
Remote Side-Channel Attacks on Anonymous Transactions

Florian Tramèr∗

Stanford University
tramer@cs.stanford.edu

Dan Boneh
Stanford University
dabo@cs.stanford.edu

Kenneth G. Paterson
ETH Zürich

kenny.paterson@inf.ethz.ch

Abstract

Privacy-focused crypto-currencies, such as Zcash or Monero, aim to provide strong crypto-
graphic guarantees for transaction confidentiality and unlinkability. In this paper, we describe
side-channel attacks that let remote adversaries bypass these protections.

We present a general class of timing side-channel and traffic-analysis attacks on receiver
privacy. These attacks enable an active remote adversary to identify the (secret) payee of
any transaction in Zcash or Monero. The attacks violate the privacy goals of these crypto-
currencies by exploiting side-channel information leaked by the implementation of different
system components. Specifically, we show that a remote party can link all transactions that
send funds to a user, by measuring the response time of that user’s P2P node to certain
requests. The timing differences are large enough that the attacks can be mounted remotely
over a WAN. We responsibly disclosed the issues to the affected projects, and they have patched
the vulnerabilities.

We further study the impact of timing side-channels on the zero-knowledge proof systems
used in these crypto-currencies. We observe that in Zcash’s implementation, the time to gener-
ate a zero-knowledge proof depends on secret transaction data, and in particular on the amount
of transacted funds. Hence, an adversary capable of measuring proof generation time could
break transaction confidentiality, despite the proof system’s zero-knowledge property.

Our attacks highlight the dangers of side-channel leakage in anonymous crypto-currencies,
and the need to systematically protect them against such attacks.

1 Introduction

Bitcoin, the largest crypto-currency, is not private: several academic studies [2, 32, 39, 41, 22]
and multiple commercial products [10, 11, 21] show that one can effectively de-anonymize Bitcoin’s
transaction graph. The same holds for many other crypto-currencies.

For those who want transaction privacy on a public blockchain, systems like Zcash [42], Mon-
ero [44], and several others offer differing degrees of unlinkability against a party who records all
the transactions in the network. We focus in this paper on Zcash and Monero, since they are
the two largest anonymous crypto-currencies by market capitalization. However our approach is
more generally applicable, and we expect other anonymous crypto-currencies to suffer from similar
vulnerabilities.

Zcash and Monero use fairly advanced cryptographic primitives such as succinct zero-knowledge
arguments (zkSNARKs) [5] and ring signatures [40]. Despite these strong cryptographic protections,

∗Part of this work was performed while the first author was visiting ETH Zürich.

1

mailto:tramer@cs.stanford.edu
mailto:dabo@cs.stanford.edu
mailto:kenny.paterson@inf.ethz.ch

Wallet with remote nodeWallet with remote prover

Wallet with local prover Wallet with local node

π

π

① User creates Tx ② Tx is sent into P2P network ③ Wallets process new Txs

wallet

P2P node Adversary 2Adversary 1a Adversary 1bAdversary 3

Figure 1: Side-channels in the anonymous transaction life cycle. (1) A user’s wallet creates a
transaction, which involves generating a cryptographic proof. This computation might be performed
locally or outsourced to a remote service. (2) The wallet sends the new transaction to a P2P node
which propagates it into the network. (3) A P2P node shares a received transaction with a connected
wallet; the connection may be local or remote. During transaction creation, Adversary 1a can time
an outsourced proof generation to leak some transaction secrets (Section 3.3). When processing a
new transaction, a wallet’s behavior may change when it is the transaction’s payee. If the wallet
connects to a remote node, this can be inferred by Adversary 1b that observes traffic patterns
between the wallet and node, or by Adversary 3 that controls the node. If the wallet and node are
co-located, changes in the wallet behavior can be inferred by Adversary 2 that interacts with the
user’s P2P node (Section 3.2).

some protocol-level attacks on transaction privacy have been found [35, 26, 4] and corrected (we
discuss these attacks in the related work in Section 7).

In this paper we take a different approach to analyzing the privacy guarantees for anonymous
transactions. Rather than attacking the abstract protocols, we look at side-channel information
that is leaked by the implementation of different components in the system. Specifically, we look
at timing side-channels and traffic patterns, as measured by a remote network attacker. We show
that, while the abstract zero-knowledge protocols used in these systems can hide information from
an observer, these protocols are vulnerable to side-channel leakage. Any information leakage can
invalidate the zero-knowledge property, and weaken or break the privacy guarantees of anonymous
transactions.

1.1 Our results

We describe multiple attacks on transaction privacy in Zcash and Monero that exploit communica-
tion patterns or timing information leaked by different parts of the system. We take a systematic
approach, looking at the life cycle of an anonymous transaction as it traverses the system. At every
step, we look for side-channels and asses their impact on user privacy.

The life-cycle of an anonymous transaction is shown in Figure 1. First, the transaction is
created in the payer’s wallet, possibly with the help of a remote server to generate the necessary
zero-knowledge proof to prove transaction validity. Then the transaction is transmitted through
the P2P network. Finally, the transaction is received by the payee wallet, possibly with the help
of a remote P2P node that records all transactions in the P2P network. The payee’s wallet must
scan through all anonymous transactions in the network to find those transactions of which it is

2

the recipient.
An attacker can observe side-channel information at each of these steps and attempt to learn

information about the transaction, such as: the identity of the intended payee (e.g., their public
key, or the IP address of their P2P node), the amount of funds transferred in the transaction, or
the source of the funds. We next summarize our results.

Zcash. In Zcash, a user’s wallet and P2P node are run in a single process. The wallet checks if
it is the payee of every incoming transaction by attempting to decrypt it using its secret key. This
results in two sources of side-channel leakage: (1) if decryption succeeds and the decrypted trans-
action (called a Note plaintext) is well-formed, the wallet performs an extra Pedersen commitment
check; (2) if decryption succeeds, but the decrypted transaction is malformed, the wallet throws an
exception that is propagated to the node’s P2P layer.

In the first case, the time taken to perform the extra Pedersen commitment check causes a delay
in the P2P node’s response to subsequent network messages. Consequently, we show an attack,
termed PING, which sends a transaction to a node followed immediately by a network “ping” (a
standard P2P message). The attacker can use the delay in the ping response to infer whether the
node was the transaction’s payee or not. This constitutes a break of transaction unlinkability.

In the second case, we propose the REJECT attack wherein an attacker carefully crafts a
malformed transaction, encrypts it under a known (but anonymous) public key, and sends it to a
target P2P node. If decryption succeeds, then the exception is triggered, and the target node sends
an explicit “reject” message back to the attacker. Receipt of this message then tells the attacker
that the selected public key belongs to the owner of the target P2P node — a breach of anonymity.

Details of the PING and REJECT attacks are in Section 4.

Monero. For Monero, where wallets and nodes are run in separate processes, we show that
receipt of a payment alters the communication pattern between a wallet and its node. If the wallet
is connected to a remote node (as is common for mobile wallets or when first syncing with the
network), we show in Section 5 that a passive network adversary can infer if the wallet is the payee
of a recent transaction. Furthermore, even if the user’s wallet and node are co-located, we show that
a remote adversary can infer the wallet-to-node communication pattern by causing and observing
lock contention over the node’s resources. We validate this timing attack in a WAN, where an
attacker (located in London) infers if a victim (running a node and wallet in Zürich) receives a
payment.

For both Zcash and Monero, our attacks enable a remote adversary to link anonymous trans-
actions by identifying the P2P node of each transaction payee. As described in Section 3.2, the
attacks can be further exploited to: (1) identify the IP address of a user’s P2P node, given her pub-
lic key; (2) break the unlinkability of diversified addresses belonging to the same user. For Zcash,
the attacks further enable to: (3) remotely crash a Zcash node, given the user’s public key, and (4)
create a remote timing side-channel on an (non constant-time) ECDH key-exchange involving the
user’s long-term secret viewing key, which potentially results in leakage of that key.

These attacks can put privacy-conscious crypto-currency users (e.g., whistle-blowers or activists)
at risk. For example, an adversary that links a user’s anonymous public key to her P2P node could
uncover the user’s physical identity or location. An adversary that breaks unlinkability — and
monitors transactions as they enter the P2P network — can infer which P2P nodes belong to users
that are transacting with each other.

3

Side-channels in zkSNARK generation. In Section 6 we look at timing side-channels at
transaction creation time, where the payer generates a zkSNARK to prove that the transaction is
valid. We observe that in Zcash, the time to generate a zkSNARK is not constant, but depends
on secret information such as the Hamming weight of the transaction amount. Our experiments
show that the current implementation is therefore not zero-knowledge in practice: the information
gleaned from timing leakage invalidates the zero-knowledge property. An adversary can extract this
information if it can measure the running time of the zkSNARK generation procedure. However,
as we explain in Section 3.3, it may be difficult to exploit this leakage in the current Zcash system.

1.2 Disclosure and remediation.

All the vulnerabilities discussed in this paper were disclosed to Zcash and Monero, and have sub-
sequently been fixed in recent versions of both projects [15, 18, 20, 33].

We hope that this work will help inform other privacy-oriented blockchain projects about the
dangers of side-channel leakage in anonymous payment systems. It should also motivate the devel-
opment of constant-time implementations of cryptographic primitives such as zkSNARK provers.

