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ABSTRACT
Bitcoin and other cryptocurrencies have recently introduced sup-

port for Schnorr signatures whose cleaner algebraic structure, as

compared to ECDSA, allows for simpler andmore practical construc-

tions of highly demanded “𝑡-of-𝑛” threshold signatures. However,

existing Schnorr threshold signature schemes (like their ECDSA

counterparts) still fall short of the needs of real-world applications

due to their assumption that the network is synchronous and due

to their lack of robustness, i.e., the guarantee that 𝑡 honest signers

are able to obtain a valid signature even in the presence of other

malicious signers who try to disrupt the protocol. This hinders the

adoption of threshold signatures in the cryptocurrency ecosystem,

e.g., in second-layer protocols built on top of cryptocurrencies.

In this work, we propose ROAST, a simple wrapper that turns a

given threshold signature scheme into a scheme with a robust and
asynchronous signing protocol, as long as the underlying signing
protocol is semi-interactive (i.e., has one preprocessing round and

one actual signing round), provides identifiable aborts, and is un-

forgeable under concurrent signing sessions. When applied to the

state-of-the-art Schnorr threshold signature scheme FROST, which
fulfills these requirements, we obtain a simple, efficient, and highly

practical Schnorr threshold signature scheme.

1 INTRODUCTION
The rise of cryptocurrencies such as Bitcoin has sparked a renewed

interest in threshold signatures in industry and academia. Threshold

signatures are “𝑡-of-𝑛” signatures: After an initial key generation

involving a group of 𝑛 signers, any subgroup of 𝑡 signers (where

𝑛 and 𝑡 are parameters given to key generation) can interactively

create a signature valid under a threshold public key, which repre-

sents the entire group of 𝑛 signers. Unforgeability guarantees that

no coalition of (up to) 𝑡 − 1malicious signers can create a signature.

These properties make threshold signatures the tool of choice for

secure and reliable storage of cryptographic keys with a high value.

Threshold signatures have the appealing property that one can

share the key and store the individual shares on different devices.

Sharing the key raises the level of protection against theft and

accidental loss of the key, both of which are catastrophic failures

resulting in an irrecoverable loss of all funds stored under the key.

Bitcoin’s built-in threshold signatures. Bitcoin provides built-in

support for naive linear-size threshold signatures. The threshold

public key is simply a list of 𝑛 individual public keys, and the thresh-

old signature is a list of 𝑡 signatures valid under 𝑡 distinct public

keys chosen from the list of 𝑛 public keys. In Bitcoin terminology,

this solution called “multisig” is viable for small threshold setups

such as the popular “2-of-3”, which are recommended for end users

to store large amounts of coins.

However, due to the linear size of the public key and the sig-

nature, the naive solution does not scale to large threshold setups

as desirable in federated systems such as second-layer payment

applications built on top of Bitcoin. These systems, e.g., federated

sidechains such as Liquid [27] and RSK [23], or federated e-cash on

Bitcoin [33], rely on a federation of geographically distributed nodes

run by different operators which hold custody of some on-chain

funds to make them available in the off-chain system. As some

fraction of federation members is assumed to remain honest and

available, large choices of 𝑡 and𝑛 can increase security and availabil-

ity. But since blockchain space is very precious in cryptocurrency

systems, and the lists of 𝑛 public keys and 𝑡 ≤ 𝑛 signatures need to

be stored on the blockchain, Bitcoin’s naive support for threshold

signatures severely restricts the scalability of the aforementioned

off-chain solutions to large 𝑛 and 𝑡 , e.g., 𝑛 ≈ 100. For example, the

wallets of the Liquid and RSK sidechains
1
currently use rather small

11-of-15 and 8-of-15 setups [27, 24], respectively.

Compact threshold signatures as a drop-in solution. To overcome

the scaling problem of the naive threshold signature construction,

the threshold public key and the threshold signature should ide-

ally have the same size and look like a public key and signature

of the underlying single-signer signature scheme, e.g., ECDSA or

Schnorr signatures. This provides numerous advantages: thresh-

old signatures can be used as a drop-in solution in systems that

already support the underlying signature scheme and inherit the

compactness and efficiency of single-signer signatures. Moreover,

verifiers do not need to be concerned with the details of threshold

signatures, and in fact, they may not even learn that a threshold

signature scheme was used behind the scenes.

While ECDSA signatures are supported by a wide range of cryp-

tographic systems, including almost all cryptocurrencies, threshold

ECDSA constructions are notoriously complex due to the algebraic

non-linearity of ECDSA signing, which requires a field inversion

during signing. As a result, even the most efficient threshold ECDSA

schemes rely on complexMPC techniques and needmany communi-

cation rounds and often strong honest majority assumptions as well

as assumptions on the reliability of the network [13, 11, 26, 9, 7, 10,

3, 5, 8, 37, 1, 30, 17]. To overcome this and other issues with ECDSA,

many cryptocurrencies such as Bitcoin and Zcash now additionally

support Schnorr signatures (i.e., BIP340 signatures [36] and EdDSA

1
with a combined value of 5800BTC ≈ 220million USD at the time of writing [22, 32]
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signatures [2], respectively) whose linear algebraic structure is ex-

