
RouTEE: A Secure Payment Network Routing Hub
using Trusted Execution Environments

Junmo Lee
Seoul National University

jmlee@altair.snu.ac.kr

Seongjun Kim
Seoul National University

sjkim@altair.snu.ac.kr

Sanghyeon Park
Seoul National University
lukepark@altair.snu.ac.kr

Soo-Mook Moon
Seoul National University

smoon@snu.ac.kr

Abstract—Cryptocurrencies such as Bitcoin and Ethereum
have made payment transactions possible without a trusted third
party, but they have a scalability issue due to their consensus
mechanisms. Payment networks have emerged to overcome this
limitation by executing transactions outside of the blockchain,
which is why these are referred to as off-chain transactions.
In order to establish a payment channel between two users,
the users lock their deposits in the blockchain, and then they
can pay each other through the channel. Furthermore, payment
networks support multi-hop payments that allow users to transfer
their balances to other users who are connected to them via
multiple channels. However, multi-hop payments are hard to be
accomplished, as they are heavily dependent on routing users on
a payment path from a sender to a receiver. Although routing
hubs can make multi-hop payments more practical and efficient,
they need a lot of collateral locked for a long period and have
privacy issues in terms of payment history.

We propose RouTEE, a secure payment routing hub that is
fully feasible without the hub’s deposit. Unlike existing payment
networks, RouTEE provides high balance liquidity, and details
about payments are concealed from hosts by leveraging trusted
execution environments (TEEs). RouTEE is designed to make
rational hosts behave honestly, by introducing a new routing
fee scheme and a secure settlement method. Moreover, users do
not need to monitor the blockchain in real-time or run full
nodes. They can participate in RouTEE by simply verifying
block headers through light clients; furthermore, having only
one channel with RouTEE is sufficient to interact with other
users. Our implementation demonstrates that RouTEE is highly
efficient and outperforms Lightning Network that is the state-of-
the-art payment network.

I. INTRODUCTION

Decentralized blockchains such as Bitcoin [1] and Ethereum
[2] have been playing an important role by providing a
payment infrastructure for mutually distrusting parties. But
their lack of scalability is one of the biggest limitations to
overcome. Bitcoin, for instance, can execute a maximum of
only 7 transactions per second, which is absolutely insufficient
to replace existing payment systems. However, previous work
[3] proved that it is not that effective to solve this inherent
problem by simply changing parameters of Bitcoin (e.g., block
size).

Payment networks such as Lightning Network [4] and
Raiden [5] have been proposed to process payments with off-
chain transactions, achieving higher transaction throughput.
These transactions are not written in blockchains, so their
performance is not limited by blockchain protocols. To execute
off-chain payments between two users, they open a payment

channel by broadcasting a transaction (i.e., an on-chain trans-
action) to the blockchain network and locking their deposits.
If users are connected within the payment channel network,
routing users between a sender and a receiver can convey the
sender’s balance to the receiver through their channels, and
collect routing fees from the sender, which is called a multi-
hop payment.

However, payment networks suffer from various short-
comings. Once a payment channel is created, there is no
way to withdraw some of the balance or to add additional
deposits: users have to close the channel and open another one.
Furthermore, payment channels should be settled at the latest
balance state, but malicious users could try to settle channels
at a past state. Constant surveillance is thus required for the
underlying blockchain to prevent such attacks. In addition,
various conditions must be satisfied to complete the multi-
hop payment. Senders should keep tracking how the channel
network topology changes to find proper payment paths to
receivers. Intermediary routing nodes must be on-line, of
course, and all channels on the payment path must possess
a greater balance than the sender’s payment amount.

A star graph with one central hub node is one of the most
efficient topologies for payment networks [6]. Users need only
one channel with the hub and do not have to struggle to find
payment paths. In addition, hubs would reduce the length of
the multi-hop payment path and thus the total routing fees that
a sender must pay. Despite this efficiency, these central nodes
are impractical to employ. There is a privacy issue in that they
can obtain most of the private information about payments that
occurred in the network. Moreover, to deal with numerous
transactions, hub nodes should lock a tremendous amount of
deposits in their numerous channels.

A key idea in this work is to overcome these flaws by
utilizing trusted execution environments (TEEs). An example
of a TEE is Intel Software Guard Extensions (SGX) [7], [8],
a prominent TEE product operated by extended instruction set
architecture in recent Intel CPUs. SGX supports hardware-
based memory encryption for application codes and data in
memory in order to securely isolate them from adversaries.
Sensitive data is stored in independent regions of memory,
called enclaves, which are inaccessible to other processes even
with higher privilege levels.

We describe RouTEE, a secure payment routing hub, pro-
viding a new payment network system. It makes multi-hop

ar
X

iv
:2

01
2.

04
25

4v
1 

 [
cs

.C
R

] 
 8

 D
ec

 2
02

0



payments efficient and confidential, and does not require hosts
to stake their assets. Users who have the channel with RouTEE
can easily execute multi-hop payments via RouTEE, with less
cost for verification. It is very cost-efficient because senders
pay a routing fee only to RouTEE, and users do not have
to open multiple channels, unlike existing payment networks.
Due to SGX, the RouTEE protocol becomes concise and
prevents rational hosts from misbehaving.

This work’s main contributions are as follows:

• Secure Payment Hub. Only one channel is enough to
fully utilize RouTEE’s features and payment details are
securely protected by a TEE. Basically, a user can open
a channel with RouTEE through an on-chain transaction,
similar to other payment networks. But in RouTEE,
there is a way to create the channel and get balance by
executing off-chain transactions. In addition, users can
put additional deposits into their channels and withdraw
part of their balance, which means that RouTEE provides
high balance liquidity. It’s noteworthy that these channels
do not contain any assets of RouTEE’s host (i.e., only
users’ collateral), making it easy for multi-hop payments
to succeed with fewer routing fees.

• Less Burden on Users. RouTEE only requires users
to run light clients to verify block headers, and this
verification does not need to be processed in real-time.
Precisely speaking, users might need to check whether
a specific block is included in the blockchain when
other users want to pay them. Furthermore, there is no
additional data (such as penalty transactions) that users
must store in other payment networks, and users execute
multi-hop payments easily without knowing the network
state (i.e., the network topology, the channel’s balance
state).

• New Routing Fee Scheme. It is important not to let the
host unexpectedly abort operating RouTEE as RouTEE
manages a lot of deposits and should store them safely. So
we have introduced pending routing fees, which motivate
incentive-driven hosts to keep running RouTEE and settle
users’ balances properly. In other words, hosts gain their
entire pending routing fees only after every user has
settled their whole balances.

• Secure Settle Protocol. RouTEE collects all of its de-
posits together to make secure on-chain settlement trans-
actions, which we call spend-all-settlement. In this way,
RouTEE can prevent feeding fake chain attacks, where
adversaries insert fake blocks not included in the main
chain to deceive RouTEE as if they actually sent their as-
sets. spend-all-settlement also improves anonymity since
it can be regarded as a mixing service.

We implement the RouTEE prototype using SGX for Bit-
coin. We note that only one TEE is required to establish the
RouTEE network. With only one RouTEE hub node, RouTEE
can deal with more than 18,000 payments per second. Its
throughput can be highly improved by batching payments.

II. BACKGROUND

A. Blockchains

Since Bitcoin [1] appeared in 2008, there have been many
other cryptocurrencies. In Bitcoin, which is the most famous
example of proof of work (PoW) [9] based blockchains,
nodes are connected over peer-to-peer networks. Users make
transactions when they want to pay other users and broadcast
them with their cryptographic signatures to verify whether
the owner of this asset has made this transaction or not.
Then miners collect these transactions and try to solve a
computationally expensive puzzle to make a valid block. A
valid block means that it has a lower hash value than a target
hash value. The target value is adjusted every 2,016 blocks
(i.e., about two weeks) so it takes about 10 minutes on average
to solve the puzzle. A block with a lower hash value than other
blocks is considered to have a higher block difficulty. When
a miner finds a valid block, it is broadcast to the blockchain
network and appended to the chain of blocks that is append-
only. Due to this hard work, blockchain data is difficult to
revert.

When blocks with the same block number are made around
the same time, it is described as a fork. In Bitcoin, the
longest chain rule determines which block is valid. Each
miner chooses a chain to continue mining, then one chain will
become the longest chain and have the largest total difficulty,
due to the difference in mining power for each chain. At that
time, miners who were mining for other shorter chains move
to the longest chain, and this chain becomes a main chain.