2 Architecture of an Anonymous Payment System

This section introduces some core design concepts of privacy-focused crypto-currencies such as
Zcash and Monero.

These crypto-currencies build on top of Bitcoin’s so-called UTXO model. Each transaction
spends outputs from prior transactions and produces new outputs. The set of “unspent transaction
outputs” (UTXOs) is recorded in a blockchain, and represents the total currency in circulation.

Each user of the currency possesses one or more public keys (also known as addresses), and
connects to a P2P network to send and receive transactions.

Privacy goals. In Bitcoin, a UTXO is a tuple of the form (amount, pk), where pk is the recipient’s
public key. To later spend this UTXO, the recipient produces a signature under the corresponding
secret key. A transaction thus reveals the amount of spent currency, the origin of funds (i.e., which
UTXOs are spent), and their destination (i.e., the public key of the owner of the new UTXOs).
Moreover, a user’s public key can be linked to the P2P node that she connects to when sending
transactions into the network.

Currencies such as Zcash and Monero aim to provide the following stronger privacy guarantees:

• Confidentiality : A transaction does not reveal the transacted amount.

• Untraceability : When a transaction spends a UTXO, it is hard to identify the transaction that
produced that UTXO.

• Unlinkability : Given two transactions sent into the network (at most one of which is sent by
the adversary), the adversary cannot tell whether they pay the same address. Moreover, given
two addresses, an adversary cannot determine whether they belong to the same user.1

1The latter property enables a user to receive payments from different entities without those entities knowing that
they are paying the same user. This can be trivially done if the user maintains multiple public-key pairs. A more
efficient solution is given by diversified addresses, described hereafter.

4

• User anonymity : Given a user’s address (i.e., a public key), an adversary cannot determine how
the owner of that address is connected to the P2P network.

Privacy techniques. These privacy guarantees are achieved via a combination of cryptographic
techniques, which we informally describe next.

Confidential transactions [31] hide the amount of transacted funds. A confidential transaction’s
UTXOs are of the form (Commit(amount), pk), i.e., they only reveal a cryptographic commitment
to the transacted amount. The transaction further includes a proof that its total balance is zero.

UTXO anonymity sets provide untraceability by concealing the identity of a transaction’s inputs.
Specifically, an anonymous transaction does not reveal the UTXOs it spends, but only a super-set
of UTXOs along with a zero-knowledge proof of ownership of some UTXOs in this set.

Obfuscated and diversified addresses guarantee unlinkability. To prevent linkability of transac-
tions sent to the same address, the UTXOs of anonymous transactions contain an “obfuscated”
public key (e.g., a commitment to the key in Zcash). Diversified addresses (or sub-addresses in
Monero) enable a user to anonymously transact with multiple entities, without managing multiple
secret keys. From a single secret key sk, users can create multiple public keys pk1, . . . , pkn. These
keys are unlinkable: it is hard to determine whether two public keys pk, pk′ are derived from the
same secret key.

Blockchain scanning is a technical consequence of unlinkability. Since an anonymous trans-
action’s UTXOs do not reveal the recipient’s public key in the clear, users have to scan every
new transaction and perform various cryptographic operations to check whether a transaction is
intended for them.

User anonymity is guaranteed by untraceability and unlinkability. Since a transaction reveals
nothing about the sender’s or receiver’s public key, a user’s public key cannot be linked to the P2P
node that she uses to send or receive transactions.

Software deployments. Deployments of crypto-currency software differ across projects (and
among users of the same currency). Various deployment choices greatly influence a user’s vulnera-
bility to the side-channel attacks we present.

We distinguish three types of software: (1) Nodes are P2P clients that handle the blockchain’s
consensus layer by exchanging and validating transactions and blocks; (2) A wallet (possibly backed
by a hardware module) stores a user’s keys and UTXOs and connects to a node to send or receive
transactions. (3) A prover produces the zero-knowledge (ZK) proofs required to privately spend a
user’s UTXOs.

We consider the following common deployment modes, which refer to the interaction between a
user’s wallet and a P2P node or prover.

1. Integrated. The wallet, node and prover functionalities are all part of the same process. This is
the current design of the official Zcash client.

2. Local. Different components are run in separate processes in a local network (this is Mon-
ero’s default for wallets and nodes). Some hardware wallets also delegate the generation of
cryptographic proofs to a local software.

3. Remote owned. Due to restricted computation power or memory, a wallet may connect to a
remote P2P node or prover hosted by the user. Remote P2P nodes are commonly used, e.g.,
in Monero or Zcash’s mobile wallets. Outsourcing cryptographic proofs is uncommon, but is
explicitly enabled in Zcash’s design [25] and was implemented in an earlier protocol version [13].

5

4. Remote third-party. As running a P2P node is costly, users may connect their wallet to a node
hosted by a third party. This is common in Monero: newly created wallets connect to third
party nodes while a local node downloads the blockchain. Such a deployment is unlikely for ZK
provers as the third-party prover has to be trusted for privacy [25].

The anonymous transaction life-cycle. Figure 1 illustrates how anonymous transactions are
created and shared with nodes and wallets via a P2P network:

1. To send a new transaction, a user’s wallet selects some UTXOs and produces a zero-knowledge
proof of validity for the transaction.

2. The transaction is sent to the P2P node connected to the wallet and shared with the network.
P2P nodes store these transactions in their “Memory Pool” (Mempool).

3. P2P nodes share these transactions with connected wallets. A wallet scans every new transaction
to check whether it is the transaction’s payee.

Steps 2 and 3 are also performed once a transaction is included in a block. When a block is
mined, the block and the transactions it contains are propagated to all P2P nodes. The block’s
transactions are then shared with user wallets.

3 Overview of the Attacks

This section gives an overview of our attack strategies. Section 4, 5 and 6 then describe instantiations
and evaluations of these attacks in both Zcash and Monero.

3.1 Threat Model

The attacks described in this paper are remote side-channel attacks. We thus never assume that a
victim’s software is compromised.2 In line with the software deployments described in Section 2,
we consider the following remote adversaries, which are illustrated in Figure 1.

1. A network adversary (Adversary 1a and 1b in Figure 1) passively monitors the encrypted traffic
between a victim’s wallet and a remote service (e.g., a node or prover).

2. A P2P adversary (Adversary 2) participates in the P2P network. The attacker may deviate
from the P2P protocol.

3. A remote node adversary (Adversary 3) controls a third-party P2P node and passively monitors
the (plaintext) communication between a victim’s wallet and this node.

3.2 Attack Type I: Side-Channels at the Receiving Party

The most practical and pervasive side-channel attacks that we discovered affect the last stage of
the anonymous transaction life-cycle depicted in Figure 1 — when a wallet processes new transac-
tions. These attacks enable remote adversaries to break the system’s unlinkability and anonymity
guarantees.

Our attacks exploit prevalent design flaws in the way that a user’s wallet periodically checks
whether it is the payee of any new transactions.

2An adversary co-located with a user’s wallet could resort to more powerful attacks (e.g., cache side-channel
attacks). However, such adversaries are explicitly outside of the threat model considered by Monero and Zcash [16].

6

Attack goals. Our attacks target transaction unlinkability and user anonymity. The attacker’s
goals are thus to: (1) determine whether two transactions pay the same address, and (2) to determine
how the user of a known address connects to the P2P network.

Our attacks are tailored to common deployment of wallets and P2P nodes. The actual goal
achieved by all of our attacks is to identify the P2P node that is being used by the payee of a
transaction. In a setting where multiple users connect their local wallet to a shared remote P2P
node, the attacks mounted by a network adversary or by a remote node adversary further recover
the actual wallet used by the transaction payee.

We consider two different attack scenarios:

• The adversary knows an anonymous public key and sends a transaction to this key to determine
which P2P node (or wallet) the key’s owner uses to receive transactions.

• An honest user sends a transaction for which the adversary does not know the intended payee or
her public key. The adversary determines which P2P node (or wallet) is used by the transaction’s
payee.

The latter attack scenario subsumes the first, as the adversary can send honestly crafted transac-
tions to a known public key. The latter scenario directly leads to a break of transaction unlinkability.
Given two transactions sent into the network, the adversary simply determines whether the payees
of both transactions use the same P2P node or wallet. In addition, both attack scenarios represent
a break of user anonymity and can be bootstrapped for additional privacy violations:

• IP address recovery. The adversary can link a public key to the IP address of the owner’s P2P
node (or her wallet if it connects to a remote node), unless the owner uses anonymization tools
such as Tor.3 This information can be used to de-anonymize or geo-localize the victim.

• Diversified address linkability. Given two public keys, an attacker can determine if they belong
to the same user or not. The attacker sends a transaction to each public key, and checks if the
same node or wallet is identified. This breaks the unlinkability property of diversified addresses.

• Private key recovery. The vulnerabilities underlying some of our attacks also open avenues for
extracting a victim’s secret “viewing” key via timing side-channels. Theft of this key lets the
adversary passively link all transactions sent to the victim (but not steal the victim’s funds).

Attack strategies. Our attacks exploit a difference in the way that a wallet processes a trans-
action when it is the payee and when it is not. This difference is due to additional cryptographic
operations performed to retrieve received funds.

