
Scriptless, atomic coinswap using
cut-and-choose

version 0.1

1 Intro

The following is a method of achieving coinswap that aims to be scriptless,
atomic and unlinkable both in the case of a successful swap or the use of
backouts, extending the similar construction of the half-scriptless swap[1].
We assume that the blockchains in use by participants of the swap sup-
port timelocking mechanism for transactions; For Bitcoin and most Bitcoin-
derived altcoins the nLocktime field of the transaction will be used by locking
backout transactions to an absolute block height. Described hereafter is the
protocol where the public keys are elliptic curve points. The signature algo-
rithm used for signing and validation of transaction signatures is irrelevant
to the protocol and can be different between the two chains.

As with any coinswap protocol, one party initiates the process and a sec-
ond party might accept her offer for a swap. Timelocks are used to produce
signed Backout transactions for both parties from their own funding for the
swap in cases when the swap halts. As such, the two parties will know each
other’s funding UTXOs and backout pubkeys at the setup stage of the pro-
tocol. Ways to achieve those properly exist (using a discrete log equivalence proof for example),
but are out of scope of this document. To achieve security in the protocol,
a cut-and-choose [2] game, much like the one taking place in the Tumblebit
[3] protocol will be taking place afterwhich both parties will have sufficient
guarantee that cheating is extremely unlikely.

For notation, we will use lowercase letters for discrete logarithms and plain
integers, uppercase for curve points and signatures, and teletype for script-
PubKeys, transactions and UTXOs. Subscript is used to convey relationships

1



between parameters, or as their numerical index in a set. We will assume
that Alice initates the process and Bob accepts her offer to swap.

2 Setup

The protocol begins with a setup stage where the parties exchange public keys
for two multisig scriptpubkeys, UTXOs, their agreed locktimes and backout
public keys.

1. Exchange UTXOs

• Alice : UA

• Bob : UB

2. Exchange public keys

• Alice : A1, A2

• Bob : B1, B2

3. Exchange backout scriptPubKeys

• Alice : Aback

• Bob : Bback

4. Agree on backout locktimes

• Alice : L2

• Bob : L1

Both parties now compute a transaction TX1 which is Bob’s funding for the
swap. They begin creating a 2-of-2 multisig scriptpubkey, and Bob’s UTXO
UB will be its funding.

• scr1 : 2 A1 B1 2 CHECKMULTISIG

• TX1 : UB → scr1

Alice now sends to Bob a signature by her key A1 for his backout from TX1,
timelocked to L1.

• SigA1(TX1→ Bback)

Bob checks Alice’s signature, and if it’s valid, the parties continue to the next
phase.

2



3 Game

In this stage, the parties play a cut-and-choose game. At its end Alice will
have knowledge of a signature by Bob’s B1, for a transaction that is spending
TX1 and pays her to a scriptPubKey Aswap, while Bob will have knowledge of
a public key T and a guarantee that if his signature is used in a transaction,
he will then learn the discrete log for that pubkey.

During Bob’s signing phase, he is only given a sighash h1 to sign for. It’s
important for Alice’s security that Bob is not able to find the preimage for
for her h1 except by her using his signature in the transaction. She must
select her swap pubkey at random as it acts as the only information Bob is
missing to know the preimage.

Bob’s security with regards to ”blindly” signing a random hash comes from
his choice of B1, which is a pubkey not used by him in any other UTXOs,
as well as the fact that the funding for Alice’s payment, TX1 itself, has not
been yet been signed for by him and relayed to the network.

The purpose of disclosing T ’s discrete log (DL) to Bob is to allow him to
redeem Alice’s funding of the swap. T in turn is used in a multisig script-
PubKey funded by Alice’s UTXO. Knowledge of T ’s DL will allow him to
redeem the output for his own swap scriptPubKey Bswap.

Atomicity in the protocol is achieved by conditioning Alice’s use of Bob’s
signature in a transaction that pays her from TX1, and by choosing a com-
ponent of T ’s DL to be some non-sighash hash h0 of that transaction, to
enable Bob the spending of her swap funds by providing a signature for T .

