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Abstract. In this note, I give a modi�cation of gmaxwell's Con-

�dential Transactions to ring signatures. This modi�cation will

work with either the Fujisaki/ Suzuki Ring signatures currently

used in Monero, or the LLW signatures which have been proposed

as a modi�cation to Monero (c.f. mrl_notes v1,2,3). (In fact, I give

a slight generalization to either of these schemes tentatively titled

a �Mokume-Gane� signature. Example code in python is provided

at [SN]. The security and anonymity proofs of this scheme are

given in the random oracle model. Note that I created the basic

description for this protocol shortly after the original con�dential

transactions were announced (see mrl_notes v.3 in [SN]), and the

new content in this note are the security (coming soon, although

it's not much a big expansion from Fujisaki Suzuki) and anonymity

proofs under the random oracle model.

1. Introduction

The necessary language and de�nitions are taken from [FS, LWW,

GM], and will be copied here later.
1
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2. Ring CT Protocol Description

Let G be the ed25519 basepoint. Let1

H = toPoint (cn_fast_hash (123456 ·G))

Note on the choice of scalar 123456. In the curve group of ed25519, not

every cn_fast_hash is itself a point in the group of the basepoint G.

The scalar 123456 is chosen so that the hash is a point in the group of

the basepoint, so that all the usual elliptic curve math holds. Under the

discrete logarithm assumption on ed25519, the probability of �nding

an x such that xG = H is negligible.

De�ne C (a, x) = xG + aH, the commitment to the value a with

mask x. Note that as long as logGH is unknown, and if a 6= 0,

then logGC (a, x) is unknown. On the other hand, if a = 0, then

logGC (a, x) = x, so it is possible to sign with sk-pk keypair (x,C (0, x)) .

In [?], there are input commitments, output commitments, and the

network checks that

∑
Inputs =

∑
Outputs.

However, this does not su�ce in Monero: Since a given transaction

contains multiple possible inputs Pi, i = 1, ..., n, only one of which

belong to the sender, (see [CN, 4.4]), then if we are able to check the

above equality, it must be possible for the network to see which Pi

belongs to the sender of the transaction. This is undesirable, since it

removes the anonymity provided by the ring signatures. Thus instead,

1H = MiniNero.getHForCT ()
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commitments for the inputs and outputs are created as follows (suppose

�rst that there is only one input)

Cin = xcG+ aH

Cout−1 = y1G+ b1H

Cout−2 = y2G+ b2H

such that xc = y1 + y2 + z, xc − y1 − y2 = z, yi are mask values, z > 0

and a = b1+b2. Here xc is a special private key the �amount key� known

only to the sender, and to the person who sent them their coins, and

must be di�erent than their usual private key). In this case,

Cin −
2∑
i=1

Cout−i

= xcG+ aH − y1G− b1H − y2G− b2H

= zG.

Thus, the above summation becomes a commitment to 0, with sk = z,

and pk = zG, rather than an actual equation summing to zero. Note

that z is not computable to the originator of xc's coins, unless they

know both of the y1, y2, but then they are receiving the coins, and

presumably remember which pubkey they sent them to originally, and

so there is no additional unmasking.

Since it is undesirable to show which input belongs to the sender, a

ring signature consisting of all the input commitments Ci, i = 1, ..., s, ..., n

(where s is the secret index of the commitment of the sender), adding

the corresponding pubkey (so commitments and pubkeys are paired
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(Ci, Pi) only being allowed to be spent together) and subtracting
∑
Cout

is created:{
P1 + C1,in −

∑
j

Cj,out, ..., Ps + Cs,in −
∑
j

Cj,out, ..., Pn + Cn,in −
∑
j

Cj,out

}
.

This is a ring signature which can be signed since we know one of the

private keys (namely z + x′ with z as above and x′G = Ps). In fact,

since we know, for each i both the private key for Pi and the private

key for Pi + Ci,in −
∑

j Cj,out we can perform a signature as in section

3.2.

As noted in [GM], it is important to prove that the output amounts

2 b1, ...bn all lie in a range of positive values, e.g. (0, 216). This can be

accomplished essentially the same way as in [GM]:

• Prove �rst C
(j)
out−i ∈ {0, 2j} for all j ∈ {0, 1, ..., 16} . This is done

as in [GM]: for example, C0
out−i = y0iG+ b0iH where b0i ∈ {0, 1}.

Let

C ′0out−i = C0
out−i −H = yiG+ b0iH −H

so that if b0i = 0, then C ′0out = yiG and if b0i = 1, then C0
out =

yiG, and in either case, the ring signature on{C0
out, C

′0
out} can be

signed for.

