
ar
X

iv
:2

00
3.

00
29

6v
1

 [
cs

.C
R

]
 2

9
Fe

b
20

20

Renegotiation and recursion in Bitcoin contracts

Massimo Bartoletti1, Maurizio Murgia2, and Roberto Zunino2

1 University of Cagliari, Italy
2 University of Trento, Italy

Abstract. BitML is a process calculus to express smart contracts that
can be run on Bitcoin. One of its current limitations is that, once a con-
tract has been stipulated, the participants cannot renegotiate its terms:
this prevents expressing common financial contracts, where funds have
to be added by participants at run-time. In this paper, we extend BitML
with a new primitive for contract renegotiation. At the same time, the
new primitive can be used to write recursive contracts, which was not
possible in the original BitML. We show that, despite the increased ex-
pressiveness, it is still possible to execute BitML on standard Bitcoin,
preserving the security guarantees of BitML.

1 Introduction

Smart contracts — computer protocols that regulate the exchange of assets in
trustless environments — have become popular with the growth of interest in
blockchain technologies. Mainstream blockchain platforms like Ethereum, Libra,
and Cardano, feature expressive high-level languages for programming smart
contracts. This flexibility has a drawback in that it may open the door to attacks
that steal or tamper with the assets controlled by vulnerable contracts [4,21].

An alternative approach, pursued first by Bitcoin and more recently also by
Algorand, is to sacrifice the expressiveness of smart contracts to reduce the at-
tack surface. For instance, Bitcoin has a minimal language for transaction redeem
scripts, containing only a limited set of logic, arithmetic, and cryptographic oper-
ations. Despite the limited expressiveness of these scripts, it is possible to encode
a variety of smart contracts (like gambling games, escrow services, crowdfunding
systems, etc.) by suitably chaining transactions [1,2,3,5,8,9,12,17,18,19,20,22].
The common trait of these works is that they render contracts as cryptographic
protocols, where participants can exchange/sign messages, read the blockchain,
and append transactions. Verifying the correctness of these protocols is hard,
since it requires to reason in a computational model, where participants can ma-
nipulate arbitrary bitstrings, only being constrained to use PPTIME algorithms.

Departing from this approach, BitML [10] allows to write Bitcoin contracts in
a high-level, process-algebraic language. BitML features a compiler that trans-
lates contracts into sets of standard Bitcoin transactions, and a sound and com-
plete verification technique of relevant trace properties [11]. The computational
soundness of the compiler guarantees that the execution of the compiled con-
tract is coherent with the semantics of the source BitML specification, even in

http://arxiv.org/abs/2003.00296v1

the presence of adversaries. Although BitML can express many of the Bitcoin
contracts presented in the literature [6], it is not “Bitcoin-complete”, i.e. there
exist contracts that can be executed on Bitcoin, but are not expressible in BitML.

For instance, consider a zero-coupon bond [16], where an investor A pays 1B
upfront to a bank B, and receives back 2B after a maturity date (say, year 2030).
We can express this contract in BitML as follows. First, as a precondition to the
stipulation of the contract, we require both A and B to provide a deposit: A’s
deposit is 1B, while B’s deposit is 2B. In BitML, we write this precondition as:

A: 1B @ x1 | B: 2B @ x2

where x1 and x2 are the identifiers of transactions containing the required
amount of bitcoins (B). Under this precondition, we can specify the zero-coupon
bond contract ZCB as follows:

ZCB = split
(

1B→ withdraw B | 2B→ after2030 : withdraw A
)

Upon stipulation, all the deposits required in the preconditions pass under
the control of ZCB , and can no longer be spent by A and B. The contract splits
these funds in two parts: 1B, that can be withdrawn by B at any moment, and
2B, that can be withdrawn by A after the maturity date.

Although ZCB correctly implements the functionality of zero-coupon bounds,
it is quite impractical: for the whole period from the stipulation to the maturity
date, 2B are frozen within the contract, and cannot be used by the bank in any
way. Although this is a desirable feature for the investor, since it guarantees that
he will receive 2B even if the bank fails, it is quite undesirable for the bank. In
the real world, the bank would be free to use its own funds, together with those
of investors, to make further financial transactions through which to repay the
investments. The risk that the bank fails is mitigated by external mechanisms,
like insurances or government intervention.

In this paper we propose an extension of BitML that overcomes this issue.
The idea is to allow the contract participants to renegotiate it after stipulation,
in a controlled way. Renegotiation makes it possible to inject in the contract
new funds, that were not specified in the original precondition. We can use
this feature to solve the issue with the ZCB contract. The new precondition is
A: 1B @x1, i.e. we only require A’s deposit. The revised contract is:

ZCB2 = split
(

1B→ withdraw B | 0B→ ∗ : rngt X〈〉
)

X〈〉 = {B: 2B @ d} after2030 : withdraw A

As before, the bank can withdraw 1B at any moment after stipulation. In
the second part of the split, the participants renegotiate the contract: if they
both agree, 0B pass under the control of the contract X〈〉. The precondition of
X〈〉 requires the bank to provide 2B in a fresh deposit; upon renegotiation, A
can withdraw 2B after the maturity date. The crucial difference with ZCB is
that the deposit variable d is instantiated at renegotiation time, unlike x, which
must be fixed at stipulation time.

The revised contract ZCB2 solves the problem of ZCB , in that it no longer
freezes 2B for the whole duration of the bond: the bank could choose to rene-
gotiate the contract, paying 2B, just before the maturity date. This flexibility
comes at a cost, since A loses the guarantee to eventually receive 2B. To address
this issue we need to add, as in the real world, an external mechanism. More
specifically, we assume an insurance company I that, for an annual premium of
pB paid by the bank, covers a face amount of fB (with 2 > f > 10p):

A: 1B @ x1 | B: pB @ x2 | I: fB @ x3

We revise the bond contract as follows:

ZCB3 = split
(

1B→ withdraw B

| pB→ withdraw I

| fB→ ∗ : rngt X〈1〉+ after2021 : withdraw A
)

X〈n ∈ 1..9〉 = {B: pB @ d}

split
(

pB→ withdraw I

| fB→ ∗ : rngt X〈n+ 1〉+ after (2021 + n) : withdraw A
)

X〈10〉 = {B: 2B @ d}

split
(

fB→ withdraw I

| 2B→ after2030 : withdraw A
)

The contract starts by transferring 1B to the bank, and the first year of the
premium to the insurer. The remaining fB are transferred to the renegotiated
contract X〈1〉, or, if the renegotiation is not completed by 2021, to the investor.
The contracts X〈n〉, for n ∈ 1..9, allow the insurer to receive the annual premium
until 2030: if the bank does not renegotiate the contract for the following year
(paying the corresponding premium), then the investor can redeem the face
amount of fB. Finally, the contract X〈10〉 can be triggered if the bank deposits
the 2B: when this happens, the face amount is given back to the insurer, and
the investor can redeem 2B after the maturity date.