Many cryptocurrencies, including Bitcoin, use an unspent
transaction output (UTXO) model. Transactions consist of
inputs and outputs. Outputs represent an asset that can be spent
freely by the owner. To make a transaction, senders select
some of their unspent outputs as inputs of the transaction.
Then they create new outputs for receivers, which means
that the asset ownership has been moved to them. An output
is locked with a lock called ScriptPubKey, which can be
unlocked with a key called ScriptSig that only an owner of the
output can create using its private key. These locks and keys
are implemented in Bitcoin’s Script language. Furthermore, all
unspent outputs cannot be used more than once to prevent a
double-spending attack (i.e., sending the same asset to several
different receivers).

If a user wants to verify transactions, it has to run a full
node to download all blockchain data including block headers
and transactions, consuming plenty of network and storage
resources. Then a user needs to verify every block header and
transaction, which costs a lot of time and computation. A light
client is suggested to deal with this problem. It only saves
block headers, which require much less storage, and checks
that they have actually solved PoW puzzles in a very short
amount of time. Now users are able to verify that a certain
transaction is included in a certain block with the block’s
header and the transaction’s Merkle proof, which is called
simplified payment verification (SPV) [1].



B. Payment Networks

Payment networks such as Lightning Network [4] and
Raiden [5] have emerged to solve the low scalability problem
of blockchains. As on-chain payment transactions are very
slow and expensive to execute, payment networks process
payments privately with off-chain transactions through pay-
ment channels. This method massively improves their trans-
action throughput as their performance is not limited by
the blockchain anymore. Payment networks also reduce the
blockchain’s storage because off-chain transactions are not
written to blockchains. Only two transactions are recorded to
open and close a payment channel (in normal situations where
there is no dispute).

Users need to establish payment channels first to pay
through payment networks. For instance, two users, Alice
and Bob, make a funding transaction, which will lock their
deposits, and broadcast it to peers in the blockchain network.
Once they confirm that their funding transaction is included in
the blockchain, they are considered to have opened a payment
channel. Balances in the channel are determined by the amount
of the deposit. Then, when they want to pay, they make a new
off-chain payment transaction that changes their balance states
and exchange their signatures for it.

If there are channels between Alice and Bob, and Bob and
Charlie, then Alice cannot directly pay Charlie because there is
no channel between them. To make such payments possible,
payment networks offer multi-hop payments. A sender can
execute multi-hop payments when a receiver is connected to
the sender through multiple channels. For the above example,
Alice first sends her balance to Bob with a routing fee for
him. Next, Bob passes over the same amount of balance to
Charlie through their channel. In this case, Bob is acting
as a routing node for the multi-hop payment, and there
could be more routing nodes. It should be noted that these
channel state changes occur atomically, meaning that there
is no circumstance where only some of the channels in the
payment path are modified. This property is achieved by a
Bitcoin’s feature called hashed time-lock contracts (HTLCs)
in the Lightning Network.

When neither user (neither Alice nor Bob) wants to pay any
longer, they can bilaterally settle their channel by broadcasting
a settlement transaction that distributes their on-chain deposit
to them immediately. Even if Alice is against closing the
channel, Bob can unilaterally settle it by broadcasting any one
of the off-chain payment transactions. In that case, Alice and
Bob will be settled after a certain time limit if he broadcast
the latest transaction. But if Alice detects Bob’s malicious
settlement attempts to broadcast a previous transaction rather
than the latest one, she must broadcast the penalty transaction
within the time limit in order to forfeit all channel deposits.

C. Disadvantages of Payment Networks

Even though payment networks can handle a lot more
payments, other problems arise. Once a user’s balance is
exhausted, the user is no longer able to make payments through
that channel. All the user can do is close the channel and create

a new one, which incurs two expensive on-chain transaction
fees. Likewise, withdrawing a fraction of the balance or
transferring it to other channels is impossible, which implies
that payment networks have low liquidity.

As mentioned above, any user can unilaterally close chan-
nels with the state at their own advantage. Therefore, users
must keep downloading new blocks and watching all trans-
actions to find malicious settlement transactions (i.e., running
blockchain full node continuously). In other words, payment
networks cost massive storage and network resources to
achieve high scalability.

Although multi-hop payments seem convenient as they
allow paying users without a direct payment channel, there
are many restrictions. Users should broadcast and collect
information about opening and closing channels to find out
how payment networks are connected. Then, they need to
search for proper payment paths in which all channels have a
balance greater than the payment amounts. Unfortunately, to
protect privacy, channel balance information is not provided to
other users, so it is hard to know which path could complete
the multi-hop payment. There is no choice but to try the multi-
hop payment through various paths until it succeeds. Users
may have to split the payment amount within several multi-
hop payments in order to complete the payment. Moreover,
considering that the mean shortest payment path length is
about three in the Lightning Network [10], and that a multi-
hop payment through the shortest path could fail, senders
might end up paying for two routing nodes on average, or even
far more. We note that users open seven channels on average
in the Lightning Network [10], which means that users pay a
lot of channel creation costs and that they need to split their
assets.

Moreover, there are privacy and security issues. Recent
research [11], [12] shows that there is a way to figure out how
much balance each user in the channel has, which can lead to
payment information leakage (e.g., who the sender or receiver
was, which routing nodes were used, how much amount to
pay). (e.g., who was the sender, the receiver, or routing nodes,
how much amount to pay). A wormhole attack [13] allows two
attackers on a payment path to intercept routing fees for other
routing nodes between them. In addition, it has been proven
that adversaries are able to interrupt other routing nodes to
monopolize routing requests, by holding the balances of other
nodes for a long period [14] and exhausting their channels
deliberately [15].

III. DESIGN

A. Design Overview

RouTEE performs as a payment routing hub which makes
multi-hop payments more practical, keeping private data con-
fidential within SGX. RouTEE can support any UTXO-based
blockchain such as Bitcoin or Litecoin as it only utilizes
UTXO’s features and simple transactions that just transfer
coins.

There is a set of users who participate in RouTEE, and a
host who runs the RouTEE platform using an SGX-enabled



Fig. 1. The RouTEE system overview.

machine and feeds blockchain data into SGX. We note that
users are able to verify that the RouTEE program is actually
executed in SGX and build secure communication sessions
through the remote attestation properties of SGX [8], [16].
First, SGX makes a measurement which consists of program
codes, the enclave state, and additional data (e.g., a public key
to establish secure sessions). Then it signs the measurement
with its private key concealed within it. After that, users can
verify this signature through Intel’s online attestation service,
having confidence that the signature is truly created by SGX
and that it is executing the correct RouTEE program.

It is important to separate channel creation from deposit
locking in RouTEE, meaning that users can build channels
even with off-chain transactions that do not require expen-
sive on-chain transaction fees for blockchain miners. To be
more specific, like existing payment networks, users can open
channels and add balance at the same time via on-chain
transactions, or they can simply open channels that contain
no balance through off-chain transactions. This separation
also allows users to add more deposits to their channels or
withdraw their balance partially without the channel closing.

We also note that RouTEE makes multi-hop payments way
more achievable. For users, tracking the network topology is
no longer necessary to find proper payment paths, since every
user is connected via RouTEE. This implies that RouTEE is a
unique routing node and that senders have fewer routing fees to
pay for their multi-hop payments. Moreover, users can deter-
mine whether their multi-hop payments are valid or not with a
simple block header verification. For RouTEE, it just delivers
the senders’ assets to receivers, meaning that RouTEE’s asset
is not required. Accordingly, there is no case where multi-hop
payments fail as RouTEE has not enough balance, and the
host can operate RouTEE without any collateral.

Fig. 1 describes RouTEE’s overall system. The host first ini-
tializes RouTEE by feeding blockchain data until it reaches the
latest block. Then users must verify that RouTEE is initialized
successfully within SGX and establish secure sessions through
remote attestation. All important data is kept safe inside SGX’s

enclave. The host and users interact with SGX through an
interface process that is not protected by SGX. This means that
the host has full controls of the process and can manipulate
it. Users should maintain their own header chains, but their
perspectives on the blockchain (e.g., what is the latest block
number, which block is correct) might be different.

