where H : {0, 1}? → {0, 1}ω is a hash
function.

The checkpointing protocol is defined in Figure 14 and Theorem 6 shows that πCheckpointBFT
securely realizes FCheckpointBFT.

27

Protocol πCheckpointBFT

A checkpointing party which runs πCheckpoint is parameterized by the list V of n check-
pointing parties, an interactive consistency protocol πIC, a hash function H, a validation
predicate Validate, and kc. It keeps a local checkpointed block, Bc, initially set to ε.

Upon receiving (CandidateCheckpoint, C ′) from a party V, check:

• ∃i : C ′[i] = Bc (i.e. if C ′ extends the checkpoint);

• Validate(C ′) = 1 (i.e. if C ′ is valid);

• |C ′| − i = kc (i.e. if C ′ is long enough).

If all hold do:

1. pick rj
$←− {0, 1}ω;

2. execute protocol πIC with the parties in V with input 〈tail(C ′), rj〉 and wait for its
output [〈B1, r1〉, . . . , 〈Bn, rn〉];

3. find the block Bj which has plurality among the output blocks (breaking ties lexico-
graphically) and set Bc := Bj ||H(r1|| . . . ||rn).

Finally, return (Checkpoint, Bc) to V.

Figure 14: The protocol which is run by the parties of the checkpointing authority.

Theorem 6. Protocol πCheckpointBFT securely realizes FCheckpointBFT, assuming a secure interactive
consistency protocol πIC, which successfully terminates, and a hash function H.

Proof sketch. πIC is an interactive consistency protocol, so the honest parties agree on the same
checkpoint block and produce the same nonce r. Since at least one honest party contributes to
the output of the protocol and, since H is secure, r is pseudorandom and unpredictable, like r
of FCheckpointBFT.

C Liveness for Epochs of Random Length

As shown above, longer epochs act in favor of the adversary. In order to sidestep this advantage,
we will try instead to hide the epoch’s length. The core idea here is, if the adversary can no
longer plan when to publish its chain, it is in its best interest to publish it immediately, although
allowing the honest parties to catch up; the following example showcases this argument.

Consider the case when the honest parties have produced only a single block and the ad-
versary has produced 2 blocks. Since the adversary does not know the epoch’s length, by
withholding its chain it risks the possibility that the honest parties produce a second block and,
if kc = 2, reach the checkpoint. Additionally, observe that now the epoch’s length becomes
known only after the checkpoint has been issued, when it is too late for the adversary. There-
fore, the only way for the adversary to be completely sure that it beats the honest parties to
the checkpoint is to directly publish any new block it produces.

In order to apply this idea to our model we make a small change in the checkpointing
functionality of Section 3.1. Now the functionality, defined in Figure 15, is parameterized by an
upper bound k>c , which is known to the adversary. Additionally, it holds an internal variable
kc unknown to the adversary, which is drawn from (0, k>c] uniformly at random and is updated
when a checkpoint is issued.

In order to evaluate liveness we again consider the adversarial strategy and the Markov chain
which results from it. As mentioned above, the plain strategy that an adversary follows is to
immediately publish every block it produces. Indeed, this strategy gives the adversary the best

28

Functionality FCheckpointRand

FCheckpointRand interacts with a set of parties V, is parameterized by k>c and maxvalid(·, ·),
and holds the local chain C and the checkpointed chain Cc, both initially set to ε, and kc,

the current epoch’s length, initially set to kc
$←− (0, k>c].

Upon receiving a message (CandidateChain, C ′), if Cc ≺ C ′ set C := maxvalid(C,C ′). If

|C| − |Cc| ≥ kc then pick r
$←− {0, 1}ω, and set C := Cc := C||r and kc

$←− (0, k>c].
Upon receiving a message (Read) from a party V ∈ V return (Chain, C).

Figure 15: The Randomized Checkpointing Functionality

0 5 10 15 20 25 30 35 40 45 50
kc (blocks)

0

338

677

1016

1354
u

(1
2

se
cr

ou
nd

s)

Randomized
epochs

False
True

Figure 16: Comparison of the expected number of steps before absorption in the non-
randomized and the randomized epoch length settings. The adversarial power is fixed to 51%.

chances of getting checkpointed, assuming that its chain is only 1 block shy of reaching the
epoch’s limit. However, if the checkpoint is further away, then publishing the chain will only
allow the honest parties to “catch up”. We note that this strategy is straightforward, but not
necessarily the optimal ; future work will explore alternative strategies which might produce
better results for the adversary, such as taking into account the probability that kc is equal to
some value given k>c and choosing whether to publish the chain accordingly.

Similar to Section 3.2.2, the adversary will not adopt any of the honestly-generated blocks.
However, it cannot anymore gain an advantage over the honest parties. Therefore, the states
(i, j) where i > j are now merged with the state (j, j). Algorithm 2 defines the updated chain
generation mechanism; following the notation of Section 3.2.2, we set m = (1 −mΣ

0), i.e. the
probability that the adversary produces at least 1 block, and m̄ = m(0), i.e. the probability that
the adversary does not produce any blocks.