For Bob to be the sole owner of the complete DL for T , as Alice herself
must not be able to sign for it, T is defined to be a tweak by h0 of a yet
undetermined ephemeral public key B3 of Bob’s.

Technically, for a signature by B1 that Alice wishes to receive from Bob
for a transaction (TX1→ Aswap), she will provide him with a pair of (h1, T ).
Here H0() is a hash function different from the sighash function, and * is
ecmul :

• h0 = H0 (TX1→ Aswap)

• T = h0 ∗G + B3

• h1 = sighash(TX1→ Aswap)

By itself, this exchange is insecure towards Bob. He has no way of knowing
whether Alice correctly tweaked B3 by h0 to produce T , and if h0 is any-
thing else but a secret hash of her (TX1 → Aswap), Bob learns nothing of
value from the the transaction being used on the network.

By overlaying cut-and-choose here we enable Bob to test Alice’s correct exe-
cution of the protocol many times over, enough to guarantee that cheating is

3



highly improbable. Bob will feed Alice a mixed set made of n of his pubkeys,
and m NUMS pubkeys which are a hash of some random data chosen by
Bob, and coerced to point.
At first, Alice can’t tell which of the keys in the set are Bob’s real keys and
which are the NUMS points. She will generate (n+m) different Aswap public
keys and run her step of the protocol against each of the pubkeys provided
by Bob, returning a different (h1i, Ti) pair for each.

Bob starts by computing a set of n ephemeral keys for himself :
for i in n:

b3i = random()
B3i = b3i ∗G

And a set of m NUMS public keys. Here hash() is a cryptographic hash
function and | is concatenation :
for i in m:

fi = random()
Fi = coerce-to-point(fi)

He then shuffles all (n + m) pubkeys and creates a commitment c to the
ordering of the shuffled set by taking :

• {B3′1..B3′n+m} = shuffle({B31..B3n}, {F..1, Fm})

• w = random()

• c = hash(w|shuffled-set-order)

And sends the set of B3′
i pubkeys along with the commitment c to Alice.

Alice first prepares a set of (n + m) of her own public keys, to be used
as her Aswap scriptPubKeys. For each of her pubkeys, she then creates a
transaction redeeming TX1 (Bob’s funding to the swap), and its sighash.
Each of Bob’s provided pubkeys will then be tweaked by this transaction’s
secret hash, creating (n + m) different values of a public point T :

for i in (n + m):
h0i = H0 (TX1− > Aswapi)
Ti = h0i ∗G + B3′i
h1i = sighash(TX1→ Aswapi

)

She then sends the set of (n + m) pairs (h1i, Ti) to Bob.

Bob tests Alice for proper execution of the protocol. He sends her his pre-
viously secret value w, all random fi values, and reveals the order of his
shuffled set of real and NUMS pubkeys. Alice is then able to check that the
commitment c is in fact a commitment to the shuffled B3′

i pubkeys :

c′ = hash(w|shuffled-set-order)

c′
?
= c

for i in m:
F ′
i = coerce-to-point(f ′

i)

F ′
i

?
= Fi

4



And if this check passes, she sends back to Bob a set of her secret (TX1 →
Aswapi) for all m NUMS pubkey indexes. Bob is able check that Alice exe-
cuted the protcol faithfuly for these pubkeys by comparing his results of the
same steps against the set provided by her :
for i in m:

h0′i = H0 (TX1→ Aswapi)
T ′
i = h0′i ∗G + Fi

T ′
i

?
= Ti

h1′i = sighash(TX1→ Aswapi)

h1′i
?
= h1i

If all checks pass, Bob can be reasonably sure that Alice has not cheated
and that the remaining n pairs (h1i, Ti) from her set are properly computed
sighashes and tweaked B3i pubkeys. Bob now picks an index j from these
n pairs at random, (h1j, Tj), tells Alice his choice of j, and they continue to
the next stage which is the swap itself.

We see that by relying on cut-and-choose strategy for security, Alice’s chance
of successfully cheating is at the order of 1/

(
n+m
n

)
.

• As this is done on a bitcoin-like blockchain, sighash is defined as SHA256d

• We define H0() to be SHA256. Coincidentally, this means that the result of H0() is a midstate of sighash.

