
REALIZING TWO-FACTOR AUTHENTICATION FOR

THE BITCOIN PROTOCOL

Christopher Mann and Daniel Loebenberger

15 August 2014

Abstract. We show how to realize two-factor authentication for a Bitcoin wal-
let employing the two-party ECDSA signature protocol adapted from MacKen-
zie & Reiter (2004). We also present a prototypic implementation of a Bitcoin
wallet that offers both: two-factor authentication and verification over a sepa-
rate channel. Since we use a smart phone as the second authentication factor,
our solution can be used with hardware already available to most users and the
user experience is quite similar to the existing online banking authentication
methods.

1. Introduction

Bitcoin (BTC) is a cryptographic currency proposed by Satoshi Nakamoto (2008)
in the legendary email to the Cryptography Mailing list at metzdowd.com. One of
the most important features of Bitcoin is that it is completely peer-to-peer, i.e. it
does not rely on a trusted authority (the bank) which ensures that the two central
requirements of any electronic cash system are met: Only the owner can spend money
and it is impossible to spend money twice. In Bitcoin these two features are realized
with a common transaction history, the Bitcoin block-chain, known to all users. Each
of the transactions in the chain contains the address to which some Bitcoins should
be payed, the address from which the Bitcoins should be withdrawn and the amount.
Here, the address is directly derived from the corresponding public key of the elliptic
curve digital signature algorithm (ECDSA) as specified by the Accredited Standards
Committee X9 (2005). The whole transaction is signed using the ECDSA private
key that belongs to the person that wants to spend the Bitcoins. Since any user
might have multiple addresses, its wallet consists of several ECDSA key-pairs and is
typically stored on the owner’s device or within some online service.

Thus, from a thieves perspective, the only thing one has to do in order to steal
some Bitcoins, is to get hands on the corresponding wallet, just like in real life.
Indeed, Lipovsky (2013) describe an online banking trojan that also steals Bitcoin
wallets.

Thus, for securing Bitcoin wallets in a way such that it is much more difficult
to steal a wallet is to employ two-factor authentication. This means that the wallet
stored on a device does not contain the ECDSA private keys but just shares of them.

2 Mann & Loebenberger

The other shares are stored on an independent device (such as a smart phone). Now,
any transaction can only be signed with the help of both shares corresponding to an
ECDSA private key. During the signing process, it has to be ensured that in no point
in time the full ECDSA private key is stored on either of the devices.

There was already considerable effort to realize two-factor authentication for Bit-
coin wallets. First of all, it is in principle possible to use Bitcoin’s build-in function-
ality for threshold signatures. This has, however, three major disadvantages: First
of all it would be visible in the block-chain that multi-factor authentication is used.
Second, the size of the transaction increases, which leads to higher transaction fees.
Last but not least, there are Bitcoin clients around which do not work properly with
the threshold-signature extension.

Goldfeder, Bonneau, Felten, Kroll & Narayanan (2014) tried to employ threshold
signatures proposed by Ibrahim, Ali, Ibrahim & El-sawi (2003). However, as the
authors pointed out there, it is quite difficult to use these kind of signatures for
two-factor authentication, since the restrictions on the threshold are quite delicate to
handle. In their blog post they compare different threshold signatures with respect
to their applicability to Bitcoin wallets. However, their reasoning remains quite high-
level.

In this article we show how to actually realize two-factor authentication for a
Bitcoin wallet employing the two-party ECDSA signature protocol adapted from
MacKenzie & Reiter (2004). We also present a prototypic implementation of a Bitcoin
wallet that offers both: two-factor authentication and verification over a separate
channel. Since we use a smart phone as the second authentication factor, our solution
can be used with hardware already available to most users and the user experience is
quite similar to the existing online banking authentication methods.

2. Bitcoin protocol

We will now describe some of the technical details of the Bitcoin protocol as de-
scribed by Nakamoto (2008). In difference to other e-cash schemes such as the one
proposed by Chaum, Fiat & Naor (1990) and many others, Bitcoin was designed to
be completely de-central. The Bitcoin network consists of a large number of indepen-
dent nodes which verify incoming transactions independently of each other. These
nodes use a synchronization protocol which is based on a proof-of-work similar to the
hashcash system described in Back (2002). With the help of this protocol, the nodes
agree on a common transaction history, which is called the Bitcoin block chain, see
Figure 2.1. A Bitcoin transaction contains the address to which the Bitcoins should
be payed, the address from which the Bitcoins should be withdrawn and the amount.
Furthermore, the transaction contains a digital signature, which authorizes the trans-
action and the public key needed to verify the signature. Bitcoin uses the ECDSA
signature scheme, specified by the Accredited Standards Committee X9 (2005) on the
elliptic curve secp256k1 as defined by Certicom Research (2000). All Bitcoin trans-

Realizing two-factor authentication for the Bitcoin protocol 3

Block

Timestamp

Tx root hash

Prev block hash

Nonce

Block Header

Transaction Transaction

Transaction ...