pected to allow for simpler and more practical advanced signature

protocols including threshold signatures.
2

Schnorr threshold signatures. A variety of “𝑡-of-𝑛” Schnorr thresh-

old signature schemes [14, 15, 34, 20, 6, 25] can be found in the

literature, some of which were developed in anticipation of their

adoption by cryptocurrencies. A state-of-the-art Schnorr threshold

signature scheme is FROST by Komlo and Goldberg [20]. FROST’s
signing protocol is semi-interactive: it provides optimal round effi-

ciency with one preprocessing and one actual signing round, where

the preprocessing round can be performed before knowing the mes-

sage to be signed. Moreover, FROST is the first Schnorr threshold

signature scheme that supports arbitrary choices of 𝑡 and 𝑛 (as long

as 𝑡 ≤ 𝑛), including choices with 𝑡 − 1 ≥ 𝑛/2, which guarantee

unforgeability even in the presence of 𝑓 malicious signers that

constitute a dishonest majority (𝑛/2 ≤ 𝑓 ≤ 𝑡 − 1).

Robustness. While FROST’s efficiency makes it a candidate for

practical deployment, the FROST signing protocol falls short of

providing the crucial property of robustness, which, for the purpose
of this paper, we define as the guarantee that a signing session (with

up to 𝑛 signers) will succeed and output a valid signature if 𝑡 honest

signers are present in the session, even if all remaining signers in

the session are disruptive (i.e., malicious) and try to prevent the

honest signers from creating a signature.

This generalized form of robustness is meaningful and achievable

even for 𝑡 − 1 ≥ 𝑛/2. Although a scheme might guarantee unforge-

ability for any number of malicious signers 𝑓 up to a maximum

of 𝑡 − 1, our robustness definition will only apply and guarantee

that a signature can be created if 𝑓 ≤ 𝑛 − 𝑡 , i.e., if 𝑡 honest signers
remain. In other words, this generalized form of robustness guar-

antees liveness only in the case of honest majority and not in the

case of dishonest majority; the latter is impossible as is well known

from the literature. (See Section 1.2 for a detailed discussion.)

FROST’s signing protocol does not provide robustness: if there
is a disruptive signer in a signing session, the entire session will

fail. In fact, foregoing robustness was a deliberate design decision

in FROST: one of the key insights of the FROST designers was that

previous protocols [15, 34] are complex and need many rounds

because they need to run a distributed key generation (DKG) pro-

tocol during every signing session to generate the random group

element of a Schnorr signature (instead of running DKG just once

at key generation time). The DKG ensures that signing sessions

can continue if some signers disappear later. FROST’s design elimi-

nates the DKG, trading robustness for a concise and round-efficient

protocol. Nevertheless, FROST provides identifiable aborts (IA), i.e.,
if a signing session fails, honest signers can identify at least one

malicious signer responsible for the failure.

How can we reobtain robustness? Due to the IA property, FROST
can be trivially turned into a robust protocol by excluding the

identified malicious signer after a failed run and restarting from

scratch. However, the resulting robust protocol requires multiple

sequential runs of FROST and is thus necessarily synchronous.

2
Bitcoin Improvement Proposal 340 (BIP340), which specifies Schnorr signatures for

Bitcoin, explicitly calls for further research into Schnorr threshold signatures [36].

A different but still trivial way to convert FROST into a robust

protocol is to construct a wrapper protocol that runs

(𝑛
𝑡

)
FROST ses-

sions concurrently, one session for each subset of 𝑡 signers. Because

FROST guarantees unforgeability even for concurrent sessions, the

wrapper protocol will still be unforgeable, and robustness holds

immediately: If 𝑡 honest signers are present, the session that in-

cludes exactly these 𝑡 will succeed. Even better, each of the FROST
sessions is effectively an asynchronous protocol: Since each session

includes only 𝑡 signers, raising a timeout on a seemingly unrespon-

sive signer and declaring it offline is not necessary because the

protocol cannot move on with fewer than 𝑡 signers in any case. As

a result, the trivial wrapper protocol is robust and asynchronous.

Still, its obvious drawback is that it requires an exponential number(𝑛
𝑡

)
of sessions and thus is practical at most for very small groups.

This inefficiency is exactly the problem we tackle in this paper.

1.1 Contributions
We provide a wrapper protocol ROAST (RObust ASynchronous

Threshold signatures) which overcomes the inefficiency of the triv-

ial exponential protocol. ROAST starts at most 𝑛 − 𝑡 + 1 concurrent
signing sessions of an underlying semi-interactive threshold signa-

ture scheme Σ, making it practical even for large choices of 𝑛 and

𝑡 . Assuming that Σ is unforgeable under concurrent sessions and

provides identifiable aborts, the application of ROAST to Σ yields a

robust and asynchronous signing protocol.
By applying ROAST to Σ = FROST, we obtain the first (non-

trivial) asynchronous Schnorr threshold signature protocol. More-

over, since ROAST inherits FROST’s support for arbitrary choices

of 𝑡 and 𝑛, it is also the first robust protocol that can be setup to

guarantee unforgeability against a dishonest majority (𝑡 − 1 ≥ 𝑛/2).
Our empirical performance evaluation shows that ROAST scales

well to large signer groups, e.g., a 67-of-100 setup, and is practical

even in the presence of many disruptive signers. From an engineer-

ing point of view, ROAST is a simple wrapper around Σ, making it

easy to implement as an independent layer that only calls Σ in a

black-box manner.