Our simulations have shown that the behavior of the liveness probability and the expected
steps is the same as in Section 3.2.2. Specifically, the liveness probability decreases significantly
as the epoch length increases, while u increases roughly linearly with kc, when the adversary
controls a minority, and exponentially when it controls a large majority. However, randomizing
the epoch lengths does improve both the liveness probability and the expected rounds compared
to the plain setting of Section 3.2.2. Figures 16 and 17 depict the comparison of the expected
rounds and the liveness probability respectively between the non-randomized and the random-
ized epoch length settings. For comparison, in the randomized setting after 300 steps for kc = 3
the liveness probability is 0.871, compared to 0.7173 in the non-randomized setting.

29

Algorithm 2 The Markov chain construction algorithm for randomized epoch lengths.

function createMarkovChain(kc)
createGraph(kc, kc)

end function
function createGraph(i, j)

if i = 0 then
addEdge(final,final, 1)
return

end if
addEdge((i, j), (i, j), h̄ · m̄)
if i = j then

if i = 1 then
addEdge((i, j), (kc, kc),m)
addEdge((i, j),final, h · m̄)

else
addEdge((i, j), (i− 1, j − 1),m)
createGraph(i− 1, j − 1)
addEdge((i, j), (i− 1, j), h · m̄)
createGraph(i− 1, j)

end if
else

addEdge((i, j), (i, j − 1), h̄ ·m)
createGraph(i, j − 1)
if i = 1 then

addEdge((i, j),final, h)
else

addEdge((i, j), (i− 1, j − 1), h ·m)
createGraph(i− 1, j − 1)
addEdge((i, j), (i− 1, j), h · m̄)
createGraph(i− 1, j)

end if
end if

end function

0 30 60 90 120 150 180 210 240 270 300
u (12 sec rounds)

0.00

0.25

0.50

0.75

1.00

Liv
en

es
sp

ro
ba

bil
ity

Randomized
epochs

False
True

Figure 17: Comparison of the liveness property in the non-randomized and the randomized
epoch length settings. The adversarial power is fixed to 51% and the epoch length is set to
kc = 3.

30

D Liveness for Non-Rushing Adversaries

In this section we slightly modify our model, in an attempt to both make it more realistic and
achieve better liveness. Specifically, we no longer assume that the adversary is rushing, so now
the adversary can no longer plan its strategy with the knowledge of the honest parties’ messages
during a round. More importantly, if, for a specific round, both an adversarial and an honest
chain are published, it is no longer the case that the adversarial chain will be adopted. Instead
we introduce the network adoption parameter γ as follows:

• γ: the probability that an adversarial chain is adopted in a round over an honest chain.

This change affects the Markov chain production algorithm. Algorithm 3 defines the con-
struction of the updated Markov chain, taking γ into account. Specifically, in case both the
adversary and the honest parties produce chains which can be checkpointed, there exists now a
probability 1− γ that honest parties’ chain is checkpointed; it is evident that, when γ = 1, the
algorithm produces the same chain as Algorithm 1.

Algorithm 3 The absorbing Markov chain construction algorithm for the optimistic setting,
defined by the chain construction function createMarkovChainOptimistic, parameterized by kc,
and the recursive helper function createGraph.

function createMarkovChainOptimistic(kc)
createGraph(kc, kc)
addEdge(final,final, 1)

end function
function createGraph(i, j)

if j > 0 then
for l ∈ [0, j − 1] do

addEdge((i, j), (i, j − l), h̄ ·m(l))
if l > 0 then

createGraph(i, j − l)
end if
if i > 1 then

addEdge((i, j), (i− 1, j − l), h ·m(l))
createGraph(i− 1, j − l)

end if
end for
addEdge((i, j), (i, 0), h̄ · (1−mΣ

j−1))
createGraph(i, 0)
if i = 1 then

addEdge((i, j),final, h ·mΣ
j−1 + m̄ · h · (1−mΣ

j−1))

addEdge((i, j), (kc, kc),m · h · (1−mΣ
j−1))

else
addEdge((i, j), (i− 1, 0), h · (1−mΣ

j−1))
createGraph(i− 1, 0)

end if
else

addEdge((i, j), (i, j), h̄)
if i = 1 then

addEdge((i, j), (kc, kc),m · h)
addEdge((i, j),final, m̄ · h)

else
addEdge((i, j), (i− 1, j), h)
createGraph(i− 1, j)

end if
end if

end function

31

However, now Algorithm 3 does not necessarily model a minimal execution. Specifically, it
might be in the adversary’s benefit to avoid risking a checkpoint of the honest parties’ chain,
and instead follow a conservative strategy. This strategy defines that the execution does not
reach the state (1, 0), i.e. the adversary publishes its chain when the honest parties are only
one block short of reaching the checkpoint. Observe that, if the execution is at state (i, 0), i > 1
then the adversary will always checkpoint its chain. Algorithm 4 is a slightly modified version
of Algorithm 3 which accommodates this change.