Transaction

...

Prev Tx hash

Input 1

Prev Tx Output Index

Signature Public Key

Prev Tx hash

Input 2

Prev Tx Output Index

Signature Public Key

Value

Output 1

Bitcoin Address

Value

Output 2

Bitcoin Address

...

Transaction

...

Prev Tx hash

Input 1

Prev Tx Output Index

Signature Public Key

Prev Tx hash

Input 2

Prev Tx Output Index

Signature Public Key

Value

Output 1

Bitcoin Address

Value

Output 2

Bitcoin Address

...

Block

Timestamp

Tx root hash

Prev block hash

Nonce

Block Header

Transaction Transaction

Transaction ...

Block

...
Block

......

Figure 2.1: Simplified view of the Bitcoin blockchain.

actions must be correctly signed by the spender. In order to bind Bitcoin addresses
and the public keys, the Bitcoin address of a user is directly derived from the user’s
public key by applying a cryptographic hash function to it.

Any Bitcoin transaction actually consists of multiple inputs and outputs. Each
output specifies a target address and an amount of Bitcoins to be transferred to the
given address. Every input contains the hash of a preceding transaction and an index.
Both values together unambiguously identify an output of a preceding transaction.
All the Bitcoins from this referenced output are spent by the current transaction.
Consequently, every transaction output is only used a single time as an input and
is completely spend at this time. This increases the efficiency of the network nodes
as these only need to keep track of the unspent outputs instead of all transactions
having an impact on the balance of the address. Furthermore, any input contains a
signature and a public key, which must fit the address given in the output referenced
by this input. In consequence, if multiple inputs are used, multiple signatures of the
transaction must be created, one for each input.

Clearly, the sum of the Bitcoins from all inputs must be greater or equal than the
sum of the Bitcoins spent by the outputs. If the sums of the inputs is greater, this
is not a problem. Any unused Bitcoins are transferred as a fee to the miner of the
block containing this transaction and increase the miner’s revenue. Therefore, this
will increase the priority of the transaction as the miners will have an incentive to
include it into a block.

4 Mann & Loebenberger

For ease of exposition, we omitted the fact that Bitcoin uses a scripting language
for transactions: In reality, a transaction does not really include a target address or a
signature and a public key, but scripts which contains these as constants. Currently,
only a very limited subset of the scripting functionality is actively used in the Bitcoin
network and there are plans to restrict the scripting functionality even further to solve
the problem of transaction malleability, see Wuille (2014). Currently, transactions are
malleable, which means that certain bytes in a transaction can be changed without
invalidating the ECDSA signatures. This has been used to attack the Mt Gox Bitcoin
exchange. The details are described in Decker & Wattenhofer (2014). Almost all
transactions that currently occur, use a standard set of scripts which behave exactly
as described above and correspond to the standard use case of transferring Bitcoins
from one address to another.

3. Threshold signatures

For a polynomial p, a p(t)-out-of-n threshold signature scheme allows p(t) members
out of a group of n to cooperate in creating a signature for a certain message. At the
same time, the scheme is secure against an eavesdropping attacker who compromises
less than t attackers. A 2-out-of-2 threshold signature scheme is also called a two-

party signature scheme. In a two-party signature scheme, two parties must work
together to create a signature and the scheme is secure against attacks by one of the
parties.

For our two-factor Bitcoin wallet, we are interested in a two-party signature
scheme which creates signatures that are compatible with ECDSA. The signing algo-
rithms of ECDSA is quite similar to the one of DSA, standardized by NIST (2013).
Thus, a DSA-compatible threshold scheme can easily be ported to ECDSA by replac-
ing the modular operations in DSA by corresponding operations on elliptic curves.
Of course, while doing so, the operations in the exponent groups have to be replaced
accordingly.

We have searched for threshold signature schemes for both DSA and ECDSA.
Several secure and efficient threshold signature schemes exist for modified versions
of the El-Gamal signature scheme, see for example Harn (1994). Compatibility with
DSA or ECDSA on the other hand is harder to achieve, as the the signing algorithm
requires the inversion of a secret value and the multiplication of two secret values,
also mentioned in MacKenzie & Reiter (2004).

Most threshold signature schemes use polynomial shares similar to Shamir (1979)
secret sharing, but the multiplication of polynomial shares does not work well as the
multiplication of two polynomials increases the degree of the resulting polynomial.
There are several threshold schemes for DSA available, see for example Langford
(1995), Gennaro, Jarecki, Krawczyk & Rabin (1996), Wang & Hwang (1997). For
ECDSA, Ibrahim et al. (2003) presents a (2t−1)-out-of-n threshold signature scheme.
In Goldfeder et al. (2014), this scheme is applied to secure Bitcoin wallets. However,

Realizing two-factor authentication for the Bitcoin protocol 5

as the authors point out, it is difficult to respect the restrictions on the threshold
value in the scheme, rendering it somewhat unsuitable for two-factor authentication,
namely it was erroneously assumed that one could further improve the protocol to
(t+ 1)-out-of-n by applying the degree reduction protocol from Ben-Or, Goldwasser
& Widgerson (1988) to circumvent the degree doubling caused by the multiplication
of two secret sharing polynomials. Unfortunately, the protocol requires 2t + 1 ≥ 3
cooperating parties with secret shares to reduce the polynomial.