• By aiming for a security parameter of 2128, we choose (n == m == 65)

5



4 Swap

Both parties compute Alice’s funding for the swap, TX2. They begin by
creating a 2-of-3 multisig scriptPubKey, where the signers can be either two
of A2, B2 and Tj. Alice will be paying into this script from her UTXO UA.

• scr2 : 2 A2 B2 Tj 3 CHECKMULTISIG

• TX2 : UA → scr2

Bob now sends two signatures to Alice. The first is a signature by his key
B2 for her backout from TX2, timelocked to L2, and the second signature is
by his key B1 for the sighash h1j.

• SigB2(TX2→ Aback)

• SigB1(h1)

Alice validates Bob’s signatures, and if both are valid, she broadcasts TX2
to the network. Bob waits for TX2 to be mined, and then broadcasts TX1.
Alice waits for TX1 to be mined and buried under a few more blocks.
Finally she can use Bob’s SigB1(h1) to sign a spend of (TX1 → Aswapj),
redeeming Bob’s funding to the swap.
As Bob sees his funding being spent, he learns the transaction (TX1 →
Aswapj) itself and can compute the DL of T .

• h0j = H0 (TX1→ Aswapj
)

• tj = h0j + b3j

He is then able to sign a spend of TX2 → Bswap using two of the three
pubkeys authorized to do so, B2 and Tj, and redeem Alice’s funding to the
swap.

6



5 Summary

Presented here is a method of achieving atomic, scriptless coinswap. Com-
pared to to other atomic coinswap protocols like the TierNolan swap [4], ours
is unlinkable to observers. No hashes and preimages are revealed on chain
which can connect the two transactions in the swap. Even if backouts are
used by the participants, unlike in the CoinSwapCS [5] protocol which does
remain unlinkable to observers in case of a succesful swap but not when it
halts.
Privacy in case of backouts is kept by making use of the transaction’s nLocktime
field to timelock the backouts. This field is set by default in transactions cre-
ated by wallet software such as Bitcoin Core, which means that a backout
transaction from a halted swap attempt can be indistinguishable from a suc-
cessful one if it is used exactly at its unlocking block height.

With regards to adaptor signatures based, scriptless coinswaps [6], this cut-
and-choose based swap works around the specifics of signature algorithm
selection by conditioning the disclosure of a discrete logarithm to a hash
preimage. By making use of a transaction output’s scriptPubKey and hiding
it as part of the sighash itself, we also work around the need for revealing
link-able hash values in Script. A signature used with a sighash on chain
explicitly reveals the transaction itself, including the outputs.

As for more advanced systems such as Tumblebit [3] and blind scriptless swap
[7], an open question remains: whether this protocol can be extended for use
in a client-tumbler model where the tumbler itself can’t link coins swapped
between participants, and as a result lower the interactivity required in the
protocol.

References
[1] waxwing,

The half-scriptless swap,
https://joinmarket.me/blog/blog/the-half-scriptless-swap/

[2] Yehuda Lindell,
Fast Cut-and-Choose Based Protocols for Malicious and Covert Adversaries,
https://eprint.iacr.org/2013/079.pdf

[3] Ethan Heilman and Leen Alshenibr and Foteini Baldimtsi and Alessandra Scafuro and Sharon Goldberg,
TumbleBit: An Untrusted Bitcoin-Compatible Anonymous Payment Hub,
https://eprint.iacr.org/2016/575.pdf

[4] TierNolan,
Alt chains and atomic transfers
https://en.bitcoin.it/wiki/Atomic cross-chain trading

[5] waxwing,
CoinSwapCS,
https://github.com/AdamISZ/CoinSwapCS/

[6] Andrew Poelstra,
Adaptor Signatures and Atomic Swaps from Scriptless Scripts,
https://github.com/apoelstra/scriptless-scripts/blob/master/md/atomic-swap.md

[7] Jonas Nick,
Partially Blind Atomic Swap Using Adaptor Signatures,
texttthttps://github.com/jonasnick/scriptless-scripts/blob/46eb506dbfa51295853bc285ce667eeb47fe35b9/md/partially-
blind-swap.md

7