Such differences in wallet behavior are not an issue per se, as a remote attacker cannot directly
interact with a user’s wallet. Yet, we find that due to various design flaws, differences in wallet
behavior impact the interactions between the wallet and its P2P node. In turn, we show that a
remote attacker can infer changes in the wallet-to-node interactions via various side-channels. We
develop two general attack strategies:

• Strategy 1: Traffic analysis of wallet-to-node communication. If a wallet connects to a remote
node, a network adversary or remote node adversary can passively observe changes in the wallet-
to-node interaction.

3An attacker who obtains a victim’s public key does not necessarily know the victim’s IP address. The victim
could have shared the key using a third party messaging system or forum. An attacker might also have obtained
some public keys by hacking a service supporting anonymous transactions.

7

• Strategy 2: Inferring wallet behavior from the P2P layer. If the wallet and node are co-located,
a remote adversary cannot observe their interactions. Nevertheless, if changes in wallet behavior
impact the interactions between the user’s P2P node and remote peers, information still leaks to
the adversary.

Both strategies apply not only when a transaction is created and sent into the P2P network,
but also when it is included in a block. At that point, the block and all its transactions are shared
with each peer, and wallets re-process the transactions to ensure they are valid (e.g., they did not
double spend).

3.3 Attack Type II: Side-Channels at the Sending Party

The attacks described in Section 3.2 — which break transaction unlinkability and user anonymity
— exploit flaws in the system design of P2P clients and wallets. As such, they do not directly
target any of the protocol’s cryptographic protections. To broaden the scope of our investigation
of side-channel vulnerabilities in anonymous transactions, we initiate a study of attacks on the
cryptographic tools that guarantee confidentiality and untraceability at transaction creation-time
— specifically succinct zero-knowledge arguments (zk-SNARKs).

The attacks in this section are of a more conceptual nature. While they are less likely to
affect current users, these attacks illustrate once more the importance of having side-channel-
free cryptographic implementations for future-proof and in-depth security of anonymity-preserving
systems.

Attack goals. The transaction sender is responsible for ensuring confidentiality and untraceabil-
ity. As we argue below, the most plausible target for a remote attack is to recover transaction
amounts — thereby breaking confidentiality.

Challenges. Remote side-channel attacks on transaction creation face a number of challenges:

1. Non-interactivity: Users can create transactions without interacting with any other parties.

2. Ephemeral secrets: Many transaction secrets (e.g., transaction amounts, and secrets related to
UTXOs) are single-use. Thus, even if a side-channel exists, an adversary gets a single attempt
at extracting these secrets.

3. High-entropy secrets: Long-lived secrets used in creating transactions (e.g., the user’s secret
key) have high-entropy, and require a high-precision side-channel to be extracted.

We show that these challenges can be overcome by an adversary that targets the proving phase
of the transaction creation process and that aims to (partially) recover a transaction’s confidential
amount.

SNARKs in anonymous transactions. Zero-knowledge proofs are a fundamental building
block for anonymous transactions. In a zk-SNARK protocol, a prover has some secret input (called
a witness), and convinces the verifier that this witness satisfies a given predicate, without revealing
anything else about the witness. In Zcash and Monero, such proofs certify the validity of transac-
tions while preserving their privacy. In Zcash for example, a proof witness contains a list of spent
UTXOs, a receiver address, and a transacted amount, and the proof guarantees that these UTXOs
exist and belong to the spender, and that all funds are transferred to the receiver.

8

Timing side-channels in zk-SNARK provers. Our thesis is that in current implementations,
the time taken to produce a proof leaks information about the prover’s secret witness—and in
particular about the amount of currency being spent.

Yet, as noted above, it may be hard for a remote adversary to obtain a timing side-channel
on the proof generation process, due to the non-interactive nature of transaction creation. Worse,
timing a proof generation may be insufficient to extract secrets that are ephemeral or have high-
entropy. Despite these challenges, we argue below that remote timing attacks on zk-SNARK provers
in anonymous crypto-currencies are possible in some deployment scenarios, and we demonstrate
in Section 6 that the timing of a proof generation can leak significant information about secret
transaction amounts.

Regarding non-interactivity, we make two observations:

• If a weak client (e.g., a mobile wallet) outsources proofs to a remote service, a network adversary
can time the prover. While proof outsourcing is uncommon, the Zcash protocol enables this
feature [25] and remote proving services were designed for early protocol versions [13]. Proof
delegation is also recommended for hardware wallets [14]. Some users may opt for delegating
proofs to a remote service.

• More generally, an adversary may get out-of-band information on when the transaction creation
process starts and observe when it ends by monitoring the P2P network. For example, a user
could setup recurring payments, where transactions are created at a fixed time. An adversary
may also have the ability to trigger a transaction as part of some outer protocol. We draw a
connection to timing side-channels for digital signatures. While signatures are non-interactive,
protocols that use them (e.g., TLS) can introduce remote side-channels [8, 7].

Due to the high-entropy of many transaction secrets, our attacks target the transacted amount,
a non-cryptographic value for which even a coarse approximation (as leaked by a single timing
measurement) constitutes a privacy breach.4

Attack strategy. We consider a cryptographic timing attack that exploits timing variations in
arithmetic operations depending on the operands’ values. Such attacks have been studied for many
cryptographic primitives [27, 8, 7], but had not been considered for zk-SNARKs prior to this work.

We exploit the fact that the time to produce a proof is correlated with the value of the prover’s
witness. As the witness contains the transaction amount, we expect this amount to be correlated
with the proof time. For example, Zcash’s proofs decompose the transaction amount into bits and
compute an elliptic curve operation for each non-zero bit. The proof time is thus strongly correlated
with the Hamming weight of the transaction amount, which is in turn correlated with its value.

4 Attacks on Unlinkability and Anonymity in Zcash

We now evaluate the side-channel attacks on transaction processing described in Section 3.2. We
first demonstrate attacks against Zcash. Attacks on Monero are described in Section 5.

Our attacks on Zcash adopt the second strategy from Section 3.2, that exploits a lack of isolation
between a user’s wallet and P2P node to leak wallet behaviors to a remote P2P adversary. In the
Zcash client, the two components are part of a single process that sequentially processes received

4A co-located adversary (which is not part of Zcash’s threat model [16]) can likely recover significantly more
information by exploiting more fine-grained timing side-channels, e.g., from a shared cache.

9

messages (including new transactions). We describe two side-channel attacks that exploit this tight
coupling. Throughout this section, we often use the term “node” to refer to the single process that
implements both a P2P client and a wallet.

4.1 Unlinkability in Zcash

To understand our side-channel attacks, we first describe how Zcash guarantees unlinkability. From
Section 2, recall that unlinkability relies on two concepts: (1) transactions only contain a com-
mitment to the recipient’s public key, and (2) a user can derive multiple unlinkable public keys
(diversified addresses) from a single secret key.

Zcash’s diversified addresses are static Diffie-Hellman keys. The private key is a scalar, ivk (the
incoming viewing key). A diversified public key is of the form (Gd,PKd) where Gd is a random point
in an elliptic curve group and PKd = ivk · Gd.

A payment to the address (Gd,PKd) contains a UTXO (a Note commitment) of the form:

cm = Commit(Gd||PKd||v; rcm) ,

where v is the sent amount and rcm the commitment randomness. To later spend this UTXO, the
receiver has to prove that she knows an opening of cm.

In-band secret distribution. The sender uses El-Gamal encryption to share an opening of cm
with the recipient. The sender samples an ephemeral secret key esk, computes the public key
EPK = esk · Gd, and derives the shared key

k = esk · PKd = esk · ivk · Gd .

The opening of the commitment cm is included in the Note plaintext (np). The sender encrypts
the Note plaintext np using the key k, and appends the ciphertext C and the ephemeral public key
EPK to the transaction.

Blockchain scanning. To recover her funds, a user scans each transaction with her private key
ivk. For a transaction with public key EPK, Note ciphertext C and Note commitment cm, she
computes:

TrialDecrypt(ivk,EPK, C, cm)

1: k = ivk · EPK
2: np = Decryptk(C)
3: if np = ⊥, return ⊥
4: Parse np as np := (Gd, v, rcm,memo)
5: PKd = ivk · Gd

6: if cm 6= Commit(Gd||PKd||v; rcm), return ⊥
7: return np

That is, if decrypting C succeeds (which means the user is the transaction’s payee), the user checks
that the Note plaintext np contains a valid opening of the Note commitment cm.

10

4.2 Our Attacks

Our attacks — PING and REJECT — enable an adversary to tell whether a remote Zcash node
succeeded in decrypting the Note ciphertext of a transaction. From this, the adversary learns that
this remote node belongs to the transaction’s payee.

The two attacks differ in their setup (REJECT only applies to transactions crafted by the
attacker, while PING applies to any transaction), and in the side-channel they exploit (an error
message for REJECT, and a timing side-channel for PING).

As described in Section 3.2, identifying the P2P node of a transaction payee further lets an
adversary link transactions, recover a user’s IP address, link diversified payment addresses, and
even open a timing side-channel that (in principle) enables remote extraction of the victim’s private
viewing key, ivk.