Compared to ZCB2 , the contract ZCB3 offers more protection to the in-
vestor. To see why, we must evaluate A’s payoff for all the possible behaviours
of the other participants. If B and I are both honest, then A will redeem 2B, as
in the ideal contract ZCB . Instead, if either B or I do not accept to renegotiate
some X〈n〉, then A can redeem fB as a partial compensation (unlike in ZCB2 ,
where A just loses 1B). In the real world, A could use this compensation to cover
the legal fee to sue the bank in court; also, I could e.g. increase the premium
for future interactions with B. By further refining the contract, we could model
these real-world mechanisms as oracles, which sanction dishonest participants
according to the evidence collected in the blockchain and in messages broadcast
by participants. For instance, if B and I accept the renegotiation X〈n〉 but A

does not, then the oracle would be able to detect A’s dishonesty by inspecting
the authorizations broadcast in year 2021+n. The sanction could consist e.g. in
blacklisting A, so to prevent her from buying other bonds from B.

Contributions. We summarise our main contributions as follows:

– We extend BitML with the renegotiation primitive ∗ : rngt X〈〉, suitably
adapting the language syntax and semantics. The new primitive increases
the expressiveness of BitML: besides allowing participants to provide new
deposits and secrets at run-time, it also allows for unbounded recursion.

– We extend the BitML compiler to the new primitive, making it possible to
execute renegotiations on Bitcoin. We accordingly extend the computational
soundness result in [10], guaranteeing that the BitML semantics is coherent
with the actual Bitcoin executions, also in the presence of adversaries.

– We exploit renegotiation to design a new gambling game where two players
repeatedly flip coins, and whoever wins twice in a row takes the pot (a form
of unbounded recursion). We prove the game to be fair.

– We introduce alternative renegotiation primitives, which allow participants
to choose some parameters (e.g. the amounts to be deposited) at renegotia-
tion time, and to change the set of participants involved in the renegotiated
contract. We show that both primitives can be executed on Bitcoin as is.
We also introduce a primitive that, at the price of minor Bitcoin extensions,
supports non-consensual renegotiations, which are automatically triggered
by the contract without requiring the participants’ agreement.

Because of space constraints, we relegate part of the technicalities to Appendix A.

2 BitML with renegotiation and recursion

We start by formalising contract preconditions. We use A,B, . . . to range over
participants. We assume a set of deposit names x, y, . . ., a set of deposit variables
d, e, . . ., and a set of secret names a, b, We use χ, χ′, . . . to range over deposit
names and variables, and v, v′ to range over non-negative values.

Definition 1 (Contract precondition). Contract preconditions have the fol-
lowing syntax (the deposits χ in a contract precondition G must be distinct):

G ::= A: v @χ deposit of vB put by A

| A :secreta secret committed by A

| G | G composition ⋄

The precondition A: v @χ requires A to own vB in a deposit χ, and to spend it
for stipulating the contract. The precondition A :secreta requires A to generate
a secret a, and commit to it before the contract starts. After stipulation, A can
choose whether to disclose the secret a, or not.

To define contracts, we assume a set of recursion variables, ranged over by
X, Y, . . ., and a language of static expressions E, E ′, . . ., formed by integer con-
stants k, integer variables α, β, . . ., and the usual arithmetic operators. We omit
to define the syntax and semantics of static expressions, since they are standard.
We assume that a closed static expression evaluates to a 32-bit value. We use the
bold notation for sequences, e.g. x denotes a finite sequence of deposit names.

C ::=
∑

i∈I
Di contract

D ::= guarded contract

reveala if p. C reveal secrets (if p is true)

| withdraw A transfer the balance to A

| split v → C split the balance

| A :D wait for A’s authorization

| after E :D wait until time E

| ∗ : rngt X〈E〉 renegotiate the contract

p ::= true truth

| p ∧ p conjunction

| ¬p negation

| E = E equality

| E < E less than

E ::= E static expression

| a secret

| E + E addition

| E − E subtraction

Fig. 1: Syntax of BitML contracts.

Definition 2 (Contract). Contracts are terms with the syntax in Figure 1,
where: (i) each recursion variable X has a unique defining equation X(α) = {G}C ; (ii) rene-
gotiations ∗ : rngt X〈E〉 have the correct number of arguments; (iii) the names
a in reveala if p are distinct, and they include those occurring in p; (iv) in a
prefix split v → C , the sequences v and C have the same length. We denote
with 0 the empty sum. We assume that the order of decorations is immaterial,
e.g., afterE :A :B :D is equivalent to B :A : afterE :D. ⋄

A contract C is a choice among guarded contracts Di. A guarded contract
reveala if p. C ′ continues as C ′ once all the secrets a have been revealed and
satisfy the predicate p. The guarded contract split (v1 → C1 | · · · | vn → Cn)
divides the contract into n contracts Ci, each one with balance vi. The sum of
the vi must coincide with the current balance. The action withdraw A transfers
the whole balance to A. When enabled, the above actions can be fired by any-
one at anytime. To restrict who can execute a branch and when, one can use
the decoration A :D, requiring to wait for A’s authorization, and the decoration
afterE :D, requiring to wait until the time specified by the static expression E.
The action ∗ : rngt X〈E〉 allows the participants involved in the contract to rene-
gotiate it. Intuitively, if X(α) = {G}C , then the contract continues as C{E/α}
if all the participants give their authorization, and satisfy the precondition G.

Definition 3 (Contract advertisement). A contract advertisement is a term
{G}C such that: (i) each secret name in C occurs in G; (ii) G requires a deposit
from each A in {G}C ; (iii) each ∗ : rngt X〈E〉 in C refers to a defining equation
X(α) = {G′}C ′ where the participants in G′ are the same as those in G. ⋄

The second condition is used to guarantee that the contract is stipulated only
if all the involved participants give their authorizations. The last condition is
only used to simplify the technical development. We outline in Section 5 how to
relax it, by allowing renegotiations to exclude some participants, or to include
new ones, which were not among those who originally stipulated the contract.

We now extend the reduction semantics of BitML [10], by focussing on the
new renegotiation primitive. Because of space limitations, here we just provide
the underlying intuition, relegating the full formalisation to Appendix A. We
start by defining the configurations of the semantics.