1.2 Background and Related Work
Our approach to robustness differs substantially from existing work.

Broadcast channel vs. semi-trusted coordinator. Instead of relying

on the availability of a broadcast channel as necessary in existing

robust Schnorr threshold protocols, the robustness of ROAST relies

on the availability of a semi-trusted coordinator node, which takes

care of coordinating signing sessions of Σ in addition to just broad-

casting messages and can be run on the same machine as one of

the signers.

We stress that the coordinator is semi-trusted; namely, it is

trusted merely for robustness but not for unforgeability. This means

that coordinators can be chosen optimistically in practice: If the

chosen coordinator turns out to be unreliable or malicious, it can

be replaced by a new coordinator. We believe this is a valuable

practical improvement over existing protocols [e.g., 14, 15, 34, 13,

11, 3, 10, 17] which require a secure broadcast channel even for

unforgeability. In these existing protocols, the broadcast channel

cannot simply be implemented via a centralized coordinator (or

relay) node: This node would then be trusted for robustness and

2
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unforgeability and thus effectively be a fully trusted third party

(who could just be given the full signing key instead of running a

threshold signature protocol).

Nevertheless, for use cases where the availability of a semi-

trusted coordinator cannot be assumed, we describe a straightfor-

ward method to eliminate the coordinator by letting the signers run

enough instances of the coordinator process at the cost of increasing

the communication of our protocol by a factor of 𝑛 − 𝑡 + 1.

Robustness under a Dishonest Majority. Informally speaking, we

call a signing protocol (run with up to 𝑛 signers) robust if it is
guaranteed to output a valid signature in the presence of 𝑡 honest

signers, even if the remaining signers try to prevent the protocol

from completing. As described above, this is a generalized notion of

robustness that is meaningful and achievable even for choices of 𝑡

that guarantee unforgeability against a dishonest majority (𝑡 − 1 ≥
𝑛/2) of signers. However, for those choices the narrower property of
liveness cannot be guaranteed in all corruption scenarios in which

unforgeability is guaranteed: If indeed 𝑓 = 𝑡−1 signers aremalicious

and try to disrupt the signing process, then only 𝑛 − (𝑡 − 1) ≤ 𝑡 − 1
honest signers are remaining and cannot produce a signature.

This treatment effectively decouples the corruption threshold for

unforgeability from the corruption threshold for liveness, and gives

applications the choice to favor unforgeability over liveness by

setting 𝑡 − 1 ≥ 𝑛/2, which provides a defense-in-depth mechanism

against catastrophic breaks of unforgeability. For an exemplary

wallet with parameters 𝑡 = 11 and 𝑛 = 15 (inspired by the federated

wallet of Liquid sidechain [27]), we can distinguish three cases

depending on the number 𝑓 of malicious signers:

Normal operation. If 𝑓 ≤ 4 signers are malicious (or merely

offline), then robustness guarantees that the remaining at

least 11 members can still operate the wallet.

Partial failure. If 5 ≤ 𝑓 < 11 signers are malicious, they can pre-

vent the honest signers from operating the wallet, and break

liveness. Then manual intervention may be necessary (e.g.,

in the case of Liquid, taking multiple backup recovery keys,

which can only be used after the coins in the wallet have not

been moved for 28 days, out of physical safes in geographi-

cally distributed locations [27]). Moreover, other guarantees

(e.g., in the case of Liquid, the security of the consensus

mechanism used for producing blocks on the sidechain),

may be affected depending on the corruption thresholds of

the other components of system. However, unforgeability

is still guaranteed and ensures that the 𝑓 malicious signers

cannot access the coins in the wallet directly.

Game over. If 𝑓 ≥ 11 federation members are malicious, not even

unforgeability is guaranteed, and the malicious signers can

create signatures on arbitrary messages, e.g., by simply run-

ning the honest signing protocol, and thus steal all the coins

in the wallet. This is a catastrophic and non-recoverable

failure.

The Power of Robustness and Asynchrony. Thus far, threshold
signature schemes that can be used as a drop-in solution for pure

discrete-logarithm signatures without pairings (whether they are

robust or not), i.e., for ECDSA [13, 11, 26, 9, 7, 10, 3, 5, 8, 37, 1, 30]

or for Schnorr signatures [14, 15, 34, 20, 6, 25], assume a synchro-
nous network. This network model sends messages in synchronized

rounds and arrive within a given time bound. However, as is well

known, the Internet does not provide these guarantees in practice.

Even if one is willing to accept the assumption that messages

from honest signers always arrive within a certain time, a trivial

strategy for malicious signers trying to disrupt the signing protocol

is to send theirmessages very late, i.e., just before the timeout,which

will delay every synchronous round maximally. Smaller timeouts

will mitigate the disruption but will introduce a risk that messages

from honest signers will arrive late.