4.2.1 The PING Attack

Our first attack, PING, exploits the tight coupling between wallet and P2P components in the
Zcash client. More precisely, we exploit the fact that the Zcash client serially processes all incoming
P2P messages, including those that contain new transactions. As a result, the time taken to process
a transaction impacts the node’s processing of other messages. A remote P2P adversary can thus
build a timing side-channel that leaks weather a node is the payee of a transaction.

The PING attack applies to any transaction, even those sent by honest users and for which the
adversary does not know the payee’s public key.

A timing side-channel in transaction processing. If a Zcash wallet successfully decrypts a
Note ciphertext, it checks that the opening of the Note commitment is valid (line 6 in TrialDecrypt).
This involves computing a Pedersen hash [25] with two elliptic curve scalar multiplications. A
TrialDecrypt call thus takes longer (by about one millisecond on a desktop machine) when the
decryption succeeds.

A P2P adversary can measure the duration of the TrialDecrypt call by sending a “ping” message
to a Zcash node immediately after it receives a new transaction. The node’s wallet first processes
the transaction and calls TrialDecrypt, before the node responds to the ping. The time elapsed
until the receipt of the ping response leaks information about the success of the Note decryption,
and therefore on whether the node was the payee of the relayed transaction.

A timing side-channel in block processing. The above attack applies to unconfirmed transac-
tions that enter a victim node’s memory pool. The same vulnerability also applies to the processing
of transactions included in a mined block.

Upon receiving a new block, a Zcash node sequentially processes and trial-decrypts each trans-
action in it. The total time to validate the block thus depends on the number of transactions that
pay the user. As above, a remote adversary can leak this validation time by pinging the victim
node right after it receives a fresh block.

Applying the attack. The attacker first builds a baseline by running the PING attack against a
target node, using a transaction that does not pay the target (the attacker can send funds to itself).
The timing of the ping responses from a baseline for a TrialDecrypt call where decryption fails.
The attacker then compares this baseline to timings obtained from attacks on new transactions.

11

Wallet is Payee Wallet is not Payee
46.0

46.5

47.0

47.5

48.0

48.5

49.0

49.5
PI

NG
 re

sp
on

se
 ti

m
e

(m
s)

Figure 2: PING attack on unconfirmed
Zcash transactions in a WAN. For 200
transactions sent to a node, we time the node’s
response to a subsequent ping message. When
the node’s wallet is the transaction’s payee, the
ping response is delayed. The figure shows stan-
dard box plots with outliers.

Wallet is Payee Wallet is not Payee
104

106

108

110

112

114

PI
NG

 re
sp

on
se

 ti
m

e
(m

s)

Figure 3: PING attack on mined Zcash
transactions in a WAN. For 20 blocks (each
containing a single transaction) sent to a Zcash
node, we time the node’s response to a subse-
quent ping message. When the node’s wallet is
the payee of the transaction in the block, the
ping response is delayed.

The attack requires reliable measurements of a node’s transaction processing time. Note that
for transactions sent by honest users, the attack cannot be repeated to average out network jitter,
because, once a node has validated a transaction, it ignores further messages containing it. One
optimization consists in running both above variants of the PING attack, once when the transaction
enters a node’s mempool and once when it is included in a block (wallets re-process a transaction
when it is mined). The attacker thus gets two timing measurements, thereby halving the variance
caused by the network.

Evaluation. We run the attack in a WAN, with a victim node in Zürich and an attacker in
London (21 ms round trip latency). The attacker sends 200 transactions, half of which pay the
victim. Figure 2 plots the victim’s response time to the attacker’s subsequent ping message. The
attacker can distinguish between the two scenarios with 100% precision.

We further validate the attack on block processing. The adversary relays 20 blocks to the victim,
each of which contains a single transaction that either pays the victim or another user. Figure 3
plots the delay of the victim’s ping response. The attack achieves 100% precision. The attack
extends to blocks with N > 1 transactions, by using as baseline the time to validate a block with
N non-paying transactions.

4.2.2 The REJECT Attack

Our second attack, REJECT, exploits a flaw in the handling of certain malformed transactions. It
allows an adversary, in possession of a user’s public key, to send a transaction that causes the user’s
P2P node to respond with a “reject” message.

The REJECT attack is weaker than PING, in that it only applies to transactions sent by the
attacker to a known address. At the same time, the REJECT attack does not rely on any timing
signals and is thus easier to mount and more reliable.

12

SaplingNotePlaintext :: decrypt in Note.cpp

pt = AttemptSaplingEncDecryption(C, ivk , epk);
if (!pt) {

return boost ::none; // decryption failed
}

CDataStream ss(SER_NETWORK , PROTOCOL_VERSION);
ss << pt.get(); // serialize the plaintext

SaplingNotePlaintext :: SerializationOp in Note.hpp

unsigned char leadingByte = 0x01;
READWRITE(leadingByte);

if (leadingByte != 0x01) {
throw std::ios_base::failure (...);

}

ProcessMessages in main.cpp

try {
fRet = ProcessMessage(pfrom , strCommand , ...);

} catch (const std::ios_base::failure& e) {
pfrom ->PushMessage("reject", ...);

}

Figure 4: Error handling exploited by the REJECT attack. The code is from Zcash version
2.0.7, before the attack was patched. Top: if decryption of a Note ciphertext C succeeds, the
decrypted stream is serialized into a Note plaintext. Middle: an exception is thrown if the plaintext’s
first byte does not encode the protocol version. Bottom: the client’s message-processing thread
catches the exception, and sends a “reject” message to the peer that sent the malformed transaction.

The flaw exploited by the attack is in the parsing of the Note plaintext in TrialDecrypt (line 4).
The first byte of a plaintext encodes the protocol version (0x01 in the current Sapling version). If
the version byte is incorrect (i.e., other than 0x01 for Sapling transactions), the parser throws an
exception that is caught in the client’s main message-processing thread, where it causes a “reject”
message to be sent to the peer that shared the transaction (see Figure 4).

This provides a P2P adversary with an oracle indicating the successful decryption of a Note
ciphertext with a specifically malformed plaintext (e.g., with a version byte of 0x02).

Linking a public key to a node. Given a public key (Gd,PKd), the attacker can identify the
Zcash node that holds this key. The attacker builds a Note plaintext with an incorrect leading byte,
encrypts it under a key derived from (Gd,PKd) and adds it to a transaction. The attacker sends the
transaction to all P2P nodes and checks which one replies with a “reject” message. We validated
this attack in a local test network.

A potential issue is that a peer that receives the malformed transaction could relay it to the
payee before the attacker’s own message reaches the payee. In this case, the payee will send a
“reject” message to the relaying peer, and ignore the attacker’s later message. Yet, as nodes
validate transactions before relaying them, the attacker’s message is likely to reach the payee first.
In the event that the attacker does fail to receive a “reject” message, the attack can simply be
repeated.

13

104 105 106 107
Time [s]

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f P
oi

nt
s

Figure 5: Time to compute ivk ·P for a fixed ivk and one million random points P in the
elliptic-curve group.

4.2.3 Attacks beyond Recipient Discovery

The vulnerabilities underlying the above attacks can be further exploited for adversarial goals
beyond linking transactions and de-anonymizing public keys.

Denial of service. A curious consequence of the REJECT attack is that once a transaction
containing a malformed Note plaintext is included in a mined block, the transaction payee’s client
crashes when attempting to validate the block.

This flaw is pernicious. Even if the Zcash client is manually restarted, it re-crashes immediately
while validating the block.

If an attacker were to get hold of payment addresses for a large number of Zcash users, this
flaw could lead to a strong DoS attack vector. Worse, if an attacker knows the payment addresses
of many Zcash miners, such a DoS attack could be exploited to stifle the network’s mining power
(e.g., in preparation for a 51% attack or to remove mining competition).

Key recovery via ECDH timing. The PING and REJECT attacks also yield a remote timing
channel on Zcash’s implementation of the ECDH key exchange, in particular the Elliptic curve
multiplication ivk · EPK in TrialDecrypt (line 1).

The Zcash team was aware that the ECDH key exchange is not constant time, and that this
might be exploitable by a co-located adversary [16]. The REJECT and PING attacks further open
up the possibility of this side-channel being exploited remotely.

Zcash’s Elliptic Curve multiplication routine is indeed not constant-time: it uses a standard
double-and-add procedure, and the underlying field arithmetic is not constant time. We adapted
Kocher’s timing attack [27] to Zcash’s Elliptic Curve multiplication routine. For a fixed secret ivk,
we locally timed the multiplication for 1 million random points. The timing distribution is plotted
in Figure 5, and is clearly not constant.

Assuming we have already recovered the j most significant bits of ivk, we recover the (j + 1)-th
bit by correlating the time of a point doubling or point multiplication with the total multiplication
time. Conditioned on all previous bits being recovered, the following bit is recovered with 98.4%

14

probability. Using a suitable backtracking mechanism to resolve the few false guesses, the full key
could thus be recovered with about one million samples.

The query complexity of this attack is fairly high. The attack was performed in an “idealized”
setting that ignores the time taken by the network and transaction verification, which would add
significant noise and further increase the sample complexity of a full remote attack. Our proof-of-
concept of course also confirms the Zcash team’s suspicion that a co-located adversary could exploit
timing side-channels to recover a user’s secret keys.