Definition 4 (Configuration). Configurations have the following syntax:

Γ ::= 0 empty

| {G}xC contract advertisement (name x is optional)

| 〈C, v〉x active contract containing vB

| 〈A, v〉x deposit of vB redeemable by A

| A[χ] authorization of A to perform action χ

| {A : a#N} committed secret of A (N ∈ N ∪ {⊥})

| A : a#N revealed secret of A (N ∈ N)

| A : d ← x A’s deposit variable d assigned to deposit name x

| Γ | Γ ′ parallel composition

We denote with Γ | t a timed configuration, where t ∈ N is a global time. ⋄

We illustrate configurations and their semantics through a series of examples.

Deposits. A deposit 〈A, v〉x can be subject to several operations, like e.g. split
into two smaller deposits, join with another deposit, transfer to another partic-
ipant, or destroy. In all cases A must authorise the operation. For instance, to
authorize the join of two deposits, A can perform the following step:

〈A, v〉x | 〈A, v
′〉y −→ 〈A, v〉x | 〈A, v

′〉y | A[x, y ⊲ 〈A, v + v′〉]

where x, y⊲〈A, v + v′〉 is the authorization of A to spend x. After A also provides
the dual authorization to spend y, anyone can actually join the deposits:

〈A, v〉x | 〈A, v
′〉y | A[x, y ⊲ 〈A, v + v′〉] | A[y, x ⊲ 〈A, v + v′〉] −→ 〈A, v + v′〉z

Advertisement. Any participant can broadcast a new contract advertisement
{G}C , provided that all the deposits mentioned in G exist in the current con-
figuration, and that the names of the secrets declared in G are fresh.

Stipulation. To stipulate an advertised contract {G}C , all the participants men-
tioned in it must fulfill the preconditions, and authorise the stipulation. For
instance, let G = A: 1 @x | B: 1 @ y | A : secreta , and let C be an arbitrary
contract involving only A and B. The stipulation starts from a configuration
containing the advertisement and the participants’ deposits:

Γ = {G}C | 〈A, 1〉x | 〈B, 1〉y

At this point the participants must commit to their secrets (in this case, only A

has a secret). This is rendered as a sequence of steps:

Γ −→∗ Γ | {A : a#N} | A[#⊲ {G}C] | B[#⊲ {G}C] = Γ ′

where {A : a#N} represents the fact that A has committed to the secret N ,
while A[#⊲ {G}C] and B[#⊲ {G}C] represent ending the commitment phase
(these steps might seem redundant, but they are useful to obtain a step-by-step
correspondence between BitML executions and Bitcoin executions).

After that, A and B must perform an additional sequence of steps to authorize
the transfer of their deposits x, y to the contract:

Γ ′ −→∗ Γ ′ | A[x ⊲ {G}C] | B[y ⊲ {G}C] = Γ ′′

where A[x⊲ {G}C] and B[y ⊲ {G}C] are the authorizations to spend x and y.
At this point all the needed authorizations have been given, so the adver-

tisement can be turned into an active contract. This step consumes the deposits
and all the authorizations, and creates an active contract, with a fresh name z:

Γ ′′ −→ 〈C, 2〉z | {A : a#N}

Renegotiation. We illustrate the steps to renegotiate X〈α〉 = {G}C , where G =
A: 1 @ d | B: 1 @ e | A : secreta , and C is an arbitrary contract involving only
A and B, and possibly containing the integer variable α in static expressions.
Here, G requires A and B to spend two 1B deposits, and A to commit to a secret.
Unlike in the case of contract stipulation above, deposits names are unknown
before renegotiation, so we use the deposit variables d, e to refer to them.

Consider a configuration 〈∗ : rngt X〈k〉+ C ′′, v〉x | Γ, where C
′′ contains the

branches alternative to the renegotiation. A possible execution of the action
∗ : rngt X〈k〉 starts as follows:

〈∗ : rngt X〈k〉+ C ′′, v〉x | Γ −→ 〈∗ : rngt X〈k〉+ C ′′, v〉x | {G
′}xC ′ | Γ = Γ ′

where the advertisement {G′}xC ′ is obtained by transforming {G}C as follows:
(i) variables d, e are renamed into fresh ones d′, e′, and similarly the secret name
a into a′ , (ii) the static expressions in C are evaluated, assuming α = k, and
replaced with their results. The superscript x in the advertisement is used to
record that, when the renegotiation is concluded, the contract x must be reduced.

In the subsequent steps participants choose the actual deposit names, and A

commits to her secret. If A owns in Γ a deposit 〈A, 1〉y , she can choose d′ = y
to satisfy the precondition G. Similarly, B can choose e′ = z if he owns such a
deposit in Γ. These choices are performed as follows:

Γ ′ −→∗ Γ ′ | A : d′ ← y | {A : a′#N} | A[#⊲ {G′}xC ′]

| B : e′ ← z | B[#⊲ {G′}xC ′] = Γ ′′

At this point, participants must authorise spending their deposits and the
balance of the contract at x. This is done through a series of steps:

Γ ′′ −→∗ Γ ′′ | A[y ⊲ {G′}xC ′] | A[x ⊲ {G′}xC ′]

| B[z ⊲ {G′}xC ′] | B[x ⊲ {G′}xC ′] = Γ ′′′

Finally, the new contract is stipulated. This closes the old contract, and
transfers its balance to the newly generated one, with a fresh name x′:

Γ ′′′ −→ 〈C ′, v + 2〉x′ | Γ

Note that the branches in C ′′ are discarded only in the last step above, where
we complete the renegotiation. Before this step, it would have been possible to
take one of the branches in C ′′, aborting the renegotiation.

Withdraw. Executing withdraw A transfers the whole contract balance to A:

〈withdraw A + C ′, v〉x −→ 〈A, v〉y

After the execution, the alternative branch C ′ is discarded, and a fresh deposit
of vB for A is created. Note that the active contract x is terminated.

Split. The split primitive divides the contract balance in n parts, each one
controlled by its own contract. For instance, if n = 2:

〈(split v1 → C1 | v2 → C2) + C ′, v1 + v2〉x −→ 〈C1, v1〉y | 〈C2, v2〉z

After this step, the new spawned contracts C1 and C2 are executed concurrently.

Reveal. The prefix reveala if p can be fired if all the committed secrets a have
been revealed, and satisfy the guard p. For instance, if Γ = A : a#N | B : b#N :

〈(revealab if a = b. C) + C ′, v〉x | Γ −→ 〈C, v〉y | Γ

The terms A : a#N and B : b#N represent the fact that the secrets a and b have
been revealed. Crucially, only the participant who performed the commitment
can add the corresponding term to the configuration.