Themain benefit ofROAST over existing work is that it combines

robustness with the compatibility with an asynchronous network,
i.e., it is only assumed that messages between honest parties arrive

eventually. This combination of robustness and asynchrony is par-

ticularly powerful. An asynchronous protocol avoids the dilemma

of setting timeouts simply because there are no timeouts, and the

protocol can make progress without waiting for disruptive signers.

Concurrent work. The only existing scheme that works in an

asynchronous network is the ECDSA threshold signature scheme by

Groth and Shoup [17] which appeared concurrently to ourwork and

also achieves robustness. As compared to our work, their scheme

requires an honest supermajority (𝑡−1 < 𝑛/3) and an asynchronous
byzantine fault tolerance (BFT) protocol, whereas our scheme,when

used with FROST, supports any choice of 𝑡 and is considerably

simpler because it avoids the complexity of BFT entirely.

In terms of asymptotic efficiency, their protocol has only a con-

stant number of asynchronous rounds, of which all but one can be

preprocessed, and has a total communication complexity of𝑂 (𝑛4𝜆)
for the security parameter 𝜆, whereas the coordinator-free variant

of our protocol (see Section 4.4), when used with FROST, needs only
𝑂 (𝑛3𝜆). Since every message in their protocol is transmitted via

an asynchronous atomic broadcast (i.e., asynchronous BFT), and a

single invocation of the most efficient asynchronous BFT protocols

needs multiple asynchronous rounds and incurs a delay in the order

of seconds [18, Table III] even for small 𝑛 such as 𝑛 ≈ 16, we expect

our protocol to outperform theirs in typical application scenarios.

The GJKR paradigm. Among the threshold Schnorr signatures

schemes in the literature [14, 15, 34, 20, 6, 25], only few provide

robustness, and these can be classified based on their paradigm for

achieving robustness. When the first distributed key generation

(DKG) protocols in the discrete logarithm setting were proposed [14,

15], Schnorr threshold signature schemes were the canonical exam-

ple application, and Gennaro et al. [14, 15] proposed two Schnorr

threshold signature schemes TSch and new-TSch based on two dif-

ferent DKGs; we call these schemes the “GJKR schemes” in the

following. (We note that the TSch scheme has been restated by

Stinson and Strobl [34].)

Notably, these early schemes already provide a robust signing

protocol. Thus far, they remain the only Schnorr threshold signature

schemes in the literature for which robust signing terminates in

a constant number of synchronous broadcast rounds (namely 5

rounds in case of TSch and more in the case of new-TSch).
Themain paradigm for achieving robustness in theGJKR schemes

is to run a DKG protocol during every signing session (instead of just
once at key generation time) to create the random group element
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(sometimes called “nonce”) that is part of a Schnorr signature. If

some of the signers go offline during the signing session, the use of

the DKG guarantees that other signers can reconstruct their secret

contributions to the nonce, and the session can continue. However,

this design paradigm comes at a high cost, and the GJKR schemes

fall short of practical requirements that prohibit their deployment

in real-world systems:

First, the GJKR schemes are restricted to honest majority settings

(𝑡 − 1 < 𝑛/2), but real-world applications often desire higher values

of 𝑡 which favor unforgeability over robustness, as we explained in

the previous subsection.

Second, even if an honest majority is desired, the GJKR schemes

are not suitable for a practical deployment over the Internet due to

their strong assumptions on both the reliability of the network and

the endpoints: The protocols assume the synchronous communica-
tion model, i.e., network messages are sent in synchronized rounds

and arrive within a given time bound, but the Internet does not

provide these guarantees in practice.

Third and closely related, the protocols do not differentiate be-

tween benign and malicious (byzantine) failures. Suppose a signer

appears to have failed to send a message in a round (including the

case that the broadcast mechanism fails). In that case, this signer

will be assumed malicious, and depending on the round, the other

signers will have to reconstruct its secret key share in public to

make progress. A direct implication is that malicious signers learn

the secret key shares of honest signers experiencing benign failures

(e.g., crashes or network outages), and thus honest signers count as

malicious towards the unforgeability corruption threshold 𝑡 − 1 as
soon as they fail to send a single message in some session.

We stress that this is true for unforgeability (and not just for

robustness): For example, even in the presence of only a single ma-

licious signer, the scheme is resilient to at most 𝑡 − 2 further signers
with benign failures, even if these failures occur in different signing

sessions. Suppose instead 𝑡 − 1 honest signers experience crashes.
In that case, the single malicious peer will be able to reconstruct

the 𝑡 − 1 secret shares of the crashed peers from the transcripts of

the sessions in which the failures occurred and, together with their

own share, will be able to forge signatures trivially.

In contrast, our approach avoids all the issues mentioned above:

It supports arbitrary choices of 𝑡 ≤ 𝑛 (including 𝑡 − 1 ≥ 𝑛/2) dis-
honest majority, works with asynchronous networks, and does not

count signers experiencing benign failures towards the corruption

threshold for unforgeability. Moreover, whereas the GJKR protocols

require a broadcast channel for robustness and unforgeability, the

coordinator in our protocol, which is responsible for broadcasts, is

only trusted for robustness.