� Note that
∑

j y
j
i = yi

• By carefully choosing the blinding values for each j, ensure that

16∑
j=1

C
(j)
out−i = Cout−i.

2since input commitments could potentially be just inherited from the previous
transaction, it su�ces to consider the output amounts
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• By homomorphicity of the commitments, bi =
∑

j δji2
j, where

δji is the j
th digit in the binary expansion of bi.

Thus in total, by the above, the sum of inputs into a transaction equals

the outputs, yet the speci�c input (and it's index!) is hidden. In

addition, the outputs are positive values.

3. Mokume-Gane Signatures

In this section, I introduce a new type of ring signature, a Mokume-

Gane3 which is an extension of [LWW], but which has multiple layers,

each of which must be completed by the signer. If an ordinary ring

signature is the statement �one of these n people signed this,� then a

Mokume-Gane signature is the statement �one of these n people signed

m things.� In my brief search, I am not aware of any existing signature

which does this (my usual area of research is in algebraic geometry),

though it may exist, and in that case, this is a reinvention, created to

deal with sweeping transactions in the Ring CT protocol.�

3.1. LWW (LSAG) Signatures. First I recall the method of [LWW]

(which the authors call a linkable spontaneous ad-hoc group signa-

ture (LSAG)). This description is slightly modi�ed from a reinvention?

given by Adam Back in a bitcointalk.org post. For The di�erence be-

tween Back's version and [LWW]'s version, see Remark

An example implementation appears in [SN].

Keygen: Find a number of public keys Pi, i = 0, 1, ..., n and a secret

index j such that xG = Pj where G is the ed25519 basepoint and x

3name credit �u�ypony
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is the signers spend key. Let I = xH (Pj) where H is a hash function

returning a point (in practice toPoint(Keccak(Pk))). Let m be a given

message.

SIGN: Let α, si, i 6= j, i ∈ {1, ..., n} be random values in Zq (the

ed25519 base �eld).

Compute

Lj = αG

Rj = αH (Pj)

cj+1 = h (m,Lj, Rj)

where h is a hash function returning a value in Zq. Now, working

successively in j modulo n, de�ne

Lj+1 = sj+1G+ cj+1Pj+1

Rj+1 = sj+1H (Pj+1) + cj+1 · I

cj+2 = h (m, Lj+1, Rj+1)

· · ·

Lj−1 = sj−1G+ cj−1Pj+1



RING CT FOR MONERO 7

Rj−1 = sj−1H (Pj−1) + cj−1 · I

cj = h (m,Lj−1, Rj−1)

so that c1, ..., cn are de�ned.

Let sj = α − cj · x mod l, (l being the ed25519 curve order) hence

α = sj + cjx mod l so that

Lj = αG = sjG+ cjxG = sjG+ cjPj

Rj = αH (Pj) = sjH (Pj) + cjI

and

cj+1 = h (m, Lj, Rj)

and thus, given a single ci value, the Pj values, the key image I, and all

the sj values, all the other ck, k 6= i can be recovered by an observer.

The signature therefore becomes:

σ = (I, c1, s1, ..., sn)

which represents a space savings over [CN, 4.4].

Veri�cation proceeds as follows. An observer computes Li, Ri, and

ci for all i and checks that cn+1 = c1. Then the veri�er checks that

ci+1 = h (m,Li, Ri)

for all i.

LINK: Signatures with duplicate key images I are rejected.
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Remark 1. The (very slight) di�erence between Back's LSAG signa-

tures and [LWW]'s LSAG signatures is the following. In Back's ver-

sion, the author lets I = xH (Pj), where j is the secret index, whereas

in [LWW], the authors choose I = xH (L), L = {P1, ..., Pn}. Thus in

Back's version, the author is ensuring that out of any ring, the owner

of pubkey Pj can only sign with that key at most one time. In [LWW],

the authors are ensuring that the owner of Pj cannot ring-sign any

message with respect to the same collection of public keys twice. As

far as applications, Back's version is clearly geared towards preventing

double-spending in a cryptocurrency type setting, whereas [LWW]'s

version is perhaps better for something like an e-voting system, where

a single user may vote at most once as part of a number of di�erent

groups. Note that the proofs from [LWW] carry over to Back's version

with only trivial changes as long as you change the corresponding link-

ability requirement to being only able to sign once. In this article, ring

signatures according to Back will be denoted Back-LSAG's.

3.2. Mokume-Gane Signatures. Now suppose that each signer of a

(generalized) ring containing nmembers has exactlym keys
{
P j
i

}i=1,...,n

j=1,...,m
.