Authorizations. A branch decorated by A : · · · can be taken only if the participant
A has provided her authorization. For instance:

〈A : withdraw B + C ′, v〉x | A[x⊲ A : withdraw B] −→ 〈B, v〉y

The leftmost configuration contains the term A[x⊲ A : withdraw B], which rep-
resents A’s authorization to take the branch withdraw B . This enables the step
to be taken. When multiple authorizations are required, the branch can be taken
only after all of them occur in the configuration.

Time constraints. We represent time in configurations as Γ | t, where Γ is the
untimed part of the configuration and t is the current time. We always allow
the time to advance through the rule Γ | t −→ Γ | t + δ, for all δ > 0. A branch
decorated with afterd can be taken only if time d has passed. For instance:

〈afterd : withdraw B , v〉x | t −→ 〈B, v〉y | t if t ≥ d

For the branches not guarded by after, we lift transitions from untimed to
timed configurations: namely, for an untimed transition Γ −→ Γ ′, we also have
the timed transition Γ | t −→ Γ ′ | t. This reflects the assumption that participants
can always meet deadlines, if they want to.

3 Executing BitML on Bitcoin

To execute a BitML contract, participants first compile it to a set of Bitcoin
transactions, and then append these transactions to the blockchain, each follow-
ing their own strategy. Participants’ strategies can involve other actions besides
appending transactions, like e.g. broadcasting signatures on given transactions
(which corresponds, in BitML, to add an authorization to the configuration), re-
vealing secrets, and waiting some time (see Definition 16 in [10]). The coherence
between the BitML semantics and the execution on Bitcoin is guaranteed by
a step-by-step correspondence between the transitions of the BitML semantics
and the actions performed by participants on the Bitcoin network.

In this section we illustrate the compiler and the execution protocol through
a couple of examples, focussing on the new renegotiation primitive. The needed
background on Bitcoin will be introduced along with these examples. We relegate
the formal definition of the compilation rules to Appendix A.2.

Zero-coupon bond. Recall the ZCB contract from Section 1:

ZCB = split
(

1→ withdraw B | 2→ after2030 : withdraw A
)

The precondition A: 1 @x1 | B: 2 @x2 requires A to deposit 1B in the contract,
and B to deposit 2B. In Bitcoin, this precondition corresponds to requiring
two unspent transactions redeemable by A and B, and containing the required
amounts. We represent these transactions as follows, using the notation in [7]:

Tx1

in: · · ·
wit: · · ·
out: (λx.versig

K(A)(x), 1B)

Tx2

in: · · ·
wit: · · ·
out: (λx.versig

K(B)(x), 2B)

The transaction Tx1
is a record with three fields (Tx2

is similar). The in field
points to one or more previous transactions in the blockchain. The field out is
a pair, whose first element is a boolean predicate (with parameter x), and the
second element, 1B, is the amount that a subsequent transaction satisfying the
predicate can redeem from Tx1

. Here, the predicate versig
K(A)(x) is true when

x is a signature of A on the redeeming transaction (i.e., one having Tx1
as in).

The contract ZCB is compiled into the transactions in Figure 2. The first one
that can be appended to the blockchain is Tinit. This requires a few conditions to
be met: (i) Tx1

and Tx2
are unspent on the blockchain, i.e. no other transactions

spend them; (ii) the amount specified in the out field of Tinit does not exceed the
sum of the amounts in Tx1

and Tx2
; (iii) the predicates in the out fields of Tx1

and
Tx2

are true, after replacing the formal parameters with the signatures sig
K(A)

and sig
K(B), contained in the wit field of Tinit. The contract ZCB becomes

stipulated once Tinit is on the blockchain.
After that, the split action can be performed by either A or B, by redeeming

Tinit with Tsplit . This transaction uses K(ZCB , {A,B}), a set of two key pairs,
each one owned by each participant. These keys are only used in this step, to
ensure that no transaction but Tsplit can redeem Tinit.

Tinit

in: 0 7→ Tx1
, 1 7→ Tx2

wit: 0 7→ sig
K(A), 1 7→ sig

K(B)

out: (λς.versig
K(ZCB,{A,B})(ς), 3B)

TB

in: (Tsplit,0)
wit: sig

K(withdraw B ,{A,B})

out: (λς.versig
K(B)(ς), 1B)

Tsplit

in: Tinit

wit: sig
K(ZCB,{A,B})

out:
0 7→ (λς.versig

K(withdraw B ,{A,B})(ς), 1B)

1 7→ (λς.versig
K(after 2030 : withdraw A ,{A,B})(ς), 2B)

TA

in: (Tsplit,1)
wit: sig

K(after 2030 : withdraw A ,{A,B})

out: (λς.versig
K(A)(ς), 2B)

absLock: 2030

Fig. 2: Transactions obtained by compiling the ZCB contract.

The transaction Tsplit creates two unspent outputs (indexed by 0 and 1),
corresponding to the two parallel components of the split, each with its own
balance. These outputs can be redeemed independently, by different transactions.
The output at index 0 can only be redeemed by TB (note that TB ’s in field
refers to the output 0 of Tsplit), transferring 1B to B. No other redemption
is possible, since such output requires a signature with a specific key set, i.e.
K(withdraw B , {A,B}), which is not used for any other purpose. Further, the
output of TB can be redeemed with B’s key, without A’s one. Similarly, the
output 1 of Tsplit can be redeemed by TA , which in turns transfers 2B to A. The
absLock field in TA ensures that this may only happen after time 2030.

Zero-coupon bond with renegotiation. Compiling ZCB2 yields the transactions:

Tinit

in: Tx1

wit: sig
K(A)

out:
(λς.versig

K(ZCB2 ,{A,B})(ς),

1B)

Tsplit

in: Tinit

wit: sig
K(ZCB2 ,{A,B})

out:
0 7→ (λς.versig

K(withdraw B ,{A,B})(ς), 1B)

1 7→ (λς.versig
K(∗:rngt X〈〉,{A,B})(ς), 0B)

TB

in: (Tsplit,0)
wit: sig

K(withdraw B ,{A,B})

out:
(λς.versig

K(B)(ς),

1B)

Once these three transactions are on the blockchain, the only enabled action
in the corresponding BitML contract is ∗ : rngt X〈〉, which asks 2B from B as
a precondition. At the Bitcoin level, satisfying this precondition requires B to
broadcast the identifier of a transaction Ty holding 2B and redeemable by him-
self. In BitML, this corresponds to choosing the deposit name y for the deposit
variable d. Then, participants compile the contract advertisement {B: 2 @d}C ,
where C = after2030 : withdraw A , after replacing d with y. The compiler
produces the following transactions:

Tinit
X〈〉

in: 0 7→ (Tsplit, 1), 1 7→ Ty

wit:
0 7→ sig

K(∗:rngt X〈〉,{A,B})

1 7→ sig
K(B)

out: (λς.versig
K(C,{A,B})(ς), 2B)

TA

in: Tinit
X〈〉

wit: sig
K(C,{A,B})

out: (λς.versig
K(A)(ς), 2B)

absLock: 2030

The renegotiation succeeds once Tinit
X〈〉 is on the blockchain. After that, any

participant can perform the withdraw A , by appending TA to the blockchain.