Algorithm 4 The absorbing Markov chain construction algorithm of the “conserva-
tive” strategy for the optimistic setting, defined by the chain construction function
createMarkovChainOptimistic, parameterized by kc, and the recursive helper function createGraph.

function createMarkovChainOptimisticConservative(kc)
createGraph(kc, kc)
addEdge(final,final, 1)

end function
function createGraph(i, j)

if j > 0 then
for l ∈ [0, j − 1] do

addEdge((i, j), (i, j − l), h̄ ·m(l))
if l > 0 then

createGraph(i, j − l)
end if
if i > 1 then

addEdge((i, j), (i− 1, j − l), h ·m(l))
createGraph(i− 1, j − l)

end if
end for
if i = 1 then

addEdge((i, j), (kc, kc), h̄ · (1−mΣ
j−1) + γ · h · (1−mΣ

j−1))

addEdge((i, j),final, h ·mΣ
j−1 + γ̄ · h · (1−mΣ

j−1))
else

addEdge((i, j), (i, 0), h̄ · (1−mΣ
j−1))

createGraph(i, 0)
if i = 2 then

addEdge((i, j), (kc, kc), h · (1−mΣ
j−1))

else
addEdge((i, j), (i− 1, 0), h · (1−mΣ

j−1))
createGraph(i− 1, 0)

end if
end if

else
addEdge((i, j), (i, j), h̄)
if i = 2 then

addEdge((i, j), (kc, kc), h)
else

addEdge((i, j), (i− 1, j), h)
createGraph(i− 1, j)

end if
end if

end function

In our analysis, in order to find the minimum liveness probability, we take into account both
strategies. Specifically, for every execution we simulate both strategies and find the strategy
which is best for the adversary, i.e. results in worse liveness probability. Figures 18 and 19 show
the comparison between the optimistic setting and the standard execution of Section 3.2.2. The
results in the optimistic setting are better both in terms of liveness probability and expected

32

0 5 10 15 20 25 30 35 40 45 50
kc (blocks)

0

338

677

1016

1354

u
(1

2
se

cr
ou

nd
s)

Optimistic
False
True

Figure 18: Comparison of the expected number of steps before absorption in the non-optimistic
and the optimistic settings. The adversarial power is fixed to 50%+1 and the network adoption
parameter to γ = 0.5.

steps before absorption, which is expected since the adversary is now in a disadvantage compared
to the standard setting.

E Centralized and Non-Interactive Timestamping

Similarly to checkpoints, the most straightforward way of realizing the timestamping functional-
ity is as a centralized authority. The timestamping service is now parameterized by a EUF-CMA
signature scheme and identified by a public key vk. Additionally, it keeps an internal counter c,
which increases when a timestamp is issued. Interestingly, this counter can be removed under
the assumption of a global clock which allows all parties to coordinate.

The timestamped object is the tuple 〈r||c,Sign(sk, r||c||m)〉, consisting of the (monotonically
increasing) time counter, the randomness r (cf. the checkpointing functionality FCheckpoint), and
the service’s signature on the timestamped message m. In order to construct the authority
as a federation of parties, a Byzantine Agreement protocol can again be deployed, similar to
Section 3.3.

The major benefit of this mechanism lies in the non-interactive nature of signatures. A miner
can broadcast the timestamped signature, along with the new block, and a validator can check
it non-interactively; naturally, the security of the mechanism relies on the underlying signature
scheme’s security. Additionally, the timestamping authority does not need to maintain a list of
timestamped objects; instead, the miners always choose the oldest, when provided with multiple
timestamps for the same message. Therefore, the state that the timestamping service needs to
maintain is O(|c| + κ), whereas, assuming a global clock, the state is non-updatable and only
O(κ) long, comprising only of the signing key.

A further benefit of this approach is the ease of migration to a non-timestamped setting.
When the blockchain achieves an adequate level of security and assistance is no longer needed,
the timestamping service can simply halt its operation. In this case, the miners continue par-
ticipating in the protocol uninterrupted, even though the chains are no longer timestamped.
Therefore, the transition to the non-timestamped setting is seamless and without the need for
extra effort, such as a hard fork of the blockchain.

33

0 30 60 90 120 150 180 210 240 270 300
u (12 sec rounds)

0.00

0.25

0.50

0.75

1.00

Liv
en

es
sp

ro
ba

bil
ity

Optimistic
False
True

Figure 19: Comparison of the liveness property in the non-optimistic and the optimistic settings.
The adversarial power is fixed to 50% + 1, the epoch length is set to kc = 3, and the network
adoption parameter to γ = 0.5.

34

	Introduction
	Preliminaries
	The Protocol's Execution Model
	Eligibility Mechanisms for Block Production
	The Ledger's Properties
	Threat Model

	The Checkpointed Ledger
	The Checkpointing Functionality
	Security of the Checkpointed Ledger
	Persistence
	Liveness

	The Checkpointed Chain Resolution Protocol
	Prototype Implementation

	The Timestamped Ledger
	The Timestamping Functionality
	The Timestamped Chain Resolution Protocol
	Security of the Timestamped Ledger
	Decentralized Implementation

	Related work
	Conclusion
	Mathematical Background
	A Checkpointed Protocol That Tolerates Byzantine Faults
	Liveness for Epochs of Random Length
	Liveness for Non-Rushing Adversaries
	Centralized and Non-Interactive Timestamping