The new paradigm. To avoid the issues mentioned above with

the GJKR schemes, recent schemes such as FROST [20] and the

scheme by Lindell [25] refrain from using a DKG in every signing

session and are thus much simpler and need fewer signing rounds:

FROST needs two rounds, one of which is a preprocessing round

that can be performed without knowing the message to sign, and

the scheme by Lindell [25] requires three rounds.

While this paradigm does not yield robust signing directly, the

signing protocols still guarantee the weaker property of identifiable

aborts, and thus can be trivially turned into robust protocols by

excluding the identified malicious signers after a failed run and

starting from scratch. However, in the presence of 𝑓 malicious

signers, the resulting robust protocols require 𝑓 + 1 sequential runs
of the underlying protocol and are necessarily synchronous.

In contrast, our wrapper protocol ROAST is a superior way to

turn FROST into a robust signing protocol: it still requires 𝑓 + 1
runs of FROST but the resulting signing protocol is asynchronous.

Robust key generation. While our work provides a method to

make FROST’s signing protocol robust, González et al. [16] provide

an orthogonal method to make FROST’s key generation protocol

robust. Since our techniques work with any correct key generation

protocol, the two approaches can be combined to achieve robust

key generation and signing.

2 PRELIMINARIES
2.1 Semi-interactive Threshold Signatures
Intuitively, a threshold signature scheme is a multi-party signature

scheme with a set of 𝑛 possible signers S1, . . . ,S𝑛 . Computing a

valid signature requires only a subset {S𝑖 }𝑖∈𝑇 of 𝑡 signers, identified

by an index set 𝑇 ⊆ {1, . . . , 𝑛} with |𝑇 | = 𝑡 .
In the following,we provide a formal definition of semi-interactive

threshold signature schemes. We refer to a threshold signature scheme

as semi-interactive if the signing process consists of two separate
steps (or rounds). In the preprocessing step, each signer performs

some preprocessing without knowing the message to sign or the

subset {S𝑖 }𝑖∈𝑇 of participating signers, and the actual signing step.3

After every step, every signer broadcasts its local output of the cor-

responding step to all other signers.

In this paper, we assume that a security parameter 𝜆 is implicitly

given to all algorithms and that the bitstring encoding of an indexed

set such as {𝜌𝑖 }𝑖∈𝑇 or {𝜎𝑖 }𝑖∈𝑇 includes an encoding of the index

set 𝑇 .

Definition 2.1 (Threshold Signatures). A semi-interactive threshold
signature scheme Σ = (Gen, PreRound, PreAgg, SignRound, SignAgg,
Verify) consists of the following p.p.t. algorithms:

(𝑃𝐾, (sk1, . . . , sk𝑛)) ← ⟨Gen1 (𝑛, 𝑡), . . . ,Gen𝑛 (𝑛, 𝑡)⟩: The key gen-
eration protocol Gen = (Gen1, . . . ,Gen𝑛) is a collection

of interactive algorithms run by signers S1, . . . ,S𝑛 . Con-
cretely, signer S𝑖 runs Gen𝑖 , which gets as input the group

size 𝑛 and the signing threshold 𝑡 and returns the secret key

sk𝑖 of S𝑖 and a public-key object 𝑃𝐾 , which is a common

output to all signers.

(state𝑖 , 𝜌𝑖 ) ← PreRound(𝑃𝐾): The preprocessing algorithm is run

by signer S𝑖 , it takes as input a public-key object 𝑃𝐾 and

outputs a secret state state𝑖 and a presignature share 𝜌𝑖 .

𝜌 ← PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈𝑇 ): The deterministic presignature aggre-
gation algorithm PreAgg that takes as input a public-key

object 𝑃𝐾 , a set {𝜌𝑖 }𝑖∈𝑇 of presignature shares and outputs

a (full) presignature 𝜌 .

𝜎𝑖 ← SignRound(sk𝑖 , 𝑃𝐾,𝑇 , state𝑖 , 𝜌,𝑚): The signature share algo-
rithm is run by signerS1 and it takes as input a secret key, a
public-key object 𝑃𝐾 , an index set 𝑇 ∋ 𝑖 of signers, a secret

3
The steps are sometimes called “offline” and “online” steps, but we believe this termi-

nology is misleading in the setting of multi-party signature schemes because even the

“offline” round requires message transmission over the network.
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S1
(state1, 𝜌1 ) ← PreRound(𝑃𝐾 )

𝜎1 ← SignRound(sk1, 𝑃𝐾, [𝑡 ], state1, 𝜌,𝑚)

C

𝜌 ← PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈ [𝑡 ] )

for 𝑖 ∈ [𝑡 ]
if ¬ShareVal(𝑃𝐾, [𝑡 ], 𝑖, 𝜌, 𝜌𝑖 , 𝜎𝑖 ,𝑚)

fail “S𝑖 is disruptive.”
𝜎 ← SignAgg(𝑃𝐾, 𝜌, {𝜌𝑖 }𝑖∈ [𝑡 ] ,𝑚)

(sk1, 𝑃𝐾,𝑚) (𝑃𝐾,𝑚)

𝜌1

𝜌

𝜎1

𝜌2

𝜌

𝜎2

𝜎

S2
. . .