As shown by this example, the compiler handles renegotiation as follows:

– at stipulation time, it does not produce transactions for any ∗ : rngt X〈〉;
– at renegotiation time, the participants broadcast the identifiers of their new

deposits, and the commitments of their new secrets. Static expressions are
then evaluated, and replaced by their value. Finally, the new contract is
compiled as usual, with the exception that the new initial transaction has
an extra input, which transfers the balance of the caller contract to the callee
(in the ZCB2 example, this extra input is (Tsplit, 1) within Tinit

X〈〉).

Computational soundness The main result of [10] is computational soundness,
which ensures that each execution trace at the Bitcoin level has a corresponding
one in the semantics of BitML. This was achieved by formalizing the semantics of
Bitcoin using a computational model, where participants can exchange bitstrings
as messages, and append transactions to the blockchain. Then, a coherence re-
lation was defined to relate symbolic runs to computational ones, essentially
matching symbolic moves with their implementation in Bitcoin.

Our extension of BitML with renegotiation still enjoys computational sound-
ness. The argument is similar, and requires extending the coherence relation to
the new primitive. In particular, the reduction:

{G}xC | Γ −→ {G}xC | Γ | ‖ i {A : ai#Ni} | ‖ j A : dj ← xj | A[#⊲ {G}xC]

corresponds, in Bitcoin, to A broadcasting a message which contains the hashes
of her secrets and the transaction identifiers that she wishes to use as deposits.

Instead, the reduction:

{G}xC | Γ −→ {G}xC | Γ | A[x⊲ {G}xC]

corresponds to A signing all the transactions obtained by compiling the new
contract, and broadcasting the signatures. A participant signs Tinit only after
receiving the signatures of the other transactions from all the other participants.

Computational soundness requires that each contract involves at least one
participant, say A, who follows the Bitcoin implementation of BitML. In partic-
ular, A follows the stipulation and renegotiation protocols correctly, i.e. signing
nothing but the protocol messages, and signing Tinit last. We also make the
usual assumptions on computational adversaries: they can only run PPTIME
algorithms, and they can break the underlying cryptography with negligible
probability, only. Consequently, we only consider computational runs of polyno-
mial length (with respect to the security parameter). This is because in longer
runs the adversary would be able to break the cryptography by brute force.

Below, we provide an intuitive statement of computational soundness. The
formal statement is in Appendix A.3.

Theorem 1 (Computational soundness). Under the hypotheses above, each
Bitcoin-level computational run has a corresponding coherent BitML run, with
overwhelming probability.

CFG = reveal b if 0 ≤ b ≤ 1.
(

reveal ab if a = b. (∗ : rngt XA〈1〉 + after 3 :Split
A
)

+ reveal ab if a 6= b. (∗ : rngt XB〈1〉 + after 3 :Split
B
)

+ after 2 : withdraw B
)

+ after 1 : withdraw A

XA〈n〉 = {A :secret a | B :secret b}
reveal b if 0 ≤ b ≤ 1.

(

reveal ab if a = b. withdraw A

+ reveal ab if a 6= b. (∗ : rngt XB〈n+ 1〉 + after (3n+ 3) :Split
B
)

+ after (3n+ 2) : withdraw B
)

+ after (3n+ 1) : withdraw A

XB〈n〉 = {A :secret a | B :secret b}
reveal b if 0 ≤ b ≤ 1.

(

reveal ab if a = b. (∗ : rngt XA〈n+ 1〉 + after (3n+ 3) :Split
A
)

+ reveal ab if a 6= b. withdraw B

+ after (3n+ 2) : withdraw B
)

+ after (3n+ 1) : withdraw A

Split
A
= split (4→ withdraw A | 2→ withdraw B)

Split
B
= split (4→ withdraw B | 2→ withdraw A)

Fig. 3: A recursive coin flipping game.

4 A fair recursive coin flipping game

To illustrate recursion in our extended BitML, we introduce a simple game where
two players repeatedly flip coins, and the one who wins two consecutive flips takes
the pot. The precondition requires each player to deposit 3B and choose a secret:

A: 3 @x | A :secreta | B: 3 @ y | B :secret b

The contract CFG (Figure 3) asks B to reveal his secret first: if B waits
too much, A can withdraw the contract funds after time 1. Then, it is A’s turn
to reveal (before time 2, otherwise B can withdraw the funds). The current flip
winner is A if the secrets of A and B are equal, otherwise it is B. At this point, the
contract can be renegotiated as XA〈1〉 or XB〈1〉, depending on the flip winner (the
parameter 1 represents the round). If players do not agree on the renegotiation,
then the funds are split fairly, according to the current expected win.

The contract XA〈n〉 requires A and B to generate fresh secrets for the n-th
turn. If A wins again, she can withdraw the pot, otherwise the contract can be
renegotiated as XB〈n+ 1〉. If the players do not agree on the renegotiation, the
pot is split fairly between them. The contract XB is similar.

The following theorem states that our coin flipping game is fair. Fairness
ensures that the expected payoff of a rational player is always non-negative,
notwithstanding the behaviour of the other player. Rational players must choose
random secrets in {0, 1}. Indeed, non uniformly distributed secrets can make

the adversary bias the coin flip in her favour. Further, choosing a secret different
from 0 or 1 would decrease the player payoff. Indeed, B would be prevented from
revealing his secrets (by the predicate in the reveal b), and so A could win after
the timeout. If A chooses a secret different from 0 or 1, she makes B win the
round (since B wins when the secrets are different). Rationality also requires
to reveal secrets in time (before the alternative after branch is enabled), and
to take the Split branch if restipulation does not occur in time. This ensures
that, when renegotiation happens, there is still time to reveal the round secrets.
Indeed, a late renegotiation could enable the other player to win by timeout.

Theorem 2. The expected payoff of a rational player is always non-negative.