4.3 Remediation

Fixing the REJECT attack is simple: treat a plaintext parsing failure as a decryption failure and
ignore the offending ciphertext. This fix was added in release 2.0.7-3 of Zcash [18, 15].

The PING attack exploits a lack of isolation between a Zcash node’s P2P and wallet components.
Release 2.0.7-3 addresses this issue by refactoring the wallet into a separate thread, that periodically
pulls the list of recent transactions and calls TrialDecrypt. The timing of the TrialDecrypt call thus
no longer affects the timing of other P2P functionalities. Yet, release 2.0.7-3 only fixes the PING
attack on unconfirmed transactions. Refactoring the node’s processing of new blocks was more
complex, and ultimately fixed in release 2.1.1 [20].

A simple defense against the type of attacks we present is to run two Zcash nodes, a “firewall”
node that connects to the P2P network and a local node holding the user’s keys that only connects
to the firewall. This setup requires storing and validating the entire blockchain twice, yet prevents
all our attacks — except for the DoS attack in Section 4.2.3.

We note that running a Zcash node over Tor [17] does not prevent our attacks. A P2P adversary
with an active Tor connection to a victim’s P2P node could still link transactions that pay the
victim, or link the victim’s diversified addresses.

Finally, we believe that Zcash should produce a side-channel resistant implementation of their
core cryptographic primitives. Side-channel resistance may have seemed like a secondary concern,
given that the Zcash protocol is primarily non-interactive. As our attacks have shown, a single bug
in the in-band secret distribution routine inadvertently allowed for a two-way interaction between
an attacker and victim, thereby opening up a potential remote timing side-channel on the Zcash
non-interactive key-exchange mechanism.

5 Attacks on Unlinkability and Anonymity in Monero

We now describe side-channel attacks on unlinkability and user anonymity in Monero. These attacks
differ conceptually from those we found in Zcash, as the Monero client separates the wallet and
P2P components into different processes.

While such a design is safer in principle, we found that wallet actions still leak to a remote
adversary through network traffic and timing side-channels. First, we describe attacks that infer
receipt of a transaction by passively analyzing the traffic between a wallet and remote node (Strategy
1 in Section 3.2). Second, we show that even if a user’s wallet and node are co-located, the local
wallet-to-node interactions affect the node’s P2P behavior, which leaks to a remote adversary via a
timing side-channel. This latter attack combines aspects from both of the attack strategies described
in Section 3.2.

15

5.1 Monero Deployments

Before introducing our attacks, we discuss typical deployments of the official Monero client. While
all common setups are subject to some form of our attacks, some are more vulnerable than others.

Remote nodes. Due to memory and computation requirements of P2P nodes, many users con-
nect their wallet to a remote node, possibly hosted by a third-party (e.g., moneroworld.com). By
default, Monero wallets connect to a third-party node upon creation, until a local node downloads
the blockchain (a process that can take several days).

Since a P2P node cannot access the wallet’s keys, using a third-party node is safe in principle.
Yet, some privacy risks are known (e.g., the node’s host learns the wallet’s IP address and can
launch an easily detectable attack to trace the wallet’s transactions [34]). However, there are no
known attacks that allow a third-party node to link transactions, nor any known attacks on wallets
that connect to a remote owned node or to a local node. We show examples of such attacks.

Wallet types. The Monero client has three wallet implementations, whose distinct refresh policies
impact our attacks. The main RPC interface — and the GUI wallet built on top of it — refresh at
fixed intervals (every 20 or 10 seconds) to fetch new blocks and unconfirmed transactions from the
P2P node. The command-line interface (CLI) wallet refreshes every second, but only fetches new
blocks of confirmed transactions. While all wallet types are vulnerable, the CLI wallet is susceptible
to different attacks. We focus here on the RPC and GUI wallets, and discuss the CLI wallet in
Appendix A.2.

5.2 Our Attacks

Our attacks exploit differences in the interactions between a wallet and node, when the wallet is
the payee of a new unconfirmed or mined transaction.

If the wallet connects to a remote node, a network adversary (or a malicious remote node) can
infer receipt of a payment by passively monitoring the encrypted traffic between the wallet and
remote node (see Section 5.2.1 and Section 5.2.2).

Moreover, even if a user’s P2P node and wallet are co-located, we show that a P2P adversary
can still exploit side-channels to infer when the wallet receives a payment. We show an active
attack that sends requests to a victim’s P2P node and times the responses, in order to reveal
lock contention over the victim P2P node’s resources that indicates the receipt of a payment (see
Section 5.2.3).

As in Zcash, these attacks further enable linking a known public key to the IP address of the
owner’s P2P node or wallet, as well as linking of a user’s diversified addresses.

5.2.1 Traffic Analysis Attacks for Remote Nodes

We first describe attacks that exploit the communication patterns between a wallet and remote
node. Upon an automatic refresh, the wallet first requests the list of unconfirmed transactions from
the node, and receives a list of hashes. It then requests the bodies for two types of transactions:
(1) those that the wallet has not processed before; and (2) previously seen transactions of which
the wallet is the payee.

A malicious remote node thus trivially learns which transactions pay the wallet, by reading the
wallet’s requests. Even if the remote node is trusted, a passive network adversary can detect the

16

moneroworld.com

get_hashes

H1, H2
get_tx {H1, H2}

Tx1, Tx2
...

get_hashes

Tx1
...

Process Tx1

Sleep

get_hashes

H1, H2

get_hashes

Tx2
...

Process Tx2

Sleep get_hashesget_tx {H1}

Figure 6: Side-channels in the communication between a Monero wallet and P2P node.
Left: a traffic analysis side-channel (Section 5.2.1). The wallet polls its node for new transaction
hashes, and requests transactions Tx1 and Tx2. During its next refresh, the wallet re-requests Tx1,
which reveals that it is the payee. Right: a timing side-channel (Section 5.2.2). Because the wallet
is the payee of Tx1, the processing time for this transaction is increased. The delay before the
wallet’s next request reveals that it is the payee of Tx1.

wallet’s transaction request (the communication between a wallet and node is easy to fingerprint,
as the wallet refreshes at fixed intervals). The mere presence of this request can leak that the wallet
was the payee of a recent transaction. With Monero’s current traffic (about 5,000 transactions per
day, or one every 17 seconds) it is common that no new transaction enters the mempool between
two wallet refreshes. If the wallet issues a transaction request even though the mempool has not
changed, the request must be for a previously seen unconfirmed transaction that pays the wallet.

We validated the attack in a local Monero network, but note that the attack succeeds with
100% accuracy regardless of the network type, because it relies only on the presence or absence of
transaction messages and not timing signals.

5.2.2 Timing Attacks for Remote Nodes

In addition to the number of network requests exchanged between a wallet and node, we now show
that the time elapsed between requests also leaks whether a wallet was paid.

For each new transaction, the wallet checks if it is the transaction’s payee. If so, it further de-
crypts the obtained value (see Appendix A.1 for more details). As a result, processing a transaction
takes more time if the wallet is the payee of that transaction (the delay on a desktop machine is
about 2-3 ms).

This difference in processing time leads to two timing attacks. The first targets the processing of
new blocks. Upon a refresh, the wallet serially downloads a new block from the node and processes
its transactions. The time between two block requests thus leaks the processing time of the first
block’s transactions. The second attack targets unconfirmed transactions. Recall that the wallet

17

Wallet is Payee Wallet is not Payee

4

5

6

7

8

Ti
m

e
be

tw
ee

n
RP

C
re

qu
es

ts
 (m

s)

Figure 7: Timing of block requests in Monero. Plots the delay between block requests from a
wallet to a remote node, when the first block has one transaction for the wallet (left), or for another
user (right). The experiment is repeated 20 times.

refreshes at fixed intervals (e.g., every 20 seconds for the RPC wallet). More precisely, the wallet
sleeps for a fixed amount of time at the end of a refresh. Thus, the time at which the wallet wakes
and sends a new request depends on the time it took to process the transactions received in the
previous refresh.

Evaluation. Figure 7 plots the delay between block requests made by a user’s wallet when the
first received block contains a single transaction. If the wallet is the transaction’s payee, the next
block request is delayed by 3.4 ms on average. A similar delay is observed between two wallet refresh
periods when the wallet processes a transaction of which it is the payee. These timing differences
are large enough to be reliably observable in a WAN setting.

The attack extends to blocks with N > 1 transactions. The adversary first estimates the time
taken to process N transactions that do not pay a wallet, and compares this estimate to the observed
delay

5.2.3 Timing Attacks for Local Nodes

The attacks from Section 5.2.1 and Section 5.2.2 require that the victim’s wallet connects to a
remote node. We now describe a more complex attack that applies even to a co-located wallet and
node.

In this case, a remote adversary cannot observe communication patterns between the victim’s
node and wallet. Yet, we develop an attack that lets a P2P adversary infer these communication
patterns. Specifically, we show that an attacker can detect when a remote wallet issues a transaction
request to its node. As we described in Sections 5.2.1 and 5.2.2, the presence of this request (or the
time between two requests) leaks that the wallet is the payee of an unconfirmed transaction.