S𝑡

(sk2, 𝑃𝐾,𝑚) (sk𝑡 , 𝑃𝐾,𝑚)
. . .

𝜌𝑡

𝜌

𝜎𝑡
.
.
.

.

.

.

.

.

.

S2

Figure 1: Example signing session of a threshold signature scheme with signers {S𝑖 }𝑖∈[𝑡 ] and a coordinator C.

state state𝑖 , a presignature 𝜌 , and a message𝑚. It outputs a

signature share 𝜎𝑖 .

𝜎 ← SignAgg(𝑃𝐾, 𝜌, {𝜎𝑖 }𝑖∈𝑇 ,𝑚): The deterministic signature ag-
gregation algorithm takes a public-key object 𝑃𝐾 , a (full)

presignature 𝜌 , a set {𝜎𝑖 }𝑖∈𝑇 of signature shares and out-

puts a (full) signature 𝜎 .

𝑏 ← Verify(𝑃𝐾,𝑚, 𝜎): The verification algorithm takes as input

a public-key object 𝑃𝐾 , a message 𝑚, and a signature 𝜎 .

It outputs a boolean 𝑏, where 𝑏 = true means that the

signature is valid and false that it is invalid.

Identifying Disruptive Signers. In order to validate contributions

to a signing session, we require an additional algorithm ShareVal,
which validates the shares which a specific signer S𝑖 contributes
in a signing session, i.e., the presignature share 𝜌𝑖 and the signa-

ture share 𝜎𝑖 . The ShareVal algorithm enables the aggregator node

(or the honest signers) to recognize and blame disruptive signers

who force a signing session to abort by contributing invalid shares.

A corresponding security property called identifiable aborts will
ensure that ShareVal identifies disruptive signers reliably.

Definition 2.2 (Share Validation). A semi-interactive threshold
signature scheme Σ supports share validation if there is an additional
deterministic algorithm ShareVal defined as follows:

𝑏 ← ShareVal(𝑃𝐾,𝑇 , 𝑖, 𝜌, 𝜌𝑖 , 𝜎𝑖 ,𝑚) : The deterministic share val-
idation algorithm takes as input a public-key object 𝑃𝐾 ,

the index 𝑖 of some signer S𝑖 , the presignature 𝜌 , and the

presignature share 𝜌𝑖 as well as the signature share 𝜎𝑖 of

signer S𝑖 . It returns true if and only if shares 𝜌𝑖 and 𝜎𝑖 are

valid contributions of S𝑖 .

We do not specify an algorithm that allows a presignature share

𝜌𝑖 to be validated before the signing round. Instead, we defer the

validation of 𝜌𝑖 until after the signing step, because it may not

be possible to determine the full validity of 𝜌𝑖 without the corre-

sponding signature share 𝜎𝑖 . This simplification to error handling is

without loss of functionality in practice and covers cases in which

a disruptive signer S𝑖 sends a garbage bitstring for 𝜌𝑖 , which is not

a valid encoding of any element in the input domain of SignAgg,

and thus cannot be parsed correctly by SignAgg. Instead of raising

a parsing error, an implementation of SignAgg can interpret all

garbage bitstrings, e.g., those exceeding a maximum length, as a

fixed but arbitrary valid element 𝜌 in the appropriate domain. This

effectively presumes that the disruptive signer S𝑖 has sent 𝜌𝑖 = 𝜌 ,
which it could have done anyway.

Aggregation. We are particularly interested in threshold signa-

tures that support non-trivial aggregation of presignatures and sig-

natures, i.e., PreAgg compresses 𝑡 presignature shares to a constant-

size presignature, and analogously SignAgg compresses 𝑡 signature

shares to a constant-size signature.

Definition 2.3 (Aggregatable). A semi-interactive threshold sig-

nature scheme Σ = (Gen, PreRound, PreAgg, SignRound, SignAgg,
Verify) is aggregatable if |𝜌 | and |𝜎 | are constant in parameters𝑛 and

𝑡 , for 𝜌 ← PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈𝑇 ), 𝜎 ← SignAgg(𝑃𝐾, 𝜌, {𝜎𝑖 }𝑖∈𝑇 ,𝑚)
and all inputs 𝑃𝐾 and𝑚.

The aggregation of these elements is important for practical

purposes as it reduces the size of the final signature as well as

amount of data that needs to be broadcast during signing. In each

of the rounds, a coordinator node C [34, 20],whichwill not be trusted

for unforgeability and can for instance be one of the signers, can

collect the contributions of all signers (i.e., the outputs of PreRound
or SignRound), aggregate them using the respective aggregation

algorithm PreAgg or SignAgg, and broadcast only the aggregate

output back to all signers. Figure 1 depicts a graphical example of a

signing session that involves a coordinator C.

2.2 Security of Threshold Signatures
Our techniques require threshold signature schemes that fulfill two

security properties, namely identifiable aborts and unforgeability.