The intent of the Mokume-Gane ring signature is the following:

• Exactly one of the n signers has given a signature on all m of

their keys.

• If the signer uses any one of their m keys in another Mokume-

Gane signature, then the two rings are linked.

The algorithm proceeds as follows: Let m be a given message. Let π

be a secret index corresponding to the signer of the generalized ring.
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For j = 1, ...,m, let Ij = xjH (P j
π), and for j = 1, ...,m, i = 1, ..., π̂, ...n

(where π̂ means omit the index π) let sji be some random scalars. Now,

in an analogous manner to section 3.1, de�ne

Ljπ = αG

Rj
π = αH

(
P j
π

)
for a random scalar α and j = 1, ...,m. Now, again analogously to

section 3.1, set:

cπ+1 = H
(
m, L1

π, R
1
π, ..., L

m
π +Rm

π

)
.

Ljπ+1 = sjπ+1G+ cπ+1P
j
π+1

Rj
π = sjπ+1H

(
P j
π+1

)
+ cπ+1Ij

and repeat this incrementing i modulo n until we arrive at

Ljπ−1 = sji−1G+ ci−1P
j
i−1

Rj
π−1 = sji−1H

(
P j
i−1
)

+ ci−1 · Ij

cπ = H
(
m, L1

π−1, R
1
π−1, ..., L

m
π−1 +Rm

π−1
)
.

Finally, solve for each sjπ using αj = sjπ + cπxj mod q. Now the sig-

nature is given as (I1, ..., Im, c1, s
1
1, ..., s

m
1 , s

1
2, ..., s

m
2 , ..., s

1
n, ..., s

m
n ), so the

complexity is O (m (n+ 1)) . Now veri�cation proceeds by regenerating

all the Lji , R
j
i starting from i = 1 as in section 3.1(where m = 1) and
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verifying the hash cn+1 = c1. One can easily show, in a manner similar

to [LWW]:

• The probability of a signer generating a valid signature without

knowing all �m� private keys for index π is negligible.

• The probability of a signer signing for keys not of index π is

negligible.

• If a signer signs two rings using at least one of the same public

keys, then the two rings are linked.

4. Anonymity

To prove the anonymity of the above protocol in the random oracle

model, let H1, H2 be random oracles modeling discrete hash functions.

Let A be an adversary against anonymity. I construct an adversary

M against decisional di�e helman assumption assumption as follows.

(Note, for this proof I use the ring signature style of [FS], rather than

the ring signatures of [LWW] for simplicity, in fact the protocol de-

scription is independent of the choice of linkable ring signature, and

you can use the choice of section 3.2). Recall that a DDH triple is a tu-

ple of group elements (A,B,C,D) such that logAC = logBD the DDH

asumption says that given a tuple (G, aG, bG, γG), the probability of

determining whether γG = abG is negligible.

Theorem 2. Ring CT protocol is anonymous under the random oracle

model in a group where the DDH assumption holds.

Proof. Let (G, aG, bG, abG) a tuple of group elements. Suppose there

is an adversary A against anonymity. I work with signatures of size
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two for simplicity, though the general case follows in the same manner.

Thus given a signature

((p1 + cin,1 − cout,1 − cout,2, p2 + cin,2 − cout,1 − cout,2) , I, s1, s2, c2, c2)

, A is able to determine with non-negligible probabilty ε, which index

i corresponds to the private key xi of the signer. Assume that A does

not have access to either xcout,i for at least one output or xcin,i
for either

input and that A does not have access to xpi the private key of Pi for

either i.

First I claim that if A is able to compute the unknown xcout,i or the

unknown xcin,i
, then it is possible to construct an adversary against

the discrete logarithm problem (so that clearly there is an adversary

against DDH). Without loss of generality assume A always knows xcin,1

and xcout,1 but not xcin,2
or xcout,2. Suppose �rst that A is always able

to uncover xcin,2
with non-negligible probability. Let P a random el-

ement of G in the given group satisfying DDH assumption, P = aG.

Set aequal to our mask xcin,2
= xcout,1 + xcout,2 + a as in the Ring CT

protocol description. I construct an adversaryM to compute a. Write

cout,i = xcout,iG+yout,iH. Assume without loss of generality that A can

guess yin,2 and yout,2 which are the input and output amounts as some

commonly spent amounts (Note, by the properties of the pedersen com-

mitment, A will not know for certain what they are, but perhaps the

possible number of output amounts is much smaller than the security

parameter of the group, and so they can try all possible output amounts

for a given algorithm of deciding xcin,i
). Let cin,2 = aG+ yin,2H. Now,
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as p2 is known, we subtract p2 from the equation, so that in the above

signature, we have

xcin,2
G+ yin,2H − xcout,1G+ yout,1H + xcout,2G+ yout,2H.