Our attack exploits overly-coarse locking in Monero’s P2P nodes. When processing a transaction
request — sent either by a wallet or by a peer via a get objects message — the P2P node acquires
a global lock on its mempool. Thus, if a P2P adversary sends a get objects message right after

18

0 10 20 30 40 50 60
Time [s]

20

25

30

35

40

De
la

y
[m

s]

Wallet transaction request
Delay of get_objects response

Figure 8: Remote lock timing attack on Monero. Plots the response time of a victim’s local
P2P node to get objects requests from a P2P adversary in a WAN. The attacker sends 2365
requests in one minute. The dotted red lines indicate when the victim’s wallet issued a request for
a transaction of which it is the payee. The wallet’s requests cause lock contention which delays the
P2P node’s response to the attacker.

a request from the victim wallet, lock contention in the P2P node will delay the response to the
attacker. The chances of lock contention are high as the P2P node validates requested transactions
before releasing the lock, which results in the lock being held for tens of milliseconds upon a wallet
request. To reduce the risk of the attacker’s request locking out the wallet’s request, the attacker
only sends requests for non-existing transactions so that the lock duration is small. Observing the
size of the response delay indicates to the attacker whether the wallet has issued a transaction
request to its node, or not. In turn this tells the attacker if a particular transaction is a payment
to the target wallet or not.

Evaluation. The timing difference induced by the lock contention depends on the current size
of the node’s memory pool. With 20 transactions in the mempool, the lock is acquired for about
15-20 ms upon a request from the wallet.

We ran the attack in a WAN, with the victim’s wallet and node co-located in Zürich, and an
attacker in London (21 ms round trip latency). The memory pool contains 20 transactions one of
which pays the wallet. Every 10 seconds, the wallet refreshes and sends a transaction request (as
there is a payment for the wallet in the mempool). The attacker continuously sends get objects

messages to the victim’s node and times the response.5 Our experimental results are shown in
Figure 8. The correlation between timing delay and wallet requests is abundantly clear.

As described, the attack assumes that the mempool is unchanged for at least two wallet refreshes
(i.e., for 20-40 seconds) after the payment to the wallet enters the pool. Since Monero has about
one transaction every 17 seconds and a new block every 2 minutes, such periods of inactivity are
common.

5A technical issue is that the attacker cannot send messages at a faster rate than the round trip latency, as
otherwise TCP congestion control delays messages while awaiting ACKS, thereby introducing significant noise in the
timing measurements.

19

5.3 Remediation

Our attacks were fixed in Monero’s v.0.15.0 release. The wallet now only requests unseen transac-
tions from its P2P node, thus preventing the attacks in Section 5.2.1 and Section 5.2.3. The wallet
also requests and processes new blocks in batches of 1,000 blocks. Thus, the timing attack on block
processing from Section 5.2.2 can at best infer that a wallet was paid by some transaction in a
batch. A stronger defense would be to issue block requests on a fixed schedule, as described below.

Decoupling refresh time from processing time. The timing attack on the processing of
unconfirmed transactions in Section 5.2.2 is due to a design flaw that has the wallet sleep for a fixed
amount of time after a refresh. The start time of a refresh thus leaks the duration of the previous
refresh period, which itself reveals if a payment was processed.

This issue is pernicious. Zcash’s recently released mobile SDKs [19] have the same flaw: the
mobile wallet repeatedly: (1) requests new transactions from a remote node; (2) processes these
transactions; and (3) sleeps for a fixed duration.

An incomplete fix, which was originally proposed by both Monero and Zcash, randomizes the
sleep duration after a refresh. This fix may suffice against an adversary that targets a transaction
sent by an honest user, and is thus limited to a single timing measurement. However, randomized
delays are insufficient against an adversary that targets a known public key. In this case, the
adversary can create multiple payments for this public key, and time the duration between refreshes
of a target wallet for each transaction. If the wallet holds the public key, the average refresh time
will be larger.

A better fix consists in fully decoupling the starting times and processing times of wallet re-
freshes. A simple approach is to have the wallet wake at fixed time intervals (e.g., at the start of
every minute). Since an adversary can tell when a refresh period starts but not when it ends, this
prevents our attacks. Both Zcash and Monero implemented this solution.

Our attacks on Monero’s CLI wallet (see Appendix A.2) have only been partially addressed as
the current fix uses a variant of the above incomplete randomization defense.

6 Timing Attacks on zkSNARK Provers

The side-channel attacks we described in Section 4 and Section 5 circumvent unlinkability and
anonymity guarantees by exploiting flaws in the system design of P2P clients and wallets. In this
section, we further investigate the potential for side-channel vulnerabilities in one of the fundamental
cryptographic primitives used in these systems: succinct zero-knowledge arguments (zkSNARKs).

Following the strategy outlined in Section 3.3, we aim to recover information about the confiden-
tial transaction amount, from a single timing measurement of the proof generation. In Section 6.1,
we demonstrate that such timing attacks reveal information about transaction amounts in Zcash.
In contrast, we show in Appendix A.3 that similar attacks are ineffective for the special-purpose
proofs implemented in Monero.

6.1 Timing Side-Channels in the Zcash Prover

We show that for Zcash’s zkSNARK system, proving times heavily depend on the value of the
prover’s witness. In particular, for anonymous transactions, we show that proving times are heavily
correlated with a transaction’s confidential value.

20

To send a transaction, the sender creates two proofs, one that proves ownership of the spent
UTXOs, and one that proves that new UTXOs are well-formed. In both proofs, the witness is a
vector that contains, among other terms, a binary decomposition of the transacted value.

Zcash uses the Groth16 proof system [23]. For our purposes, it suffices to know that the
prover encodes the witness as a vector (a1, . . . , am) of field elements, and that the prover’s main
computation is a “multi-exponentiation” of the form:

m∑
i=1

aiGi , (1)

where the Gi are fixed elliptic curve points. Importantly, Zcash’s implementation optimizes away
terms aiGi where ai = 0. The proof time thus correlates with the number of non-zero field elements
in the prover’s witness.

Since the transaction amount is encoded in binary in the witness, its Hamming weight influences
the proving time. And since the weight of a number’s binary representation is correlated with
the number’s absolute value, the proof duration leaks information about confidential transaction
amounts.

Evaluation. To evaluate the timing attack, we picked 200 transaction amounts of the form 2t for
t uniformly random in [0, 64). Note that the proof witness contains other ephemeral terms besides
the amount (e.g., commitment openings), which also contribute to the variability in proving time.
For each of the 200 random amounts, we thus create 20 transactions by randomizing over all other
ephemeral witness components. We then time the prover for each of these 4,000 transactions.

Figure 9 shows the mean and standard deviation of proving times for each amount. Proving
time and transaction amount are strongly correlated (R = 0.57). While the timing leaks only a
coarse approximation of the amount, this could suffice to confidently identify rare transactions of
large value.

The left-most proof timings in Figure 9 correspond to transaction amounts of zero. Fingerprint-
ing such proofs is particularly interesting due to Zcash’s “dummy Notes” (see [25]): to obfuscate
the number of UTXOs in a transaction (e.g., to resist the attacks from [4]), users can create dummy
UTXOs with zero value. An adversary capable of timing a prover could thus re-identify dummy
UTXOs with good accuracy.

6.2 Discussion

Compared to the attacks described in Section 4 and Section 5, the above timing attack is not easy
to apply. It requires that an adversary can time a proof generation, an assumption that depends on
users’ common usage patterns (e.g., recurring payments) or deployment strategies (e.g. outsourcing
proofs to a remote service). If a timing opportunity does exist, we show that the resulting leakage
allows for a coarse approximation of the private transaction amount.

Of course, local side-channel attacks would be much more effective. Yet, Zcash explicitly dis-
counts this threat and makes no claims of security against a co-located adversary [16].

Ultimately, this attack serves as a warning about potential future dangers arising from non-
constant-time cryptographic implementations. A more mature implementation of Zcash’s elliptic
curve arithmetic is in development [6] and likely to be incorporated into the main client in the
future.

21

0 210 220 230 240 250 260

Value in ZEC

5.360

5.365

5.370

5.375

5.380

Pr
oo

f T
im

e
[s

]
R = 0.57

Figure 9: Correlation between transaction amount and prover time in Zcash. For each of
200 random values, we plot the mean and standard deviation in proof time for 20 transactions of
that amount. The correlation coefficient between the value (in log-scale) and proof time is R = 0.57.

7 Related Work

Several protocol-level issues with the privacy of anonymous transactions were previously studied.
In Monero, biases in the choice of anonymity set were shown to enable transaction tracing [35]. In
Zcash, the low volume of anonymous transactions was shown to enable tracing of many transactions
via usage pattern heuristics [26, 4]. These works suggest protocol-level issues with these schemes,
which is very different to the side-channel information leakage studied in this paper.

Our side-channel attacks complement a large body of work on de-anonymization of crypto-
currency transactions. Many authors have shown that analyzing Bitcoin’s public transaction graph
breaks users’ pseudonymity [2, 32, 39, 41, 22]. In privacy-focused currencies, common usage pat-
terns can be exploited to link and trace certain transactions in Zcash [26, 38, 4] and Monero [35, 28].
These attacks exploit protocol-level leakage and are agnostic to the protocol’s system-level imple-
mentation. As a consequence, these attacks are ineffective against transactions with particularly
strong cryptographic anonymity guarantees, such as Zcash’s fully shielded transactions. In contrast,
our side-channel attacks exploit implementation flaws and bypass these cryptographic protections
to link or break confidentiality of arbitrary transactions.