Proof (Sketch). First, we consider the case where renegotiation always happens.
A rational player wins each coin flip with probability 1/2, at least: so, the prob-
ability of winning the whole game is also 1/2, at least. In the general case,
the renegotiation at the end of each round may fail. When this happens, the
rational player takes the Split branch, distributing the pot according to the
expected payoff in the current game state, thus ensuring the fairness of the
whole game. The player who won the last coin flip is expected to win pB, with
p = 1/2 · 6 + 1/2 · (1/2 · p+ 1/2 · 0), giving p = 4. Accordingly, the Split contracts
transfer 4B to the winner of the last flip and (6− 4)B = 2B to the other player.

5 More expressive renegotiation primitives

The renegotiation primitive we have proposed for BitML is motivated by its
simplicity, and by the possibility of compiling into standard Bitcoin transactions.
By adding some degree of complexity, we can devise more general primitives,
which could be useful in certain scenarios. We discuss below some alternatives.

Renegotiation-time parameters. The primitive ∗ : rngt X〈E〉 allows participants
to choose at run-time only the deposit variables used in the renegotiated con-
tracts, and to commit to new secrets. A possible extension is to allow participants
to choose at run-time arbitrary values for the renegotiation parameters E.

For instance, consider a mortgage payment, where a buyer A must pay 10B
to a bank B in 10 installments. After A has paid the first five installments (of 1B
each), the bank might propose to renegotiate the contract, varying the amount of
the installment. Using the BitML renegotiation primitive presented in Section 2,
we could not model this contract, since the new amount and the number of
installments are unknown at the time of the original stipulation. Technically,
the issue is that the primitive ∗ : rngt X〈E〉 only involves static expressions E,
the value of which is determined at stipulation time.

To cope with non-statically known values, we could extend guarded contracts
with terms of the form ∗ : rngt X〈B : v〉, declaring that the value v is to be
chosen by B at renegotiation time. For instance, this would allow to model our

installments payment plan as IPP〈1〉, with the following defining equations:

IPP〈α < 5〉 = {A: 1 @d}
(

split 1→ withdraw B | 0→ ∗ : rngt IPP〈α + 1〉
)

IPP〈5〉 = {A: 1 @d}
(

split 1→ withdraw B | 0→ ∗ : rngt Y〈B : k,B : v〉
)

Y〈α 6= 1, β〉 = {A:β @ d}
(

split β → withdraw B | 0→ ∗ : rngt Y〈α − 1, β〉
)

Y〈1, β〉 = {A:β @ d} withdraw B

where in IPP〈5〉, the bank chooses the number of installments k, as well as
the amount v of each installment. Note that if A does not agree with these
values, the renegotiation fails. A more refined version of the contract should
take this possibility into account, by adding suitable compensation branches.
Although adding the new primitive would moderately increase the complexity
of the semantics and of the compiler, this extension can still be implemented on
top of standard Bitcoin, preserving our computational soundness result.

Renegotiation with a given set of participants. As we have remarked in Section 2,
a renegotiation can be performed only if all the participants of the contract
agree. To generalise, we could require the agreement of a given set of participants
(possibly, not among those who originally stipulated the contract).

For instance, consider an escrow service between a buyer A and a seller
B for the purchase of an item worth 1B. The normal case is that the buyer
authorizes the transfer of 1B after receiving the item, but it may happen that a
dishonest seller never sends the item, or that a dishonest buyer never authorizes
the payment. To cope with these cases, the participants can renegotiate the
contract, including an escrow service M which mediates the dispute, as follows:

A :withdraw B + B : withdraw A + A : M : rngt RefdA〈〉 + B : M : rngt RefdB〈〉

RefdP = {P: 0.1 @ d} split
(

0.1→ withdraw M | 1→ withdraw P
)

where A : M : rngt RefdA〈〉 means that only A and M need to agree in order
for the contract RefdA to be executed, resolving the dispute. In this case it is
crucial that the renegotiation is possible even without the agreement between
A and B. Indeed, if M decides to refund A (by authorizing RefdA), it is not to
be expected that also B agrees. Similarly to the one discussed before, also this
extension can be implemented on-top of Bitcoin. The computational soundness
property is preserved, under the assumption that at least one participant in any
renegotiation is honest, i.e. it follows the renegotiation protocol. Crucially, if
a renegotiation only involves dishonest participants, the renegotiated contract
could be anything, not necessarily that prescribed in the original contract.

Non-consensual renegotiation. In the variants of ∗ : rngt discussed before, rene-
gotiation requires one or more participants to agree. Hence, each use of ∗ : rngt

must include suitable alternative branches, to be fired in case the renegotiation
fails. In certain scenarios, we may want to renegotiate the contract without the
participants having to agree. To this purpose, we can introduce a new primitive

call X〈〉, which continues as X〈〉 without requiring anyone to agree. For simplic-
ity, we assume the defining equations of this primitive of the form X(α) = {v}C ,
where v represents the amount of B added to the contract, by anyone.

We exemplify the new primitive to design a two-players game which starts
with a bet of 1B from A, and a bet of 2B from B. Then, starting from A, players
take turns adding 2B each to the pot. The first one who is not able to provide
the additional 2B within a given time loses the game, allowing the other player
to take the whole pot. The contract is as follows:

C = {A: 1 @x | B: 2 @ y}(call XA〈2〉+ after1 :withdraw B)

XA〈n〉 = {2}(call XB〈n+ 1〉+ aftern : withdraw A)

XB〈n〉 = {2}(call XA〈n+ 1〉+ aftern : withdraw B)

Unlike ∗ : rngt, the action call can be fired without the authorizations of
all the players: it just requires that the authorization to gather 2B is provided,
by anyone. Even though the sender of these 2B is not specified in the contract,
it is implicit in the game mechanism: for instance, when XA〈n〉 calls XB〈n+ 1〉,
only B is incentivized to add 2B, since not doing so will make A win.

Implementing the call primitive on top of Bitcoin seems unfeasible: even
if it were possible to use complex off-chain multiparty computation protocols
[15], doing so might be impractical. Rather, we would like to extend Bitcoin
as much as needed for the new primitive. In our implementation of BitML, we
compile contracts to sets of transactions and make participants sign them. In
standard BitML this is doable since, at stipulation time, we can finitely over-
approximate the reducts of the original contract. Recursion can make this set
infinite, e.g. XA〈2〉, XA〈3〉, . . ., hence impossible to compile and sign statically.
A way to cope with this is to extend Bitcoin with malleable signatures which
only cover the part of the transaction not affected by the parameter n in XB〈n〉.
Further, signatures must not cover the in fields of transactions, since they change
as recursion unfolds. In this way, the same signature can be reused for each call.