In MacKenzie & Reiter (2004), a two-party signature scheme for DSA with a dif-
ferent approach is presented. Instead of working with polynomial shares, the authors
use a homomorphic cipher such as the Paillier (1999) cryptosystem. This allows one
party to operate with cipher texts of another party’s secrets without ever learning
about the secrets. In difference to the other threshold signature schemes, this one
works for only two parties. As we need a two-party signature scheme for ECDSA to
implement our two-factor wallet, we decided to port their scheme to ECDSA. As it
turned out, also Goldfeder et al. (2014) came to the same conclusion: In the blog
post related to their article they note that the scheme by MacKenzie & Reiter seems
to be “close to ideal”.

3.1. Two-party ECDSA. We now give a short overview of two-party signatures
as described by MacKenzie & Reiter (2004) in the context of ECDSA. For the setup,
one fixes a cryptographic hash function h (in our case we use SHA-256, see NIST
(2012)) and a particular set of elliptic curve domain parameters: A prime power
q ∈ N≥2 denoting the size of the base field, the elliptic curve parameters a, b ∈ Fq

defining the elliptic curve E : y2 = x2 + ax+ b, a (finite) base-point G ∈ E of order
n ∈ N, and a cofactor h = #E/n ∈ N. An ECDSA key-pair is a pair (d,Q) ∈ Zn×E,
where d was pseudorandomly generated and Q = dG on the elliptic curve E. In the
case of Bitcoin, defined by Certicom Research (2000), q is a large prime, a = 0, b = 7
and h = 1.

In order to sign a message m ∈ {0, 1}∗ in ECDSA, Alice selects pseudorandomly
a non-zero integer k ∈ Zn and computes kG. The process is repeated as long as the
x-coordinate r = x(kG) = 0 in Zn. Now, Alice computes s = k−1(h(m) + rdA). If
s = 0, the process is repeated using a new ephemeral key k ∈ Zn.

The two-party signature scheme by MacKenzie & Reiter (2004) consists of three
different phases for jointly signing a message m ∈ {0, 1}∗.

Initialization. In this phase an ECDSA key pair (d,Q) is generated. The private
key d is multiplicatively shared between the two parties Alice and Bob by
selecting dA ∈ Zn pseudorandomly and computing dB = d · d−1

A in Zn. Then
d = dAdB and Alice gets the share dA, while Bob gets the share dB . Finally, two
key pairs (skA,pkA) and (skB ,pkB) for a homomorphic public key encryption
scheme, such as the Paillier (1999) cryptosystem, are generated and distributed
to the two parties accordingly.

6 Mann & Loebenberger

Constructing an ephemeral key. In the second phase, a shared ephemeral pri-
vate key k = kAkB ∈ Zn is generated together with the corresponding public
key key R = kG ∈ E. Furthermore, Alice commits to the two values k−1

A and
k−1

A dA in Zn by sending the corresponding encryptions under pkA to Bob.

Form the signature. In the final phase, Bob uses the two commitments together
with the homomorphic property of the encryption scheme to finally compute
the second part of the ECDSA signature s.

For the protocol to work, it is necessary to proof to the other side several facts
using non-interactive zero-knowledge proofs, which we will denote by zkp, see Blum,
Feldman & Micali (1988). Also, there is frequent use of the (additively) homomorphic
property of the underlying cipher. For any key pair (sk,pk), let Mpk ⊂ Z be the
message space and Cpk be the ciphertext space. The homomorphic property of the
cipher gives raise to an operation

+pk :
Cpk × Cpk −→ Cpk,

(Encpk(m1),Encpk(m2)) 7−→ Encpk(m1 +m2)
.

We stress that the encryption function Encpk is randomized such that in the above ex-
pression Encpk(m1+m2) denotes one valid encryption of the addition of the messages
m1 and m2.

Applying the function +pk repeatedly defines the function

×pk :
Cpk ×Mpk −→ Cpk,

(Encpk(m1),m2) 7−→ Encpk(m1 ·m2)
.

In Figure 3.1, the full two-party ECDSA signature protocol is given. For details
on the analysis and the security of this protocol see MacKenzie & Reiter (2004).