Subtracting the known input and output amounts, this becomes

xcin,2
G− xcout,1G− xcout,2G.

By the protocol description, this is

aG

and A knows xcin,2
− xcout,1 − xcout,2 = a, then A can compute the

logGaG = a, contradicting the discrete logarithm assumption, thus

contradicting DDH assumption. The proof that A can xcout,2 only with

negligible probability is similar.

Now I claim if A is an adversary against anonymity, that there exists

an adversary M against DDH. Let (G, aG, bG, γG) a given tuple of

group elements (computed as random scalars and then turned into

multiples of the basepoint), and we construct M to decide whether

γP = abP with non-negligible probability.

De�ne SIM-NIZKP as in [FS] as follows: Let c1, c2, s1, s2 random

scalars. Given P1, P2, and keyimage I belonging to one of the Pi,

set Li = siG + ciPi, Ri = siH1 (Pi) + ciI. Now (using the random

oracle model assumption that the hash functions are determined as

random oracles) set
∑
ci = H2 (m,L1, L2, R1, R2) , which is random
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as the ci, si are random. Under the random oracle assumption A ver-

i�es (I, c1, c2, s2, s2) as a valid signature. Note that log(si+ci)GLi =

log(si+ci)H1 (Pi) for the index corresponding to the signer.

Compute relevant commitments so that p1 + cout,1 − cin,1 − cin,2 =

xG,(s1 + c1x1)G = bG, (s1 + c1x1) aG = γG, and using the random

oracle model, H2 (p1 + cout,1 − cin,1 − cin,2) = aG. Now choose random

other P1, cin,1 and feed the result of SIM-NIZKP on

((P1, cin,1) , (P2, cin,2) , cout,1, cout,2)

to A. By assumption that A is an adversary against anonymity, then

A will output 1 as the signer if logGbG = logaGγG with non-negligible

probability, thus creating an adversary against DDH. �

5. Tag Linkability

5.1. Tag Linkability of MG Ring Signatures. In this section, I

�rst show that any two MG Ring signatures of section 3.2 which have

been signed by at least one common secret key are �Tag-Linkable� in

the sense of Back (c.f. Remark 1). Rather than repeat their proof, I

instead show that each component of an MG signatures is equivalent

to a Back-LSAG signature under the random oracle model.

De�nition 3. A �nite collection of �nite sets of public keys PN :={
P j
i

}j=1,...,m

i=1,...,n
is a generalized ring. The jth column of a generalized

ring is the collection
{
P j
i

}
i=1,...,n

. In other words, the jth column con-

sists of the jth key from each index i. Similarly, the ith row is de�ned

as the set
{
P j
i

}j=1,...,m
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Lemma 4. Let (I1, ..., Im, c1, s
1
1, ..., s

m
1 , s

1
2, ..., s

m
2 , ..., s

1
n, ..., s

m
n ) be an MG

signature on the generalized ring PN :=
{
P j
i

}j=1,...,m

i=1,...,n
. Then, for each

j = 1, ...,m, the sub-signature
(
Ij, c1, s

j
1, s

j
2, ..., s

j
n

)
is equivalent (in

terms of tag-linkability), under the random oracle model, to a Back-

LSAG signature on the jth column of PN .

Proof. Let m be some arbitrary message. Let H1 denote a random

oracle modeling a deterministic hash function. Suppose we start with

secret index π. Let α a random scalar determined by H1. As in section

3.2, set

Ljπ = αG

Rj
π = αH

(
P j
π

)
and as in section 3.1 set

Lπ = αG

Rπ = αH
(
P j
π

)
.

Since we are using the random oracle model, we can set

cπ+1 ← H1

(
m, P j

1 , ..., P
j
n, Lπ+1, Rπ+1

)
for some randomly determined value and also set for the column

c′π+1 = H1

(
m, L1

π−1, R
1
π−1, ..., L

m
π−1 +Rm

π−1
)
.

Although these values are not the same, they are uniformly chosen.