Adding malleability provides flexibility, but poses some risks. For instance,
instead of redeeming the transaction corresponding to XA〈n〉 with the transaction
of XB〈n+ 1〉 one could instead use the transaction of XB〈n+ 100〉, since the two
transactions have the same signature. To overcome this problem, we could add
a new opcode to allow the output script of XB〈n〉 to access the parameter in the
redeeming transaction, so to verify that it is indeed n+1 as intended. Similarly,
to check that we have 2B more in the new transaction, an opcode could provide
the value of the new output. The same goal could be achieved by adapting the
techniques used in [23,24] to realize covenants.

6 Conclusions

We have investigated linguistic primitives to renegotiate BitML contracts, and
their implementation on standard Bitcoin. By relaxing this constraint, e.g. as-
suming the extended UTXO model of [13], we could devise more expressive

primitives. Note that the existing verification techniques for BitML [11], which
are based on model-checking the whole state space, cannot be directly applied in
the presence of recursion. Type-based approaches, like e.g. the one in [14], could
be devised for our setting.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.:
Fair two-party computations via Bitcoin deposits. In: Financial Cryp-
tography Workshops. LNCS, vol. 8438, pp. 105–121. Springer (2014).
https://doi.org/10.1007/978-3-662-44774-1 8

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure
multiparty computations on Bitcoin. In: IEEE S & P. pp. 443–458 (2014).
https://doi.org/10.1109/SP.2014.35, first appeared on Cryptology ePrint Archive,
http://eprint.iacr.org/2013/784

3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure
multiparty computations on Bitcoin. Commun. ACM 59(4), 76–84 (2016).
https://doi.org/10.1145/2896386

4. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: Principles of Security and Trust (POST). LNCS, vol. 10204, pp.
164–186. Springer (2017). https://doi.org/10.1007/978-3-662-54455-6 8

5. Atzei, N., Bartoletti, M., Cimoli, T., Lande, S., Zunino, R.: SoK: unraveling Bit-
coin smart contracts. In: POST. LNCS, vol. 10804, pp. 217–242. Springer (2018).
https://doi.org/10.1007/978-3-319-89722-6

6. Atzei, N., Bartoletti, M., Lande, S., Yoshida, N., Zunino, R.: De-
veloping secure Bitcoin contracts with BitML. In: ESEC/FSE (2019).
https://doi.org/https://doi.org/10.1145/3338906.3341173

7. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin transac-
tions. In: Financial Cryptography and Data Security. LNCS, vol. 10957. Springer
(2018). https://doi.org/10.1007/978-3-662-58387-6

8. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: ESORICS. LNCS, vol. 9879, pp.
261–280. Springer (2016). https://doi.org/10.1007/978-3-319-45741-3 14

9. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on Bitcoin.
In: Financial Cryptography Workshops. LNCS, vol. 10323. Springer (2017).
https://doi.org/10.1007/978-3-319-70278-0

10. Bartoletti, M., Zunino, R.: BitML: a calculus for Bitcoin smart contracts. In: ACM
CCS (2018). https://doi.org/10.1145/3243734.3243795

11. Bartoletti, M., Zunino, R.: Verifying liquidity of bitcoin contracts. In: POST.
LNCS, vol. 11426. Springer (2019)

12. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair pro-
tocols. In: CRYPTO. LNCS, vol. 8617, pp. 421–439. Springer (2014).
https://doi.org/10.1007/978-3-662-44381-1 24

13. Chakravarty, M.M., Chapman, J., MacKenzie, K., Melkonian, O., Jones, M.P.,
Wadler, P.: The extended UTXO model. In: Workshop on Trusted Smart Contracts
(2020)

14. Das, A., Balzer, S., Hoffmann, J., Pfenning, F.: Resource-aware session types for
digital contracts. CoRR abs/1902.06056 (2019)

https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1109/SP.2014.35
http://eprint.iacr.org/2013/784
https://doi.org/10.1145/2896386
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-319-89722-6
https://doi.org/https://doi.org/10.1145/3338906.3341173
https://doi.org/10.1007/978-3-662-58387-6
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-319-70278-0
https://doi.org/10.1145/3243734.3243795
https://doi.org/10.1007/978-3-662-44381-1_24

15. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Off the
chain transactions. IACR Cryptology ePrint Archive 2019, 360 (2019)

16. Jones, S.L.P., Eber, J., Seward, J.: Composing contracts: an adventure in financial
engineering, functional pearl. In: International Conference on Functional Program-
ming (ICFP). pp. 280–292 (2000). https://doi.org/10.1145/351240.351267

17. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS. pp. 30–41 (2014). https://doi.org/10.1145/2660267.2660380

18. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In:
ACM CCS. pp. 418–429 (2016). https://doi.org/10.1145/2976749.2978424

19. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to
play decentralized poker. In: ACM CCS. pp. 195–206 (2015).
https://doi.org/10.1145/2810103.2813712

20. Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to se-
cure computation with penalties. In: ACM CCS. pp. 406–417 (2016).
https://doi.org/10.1145/2976749.2978421

21. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Mak-
ing smart contracts smarter. In: ACM CCS. pp. 254–269 (2016).
https://doi.org/10.1145/2976749.2978309

22. Miller, A., Bentov, I.: Zero-collateral lotteries in Bitcoin and Ethereum. In: Eu-
roS&P Workshops. pp. 4–13 (2017). https://doi.org/10.1109/EuroSPW.2017.44

23. Möser, M., Eyal, I., Sirer, E.G.: Bitcoin covenants. In: Financial Cryp-
tography Workshops. LNCS, vol. 9604, pp. 126–141. Springer (2016).
https://doi.org/10.1007/978-3-662-53357-4 9

24. O’Connor, R., Piekarska, M.: Enhancing Bitcoin transactions with covenants.
In: Financial Cryptography Workshops. LNCS, vol. 10323. Springer (2017).
https://doi.org/10.1007/978-3-319-70278-0 12

https://doi.org/10.1145/351240.351267
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/2976749.2978424
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/2976749.2978421
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/EuroSPW.2017.44
https://doi.org/10.1007/978-3-662-53357-4_9
https://doi.org/10.1007/978-3-319-70278-0_12

A Supplementary material

A.1 Semantics of BitML

We denote with Hon the non-empty set of the honest participants. We use nota-
tion {G}◦C to refer to a contract advertisement of the form {G}C , or {G}xC
where x is immaterial. JEK is the evaluation of static expression E, defined as ex-
pected. Note that the evaluation function is undefined if E contains free variables.
We overload J−K to contracts and contract advertisements: JC K is the contract
obtained by substituting all the occurring static expressions with their valuation,
and J{G}CK = {G}JCK. We write ≡α for equivalence of contract advertisement
up-to α-conversion of secret and deposit names. We write {G}C ≡ X〈E〉 if:
(i) X(α) = {G′}C ′; (ii) J{G′}C ′{JEK/α}K ≡α {G}C .