In order to interact with RouTEE, users need one of
the three types of channels: send-only channels, receive-only
channels, and bidirectional channels. There being no balance
in RouTEE at first, users who want to be multi-hop payment
payers broadcast on-chain deposit transactions, opening send-
only channels and gaining balance in their channels. Deposit
transactions will be included in some blocks, which we call
source blocks. These transactions are automatically applied
to user states inside SGX, as the host should insert every
newly created block and transaction. Users who are going
to be payees set their boundary blocks by simple off-chain
transactions, building receive-only channels. A boundary block
is the latest block among blocks that a user believes valid. That
is, users cannot receive from other users who have balance
derived from newer source blocks than their boundary blocks.
To sum up, users with more than a 0 balance and users who set
their boundary blocks can be considered as having send-only
channels and receive-only channels, respectively. Users who
meet both conditions have bidirectional channels. Fig. 2 shows
RouTEE’s network example with various types of channels.

When both the payer and the payee are ready, multi-hop
payments can be executed. Senders pay RouTEE pending
routing fees for their multi-hop payments. Pending means that
these routing fees are not yet in the host’s possession. To
prevent the host from abnormally quitting RouTEE operations,
pending routing fees are confirmed only after users settle their
balance successfully.

Users can receive on-chain assets (e.g., BTC in Bitcoin) by
settling their balances in RouTEE. RouTEE makes settlement
transactions that use all deposits it owns inside SGX to
securely settle a batch of users who requested a settlement.
This is called spend-all-settlement, which effectively protects
on-chain assets from misbehaving hosts who try to steal them
by exploiting their fake deposits. Then rational hosts will
honestly broadcast settlement transactions to the blockchain
network to confirm their pending routing fees.

B. Adversary model and assumptions

Using TEEs is essential to building the RouTEE system.
SGX is one of the well-known products of a TEE, but it is
not perfect in terms of security. Recent works revealed several
vulnerabilities of SGX [17]–[21]. This means that, in practice,
some of SGX’s properties such as integrity and confidentiality
might not be guaranteed. However, a great deal of research
has been conducted to surmount these limitations [22]–[26],
and any other TEE (e.g., ARM TrustZone [27]) can also be
employed to implement RouTEE. So in this paper, we assume
that there is no security issue with SGX itself.

Since RouTEE is operated atop of the blockchain, some
basic properties of the blockchain should be satisfied. First,



Fig. 2. An example of the RouTEE network. It forms a star graph which
has RouTEE as a unique intermediary node. Each user has one of three kinds
of channels with RouTEE, but channels between users are not necessary.

any valid transactions with a proper amount of transaction
fee are included within the reasonable upper-bounded time
period. Though adversaries could bribe miners not to contain
certain transactions in their blocks, it must cost a lot to keep
miners corrupt for a long period. Second, blocks with more
than k-confirmations are not removed from the blockchain. In
other words, a block followed by more than k-1 blocks can be
considered immutable. k can be any integer bigger than 0, but
commonly k is 6 in Bitcoin. This assumption also indicates
that there is no attacker who can change the main chain of the
blockchain with tremendous hash power.

We assume all participants are rational and incentive-driven.
Their goal is to maximize their own interests. This assumption
is also applied to adversaries (i.e., rational adversaries [28]),
so they never choose strategies that result in financial losses
for themselves, even if the strategy brings greater losses to
victims. There might be byzantine adversaries [29] who do not
care about their payoff and act irrationally (e.g., the host could
turn off the RouTEE’s power, abandoning all its accumulated
pending routing fees). However, they are quite unrealistic so
we are not concerned about them. If we attempt to mitigate
this kind of vulnerability of a hub struct, we could separate
the hub into several nodes, backup every payment and state,
and introduce more complicated protocols. Still, this dilutes
the benefits of the hub, which implies that there is a trade-
off between security and performance. So we concentrate on
inducing rational adversaries to behave honestly.

C. Design Challenges

Misbehaving Host. There are two types of participant in
RouTEE: a user and a host. The host has more authority and
attack strategies than users, considering that it can directly
access RouTEE and be the user. For example, the host is
actually located between RouTEE and the users, passing
messages between them. Although the host cannot find out
message contents as messages are encrypted, the host can
deliberately delay or drop them. Furthermore, blockchain data
is important for operating RouTEE correctly, and the host
plays the role of data feeding by running a blockchain full node
client. Though basic block verification is performed inside
RouTEE’s SGX, the host with moderate mining power and

sufficient time can make and insert a fake blockchain because
there is no other chain in SGX to compare for determining
which chain is valid based on the longest chain rule. That
is, the host can deceive RouTEE as if he had staked the
deposit and can get invalid balance inside RouTEE. Then by
paying or settling the balance, the host will gain illegal profits.
Executing all full node codes inside the SGX could be the
solution, but it increases the size of the trusted computing
base (TCB) too much, making the solution impractical as it
would provide various attack vectors to adversaries. Besides,
if aborting RouTEE costs nothing (i.e., there is no asset of
the host inside RouTEE), the rational host could quit running
RouTEE, and unsettled balances inside RouTEE would totally
disappear. To protect RouTEE from irresponsible hosts, we
have introduced an appropriate incentive model to make hon-
esty the best strategy along with secure protocols to prevent
illegal payments and settlements.

Verifying Blockchain Data. In existing payment networks,
all users must observe every transaction to prevent invalid
settlements due to their mutual distrust. However, it is a
huge waste running full node clients to detect illegal attempts,
because blockchain read/write operations are expensive and
most transactions are irrelevant to users. To resolve this
inconvenience, we leverage SGX and light clients. Since
payments and settlements are performed securely inside SGX,
no one can manipulate user states or produce invalid settlement
transactions. Thus, users do not have to keep watching the
blockchain in real-time. Instead, light-weight verification with
block header data from light clients can efficiently preclude
malicious payments. All users have to do is simply verify
block headers and update their boundary blocks, before they
become multi-hop payment payees. We emphasize that this
process is not required for every payment.

IV. PROTOCOL

This section describes RouTEE protocol details, including
how hosts initialize RouTEE and feed blockchain data, along
with how users create channels, add deposits, execute multi-
hop payments, and settle their balances.

A. Initialization

There are a few things that the host has to do to start
RouTEE. The host must register the host’s public key to
prevent users from executing host-only operations such as
inserting Bitcoin blocks. Then the host sets a minimum amount
of routing fee per multi-hop payment. Other users cannot
modify the amount since that operation needs the host’s
cryptographic signature.

Next, block headers need to be inserted inside SGX until it
reaches the latest block. Although the header chain verification
is a much lighter process than the full blockchain verification,
it takes a lot of time to check every block from the genesis
block (e.g., In Bitcoin, there are about 655,000 blocks as
of November 2020). To shorten this procedure, it can start
from one of the checkpoint blocks, which are hard-coded
into standard blockchain clients and widely accepted as valid



Fig. 3. RouTEE channel type transition diagram. Channels could be
dynamically opened, closed, and changed to other types of channels.

blocks. Likewise, the host can choose any one of the recent
blocks as a start block and hard-code it into the RouTEE’s
source code. In this case, the verification process becomes
incredibly simple. However, to filter out fake blocks with a
too low difficulty, the start block should be more than 2,016
blocks far from the latest block in order to calculate Bitcoin’s
block difficulty inside the SGX.

Lastly, to measure the average on-chain transaction fee per
byte (i.e., feeavg), the host inserts on-chain transactions in-
cluded in some recent blocks (e.g., for 2,016 blocks, the same
as the block difficulty change period). Bitcoin’s block headers
contain the Merkle root of transactions, hence RouTEE can
determine that these inserted transactions are actually involved
in a certain block with its header. Based on this average
transaction fee, RouTEE sets the amount to charge users for
on-chain settlement transaction fees.

All block headers inserted since the initialization should be
stored inside the SGX. However, we note that this block header
chain occupies little storage because Bitcoin’s block header
size is just 80 bytes. Even if there were 1,000,000 blocks in
Bitcoin, for example, it would not exceed 80 MB.

B. Channel Creation

After the initialization, users are able to obtain the result
of the header chain verification (e.g., the initial block to
start verifying and the latest block inside SGX) and build
secure sessions with RouTEE by remote attestation. If they
believe the initialization was successful, they will participate in
RouTEE. Due to the session, the content of messages between
the user and RouTEE is not revealed to others, especially the
host.