Closest to our work are early attacks on Bitcoin by Lerner [29]. These attacks — which are
similar in spirit to our attacks on Zcash — let an attacker link a Bitcoin address to the IP address
of the owner’s P2P node.

Our attacks further relate to the larger study of remote side-channels in anonymization tools
such as Tor [36, 24, 37, 3] or mix-networks [30, 43].

Our remote timing attacks on zk-SNARKs extend the rich literature on similar attacks for
other cryptographic primitives or protocols [27, 8, 1]. Dall et al. [12] proposed a cache-timing
attack on a special-purpose zero-knowledge proof used for anonymous attestation in Intel SGX.
The challenges for timing of provers in anonymous transactions (see Section 3.3) do not apply in
this setting: the adversary can trigger arbitrarily many attestations in a co-located enclave and
perform high-precision local cache-timing measurements of the prover.

22

8 Conclusion

We have presented a number of remote side-channel attacks on anonymous transaction systems
such as Zcash and Monero. We have shown powerful attacks on transaction unlinkability and user
anonymity that exploit timing side-channels and communication patterns leaked by a user’s P2P
node upon receipt of a payment. We have demonstrated that a remote adversary can use this
leakage to identify the P2P node used by the secret payee of any transaction, and bootstrap this
ability to break user anonymity, transaction unlinkability, and diversified address unlinkability.

We have further studied the impact of timing side-channels on the zero-knowledge proof systems
used in these currencies. We have shown that Zcash’s implementation leaks secret transaction data
through the timing of a proof generation. In principle, an attacker that can time a proof generation
can exploit this leakage to extract information about the transacted amount, thereby breaking
transaction confidentiality.

Our attacks reveal a new facet of the difficulty of designing secure systems for anonymous
transactions. We hope that this work will help inform privacy-oriented crypto-currencies about the
dangers of side-channel leakage, and motivate the development of constant-time implementations
of cryptographic primitives such as zkSNARK provers.

Acknowledgments

We thank the Zcash and Monero security teams for their professional handling of the vulnerability
disclosure process, for insightful discussions, and for the prompt deployment of remediations.

Florian Tramèr’s research was supported in part by the Swiss National Science Foundation
(SNSF project P1SKP2 178149). Dan Boneh’s research was supported in part by NSF, ONR, the
Simons Foundation and a Google faculty fellowship. Kenneth G. Paterson’s research was supported
in part by a gift from VMware.

References

[1] Nadhem J Al Fardan and Kenneth G Paterson. Lucky thirteen: Breaking the TLS and DTLS
record protocols. In 2013 IEEE Symposium on Security and Privacy, pages 526–540. IEEE,
2013.

[2] Elli Androulaki, Ghassan Karame, Marc Roeschlin, Tobias Scherer, and Srdjan Capkun. Eval-
uating user privacy in Bitcoin. In International Conference on Financial Cryptography and
Data Security, pages 34–51. Springer, 2013.

[3] Daniel Arp, Fabian Yamaguchi, and Konrad Rieck. Torben: A practical side-channel attack
for deanonymizing Tor communication. In Proceedings of the 10th ACM Symposium on Infor-
mation, Computer and Communications Security, pages 597–602. ACM, 2015.

[4] Alex Biryukov, Daniel Feher, and Giuseppe Vitto. Privacy aspects and subliminal channels in
Zcash. In ACM SIGSAC Conference on Computer and Communications Security, 2019.

[5] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Innovations

23

in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 326–
349, 2012.

[6] Sean Bowe. Rust crate bls12 381 v0.1.0. https://github.com/zkcrypto/bls12 381, 2019.

[7] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practical. In European
Symposium on Research in Computer Security, pages 355–371. Springer, 2011.

[8] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer Networks,
48(5):701–716, 2005.

[9] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 315–334. IEEE, 2018.

[10] Chainalysis. https://www.chainalysis.com/.

[11] Ciphertrace. https://www.ciphertrace.com/.

[12] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, Ahmad
Moghimi, and Yuval Yarom. Cachequote: Efficiently recovering long-term secrets of SGX EPID
via cache attacks. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 171–191, 2018.

[13] Electric Coin Company. Zcash pull request #2120: Experimental feature: remote proving
service. https://github.com/zcash/zcash/pull/2120, 2017.

[14] Electric Coin Company. [ZIP 305] best practices for hardware wallets supporting Sapling.
https://github.com/zcash/zcash/issues/3038, 2018.

[15] Electric Coin Company. Security announcement 2019-09-24. https://z.cash/support/
security/announcements/security-announcement-2019-09-24/, 2019.

[16] Electric Coin Company. Zcash documentation—security warnings—side-channel attacks.
https://zcash.readthedocs.io/en/latest/rtd pages/security warnings.html#side-
channel-attacks, 2019. Revision fe830a5a.

[17] Electric Coin Company. Zcash documentation—Tor support in Zcash. https://

zcash.readthedocs.io/en/latest/rtd pages/tor.html, 2019. Revision fe830a5a.

[18] Electric Coin Company. Zcash release v2.0.7-3. https://github.com/zcash/zcash/
releases/tag/v2.0.7-3, 2019.

[19] Electric Coin Company. Ecc releases resources for building mobile, shielded-Zcash wal-
lets. https://electriccoin.co/blog/ecc-releases-resources-for-building-mobile-
shielded-zcash-wallets/, 2020.

[20] Electric Coin Company. Zcash release v2.1.1. https://github.com/zcash/zcash/releases/
tag/v2.1.1, 2020.

[21] Elliptic forensics software. https://www.elliptic.co/.

24

https://github.com/zkcrypto/bls12_381
https://www.chainalysis.com/
https://www.ciphertrace.com/
https://github.com/zcash/zcash/pull/2120
https://github.com/zcash/zcash/issues/3038
https://z.cash/support/security/announcements/security-announcement-2019-09-24/
https://z.cash/support/security/announcements/security-announcement-2019-09-24/
https://zcash.readthedocs.io/en/latest/rtd_pages/security_warnings.html#side-channel-attacks
https://zcash.readthedocs.io/en/latest/rtd_pages/security_warnings.html#side-channel-attacks
https://zcash.readthedocs.io/en/latest/rtd_pages/tor.html
https://zcash.readthedocs.io/en/latest/rtd_pages/tor.html
https://github.com/zcash/zcash/releases/tag/v2.0.7-3
https://github.com/zcash/zcash/releases/tag/v2.0.7-3
https://electriccoin.co/blog/ecc-releases-resources-for-building-mobile-shielded-zcash-wallets/
https://electriccoin.co/blog/ecc-releases-resources-for-building-mobile-shielded-zcash-wallets/
https://github.com/zcash/zcash/releases/tag/v2.1.1
https://github.com/zcash/zcash/releases/tag/v2.1.1
https://www.elliptic.co/

[22] Michael Fleder, Michael S Kester, and Sudeep Pillai. Bitcoin transaction graph analysis. arXiv
preprint arXiv:1502.01657, 2015.

[23] Jens Groth. On the size of pairing-based non-interactive arguments. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, pages 305–326.
Springer, 2016.

[24] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website fingerprinting: attacking
popular privacy enhancing technologies with the multinomial näıve-Bayes classifier. In Pro-
ceedings of the 2009 ACM workshop on Cloud computing security, pages 31–42. ACM, 2009.

[25] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol specification.
Technical report, Electric Coin Company, 2019. Version 2019.0.1 https://github.com/zcash/
zips/blob/d39ed0/protocol/protocol.pdf.

[26] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An empirical analysis
of anonymity in Zcash. In 27th USENIX Security Symposium, pages 463–477, 2018.

[27] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Annual International Cryptology Conference, pages 104–113. Springer, 1996.

[28] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A traceability analysis
of Monero’s blockchain. In European Symposium on Research in Computer Security, pages
153–173. Springer, 2017.

[29] Sergio Lerner. About my new Bitcoin vulnerability: get your peer public ad-
dresses. https://bitslog.com/2013/01/23/new-bitcoin-vulnerability-get-your-peer-
public-addresses/, 2013.

[30] Brian N Levine, Michael K Reiter, Chenxi Wang, and Matthew Wright. Timing attacks in low-
latency mix systems. In International Conference on Financial Cryptography, pages 251–265.
Springer, 2004.

[31] Greg Maxwell. Confidential transactions. https://people.xiph.org/~greg/
confidential values.txt, 2016.

[32] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geof-
frey M Voelker, and Stefan Savage. A fistful of Bitcoins: characterizing payments among men
with no names. In Proceedings of the 2013 conference on Internet measurement conference,
pages 127–140. ACM, 2013.

[33] Monero. Monero Pull Request #6074: Fix info leak when using a remote daemon. https:

//github.com/monero-project/monero/pull/6074, 2019.

[34] Monero-Hax123. Corrupt RPC responses from remote daemon nodes can lead to transaction
tracing. https://hackerone.com/reports/304770, 2018.

[35] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivastava,
Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, and Nicolas Christin. An
empirical analysis of traceability in the Monero blockchain. Proceedings on Privacy Enhancing
Technologies, 2018(3):143–163, 2018.