We finish with an illustration of the correctness of the two-party signature scheme:

s = DecskA (σ) mod n

= DecskA

((

αA ×pkA
h (m) zB

)

+pkA

(

β ×pkA
rdBzB

)

+pkA
EncpkA

(c · n)
)

mod n

= DecskA

((

EncpkA
(zA)×pkA

h (m) zB
)

+pkA

(

EncpkA
(dAzA mod n)×pkA

rdBzB
)

+pkA
EncpkA

(c · n)
)

mod n

= zA h (m) zB + dAzArdBzB + c · n mod n

= k−1

A k−1

B (h (m) + rd) mod n = k−1 (h (m) + rd) mod n

Thus, the resulting two-party MacKenzie & Reiter signature is indeed a valid ECDSA
signature under the private key d = dAdB ∈ Zn and the shared ephemeral secret
k = kAkB ∈ Zn \ {0}.

Realizing two-factor authentication for the Bitcoin protocol 7

Alice (dA, skA) Bob (dB, skB)

kA
R
←− Zn \ {0}

zA ←− (kA)
−1

mod n

αA ←− EncpkA
(zA)

β ←− EncpkA
(dAzA mod n)

m,αA,β
−−−−−−−→ check αA, β ∈ CpkA

check QB ∈ 〈G〉
QB

←−−−−−−−

kB
R
←− Zn \ {0}

QB ←− kBG

Q←− kAQB

ΠA ←− zkp

∃xA, xB ∈
[

−n
3
, n

3
]

xAQ = QB

(xB/xA)G = QA

DecskA
(αA) ≡n xA

DecskA
(β) ≡n xB

Q,ΠA
−−−−−−−→ check Q ∈ 〈G〉 ,ΠA

check σ ∈ CpkA
, αB ∈ CpkB

,ΠB

σ,αB,ΠB
←−−−−−−−

r ←− x(Q) mod n

zB ←− (kB)
−1

mod n

c
R
←− Z

n5

σ ←−
(

αA ×pkA
h (m) zB

)

+pkA
(

β ×pkA
rdBzB

)

+pkA
EncpkA

(c · n)

αB ←− EncpkB
(zB)

ΠB ←− zkp

∃xA, xB ∈
[

−n
3
, n

3
]

xAQB = G

(xB/xA)G = QB

DecskB
(αB) ≡n xA

DecskA
(σ) ≡n DecskA

((

αA ×pkA
h (m) xA

)

+pkA

(

β ×pkA
rxB

))

s←− DecskA
(σ) mod n

r ←− x(Q) mod n
publish (r, s)

Figure 3.1: Generating a two-party ECDSA signature using the protocol by MacKen-
zie & Reiter (2004).

8 Mann & Loebenberger

3.2. Threshold signature support in Bitcoin. As part of the scripting func-
tionality, Bitcoin supports n-out-of-m threshold signatures. Instead of only a single
signature, a user must provide n signatures to spend a transaction output. Each of
the n signatures must verify under one of the m public keys. Bitcoin’s threshold sig-
nature support has been used by Bitpay Inc. (2014) to implement a web application
that offers shared control of Bitcoin addresses.

In the standard single signature case, Bitcoins are sent to a Bitcoin address which
is directly derived from a public key. The payee can spend the received Bitcoins by
providing a transaction with a signature that verifies under the public key. In the
threshold signature case, the payer must specify a list of m public keys instead of
a single one. The payee can spend the received Bitcoins by providing a transaction
with n signatures where each of the signatures verifies under one of the m public
keys.

As a list of public keys is now used to identify the payee instead of a single one,
no Bitcoin address can be derived any more. Consequently, the payer must not only
know a short Bitcoin address but the whole list of m public keys to send Bitcoins to
the payee. This is very inconvenient for the payer.

Another Bitcoin features called Pay-to-script-hash (P2SH) solves this problem by
adding another indirection. Instead of specifying the whole list of public keys, the
payer only specifies the hash value of a Bitcoin script, which contains the list of public
keys. The script is hashed with the same function that is used to hash the public
keys. Therefore, it is possible to derive a Bitcoin address from the script. When
spending the Bitcoins, the payee must not only provide the n signatures, but also a
Bitcoin script that fits the hash value specified by the payer. The signatures in the
spending transaction are then verified against the public keys in the script.

The combination of both features provides a threshold signature support that is
as convenient for the payer as the single signature version of Bitcoin. Nevertheless,
this version of threshold signatures for Bitcoin has several disadvantages that are also
mentioned by Goldfeder et al. (2014): First of all, the spending transaction becomes
much larger as it contains the n signatures and the script with the list of the m public
keys. Signatures and public keys are responsible for most of the data in a transaction.
Consequently, having several of them increases the size of the transaction significantly
and can increase the transaction fees as these depend on the size of the transaction.
Second, it is visible in the public block chain that threshold signatures are used.
The use of threshold signatures compatible with ECDSA as discussed in the previous
section circumvents these kinds of problems.