As we mentioned in Section III-A, there are three kinds of
channels in RouTEE, and users need to create their channels
first. In fact, channels in RouTEE are closer to the users’ state
than channels that exist explicitly in other payment networks.
Thus, a channel’s state changes dynamically as a user’s state
(i.e., balance, boundary block) changes. Fig. 3 shows channel
state transitions through several user operations. Users who
have no channel at first can only execute add deposit or up-

date boundary block operations to open initial unidirectional
channels.

1) Add user: Before users create channels, they need to
enroll in RouTEE first via add user. The user provides its
public key, user address, and settle address to RouTEE. The
user’s public key is utilized to verify the user’s signature when
the user executes user operations such as multi-hop payments.
A user address acts as the user’s ID in RouTEE. When the
user settles its balance later, on-chain assets are shifted to
its settle address. The user should inform its settle address in
advance since the user’s channel might be settled automatically
without the user’s request (See section V-B, VII-C for more
details). Then RouTEE stores this user information in a state,
and this user is then ready to build unidirectional channels
through add deposit or update boundary block. We note that
each user has a nonce field in a user state in RouTEE. User
operations described below only accept messages with the
value equal to the nonce, increasing the nonce by one and
thus invalidating the messages.

2) Add deposit: add deposit is a preregistration process to
inform RouTEE of a user who is going to lock its deposit.
The user sends a beneficiary address, namely its user address,
to RouTEE. Then RouTEE generates a new random address,
called a manager address, inside SGX to receive the user’s
on-chain deposit and transmits a response message containing
the manager address. RouTEE also saves these addresses to a
pending deposit list to detect a user’s deposit transaction later.
Lastly, the user sends on-chain coins via a pay-to-public-key-
hash (P2PKH) transaction, one of the standard transactions in
Bitcoin, from any sender’s addresses to the manager address.

The source block, which includes the deposit transaction,
will be fed to RouTEE by insert block operation, which deals
with deposit transactions, updating users’ maximum source
block numbers and their balances. But the increased amount
of the balance is less than the deposit amount. Since this on-
chain deposit, namely a UTXO in Bitcoin, will be used to
make a settlement transaction, RouTEE collects a fare from
the user’s balance in advance for the settlement transaction
fee. Let Damount be the amount of this deposit transaction
and Bincrease be the balance increase amount. Then Bincrease

is determined as:

Bincrease = Damount − 148 · feeavg
This is because an on-chain transaction fee is proportional to
the size of the transaction and a size of one input of P2PKH
transaction is 148 bytes (See section IV-D for more details).

As described in Fig. 3, users who have no channel gain
send-only channels, and users with receive-only channels
obtain bidirectional channels by add deposit. If a deposit
transaction has not appeared in a certain block time period
(e.g., for 100 blocks), RouTEE concludes that the user does
not broadcast the deposit transaction, and deletes information
about the deposit from the pending deposit list.

3) Update boundary block: update boundary block in-
creases a user’s boundary block number and is performed
as follows. In order to get valid block headers, users can



Fig. 4. An example of a multi-hop payment in RouTEE. Alice tries to send her balance derived from the deposit D2 in block 3 to Bob, but his boundary
block number is 1 which is less than 3. This means that Bob does not trust Alice’s balance yet. (a) Alice informs Bob of her maximum source block number
(in this case, 3). Bob downloads block headers from full nodes to verify whether block 3 is valid. He receives up to block 4 and sets his boundary block
as it by update boundary block, in order to prepare to receive from Alice. (b) Alice executes a multi-hop payment to send 30 to Bob. RouTEE checks that
Bob believes Alice’s balance is valid (i.e., Alice’s maximum source block number is less than or equal to Bob’s boundary block number. In this case, check
3 ≤ 4). Then Alice’s balance is moved to Bob, and the host gets a pending routing fee for this multi-hop payment from Alice. Now Bob has balances from
different source blocks, so Bob’s maximum source block number should be updated to 3.

download header chains from full node users by running light
clients. If they trust the data source, it is sufficient to receive
only one block and select it as a boundary block. Then the
user sends its user address, signature, and boundary block’s
block number and hash value to RouTEE. The signature is
required to authenticate the user. If the user’s boundary block
parameters match a header within RouTEE’s header chain, and
the new boundary block’s number is greater than the user’s
previous one, RouTEE updates the user’s boundary block
number to it. As illustrated in Fig. 3, for users who have no
channel with RouTEE, update boundary block permits them
to receive valid balances from other users, opening receive-
only channels. This operation also opens bidirectional channels
for users with send-only channels.

C. Payment

There are three agents who participate in a multi-hop
payment: a sender, a receiver, and RouTEE as a unique
intermediary. We note that, in RouTEE, there is no direct
channel between two users and every payment is always a
2-hop payment, which is the shortest and most efficient multi-
hop payment. As described in Fig. 4, multi-hop payments
proceed in two phases: a ready phase and a transfer phase.
Suppose that the sender already executed add deposit and has
some balance to send. During the ready phase, the receiver
should be ready to receive a balance from the sender. If the
receiver’s boundary block number is less than the sender’s
maximum source block number, the receiver cannot fully trust
the sender’s balance, because that means the sender might have
invalid balances from source blocks that the receiver does not
consider valid yet. In order to allow the sender to execute a
multi-hop payment, the receiver should update its boundary
block to the block that is newer than the sender’s maximum

source block by executing the update boundary block opera-
tion. But if the receiver already has a proper boundary block
number, this ready phase can be omitted.

After both users are ready, they proceed to the transfer
phase. The sender transmits a message to RouTEE, including
the sender’s address, its signature, the receiver’s address, a
payment amount, and a routing fee amount. The sender’s
address and signature are used to authenticate the sender.
Then inside SGX, RouTEE checks conditions: whether the
sender has enough balance to afford this payment, and whether
the sender’s maximum source block number is equal to or
greater than the receiver’s boundary block number. Once the
payment request is deemed to be acceptable, the receiver
gets paid and RouTEE obtains a pending routing fee from
the sender. However, RouTEE cannot settle this pending fee
now. It will be confirmed after the settlement is successfully
completed (See section IV-E for more details). Then the
receiver’s maximum source block number should be updated
because the receiver may have the balance from a newer source
block after this payment.

There are some notable observations in the payment process.
A channel between users is not necessary, so they can save
a lot of channel creation costs, which entail expensive on-
chain transaction fees. Payments could succeed even with
receivers being off-line, and only receivers may need to read
block headers to update boundary blocks. Furthermore, when
receivers should do so, they do not have to synchronize with
the blockchain until it reaches the latest block. After updating
boundary blocks, users have no need to care about events
in the blockchain (i.e., not monitoring new transactions).
Users can set their own k value higher than RouTEE’s for
the k-confirmation assumption, meaning that they can be as
conservative as they want when judging a block’s finality.



Also, senders do not have to consider the network state (e.g.,
the topology, balances in channels, and payment paths).

D. Settlement

Users can request to settle balances in their channels for any
amount. As a settlement requires an on-chain transaction, users
need to pay settlement fees for making an on-chain settlement
transaction. Settlement protocol details are as follows. A user
sends the balance amount to settle, the settlement fee to be
paid, its address and its signature, to RouTEE. To prevent free
rides on the settlement, a minimum amount of settlement fee
has been put in place. Users need to pay more than 34·feeavg ,
because the size of one output of a P2PKH transaction is 34
bytes. Then RouTEE verifies that the user has enough balance
for this settlement request, and inserts it into the settlement
request queue in which requests are sorted by the amount of
the settlement fee.

Now RouTEE tries to make a settlement transaction, which
settles the largest number of users with sufficient settlement
fees, using a greedy method. Let Txinputs be the number of
transaction inputs, and Txoutputs be the number of transaction
outputs. Then, the size of a P2PKH transaction (i.e., Txsize)
can be calculated as:

Txsize = 148 · Txinputs + 34 · Txoutputs + 10

10 bytes is for other extra fields of a transaction, excepting
inputs and outputs. Then an on-chain transaction fee (i.e.,
Txfee) can be determined as:

Txfee = Txsize · feeavg
The important thing is that a settlement transaction uses
all deposits (i.e., UTXOs) that RouTEE owns, which is a
spend-all-settlement method. Thus a settlement transaction’s
Txinputs is the number of deposits, and Txoutputs is the same
as the number of users who requested a settlement plus one
to make a leftover deposit with leftover balances after the
settlement. Users who participate in the settlement have to
split the fee for this leftover deposit. As mentioned in section
IV-B, deposit senders have already paid for this settlement.
Briefly, if the amount of collected fees from users (i.e., from
deposit senders and settle requesters) is greater than Txfee,
RouTEE creates a settlement transaction and broadcasts it.
Otherwise, it just waits for other settle requests with sufficient
fees. However, if feeavg soars, settle request users should
pay more fees because they need to pay for the settlement
transaction’s inputs also (as pre-collected fares become not
enough).