Identifiable Aborts. The identifiable aborts property ensures that

ShareVal reliably identifies disruptive (i.e., malicious) signers who

send wrong shares. In the IA-CMA game underlying our formal

definition (Figure 2) of identifiable aborts, the adversaryA controls

all but one signer can ask the remaining honest signer to take part
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Game IA-CMA
A
Σ (1

𝜆, 𝑛, 𝑡, 𝑖∗)
1 : // Challenger simulates single honest signer S𝑖∗

2 : out𝑖∗ ← ⟨Gen𝑖∗ (𝑡, 𝑛),A1 (𝑡, 𝑛) ⟩ // out𝑖∗ is output of Gen𝑖∗ (𝑡, 𝑛)

3 : if out𝑖∗ = ⊥ then return false

4 : (sk𝑖∗ , 𝑃𝐾 ) ← out𝑖∗

5 : sidctr𝑖∗ ← 0 // honest signer’s session counter

6 : PreStates𝑖∗ [ ] ← array( ) // honest signer’s state for preprocessing round

7 : SignStates𝑖∗ [ ] ← array( ) // honest signer’s state for signing round

8 : (sid, {𝜎𝑖 }𝑖∈𝑇 ′ ) ← A
OPreRound,OSignRound
2

( )
9 : if SignStates𝑖∗ [sid ] = ⊥ then return false // session does not exist

10 : (𝑇, {𝜌𝑖 }𝑖∈𝑇 ,𝑚, 𝜎𝑖∗ ) ← SignStates𝑖∗ [sid ]
11 : if 𝑇 \ {𝑖∗} ≠ 𝑇 ′ then return false // wrong set of signers

12 : 𝜌 ← PreAgg({𝜌𝑖 }𝑖∈𝑇 )
13 : if ShareVal(𝑃𝐾,𝑇 , 𝑖∗, 𝜌, 𝜌𝑖∗ , 𝜎𝑖∗ ,𝑚) = false then

14 : return true // successful framing

15 : if ∃𝑖 ∈ 𝑇 \ {𝑖∗} . ShareVal(𝑃𝐾, 𝑖, 𝜌, 𝜌𝑖 , 𝜎𝑖 ,𝑚) = false then

16 : return false // disruptive signer was caught

17 : 𝜎 ← SignAgg(𝑃𝐾, 𝜌, {𝜎𝑖 }𝑖∈𝑇 ,𝑚)
18 : return ¬Verify(𝑃𝐾,𝑚, 𝜎 ) // A wins if signature does not verify

Oracle OPreRound()
1 : sidctr𝑖∗ ← sidctr𝑖∗ + 1 // increment session counter

2 : (𝜌𝑖∗ , state𝑖∗ ) ← PreRound(𝑃𝐾 )
3 : PreStates𝑖∗ [sidctr𝑖∗ ] ← (𝜌𝑖∗ , state𝑖∗ )
4 : SignStates𝑖∗ [sidctr𝑖∗ ] ← ⊥
5 : return 𝜌𝑖∗

Oracle OSignRound(sid,𝑇 ′, {𝜌𝑖 }𝑖∈𝑇 ′ ,𝑚)
1 : if 𝑇 ′ ⊈ ( [𝑛] \ {𝑖∗}) ∨ |𝑇 ′ | ≠ 𝑡 − 1 then return ⊥
2 : if sid ≥ sidctr𝑖∗ ∨ PreStates𝑖∗ [sid ] = ⊥ then return ⊥
3 : (𝜌𝑖∗ , state𝑖∗ ) ← PreStates𝑖∗ [sid ]
4 : 𝑇 ← 𝑇 ′ ∪ {𝑖∗}
5 : 𝜌 ← PreAgg({𝜌𝑖 }𝑖∈𝑇 )
6 : 𝜎𝑖∗ ← SignRound(sk𝑖∗ , 𝑃𝐾,𝑇 , state𝑖∗ , 𝜌,𝑚)
7 : PreStates𝑖∗ [sid ] ← ⊥
8 : SignStates𝑖∗ [sid ] ← (𝑇, {𝜌𝑖 }𝑖∈𝑇 ,𝑚, 𝜎𝑖∗ )
9 : return 𝜎𝑖∗

Figure 2: IA-CMA game for Definition 2.4.

in an arbitrary number of concurrent signing sessions, and wins in

either of two cases: First, A wins if, in some session, the malicious

signers under its control submit presignature or signature shares

that all pass validation via ShareVal but will lead to the output of

an invalid signature (break of accountability, line 18). Second, A
wins if, in some session, the honest signer outputs presignature and

signature shares that will not pass validation via ShareVal (break
of non-frameability, line 13).

Definition 2.4 (IA-CMA). Given a semi-interactive threshold sig-

nature scheme with share validation Σ = (Gen, PreRound, PreAgg,
SignRound, SignAgg, ShareVal,Verify), let the game IA-CMA

A
Σ be

defined as in Figure 2. Then Σ has identifiable aborts under chosen-
message attack (IA-CMA) if for any stateful two-stage p.p.t. adver-

sary A = (A1,A2), any integers 𝑛 = poly(𝜆) and 𝑡 ∈ [𝑛], and any

honest signer index 𝑖∗ ∈ [𝑡],

AdvIA-CMA

A,Σ,𝑛,𝑡,𝑖∗ (𝜆) ← Pr

[
IA-CMA

A
Σ (1

𝜆, 𝑛, 𝑡, 𝑖∗) = true
]
≤ negl(𝜆) .