4. Two-factor Bitcoin wallets

As mentioned in Lipovsky (2013), a first Bitcoin stealing online banking trojan has
already been discovered in the wild. We can assume, that when Bitcoin becomes used
by a wider public, attackers will come up with more sophisticated attacks inspired by

Realizing two-factor authentication for the Bitcoin protocol 9

the attacks on online banking. Therefore, it makes sense to analyze existing attacks
on online banking and to consider the existing counter measures when designing a
Bitcoin wallet.

In Sancho, Hacquebord & Link (2014), a common attack on online banking is
described. First, the user’s computer is compromised with a trojan, which modifies
the victim’s DNS resolver and installs an additional attacker controlled certification
authority on the system. Consequently, the trojan can now become a Man-in-the-
middle between the user and the bank. After the user successfully logged in, the
attacker displays a warning to trick the user into installing a malicious app on his
phone, which finally allows the attacker to intercept incoming session tokens and
transaction numbers. It is important to note, that the phone is compromised by
tricking the user into installing the spyware app and not by vulnerabilities in the
phone’s software.

To complicate such attacks as far as possible, state-of-the-art online banking sys-
tems offer both two-factor authentication and verification over a separate channel.
In the commonly used SMS TAN system, the user creates a bank transaction on his
device and then needs to enter a transaction number (TAN) to confirm the trans-
action. The user receives this TAN via SMS from his bank. The SMS does not
only contain the TAN but also the transaction data again and the user can verify it.
A compromised device cannot modify this information and the user can detect any
modifications done to the transaction by an online banking trojan.

With our Bitcoin wallet, we also provide both two-factor authentication and ver-
ification over a separate channel to Bitcoin users. We thus offer users a similar level
of security for Bitcoin as they currently have in online banking.

As mentioned before, a Bitcoin address is directly derived from a ECDSA public
key and anyone having access to the corresponding private key can spend all Bitcoins
stored in this address. Therefore, the only secure way to implement two-factor au-
thentication is to share the private key and to create transaction signatures with a
two-party signature protocol. Any other solution would require to store the private
key at one place. This place then becomes a single point of failure. Several Bitcoin
service providers offer SMS TAN or one-time-password two-factor authentication, but
in these cases the service provider stores the private key and becomes a single point
of failure. Bitcoin service providers are hardly regulated at the moment and the when
considering the bankruptcy of Mt. Gox, it is clear that leaving the security to the
service provider is a too high risk.

For our Bitcoin wallet, we use a modified version of the two-party signature pro-
tocol by MacKenzie & Reiter (2004), described in Section 3.1. This allows us to
share the private key belonging to a Bitcoin address between two different devices
and transactions can be signed without ever recombining the private key.

4.1. Description of the prototype. Our two-factor wallet consists out of a desk-
top wallet, which is a Java GUI application, and a phone counterpart that is realized

10 Mann & Loebenberger

as an Android application. Only the desktop application is a full Bitcoin wallet,
which stores and processes all incoming transactions relevant to the user. Conse-
quently, only the desktop wallet can display the transaction history and the current
balance. The phone wallet is only required when signing a new transaction. The
phone wallet itself does not need to connect to the Bitcoin network at all, which
makes the implementation much more lightweight.

When a user wants to send Bitcoins to another person, he starts by creating a
Bitcoin transaction in the desktop wallet. When the transaction is ready for signing,
the desktop wallet displays a QR-Code which contains the IP address of the desktop
wallet and the public key for a TLS connection. The desktop ad-hoc generates the
key pair and a corresponding server certificate for the TLS connection.

The user now opens the smart phone wallet and scans the QR Code with the
phone’s camera. The smart phone wallet connects to the desktop wallet via the IP
address specified in the QR code. The phone wallet establishes a TLS connection
with the desktop wallet. During the connection setup, the phone wallet verifies that
the public from the desktop’s certificate matches the public key in the QR code. This
prevents any man-in-the-middle attacks.

Over the secured connection, the phone wallet requests the transaction to sign
from the desktop wallet and displays it on the phone’s screen. The user now has the
possibility to review the transaction again to make sure that is has not been modified
by a compromised desktop wallet.

When the user confirms the transaction on the phone, the phone wallet asks
the desktop wallet to start the two-party signature protocol. The two wallets then
exchange the messages required for the two-party signature protocol over the TLS
connection.

In the end, the desktop wallet holds the correct ECDSA signatures for the trans-
action. It can now add them to the transaction. Afterwards, the desktop wallet
publishes the complete transaction to the Bitcoin network. Figure 4.1 shows the
desktop and the phone wallet after successfully completing the protocol.

5. Implementation aspects

As explained in Section 2, the transaction fee (which is payed to the miner) is the
difference between the sum of Bitcoins in the transaction inputs and the sum of
Bitcoins in the transaction outputs. The inputs actually only reference the outputs of
preceding transactions. Consequently, to correctly compute the fee, one needs access
to the preceding transactions. In our case, the phone must compute the overpay,
which is the fee, itself. Otherwise, the desktop can create a transaction which only
contains benign outputs, but spends far too large inputs. The result would be a large
fee for the miner and a financial damage for the user.