After making a secure settlement transaction, some portion
of the pending routing fee will be confirmed for the host.
Let RFpending be the amount of total pending routing fees,
Samount be the amount of balances to be settled by this
settlement transaction, and Btotal be the amount of total user
balances in RouTEE. Then the amount of pending routing fees
to be confirmed (i.e., RFconfirmed) is determined as:

RFconfirmed = RFpending ·
Samount

Btotal

This means that the host can gain the whole routing fees
only when the host settles all users’ balances completely,
that being when Samount is equal to Btotal. The settlement
transaction and RFconfirmed are stored and will be used in
the insert block operation to finally confirm routing fees and
allow the host to withdraw that confirmed routing fee.

E. Block Insertion

A host needs to insert block headers and transactions into
RouTEE to detect deposit transactions and settlement trans-
actions. insert block operates as follows. The host inserts a
block header and its transactions into RouTEE. This operation
can only be performed by the host as it requires the host’s
signature also. In order to verify block data, RouTEE verifies
that the new block header satisfies the PoW conditions and that
the Merkle root can be reproduced with these transactions. It
then adds this header to the header chain, looks at transactions
to update feeavg, and searches for deposit transactions and
settlement transactions. If a deposit transaction is found, it gets
the corresponding user address with this transaction from the
pending deposit list, increases the user’s balance by Bincrease,
and updates the user’s maximum source block number to this
block number. If there is a settlement transaction, it similarly
brings the matching RFconfirmed value and increases the
host’s balance (i.e., confirmed routing fees) by that value.

V. SECURITY ANALYSIS

In this section, we show various kinds of attack strategies
that hosts could choose and explain how the RouTEE protocol
protects user balances from rational hosts. We emphasize that
there is no case in which hosts gain unfair benefits while users
lose their balances.

A. Fake Blockchain Data

All balances in RouTEE are derived from on-chain deposits
locked in the blockchain. However, as described in Fig. 5,
malicious hosts could generate fake blocks, which involve fake
deposit transactions not actually broadcasted in the blockchain
network intended to deceive RouTEE. Although this attack
costs a lot of mining time to create blocks with adequate
difficulty, it is possible because there is no time limit and
adversaries can earn invalid balances in RouTEE without
staking their on-chain assets.

After obtaining illegal balances, adversaries need to execute
multi-hop payments or settlements to gain actual profits. For
this reason, users, particularly payees, have to verify whether
or not payers’ balances are derived from valid source blocks.
They can efficiently filter invalid balances out by setting
boundary blocks since fake blocks have different hash values
than users’ blocks. However, there might be an eclipse attack
[30] where adversaries who take all the network connections
of a victim supply fake blockchain information to make them
believe it is the correct main chain. To avoid eclipse attacks,
users should fetch several header chains from various full
nodes, compare them, and choose the reliable one according
to the longest chain rule.



Fig. 5. An attack scenario using fake blockchain data. (a) White blocks are included in a valid main chain. A red block is generated by the malicious host.
The host inserts the red block into RouTEE to add the fake deposit DA and tries to settle its invalid balance. (b) If RouTEE picks old deposits to make a
settlement transaction (naive approach), the deposit DA is not spent, which means the transaction is valid in both chains. Thus, the host can broadcast the
transaction to the Bitcoin network, stealing other valid deposits. (c) On the contrary, if the settlement transaction contains all deposits (spend-all-settlement),
it is only valid in the fake chain as there is no DA in the main chain. Thus the host is not able to gain illegal benefits.

Still, the host can try to settle its invalid balances to steal
valid on-chain deposits from other users. Our key idea for
the spend-all-settlement is to invalidate on-chain transactions
that are made based on fake blockchain data. As illustrated in
Fig. 5, we thought of a naive approach for settlements that
spend not all deposits, but rather the least set of deposits
starting from the oldest one to just meet a total settlement
amount. Settlement transactions made in this way are valid
transactions in the fake chain, of course, and even in the main
chain because they only use valid deposits. Thus adversaries
can broadcast them to the blockchain network and take on-
chain assets, with users then unable to reclaim their assets.

If we apply the spend-all-settlement method, on the other
hand, settlement transactions include every deposit. So if there
is at least one fake deposit in the settlement transactions, they
would be rejected from the main chain, as there is no such
UTXO to spend. To conclude, employing boundary block ver-
ification and the spend-all-settlement prevents illegal attempts
to gain invalid benefits through payments and settlements,
respectively. Therefore, the best strategy for rational hosts
is simply feeding correct blockchain data to confirm user
balances and earn routing fees.

B. Abortion

Hosts can abort operating RouTEE in various ways. First,
the host can simply shut down the machine running RouTEE.
If SGX is turned off, all private data in SGX such as user
balance states and the block header chain disappear because
the secure memory space in SGX is volatile. However, a

rational host would not forcibly shut down RouTEE, as the
host does not want to abandon the pending routing fees
in it. To terminate RouTEE normally, the host should go
through a termination process that settles all users’ balances
to the settle addresses obtained in advance by broadcasting
settlement transactions. The host could then take all confirmed
routing fees.

Next, the host could stop feeding blockchain data into
RouTEE. If there are deposit transactions not yet inserted into
SGX, then they are bound in the blockchain forever, and there
is no way to retrieve it. Similarly, the host could generate a
fake blockchain that does not contain the user’s deposit, but
the host has no financial motivation to ignore deposits, losing
all routing fees and maybe spending an expensive mining cost.

We might fundamentally prevent these attacks by utilizing
time-locked transactions, which make deposits retrievable after
a certain amount of time. However, their transaction fees are
more expensive than P2PKH transactions, and RouTEE must
broadcast additional transactions that bring time-locked assets
to RouTEE within the time limit (users may need to pay for
this transaction also). To conclude, P2PKH transactions are
appropriate for RouTEE because we are only concerned about
rational adversaries and time-locked transactions are inefficient
and unnecessarily expensive.

Lastly, the host might not broadcast settlement transactions.
Pending routing fees induce the host to fulfill its duty since
abandoning settlement transactions means that the host gives
up confirming its pending routing fees. What’s more, settle-



TABLE I
ROUTEE USER OPERATION PERFORMANCE

Throughput Latency (ms)
Operation (op/sec) Idle [99th%] Busy [99th%]
add user 1,222 42.7 [45.9] 47.1 [50.6]
add deposit 1,092 44.8 [59.3] 48.1 [55.1]
update boundary block 19,998 38.8 [41.7] 37.4 [40.1]
multi-hop payment 18,677 38.6 [48.4] 43.2 [56.0]
settlement 19,607 38.9 [43.5] 36.5 [39.6]

ment transactions are sequentially included in the blockchain,
as they spend the leftover deposit from the previous one. This
means that if the host drops a settlement transaction, the host
cannot broadcast any settlement transactions and cannot obtain
any confirmed routing fees from that moment. Thus hosts are
motivated to broadcast settlement transactions honestly.

C. Message Abusing

As messages between users and RouTEE are encrypted,
hosts cannot find out their contents or manipulate them. They
are not able to link a user address and the user’s on-chain
deposit, nor do they know the details of multi-hop payments
and settlements.

Hosts may try to drop or delay messages, but it does not give
them any financial benefit since operations in RouTEE bring
and confirm routing fees. Even if they are going to censor a
particular user’s messages or requests for a specific operation
in the face of a potential financial loss, secure sessions between
them would make it impossible.

Since the minimum amount of the routing fee is determined
by the hosts, they can execute a message reordering attack,
in which they extort a payer’s balance by delivering the
user’s multi-hop payment message to RouTEE after changing
the minimum routing fee amount. Users can easily prevent
this attack by specifying their routing fee amounts in their
messages. In case of a replay attack, where adversaries insert
the same message several times into RouTEE (e.g., execute the
same multi-hop payments to get routing fees), a user’s nonce
field will efficiently block it.