The semantic rules for advertisement and stipulation are in Figure 4. The
rules for actions and for deposits are unchanged (see [10]).

A.2 Compiler

Figure 5 shows the new rules to be added to the ones in [10] for compiling
renegotiations.

Compiling an advertisement used for renegotiation {G}zC is similar to com-
piling a regular advertisement {G}C . The main difference is that, in the rene-
gotiation case, we also have to redeem the transaction output relative to the
parent contract z, denoted with txout(z). Therefore, the generated transaction
Tinit includes txout(z) as an additional input. Further, the value v of Tinit con-
sists of the amounts of the deposits and the balance of the parent contract z,
denoted with val(z). The compiler also handles time-constrained renegotiations
as in after t : ∗ : rngt X〈E〉 by using t in the absLock field of Tinit , so to prevent
the renegotiation to be completed earlier than t.

Note that compiling ∗ : rngt X〈E〉 generates no transactions. This is because
the transactions for X〈E〉 do not have to be generated at stipulation time, but
only at renegotiation time.

A.3 Computational soundness

Below, ℵ(Σs
A
) denotes the computational strategy obtained by following the

symbolic strategy Σs
A
of honest participant A, as defined in [10]. This is extended

to deal with renegotiation using the same protocol as stipulation, with minor
differences as explained in Section 3.

Theorem 3 (Computational soundness). Let Σs be a set of symbolic strate-
gies for all A ∈ Hon. Let Σc be a set of computational strategies such that
Σc

A
= ℵ(Σs

A
) for all A ∈ Hon, including an arbitrary adversary strategy Σc

Adv
.

Fix k ∈ N. Then, the following set has overwhelming probability:

{

r
∣

∣

∣

∀Rc conforming to (Σc , r) with |Rc| ≤ ηk :
∃Rs conforming to (Σs , π1(r)) with Rs ∼r Rc

}

Γ contains 〈Ai, vi〉xi
for all Ai: vi @xi in {G}C secrets(G) fresh part({G}C) ∩ Hon 6= ∅

Γ
advertise({G}C)
−−−−−−−−−−→ {G}C | Γ

[C-Adv]

{G}C ′ ≡ X〈E〉
secrets(G) fresh
d fresh, for each A: v @ d in G

all names in G fresh
{G′}C ′′ 6≡ X〈E〉, for all {G′}xC ′′ ∈ Γ

Γ contains 〈Ai, vi〉xi
for all Ai: vi @xi in G

〈∗ : rngt X〈E〉+ C, v〉x | Γ
advertise({G}xC ′)
−−−−−−−−−−−−→ 〈∗ : rngt X〈E〉+ C, v〉x | {G}xC ′ | Γ

[C-Rngt]

a1 · · · ak secrets of A in G

d1 · · · dh deposit variables of A in G

∀i ∈ 1..h : ∄x : (A : di ← x) ∈ Γ

∀i ∈ 1..k : ∄N : {A : ai#N} ∈ Γ

∀i ∈ 1..k : Ni ∈

{

N if A ∈ Hon

N ∪ {⊥} otherwise

A ∈ Hon =⇒

Γ contains 〈A, vi〉xi
, for all i ∈ 1..h, and

xi 6= xj for all i 6= j ∈ 1..h, and

xi 6= x for all i ∈ 1..h, x such that ∃v : A: v @x ∈ G

∆ = {A : a1#N1} | · · · | {A : ak#Nk} | A : d1 ← x1 | . . . | A : dh ← xh

{G}◦C | Γ
A:{G}◦C,∆
−−−−−−−−→ {G}◦C | Γ | ∆ | A[#⊲ {G}◦C]

[C-AuthCommit]

Γ contains B[#⊲ {G}◦C] for all B in G G = A: v @χ | · · · Γ ⊢ χ = x

{G}◦C | Γ
A:{G}◦C,x
−−−−−−−→ {G}◦C | Γ | A[x ⊲ {G}◦C]

[C-AuthInitDep]

Γ contains B[# ⊲ {G}xC] for all B in G

{G}xC | Γ
A:{G}C,x
−−−−−−−→ {G}xC | Γ | A[x ⊲ {G}xC]

[C-AuthInitContr]

{G}C ≡ X〈E〉 y fresh G =
(

‖ i∈IAi: vi @xi

)

|
(

‖ i∈JBi: v
′
i @ di

)

|
(

‖ i∈KCi :secret ai

)

∆ =
(

‖ i∈I〈Ai, vi〉xi

)

|
(

‖ i∈J 〈Bi, v
′
i〉x′

i

)

|
(

‖ i∈JBi : di ← x′
i

)

|
(

‖ A∈GA[# ⊲ {G}xC] | A[x ⊲ {G}xC]
)

|
(

‖ i∈IAi[xi ⊲ {G}
xC]

)

|
(

‖ i∈JBi[x
′
i ⊲ {G}

xC]
)

〈∗ : rngt X〈E〉+ C ′, v〉x | {G}xC | Γ | ∆
init(x,G,C)
−−−−−−−→ 〈C,

∑

i∈I vi +
∑

i∈J v′i + v〉y | Γ
[C-Init]

Γ ⊢ x = x Γ | A : d ← x ⊢ d = x
cv(init(x,G,C)) = {x}

Fig. 4: Semantics of advertisement and stipulation.

G =
(

‖ i∈JAi: v
′
i @ yi

)

|
(

‖ i∈KBi :secret ai

)

C =
∑m

i=1 Di v = val(z) +
∑

i∈J
v′i

ei = Bout(Di) (∀i ∈ 1..m) x =
⊎m

i=1 fv(ei)

Ti = BD(Di, Di,Tinit , 0, v,PartG, 0) (∀i ∈ 1..m)

Tinit

in:
0 7→ txout(z)
i+ 1 7→ txout(yi) (∀i ∈ J)

wit: ⊥

out:
(

λx.
∨m

i=1 ei, v
)

absLock: t

Badv({G}zC, t) = TinitT1 · · · Tm

D = ∗ : rngt X〈E〉

BD(D,Dp,T, o, v,P , t) = ǫ (empty sequence)

Fig. 5: Two compilation rules (see [10] for the others).

	Renegotiation and recursion in Bitcoin contracts