Implementing full Bitcoin network access is possible as wallet software exists for
Android, but would make the phone wallet much more complex. Instead, in our

Realizing two-factor authentication for the Bitcoin protocol 11

(a) Desktop GUI (b) Smartphone GUI

Figure 4.1: The desktop and the smart phone GUI after completing a transaction.

solution, the phone does not only request the transaction to sign from the desktop,
but also all transactions that are referenced in the inputs of the transaction to sign.
The phone verifies, that the hash values of the provided transactions fit the hash
values in the transaction inputs. Now the phone can be sure that it has the correct
transactions and can use the information from these transactions to compute the
overpay in the transaction to sign.

5.1. Comparison to Bitcoin’s built-in functionality. As mentioned in Sec-
tion 3.2, Bitcoin’s built-in threshold signature support has the disadvantage of in-
creasing the transaction size significantly. We have verified this by recording the size
of the resulting transaction during a benchmark. The result in Figure 5.1 shows,
that the transaction size increases by at least 40% when using Bitcoin’s threshold
signatures.

1 input 2 inputs 3 inputs

Two-party signature protocol 257 bytes 438 bytes 619 bytes

Bitcoin’s threshold signatures 370 bytes 696 bytes 1022 bytes

Figure 5.1: Final size of signed transaction.

12 Mann & Loebenberger

It should be noted, that a transaction with only three inputs is already larger
than 1000 bytes. Furthermore, larger transactions require a larger transaction fee and
have a lower priority to be added to a new block. The priority can be increased by
adding an additional fee. Consequently, the solution using Bitcoin’s built-in threshold
signature support comes with financial costs for the user (larger transaction fees). In
contrast, our solution is transparent to the Bitcoin network and does not influence
the transaction fees.

6. Future work

As our implementation is only a prototype, there is still some work to do. Most
certainly, before using our software in production, a thorough code review is required
to make sure that no implementation mistakes have been made both in the protocol
itself and in the supporting code.

6.1. Improving the performance. In general, protocols that use zero-knowledge
proofs tend to be quite slow. Indeed, the execution time of the prototype employ-
ing the two-party signature protocol, needs about ten times longer to sign a trans-
action when compared to an implementation of the built-in approach described in
Section 3.2. Analyzing the prototype more closely, we found that most of the ex-
ecution time is used up by elliptic curve scalar multiplication on the smart phone.
Currently, the elliptic curve scalar multiplication code of the library bouncy castle is
used, which is executed on Android’s Dalvik VM. This neither implements efficient
arithmetic on the curve secp256k1 as for example suggested by Großschädl, Page &
Tillich (2012), nor employs native code for the Android smart phone. Using either of
these improvements would most certainly be much faster.

6.2. Random number generation on Android. Several versions of Android
were shipped with a broken default PRNG, that has not been correctly seeded on
start up. This allowed an attacker to recover the state of the PRNG. The details
are described in Kim, Han & Lee (2013). This was fatal for several Android Bitcoin
wallets which generated predictable private keys. As Android devices often lack
security updates, we must expect users with Android versions that are still vulnerable.
Consequently, we must use a PRNG provided by our application and we must seed
it correctly from a reliable entropy source.

Furthermore, the protocol, especially the ZK proofs, requires a large number of
random values. Consequently, a good PRNG with a truly random seed is even more
crucial than it would be for ECDSA alone.

6.3. Generation of parameters for the bit commitment scheme. The zero
knowledge proofs make use of the bit commitment scheme by Fujisaki & Okamoto
(1997), which requires the verifier to generate certain parameters. These parameters
include a RSA modulus consisting of two safe primes. Seemingly, the primes must

Realizing two-factor authentication for the Bitcoin protocol 13

indeed be safe for the scheme to work. The proof ΠA which is verified by the phone is
essential for the protocol’s security and it seems unlikely to find a secure alternative
construction. Therefore, a set of parameters for the bit commitment scheme including
the safe primes, which are very costly to generate, must be generated on the phone.
It is possible to generate the parameters only once during the pairing phase in the
beginning and reuse them afterwards, but still the generation is very time intensive
on the phone. Some research exist, that suggests more efficient algorithms for the
generation of safe primes, see for example Wiener (2003) and von zur Gathen &
Shparlinski (2013).

We have implemented the prime sieve idea from Wiener (2003) and we achieved
a great speedup compared to our first trivial implementation, but on the phone the
generation of a safe prime with 2048 bit still takes several minutes.