VI. EVALUATION

We implement a RouTEE prototype for Bitcoin using SGX.
We use the Intel SGX SDK for Linux [31] and Bitcoin core
libraries [32]. To generate Bitcoin addresses (i.e., manager
addresses), we utilize secp256k1 which is available from the
Bitcoin core. From SGX SDK, we choose AES128-GCM
to encrypt/decrypt messages between users and RouTEE and
RSA digital signatures created by 3072-bit keys. Bitcoin em-
ploys ECDSA signatures, but, being unsuitable for RouTEE,
it takes a lot of time to verify signatures.

A. Performance of User Operations

For experiments, we implement user clients that send en-
crypted and signed messages to RouTEE using Python. We
run a RouTEE program on a machine with an Intel i9-9900K
CPU and 64GB of RAM running Ubuntu 16.04 LTS. It has
8-core/16-thread but we only use four threads.

2 4 8 16 32 50 100 1000 2000

0.5

1

1.5

2

·104

Number of concurrent users

T
hr

ou
gh

pu
t

(o
pe

ra
tio

ns
/s

ec
)

add user add deposit update boundary block
multi-hop payment settlement

Fig. 6. User operation throughput

1 2 5 10 20 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
·105

Batch size

T
hr

ou
gh

pu
t

(o
pe

ra
tio

ns
/s

ec
)

Fig. 7. Batched payments throughput

Throughput. We define the throughput as the number
of operations RouTEE can process in one second. In order
to measure RouTEE’s throughput for each user operation,
we make user clients continuously send the same type of
user operation messages with random parameters (e.g., user
addresses, payment amounts). Supplying a sufficient amount
of messages to find a maximum throughput value, we execute
multiple client programs on a machine with an AMD Ryzen
Threadripper 2990WX CPU, 128GB of RAM, and 32-core/64-
thread running Ubuntu 18.04 LTS, connected with the RouTEE
server over the local network. We also repeat this experiment
with various numbers of concurrent users. As suggested in
Fig. 6, RouTEE deals with thousands of concurrent users,
maintaining its maximum transaction throughput.

As it executes dynamic allocation to register users in the
user state, the add user operation shows a maximum through-
put of about 1,200 op/sec, which is relatively low compared
to other operations. Similarly, the add deposit operation has a
maximum throughput of about 1,100 op/sec, also quite low
relatively speaking, as it generates random private keys to
make random manager addresses. However, these operations
are more scalable than other payment networks when we
consider that one Bitcoin block cannot include more than
3,000 transactions, meaning that they cannot open more than
3,000 channels every 10 minutes.

The update boundary block and settlement operations
show similar throughput of about 18,000 op/sec. Given the



TABLE II
LIGHT CLIENT EXECUTION TIME FOR DOWNLOADING AND VERIFYING

2,016 VALID BLOCK HEADERS

Time (sec)
Min Med Avg 99th% Max

Network latency 0.161 0.315 0.499 3.744 16.679
Verification time 0.054 0.088 0.089 0.126 0.297
Total 0.216 0.404 0.588 3.871 16.977

nature of payment networks, update boundary block would
occur more frequently than settlements. Even if every 100,000
users update their boundary blocks when a new block is
created, it will only take 6 seconds. We note that there are
about 15,000 public users in Lightning Network, opening
about 36,000 channels as of November 2020 [33].

The multi-hop payment’s throughput is about 18,000 op/sec.
This is similar to existing payment systems such as VISA,
which is known to be capable of dealing with about 24,000
payments [34]. Furthermore, we can boost the throughput
by batching multi-hop payments. Senders can make batched
multi-hop payments that contain multiple receivers and pay-
ment amounts. We measure the throughput of batched pay-
ments and the result is shown in Fig. 7. The throughput
increases as the size of the batch increases, and users can
choose various batch sizes. For example, RouTEE achieves an
approximately 30,000 op/sec throughput when the size is two,
and about 180,000 op/sec when the size is 30. The graph is not
completely linear because as the size increases, the message
size also grows, costing more network overhead. We note that
the throughput can be enhanced by employing additional hub
nodes or multi threads. The results of the throughputs are listed
in Table I.

Latency. We define the latency as the time between sending
a message to RouTEE and receiving a response message from
RouTEE. To measure the RouTEE’s latency for each user
operation in a realistic network environment, we run the client
program on a t2.micro Amazon EC2 instance (RTT: 39.9
ms, Bandwidth: 31.4 Mbits). The client sends a message to
RouTEE, waits for the response, and repeats this continuously.
Table I shows the result. Idle means that there is no concurrent
user in RouTEE, and Busy means that RouTEE is executing
operations at its maximum throughput speed. Most operations
are returned within about 50 ms, which is a very small latency,
and there is almost no difference in the latency between idle
and busy states.

B. Performance of Host Operations

To provide blockchain data, we run the Bitcoin core pro-
gram as a full node on the same machine as RouTEE. Since
we do not need to evaluate Bitcoin network interactions,
we simply establish the Bitcoin local private network, called
regnet, and create 100 blocks which contain 2,500 randomly
generated transactions each (for almost any period, the average
number of transactions per block does not exceed 2,500 [35]).
The RouTEE program can obtain blockchain data such as

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

2

4

6

8

10

Number of transaction inputs

Ti
m

e
(s

)

500 outputs 1000 outputs 1500 outputs 2000 outputs

Fig. 8. Settlement transaction generation time

headers and transactions through RPC requests to the Bitcoin
core.

Block Verification. We first insert 100 block headers to
measure the block header verification time (i.e., a light client’s
verification inside SGX). Then we insert 100 headers with their
transactions to measure the insert block operation execution
time. The result is that it takes 18.56 ms to verify a single
header and 45.16 ms for an insert block operation.

Initialization. To initialize RouTEE, a host needs to feed a
header chain to RouTEE. Based on the result above, it takes
about 3.37 hours to start verifying headers from the genesis
block to the latest block (about 655,000 blocks). If we start
from the 295,000th block, which is the latest checkpoint block
in the Bitcoin core [36], it takes 1.85 hours. Furthermore, it
only takes 37.41 seconds to verify 2,016 blocks by hard-coding
the block that is 2,016 blocks away from the latest block.
It takes an additional one minute to verify 2,016 full blocks
to finish initialization, calculating feeavg . We note that the
initialization needs to be performed only once.

Make Settlement Transaction. To measure the settlement
transaction generation time, we repeatedly create settlement
transactions with various numbers of inputs and outputs within
RouTEE’s SGX. Fig. 8 shows the result. The execution time
increases as the number of transaction inputs increases, and
it takes a little more time to deal with more outputs. This is
because most of the time is spent making signatures for inputs
and hashing data several times, and the hashing process time
grows quadratically as the inputs increase.

The number of inputs equals the number of deposits, and
the number of outputs equals the number of settle request
users (plus one for a leftover deposit). If RouTEE owns 2,000
deposits and 2,000 users request settlement, it only takes
6.52 seconds to generate the settlement transaction, with the
transaction’s size being roughly 364 KB. As Bitcoin’s block
size limit is about 1 MB, the transaction is sufficiently small
to be included in the block, meaning that RouTEE can settle
thousands of users simultaneously within a few seconds.

C. Performance of Light Client

We also measure how long it takes to download header
chains through a light client. We choose Electrum [37] which



is one of the most popular light clients for Bitcoin. Electrum
batches 2,016 block headers and sends header requests to var-
ious full nodes. We run Electrum on a t2.micro Amazon EC2
instance and note that it has very limited network resources.
Electrum downloads a header chain from the genesis block to
the latest block, and we repeat this process 100 times.

Table II shows the result. When Electrum requests to the
close full node, it only takes 0.161 seconds to download 2,016
headers. Verifying these headers can be finished within 0.054
seconds, meaning that users need only 1.16 minutes to get
the whole verified header chain in the best case. Most of the
execution time is spent waiting for the download to be finished,
and it varies depending on which full node is connected.
When Electrum connects to the node far away from it, it
takes 16.977 seconds in total, indicating that it requires at
most 1.53 hours to download all headers. However, we notice
that after downloading it once, users can easily catch up to
the latest block within about 17 seconds every two weeks (i.e.,
2,016 blocks). We also stress that users only need to download
headers, meaning that they only require about 55 MB to store
all headers.