25

https://github.com/zcash/zips/blob/d39ed0/protocol/protocol.pdf
https://github.com/zcash/zips/blob/d39ed0/protocol/protocol.pdf
https://bitslog.com/2013/01/23/new-bitcoin-vulnerability-get-your-peer-public-addresses/
https://bitslog.com/2013/01/23/new-bitcoin-vulnerability-get-your-peer-public-addresses/
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://github.com/monero-project/monero/pull/6074
https://github.com/monero-project/monero/pull/6074
https://hackerone.com/reports/304770

[36] Steven J Murdoch and George Danezis. Low-cost traffic analysis of Tor. In 2005 IEEE Sym-
posium on Security and Privacy (S&P’05), pages 183–195. IEEE, 2005.

[37] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website fingerprinting
in onion routing based anonymization networks. In Proceedings of the 10th annual ACM
workshop on Privacy in the electronic society, pages 103–114. ACM, 2011.

[38] Jeffrey Quesnelle. On the linkability of Zcash transactions. arXiv preprint arXiv:1712.01210,
2017.

[39] Fergal Reid and Martin Harrigan. An analysis of anonymity in the Bitcoin system. In Security
and privacy in social networks, pages 197–223. Springer, 2013.

[40] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Advances in
Cryptology - ASIACRYPT, pages 552–565, 2001.

[41] Dorit Ron and Adi Shamir. Quantitative analysis of the full Bitcoin transaction graph. In
International Conference on Financial Cryptography and Data Security, pages 6–24. Springer,
2013.

[42] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE, 2014.

[43] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-latency mix networks: At-
tacks and defenses. In European Symposium on Research in Computer Security, pages 18–33.
Springer, 2006.

[44] Nicolas Van Saberhagen. Cryptonote v2.0, 2013.

A Additional Details on Monero Side-Channels

A.1 Stealth Addresses in Monero

We provide a high-level overview of Monero’s use of stealth-addresses, a technique for deriving a
re-randomized public key for every transaction sent to the same recipient.

Alice’s public key is a pair
(A,B) = (aG, bG) ,

where G is a base point in an elliptic curve group. The pair of scalars (a, b) ∈ Z2
q is Alice’s secret

key. Alice shares her public key (A,B) with Bob.
When Bob sends a transaction to Alice, he produces a randomized public key via a Diffie-

Hellman key exchange with the first half of Alice’ key (A), which is further mixed with the second
key half of the key (B). The goal is to produce a point P such that only Alice can compute the
discrete logarithm of P with respect to G.

Concretely, Bob picks an ephemeral secret key r
r←− Zq and computes

P = H(rA) ·G + B ,

26

where H : {0, 1}∗ → Zq is a hash function. The public keys P and R = rG are included in the
transaction. Note that P hides Alice’s public key (A,B).

To spend her UTXO, Alice needs to know a scalar x such that P = xG. Given (P,R), she can
compute this secret as

P = H(rA) ·G + B = (H(aR) + b︸ ︷︷ ︸
x

) ·G .

In-band secret distribution. As with Zcash’s in-band secret distribution described in Sec-
tion 4.1, the sender transmits some secret information to the receiver as part of the transaction. In
Monero, the only information the receiver needs is the amount of transacted funds (which is hidden
inside a commitment). For this, the sender derives a symmetric key k from the shared secret P and
encrypts the transaction amount under k. The ciphertext is appended to the transaction.

Blockchain scanning. Upon seeing a transaction with keys (P,R), a user with private key (a, b)
and public key (A,B) first computes

x = H(aR) + b

P ′ = xG ,

and checks whether P ′ = P . If the points match, the user is the transaction’s payee. The user
further decrypts the transaction amount using the symmetric key k derived from P . This extra
decryption, and some bookkeeping for received funds, is the basis for the timing side-channel attacks
in Section 5.2.2.

A.2 Side-Channel Attacks on the Monero CLI Wallet

The command-line interface (CLI) for the Monero wallet has a slightly different behavior than the
RPC and GUI versions analyzed in Section 5. As a result, the side-channel attacks that apply to
the CLI wallet are also different.

The CLI wallet makes use of a Monero privacy feature known as a tracking key. Note that in
the above description of blockchain scanning, a user only needs “half” of her secret key (the scalar
a) to check whether she is the recipient of a transaction. To compute the secret value x required
to later spend the received funds further involves the use of the second half of the key, the scalar
b. The CLI wallet only keeps the “tracking key” a in memory, to determine when the user has
received transactions. At that point, it prompts the user for a password to decrypt the “spending
key” b. This behavior differs from the RPC and GUI wallets that hold both keys in memory (or in
a hardware wallet).

The attacks described in Section 5 do not directly apply to the CLI wallet. The CLI wallet only
refreshes its copy of the memory pool of unconfirmed transactions on an explicit user prompt, so
the attacks from Section 5 that target unconfirmed transactions do not apply. Instead, the wallet
is vulnerable to a much more pernicious timing attack on block processing, in a setting where the
wallet connects to a remote node.

Indeed, recall that the CLI wallet requires a user password in order to obtain the user’s spending
key. When processing new blocks, if the wallet detects that it is the payee of a transaction (using
the tracking key), it displays a password prompt to the user and interrupts any further refreshes
until the user responds. This is trivially observable by a remote node or by a network adversary as

27

0 210 220 230 240 250 260

Value in pico-monero

20.8

20.9

21.0

21.1

21.2

21.3

Pr
oo

f T
im

e
[m

s]

R = 0.04

Figure 10: Correlation between transaction amount and prover time in Monero. For each
of 200 random values, we plot the mean and standard deviation in proof time for 20 transactions of
that amount. The correlation coefficient between the value (in log-scale) and proof time is R = 0.04.

this interrupts the flow of requests for new blocks, potentially for several seconds, minutes or hours
depending on the user’s activity.

This attack vector has only been partially fixed. As of release v0.15.0, the CLI wallet refreshes
at randomized intervals, to obfuscate delays between refreshes caused by an unanswered password
prompt. Yet, as noted in Section 5.3, such a randomized defense approach is likely insufficient
against a determined adversary that aims to identify the owner of a specific public key. Such an
attacker can send multiple transactions to this key, and obtain multiple timing measurements that
would average out the variability caused by the randomized delays between refreshes.

A.3 Absence of Timing Side-Channels in the Monero Prover

In contrast to Zcash, Monero does not make use of a general-purpose zk-SNARK system. In-
stead, the spender of a Monero transaction only proves that the confidential transaction contains
a commitment to a value that is in the range [0, 264). These so-called range proofs are based on
Bulletproofs [9].

At a first glance, we may expect Monero’s proofs to exhibit a similar relationship between
proving time and transaction amount as in Zcash. Indeed, Monero’s range proof also performs a
multi-exponentiation over a binary decomposition of the transaction value, similarly to equation 1.
However, a crucial difference is that Bulletproofs operate not only on the binary decomposition
of a value but also on its bit-wise complement. More specifically, given a transaction amount
v ∈ [0, 2n), the prover computes the vector aL ∈ {0, 1}n as the binary decomposition of v, and sets
aR = aL − 1n ∈ {−1, 0}n. The prover then computes a Pedersen commitment of the form

n∑
i=1

(aL)i ·Gi + (aR)i ·Hi ,

where the Gi and Hi are fixed base points in an elliptic curve group. All further prover operations
are on randomized values independent of v. As a result, the number of computed elliptic curve

28

operations is a constant independent of the transaction amount v. We note that this property is
inherent to the proof protocol described by Bünz et al. [9] and was not included as an explicit
countermeasure against side-channel attacks.

Similarly to our Zcash experiment in Section 6.1, for a range of random transaction values,
we timed 20 proofs with other witness elements chosen at random (in Monero’s case, the witness
consists of the transaction amount and a random blinding vector). Figure 10 shows that proof times
are essentially independent of the transaction amount (the slight correlation can be attributed to
measurement noise). Nevertheless, we do observe that proof times are not constant, with variations
of up to 0.5 milliseconds between proof times. This can be attributed to the fact that Monero’s
implementation of the elliptic curve multi-exponentiation is not constant-time, with some data-
dependent operations and memory-access patterns. However, the small resulting timing differences
seem insufficient to reliably extract secret information from a single remote timing measurement.
Of course, performing local attacks would be a much simpler matter.

29

	Introduction
	Our results
	Disclosure and remediation.

	Architecture of an Anonymous Payment System
	Overview of the Attacks
	Threat Model
	Attack Type I: Side-Channels at the Receiving Party
	Attack Type II: Side-Channels at the Sending Party

	Attacks on Unlinkability and Anonymity in Zcash
	Unlinkability in Zcash
	Our Attacks
	The PING Attack
	The REJECT Attack
	Attacks beyond Recipient Discovery

	Remediation

	Attacks on Unlinkability and Anonymity in Monero
	Monero Deployments
	Our Attacks
	Traffic Analysis Attacks for Remote Nodes
	Timing Attacks for Remote Nodes
	Timing Attacks for Local Nodes

	Remediation

	Timing Attacks on zkSNARK Provers
	Timing Side-Channels in the Zcash Prover
	Discussion

	Related Work
	Conclusion
	Additional Details on Monero Side-Channels
	Stealth Addresses in Monero
	Side-Channel Attacks on the Monero CLI Wallet
	Absence of Timing Side-Channels in the Monero Prover