6.4. Support for multiple Addresses. The standard Bitcoin client generates a
new address for each payment to provide the user a higher level of privacy. While
this approach is not overly efficient, it still protects from unsophisticated attackers.
Therefore, it is worthwhile to offer support for this. Two general approaches exist.
The first one is to generate a new address (and a new key-pair) for each payment.
This is done by the standard client. In our case, this means a pairing must be
performed each time a payment is received. This is infeasible. As a workaround,
a set of addresses (and key-pairs) can be generated at once during a pairing. This
would still require an additional pairing after some time. The second approach is to
use a key derivation scheme, which allows the desktop and the phone to generate new
key-pairs without further interaction from a seed, which was agreed on during the
pairing. In a future version of the two factor Bitcoin wallet, one of these approaches
should definitely be realized.

7. Conclusion

We have shown that one can use the two-party ECDSA signature protocol adapted
from MacKenzie & Reiter (2004) to realize two-factor authentication for a Bitcoin
wallet. As far as we know, we were able to implement the first fully functional
prototype compatible with the Bitcoin production network.

Acknowledgements

This work was funded by the B-IT foundation and the state of North Rhine-Westphalia.

References

Accredited Standards Committee X9 (2005). ANSI X9.62, Public Key Cryptography
for the Financial Services Industry: The Elliptic Curve Digital Signature Standard (ECDSA).
Technical report, American National Standards Institute, American Bankers Association.

14 Mann & Loebenberger

Adam Back (2002). Hashcash - A Denial of Service Counter-Measure. Technical report.
URL http://www.hashcash.org/papers/hashcash.pdf.

Michael Ben-Or, Shafi Goldwasser & Avi Widgerson (1988). Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In STOC ’88: Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing, 1–10. ACM, New York,
NY, USA. ISBN 0-89791-264-0. URL http://dx.doi.org/10.1145/62212.62213.

Bitpay Inc. (2014). Copay: A secure Bitcoin wallet for friends and companies. URL
www.copay.io.

Manuel Blum, Paul Feldman & Silvio Micali (1988). Proving Security Against Cho-
sen Cyphertext Attacks. In Advances in Cryptology: Proceedings of CRYPTO 1988, Santa
Barbara, CA, number 403 in Lecture Notes in Computer Science, 256–268. Springer-Verlag.
ISSN 0302-9743.

Certicom Research (2000). SEC 2: Recommended Elliptic Curve Domain Parameters.
Technical report, Certicom Corporation.

David Chaum, Amos Fiat & Moni Naor (1990). Untraceable Electronic Cash. In Ad-
vances in Cryptology - CRYPTO 88, Shafi Goldwasser, editor, volume 403 of Lecture
Notes in Computer Science, 319–327. Springer-Verlag, Berlin, Heidelberg. ISBN ISBN:
978-0-387-97196-4 (Print) 978-0-387-34799-8 (Online). URL http://dx.doi.org/10.1007/

0-387-34799-2_25.

Christian Decker & Roger Wattenhofer (2014). Bitcoin Transaction Malleability and
MtGox. e-print arXive:cs/1403.6676 abs/1403.6676, 13. URL http://arxiv.org/abs/

1403.66762.

Eiichiro Fujisaki & Tatsuaki Okamoto (1997). Statistical zero knowledge proto-
cols to prove modular polynomial relations. In Advances in Cryptology: Proceedings of
CRYPTO 1997, Santa Barbara, CA, B. S. Kaliski Jr., editor, volume 1294 of Lecture
Notes in Computer Science, 16–30. Springer-Verlag, Berlin, Heidelberg. ISBN 3-540-63384-
7. ISSN 0302-9743. URL http://dx.doi.org/10.1007/BFb0052225.

Joachim von zur Gathen & Igor Shparlinski (2013). Generating safe primes. Journal
of Mathematical Cryptology 7(4), 333–365. ISSN 1862-2984 (Online) 1862-2976 (Print)).
URL http://dx.doi.org/10.1515/jmc-2013-5011.

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk & Tal Rabin (1996). Robust
Threshold DSS Signatures. In Advances in Cryptology - EUROCRYPT 96, Ueli Maurer,
editor, volume 1070 of Lecture Notes in Computer Science, 354–371. Springer-Verlag, Berlin,
Heidelberg. ISBN ISBN: 978-3-540-61186-8 (Print) 978-3-540-68339-1 (Online). URL http:

//dx.doi.org/10.1007/3-540-68339-9_31.

Steven Goldfeder, Joseph Bonneau, Edward W. Felten, Joshua A. Kroll &
Arvind Narayanan (2014). Securing Bitcoin wallets via threshold signatures. URL http:

//www.cs.princeton.edu/~stevenag/bitcoin_threshold_signatures.pdf. Preprint.