D. Comparison of Multi-hop Payment Performances

We compare RouTEE to Lightning Network, which is the
state-of-the-art payment network and has an open-sourced
implementation called Lightning Network Daemon (LND)
[38]. However, it is difficult to compare them objectively since
they have quite different network topologies and protocols. In
Lightning Network, the multi-hop payment results would vary
greatly depending on the network state, routing users, and
payment amounts. Unfortunately, there is no public data on
network topologies or payment history in payment networks,
so it is hard to measure the realistic performance of Lightning
Network. By contrast, RouTEE’s multi-hop payments never
fail if participants are rational. Thus, if we can measure
their performance in realistic environments, RouTEE will
outperform Lightning Network.

For this reason, we measure the performance of the 1-hop
payment in Lightning Network because it is a lot similar to the
multi-hop payment in RouTEE without updating the receiver’s
boundary block (i.e., the sender simply sends the multi-hop
payment message). In Lightning Network, receivers initiate
payments, forwarding their invoices to senders. Then senders
decode invoices and send response messages to receivers,
which is the end of 1-hop payments. To make the equivalent
environment, the sender client runs on the machine that
executed the RouTEE program, and the receiver client runs on
the machine that executed the client program, measuring the
maximum invoice decoding throughput in a similar manner. As
a result, it takes 28.033 seconds to process 10,000 invoices,
which means that its throughput is about 360 payments/sec
with a latency of 165 ms. Considering RouTEE’s payment
throughput (i.e., 18,677 payments/sec with a latency of about
40 ms from Table I), Lightning Network nodes are not suitable
for acting as a hub node.

VII. DISCUSSION

In this section, we consider security issues in more detail
and describe possible extensions to protect RouTEE even from
various kinds of irrational adversaries to enhance its security.

A. Obtaining Valid Blockchain Data

It is hard to determine whether this blockchain data is
absolutely valid or not. We simply find a chain that looks
relatively more valid than the other ones (e.g., by length of
chain and block difficulty). Judging the chain’s validity in the
SGX is even more difficult as the host may restrict input data
into SGX. Also, users might receive invalid chain data, if they
are victims of eclipse attacks or carelessly download only from
a single malicious node. In short, there might be the case that
a malicious host profits from fake data.

To protect these kinds of naive users, we can the leverage
statistical characteristics of block mining [39]. In Bitcoin,
a block is mined every 10 minutes on average, and the
block interval time between two blocks is a random variable
that has an exponential distribution. Adversaries with less
mining power than the main chain’s miners will have difficulty
keeping up with this mining speed. Thus it is possible to detect
weird blocks inserted too slowly, by measuring block interval
times with a trusted relative timer inside SGX. However, this
may yield false-positive results due to innocent but unlucky
blocks, which result in deferring block acceptance for a certain
amount of time (e.g., for 120 blocks).

There is another approach [40] which brings authenticated
data into SGX from trustworthy web sites. Nowadays, many
web sites [41], [42] provide blockchain-related data in real-
time. RouTEE can therefore obtain block headers and trans-
actions without hosts. In order to reduce the risk of website
hacking, RouTEE should interact with various websites and
decide which data is correct by a majority vote. This could
be combined with the above method to mitigate false-positive
results.

Breaking this system is quite impractical since the adversary
should have mining power equivalent to all the Bitcoin miners
and be able to manipulate several websites at once. Thus, users
who trust data obtained in this manner no longer need to run
light clients and can set their boundary block as the latest
block inside SGX. This makes RouTEE more convenient for
users.

B. Crash Fault Tolerance

There might be unintentional software or hardware faults
so we need to save internal data in SGX periodically to
restart RouTEE with the same state. SGX supports a seal-
ing/unsealing feature [16] that allows data to be securely stored
and loaded within SGX only. Before utilizing this feature,
we must prevent roll-back attacks, where an adversary gives
previous data and loads it as if this were the latest one,
thereby breaking the integrity of SGX. To do so, SGX enables
implementing hardware monotonic counters with the non-
volatile memory in SGX [31] in order to track and trace the
current state.



However, in the case of RouTEE, the state could be changed
very frequently. Thus, the monotonic counter in SGX might
not be suitable for RouTEE, because it has a limited per-
formance and would wear out quickly after about 1 million
writes [43]. To overcome this limitation, RouTEE could batch
operations to reduce the number of writes to the counter. In
addition, there is other research [43], [44] that could enhance
the data integrity for SGX.

C. Network Failure

Considering unexpected long-term network failures between
users and RouTEE, we could design RouTEE to be able to
settle users’ channels, when their balances have not changed
for a certain period of time (e.g., for 1,000 blocks) in order
to guarantee their assets. In a different approach, we could
leverage the underlying blockchain to deliver messages into
RouTEE against the network failure and even indiscriminate
censorship, similar to another framework using a TEE [45]. In
Bitcoin, users are able to write arbitrary data to the blockchain
through the OP RETURN instructions of the script language.
This means that RouTEE could receive encrypted messages
through on-chain transactions. It is possible to block even these
messages by generating a fake chain that does not contain
them, but it causes far more losses (i.e., block mining costs,
abandoning routing fees) than benefits.

VIII. RELATED WORK

Payment networks. There has been a lot of research
done on payment networks. Duplex Micropayment Channels
[46] utilize time-locks to ensure that the latest transaction
can be broadcast first. Lightning Network [4] and Raiden
[5] are payment networks based on Bitcoin and Ethereum
respectively. Flare [47] proposes an optimized routing path
searching algorithm for Lightning Network. Revive [48] rebal-
ances payment channels to re-fund depleted channels without
broadcasting on-chain transactions. Perun [49] offers a new
method called virtual payment channel, which makes the
routing more efficient but requires Turing-complete smart
contracts. Intermediate users can be virtual payment hubs, but
they would need a lot of channels that have sufficient balances
to create virtual channels, and their balances would be locked
until virtual channels are closed. Sprites [50] reduces collateral
locking time during multi-hop payments and can partially
add and withdraw balances. Pisa [51] allows users to go off-
line for a longer period of time by employing a third party
called a custodian who monitors blockchains on their behalf.
Fulgor and Rayo [52] are new protocols that reinforce privacy
and concurrency for payment networks. Anonymous multi-
hop locks (AMHLs) [13] enable privacy-preserving multi-hop
payments.

Trusted execution environments with blockchains. Re-
cent studies have solved various problems in blockchains
through TEEs. TownCrier [40] feeds authenticated data to
smart contracts, overcoming the oracle problem. Obscuro
[53] is a secure mixer platform for Bitcoin to enhance
the anonymity of transactions. FastKitten [45] allows smart

contracts to be executed over blockchains without complex
languages. Also, users can efficiently interact with smart
contracts by off-chain transactions. Tesseract [39] is a secure
cryptocurrency exchange that enables assets from different
blockchains to be swapped. Ekiden [54] makes smart contracts
more confidential and efficient. Bite [55] protects the privacy
of light clients from other full nodes. Teechan [56] and
Teechain [57] establish secure payment channels. To the best
of our knowledge, Teechain is the most relevant to our work.
However, it requires every user to have a TEE. Users also
have to check that their counterparty’s deposit transaction
is included in the blockchain when they want to allocate
their deposits to their channels. In addition, Teechain supports
multi-hop payments but their mechanism is fundamentally the
same as the existing payment network’s method, implying that
it has the same limitations such as a high probability of failure
and struggling to track the network state to find payment paths.

IX. CONCLUSION

Payment networks allow more payment transactions to be
handled on behalf of blockchains with low scalability, but they
are still inefficient and have many limitations. Users have a
hard time managing their channels and multi-hop payments
are difficult to achieve. We present RouTEE, a new payment
network with a secure routing hub that fully leverages a star
network topology and a TEE. Offering payment channels with
high liquidity, it supports multi-hop payments that do not
fail in normal situations. We consider adversaries that have
control of the RouTEE platform and analyze the security of
our system, proving that following the protocol honestly is the
best strategy for rational hosts. We also evaluate RouTEE and
demonstrate that RouTEE provides a practical and scalable
payment network.

REFERENCES

[1] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. [Online].
Available: https://www.bitcoin.org/bitcoin.pdf

[2] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[3] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016, pp. 3–16.

[4] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

[5] Raiden network. [Online]. Available: https://raiden.network/
[6] Z. Avarikioti, L. Heimbach, Y. Wang, and R. Wattenhofer, “Ride the

lightning: The game theory of payment channels,” in International
Conference on Financial Cryptography and Data Security. Springer,
2020, pp. 264–283.

[7] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” Hasp@ isca, vol. 10, no. 1,
2013.

[8] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[9] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Annual International Cryptology Conference. Springer, 1992,
pp. 139–147.