Now each step for all i modulo n, proceeds by the same mathematical

prescription, so the claim is clear. �
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Theorem 5. Let

Σ :=
(
I1, ..., Im, c1, s

1
1, ..., s

m
1 , s

1
2, ..., s

m
2 , ..., s

1
n, ..., s

m
n

)
and

Σ′ :=
(
I ′1, ..., I

′
m′ , c′1, s

1′
1 , ..., s

m′
1 , s

1′
2 , ..., s

m′
2 , ..., s

1′
n′ , ..., sm

′

n′

)
be two MG signatures on two generalized rings PN :=

{
P j
i

}j=1,...,m

i=1,...,n
and

P ′N ′ :=
{
P ′ji
}j=1,...,m′

i=1,...,n′ respectively with secret index π and π′ respectively.

Suppose that there exist P j
π = P ′j

′

π′ . Then Σ and Σ′ are linked.

Proof. Using Lemma 4 on colums j, j′ respectively we �nd two corre-

sponding Back-LSAG's. But then, under the hypothesis that P j
π = P j′

π′ ,

linking these two signatures follows easily from [LWW, Apdx D. ]. �

5.2. Double Spend Traceability in RingCT. In this section, I will

assume that there is enforced one-time keys. Thus the probability that

two distinct transactions have the same destination address is negligi-

ble. (In some cases this criterion is not needed as after a trivial mod-

i�cation to the MG signatures). The tag-linkable anonymous signing

protocol for spending a �single� pair (P,C) = (address, commitment)

for security parameter q is as follows:

De�nition 6. (Tag-Linkable Ring-CT with One Input and One-time

Keys)

• Let (P,C) = (address, commitment) denote a pair which will

be spent.
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• Find q + 1 pairs (Pi, Ci) , i = 1, ..., q + 1 with (P,C) = (Pπ, Cπ)

which are not already tag linked in the sense of [FS, page 6]. 4

• Decide on a set of output addresses (Qi, Ci,out) such that Cπ −∑
Ci,out is a commitment to zero.

• Let

R :={{
P1, P1 + C1 −

∑
i

Ci,out

}
1

,

{
P2, P2 + C2 −

∑
i

Ci,out

}
2

,

...,{
Pq+1, Pq+1 + Cq+1 −

∑
i

Ci,out

}
q+1


be the generalized ring which we wish to sign. Note that the

second column is a Ring-CT ring in the sense of section 2, and

so the corresponding Back-LSAG given by Lemma 4 is possible

to sign anonymously by Theorem 2.

• Compute the MG signature Σ on R.

Remark 7. By Theorem 5, it is clear that Pπ cannot be the signer of

any additional non-linked Ring Signatures in the given superset P of

all such pairs P = {(P,C)} after signing Σ.

De�nition 8. (Tag-Linkable Ring-CT with Multiple Inputs and One-

time Keys)

• Let {(P 1
π , C

1
π) , ..., (Pm

π , C
m
π )} be a collection of addresses / com-

mitments with corresponding secret keys xj, j = 1, ...,m.

4asdf note to self: include this de�nition later somewhere above
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• Find q + 1 collections {(P 1
i , C

1
i ) , ..., (Pm

i , C
m
i )} , i = 1, ..., q + 1

which are not already tag linked in the sense of [FS, page 6]. 5

• Decide on a set of output addresses (Qi, Ci,out) such that
∑m

j=1C
j
π−∑

iCi,out is a commitment to zero.

• Let

R :=

{{(
P 1
1 , C

1
1

)
, ..., (Pm

1 , C
m
1 ) ,

(∑
j

P j
1 +

m∑
j=1

Cj
π −

∑
i

Ci,out

)}
,

...,{(
P 1
q+1, C

1
q+1

)
, ...,

(
Pm
q+1, C

m
q+1

)
,

(∑
j

P j
q+1 +

m∑
j=1

Cj
q+1 −

∑
i

Ci,out

)}
.

be the generalized ring which we wish to sign. Note that the

last column is a Ring-CT ring in the sense of section 2, and so

the corresponding Back-LSAG given by Lemma 4 is possible to

sign anonymously by Theorem 2.

• Compute the MG signature Σ on R.

In this case, P j
π , j = 1, ...,m cannot be the signer of any additional

non-linked Ring Signatures in the given superset P of all such pairs

P = {(P,C)} after signing Σ.

Remark 9. Space complexity of the above protocol. Note that the size

of the signature Σ on R according to de�nition 8 is actually smaller,

for m > 1 than a current CryptoNote [CN] ring signature based trans-

action which includes multiple inputs. This is because of the size im-

provements, given by [LWW], to each column.

5asdf note to self: include this de�nition later somewhere above



RING CT FOR MONERO 18

6. Exculpability

7. Unforgeability

8. Appendix A: Example Code

Example code can be found in [SN]. (I will include something in the

actual writeup later).
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