Realizing two-factor authentication for the Bitcoin protocol 15

Johann Großschädl, Dan Page & Stefan Tillich (2012). Efficient Java Implemen-
tation of Elliptic Curve Cryptography for J2ME-Enabled Mobile Devices. In Information
Security Theory and Practice. Security, Privacy and Trust in Computing Systems and Am-
bient Intelligent Ecosystems: 6th IFIP WG 11.2 International Workshop, WISTP 2012,
Egham, UK, June 20-22, 2012. Proceedings, Ioannis Askoxylakis, Henrich C. Pöhls &
Joachim Posegga, editors, volume 7322 of Lecture Notes in Computer Science, 189–207.
Springer-Verlag, Berlin, Heidelberg. ISBN ISBN: 978-3-642-30954-0 (Print) 978-3-642-30955-
7 (Online). URL http://dx.doi.org/10.1007/978-3-642-30955-7_17.

Lein Harn (1994). Group-oriented (t, n) threshold digital signature scheme and digital
multisignature. Computers and Digital Techniques, IEE Proceedings 141(5), 307–313. URL
http://dx.doi.org/10.1049/ip-cdt:19941293.

M.H. Ibrahim, I.A. Ali, I.I. Ibrahim & A.H. El-sawi (2003). A robust threshold elliptic
curve digital signature providing a new verifiable secret sharing scheme. In MWCAS03, 276
– 280 Vol. 1. IEEE Computer Society, Cairo, Egypt. ISBN 0-7803-8294-3. ISSN 1548-3746.
URL http://dx.doi.org/10.1109/MWSCAS.2003.1562272.

Soo Hyeon Kim, Daewan Han & Dong Hoon Lee (2013). Predictability of Android
OpenSSL’s pseudo random number generator. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, 659–668. ACM, New York, NY, USA.
ISBN ISBN: 978-1-4503-2477-9. URL http://dx.doi.org/10.1145/2508859.2516706.

SusanK. Langford (1995). Threshold DSS Signatures without a Trusted Party. In
Advances in Cryptology - Crypto 95, D. Coppersmith, editor, volume 963 of Lecture
Notes in Computer Science, 397–409. Springer-Verlag, Berlin, Heidelberg. ISBN ISBN:
978-3-540-60221-7 (Print) 978-3-540-44750-4 (Online). URL http://dx.doi.org/10.1007/

3-540-44750-4_32.

Robert Lipovsky (2013). New Hesperbot targets: Germany
and Australia. URL http://www.welivesecurity.com/2013/12/10/

new-hesperbot-targets-germany-and-australia/.

Philip MacKenzie & Michael K. Reiter (2004). Two-party generation of DSA sig-
natures. International Journal of Information Security 2(3-4), 218–239. URL http:

//dx.doi.org/10.1007/s10207-004-0041-0.

Satoshi Nakamoto (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Cryptography
Mailing list at metzdowd.com. URL https://bitcoin.org/bitcoin.pdf. 9 pages.

NIST (2012). Federal Information Processing Standards Publication 180-4 — Secure Hash
Standard. National Institute of Standards and Technology. URL http://csrc.nist.gov/

publications/fips/fips180-4/fips-180-4.pdf. Federal Information Processings Stan-
dards Publication 180-4.

NIST (2013). FIPS 186-4: Digital Signature Standard (DSS). Technical report, Information
Technology Laboratory, National Institute of Standards and Technology.

Pascal Paillier (1999). Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes. In Advances in Cryptology: Proceedings of EUROCRYPT 1999, Prague,

16 Mann & Loebenberger

Czech Republic, J. Stern, editor, volume 1592 of Lecture Notes in Computer Science,
233–238. Springer-Verlag, Berlin, Heidelberg. ISBN 3-540-65889-0. ISSN 0302-9743. URL
http://dx.doi.org/10.1007/3-540-48910-X_16.

David Sancho, Feike Hacquebord & Rainer Link (2014). Finding Holes
Operation Emmental. Technical report, Trend Micro Incorporated. URL
http://housecall.trendmicro.com/cloud-content/us/pdfs/security-intelligence/

white-papers/wp-finding-holes-operation-emmental.pdf.

Adi Shamir (1979). How to Share a Secret. Communications of the ACM 22(11), 612–613.

Chih-Hung Wang & Tzonelih Hwang (1997). (t+1,n) threshold and generalized DSS
signatures without a trusted party. In Proceedings of the 13th Annual Computer Security
Applications Conference (ACSAC 97), 221–226. IEEE. ISBN ISBN: 0-8186-8274-4. URL
http://dx.doi.org/10.1109/CSAC.1997.646193.

Michael J. Wiener (2003). Safe Prime Generation with a Combined Sieve. Cryptology
ePrint Archive 2003/186. URL http://eprint.iacr.org/2003/186.

Pieter Wuille (2014). Dealing with malleability. Technical report, Bitcoin Project. URL
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki.

Christopher Mann

b-it
Universität Bonn
Dahlmannstr. 2
53113 Bonn
Germany
mann@informatik.uni-bonn.de

Daniel Loebenberger

b-it
Universität Bonn
Dahlmannstr. 2
53113 Bonn
Germany
daniel@bit.uni-bonn.de