[10] I. A. Seres, L. Gulyás, D. A. Nagy, and P. Burcsi, “Topological
analysis of bitcoin’s lightning network,” in Mathematical Research for
Blockchain Economy. Springer, 2020, pp. 1–12.

https://www.bitcoin.org/bitcoin.pdf
https://raiden.network/


[11] J. Herrera-Joancomartı́, G. Navarro-Arribas, A. Ranchal-Pedrosa,
C. Pérez-Solà, and J. Garcia-Alfaro, “On the difficulty of hiding the
balance of lightning network channels,” in Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security, 2019, pp.
602–612.

[12] G. Kappos, H. Yousaf, A. Piotrowska, S. Kanjalkar, S. Delgado-Segura,
A. Miller, and S. Meiklejohn, “An empirical analysis of privacy in the
lightning network,” arXiv preprint arXiv:2003.12470, 2020.

[13] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maffei, “Anonymous multi-hop locks for blockchain scalability and
interoperability.” in NDSS, 2019.

[14] C. Pérez-Solà, A. Ranchal-Pedrosa, J. Herrera-Joancomartı́, G. Navarro-
Arribas, and J. Garcia-Alfaro, “Lockdown: Balance availability attack
against lightning network channels,” in International Conference on
Financial Cryptography and Data Security. Springer, 2020, pp. 245–
263.

[15] E. Rohrer, J. Malliaris, and F. Tschorsch, “Discharged payment chan-
nels: Quantifying the lightning network’s resilience to topology-based
attacks,” in 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 2019, pp. 347–356.

[16] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for cpu based attestation and sealing,” in Proceedings of the 2nd inter-
national workshop on hardware and architectural support for security
and privacy, vol. 13. Citeseer, 2013, p. 7.

[17] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software grand exposure:{SGX} cache attacks are
practical,” in 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 17), 2017.

[18] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim,
M. Peinado, and B. B. Kang, “Hacking in darkness: Return-oriented
programming against secure enclaves,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 523–539.

[19] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel {SGX} kingdom with transient out-of-
order execution,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 991–1008.

[20] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi, “The
guard’s dilemma: Efficient code-reuse attacks against intel {SGX},” in
27th {USENIX} Security Symposium ({USENIX} Security 18), 2018,
pp. 1213–1227.

[21] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142–157.

[22] J. Seo, B. Lee, S. M. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim,
“Sgx-shield: Enabling address space layout randomization for sgx pro-
grams.” in NDSS, 2017.

[23] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs.” in NDSS, 2017.

[24] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privileged
side-channel attacks in shielded execution with déjá vu,” in Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications
Security, 2017, pp. 7–18.

[25] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer, “Varys:
Protecting {SGX} enclaves from practical side-channel attacks,” in 2018
{Usenix} Annual Technical Conference ({USENIX}{ATC} 18), 2018,
pp. 227–240.

[26] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee, “Obfuscuro:
A commodity obfuscation engine on intel sgx.” in NDSS, 2019.

[27] T. Alves, “Trustzone: Integrated hardware and software security,” White
paper, 2004.

[28] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel,
“Betrayal, distrust, and rationality: Smart counter-collusion contracts for
verifiable cloud computing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 211–
227.

[29] R. Shostak, M. Pease, and L. Lamport, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[30] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 129–144.

[31] Intel Software Guard Extensions SDK Developer Reference for Linux
OS. [Online]. Available: https://download.01.org/intel-sgx/linux-2.1.3/
docs/Intel SGX Developer Reference Linux 2.1.3 Open Source.pdf

[32] The Bitcoin Community. Bitcoin Core version 0.13.1 released. [Online].
Available: https://bitcoin.org/bin/bitcoin-core-0.13.1/

[33] 1ML. 1ML: Lightning Network Search and Analysis Engine. [Online].
Available: https://1ml.com/

[34] VISA. Visa’s transactions per second. [Online]. Available: https:
//usa.visa.com/run-your-business/small-business-tools/retail.html

[35] Blockchain.com. Average transactions per block. [Online]. Available:
https://www.blockchain.com/charts/n-transactions-per-block

[36] Bitcoin Core. The latest checkpoint block. [Online]. Available: https:
//github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp#L160

[37] Electrum. Electrum: Bitcoin Wallet. [Online]. Available: https:
//electrum.org/#home

[38] Lightning Network Community. Lightning Network Daemon. [Online].
Available: https://github.com/lightningnetwork/lnd

[39] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels,
“Tesseract: Real-time cryptocurrency exchange using trusted hardware,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1521–1538.

[40] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proceedings of the 2016
aCM sIGSAC conference on computer and communications security,
2016, pp. 270–282.

[41] Blockchain.com: Blockchain Explorer. [Online]. Available: https:
//www.blockchain.com/explorer

[42] BTC.com: Bitcoin Explorer. [Online]. Available: https://btc.com/
[43] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,

A. Juels, and S. Capkun, “{ROTE}: Rollback protection for trusted
execution,” in 26th {USENIX} Security Symposium ({USENIX} Security
17), 2017, pp. 1289–1306.

[44] R. Strackx and F. Piessens, “Ariadne: A minimal approach to state con-
tinuity,” in 25th {USENIX} Security Symposium ({USENIX} Security
16), 2016, pp. 875–892.

[45] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: Practical smart contracts on
bitcoin,” in 28th {USENIX} Security Symposium ({USENIX} Security
19), 2019, pp. 801–818.

[46] C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in Symposium on Self-
Stabilizing Systems. Springer, 2015, pp. 3–18.

[47] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Osuntokun,
“Flare: An approach to routing in lightning network,” White Paper, 2016.

[48] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain payment
networks,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 439–453.

[49] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 106–123.

[50] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2019, pp. 508–526.

[51] P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller, “Pisa:
Arbitration outsourcing for state channels,” in Proceedings of the 1st
ACM Conference on Advances in Financial Technologies, 2019, pp. 16–
30.

[52] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 455–471.

[53] M. Tran, L. Luu, M. S. Kang, I. Bentov, and P. Saxena, “Obscuro: A
bitcoin mixer using trusted execution environments,” in Proceedings of
the 34th Annual Computer Security Applications Conference, 2018, pp.
692–701.

[54] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2019,
pp. 185–200.

[55] S. Matetic, K. Wüst, M. Schneider, K. Kostiainen, G. Karame, and
S. Capkun, “{BITE}: Bitcoin lightweight client privacy using trusted

https://download.01.org/intel-sgx/linux-2.1.3/docs/Intel_SGX_Developer_Reference_Linux_2.1.3_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.1.3/docs/Intel_SGX_Developer_Reference_Linux_2.1.3_Open_Source.pdf
https://bitcoin.org/bin/bitcoin-core-0.13.1/
https://1ml.com/
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://www.blockchain.com/charts/n-transactions-per-block
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp#L160
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp#L160
https://electrum.org/#home
https://electrum.org/#home
https://github.com/lightningnetwork/lnd
https://www.blockchain.com/explorer
https://www.blockchain.com/explorer
https://btc.com/


execution,” in 28th {USENIX} Security Symposium ({USENIX} Security
19), 2019, pp. 783–800.

[56] J. Lind, I. Eyal, P. Pietzuch, and E. G. Sirer, “Teechan: Payment channels
using trusted execution environments,” arXiv preprint arXiv:1612.07766,
2016.

[57] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch,
“Teechain: a secure payment network with asynchronous blockchain
access,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, 2019, pp. 63–79.


	I Introduction
	II Background
	II-A Blockchains
	II-B Payment Networks
	II-C Disadvantages of Payment Networks

	III Design
	III-A Design Overview
	III-B Adversary model and assumptions
	III-C Design Challenges

	IV Protocol
	IV-A Initialization
	IV-B Channel Creation
	IV-B1 Add user
	IV-B2 Add deposit
	IV-B3 Update boundary block

	IV-C Payment
	IV-D Settlement
	IV-E Block Insertion

	V Security Analysis
	V-A Fake Blockchain Data
	V-B Abortion
	V-C Message Abusing

	VI Evaluation
	VI-A Performance of User Operations
	VI-B Performance of Host Operations
	VI-C Performance of Light Client
	VI-D Comparison of Multi-hop Payment Performances

	VII Discussion
	VII-A Obtaining Valid Blockchain Data
	VII-B Crash Fault Tolerance
	VII-C Network Failure

	VIII Related Work
	IX Conclusion
	References