Our definition is the first game-based definition of identifiable

aborts for threshold signatures to the best of our knowledge. There

exists a definition of identifiable aborts for generic MPC in the UC

framework [19] that is used in the context of threshold signatures

[3, 12]. However, that definition requires an underlying ideal func-

tionality for threshold signatures and thus does not cleanly separate

identifiable aborts from the syntax and unforgeability of threshold

signatures. We found a game-based definition simpler and more

suitable for our purposes.

Unforgeability. A threshold signature scheme is existentially un-
forgeable under chosen-message attack (EUF-CMA) under concurrent
sessions if no p.p.t. adversaryA, which controls 𝑡 − 1 signers during
key generation and signing and can ask the remaining 𝑛 − 𝑡 + 1
honest signers take in an arbitrary number of concurrent signing

sessions on messages of its choice (i.e., A has oracles simulating

PreAgg(·) and SignAgg(sk𝑖 , ·) for every honest signer S𝑖 ), can pro-

duce a valid signature on a message𝑚∗ for which it never asked for

a signing session, i.e., for which it never asked any honest signer to

produce SignRound(sk𝑖 , . . . ,𝑚∗). Since the results in this work are

orthogonal to unforgeability, and hold as long as the underlying

unforgeability definition considers concurrent sessions, we refer

the reader to the literature [e.g., 6] for a more formal definition.

2.3 FROST
In this section, we recall the semi-interactive Schnorr threshold

signature scheme FROST by Komlo and Goldberg [20]. The scheme

assumes a prime order group (G, 𝑝, 𝑔), where 𝑝 = poly(𝜆) is the
order of G and 𝑔 is a generator, and two hash functions Hnon and

Hsig mapping to Z𝑞 .
4

Main Algorithms. We display the signing, verification, and share

validation algorithms of FROST in Figure 3. A notable property of

FROST is that it outputs ordinary (single-signer) Schnorr signatures

𝜎 = (𝑅, 𝑠) that can be verified using merely the aggregate key 𝑋

stored in 𝑃𝐾 = (𝑋, (𝑋1, . . . , 𝑋𝑛)) by checking 𝑔𝑠 = 𝑅𝑋𝑐 . (Note that

the verification algorithm Verify of FROST does not actually use

the elements 𝑋1, . . . , 𝑋𝑛 and is thus effectively just the verification

algorithm of ordinary Schnorr signatures.) This allows FROST to

be used as a drop-in replacement for system that support ordinary

Schnorr signature verification, e.g., Bitcoin [36].

Key Generation. The FROST signing algorithms assumes the

signers S1, . . . ,S𝑛 know Shamir secret shares 𝑥𝑖 of the discrete

logarithm 𝑥 of𝑋 such that shares of any 𝑡 signers could reconstruct

4
The hash functions are typically assumed to be random oracles in proofs of unforge-

ability. For the purpose of our work (which is orthogonal to unforgeability), the hash

functions can be simply be assumed to be any deterministic function computable in

polynomial-time.
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ROAST: Robust Asynchronous Schnorr Threshold Signatures

PreRound(𝑃𝐾)
𝑑𝑖 ,←$ Z∗𝑞 ; 𝑒𝑖 ,←$ Z∗𝑞

𝐷𝑖 ← 𝑔𝑑𝑖 ; 𝐸𝑖 ← 𝑔𝑒𝑖

𝜌𝑖 ← (𝑑𝑖 , 𝑒𝑖 )
state𝑖 ← (𝐷𝑖 , 𝐸𝑖 )
return (state𝑖 , 𝜌𝑖 )

PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈𝑇 )
{ (𝐷𝑖 , 𝐸𝑖 ) }𝑖∈𝑇 ← {𝜌𝑖 }𝑖∈𝑇
𝐷 ←∏

𝑖∈𝑇 𝐷𝑖

𝐸 ←∏
𝑖∈𝑇 𝐸𝑖

𝜌 ← (𝐷, 𝐸 )
return 𝜌

Lagrange(𝑇, 𝑖)
Λ𝑖 ←

∏
𝑗 ∈𝑇 \{𝑖} 𝑗/( 𝑗 − 𝑖 )

return Λ𝑖

SignRound(sk𝑖 , 𝑃𝐾,𝑇 , state𝑖 , 𝜌,𝑚)
𝑥𝑖 ← sk𝑖
(𝑋, (𝑋1, . . . , 𝑋𝑛 ) ) ← 𝑃𝐾

(𝐷, 𝐸 ) ← 𝜌

(𝑑𝑖 , 𝑒𝑖 ) ← state𝑖
𝑏 ← Hnon (𝑋,𝑇 , 𝜌,𝑚)

𝑅 ← 𝐷𝐸𝑏

𝑐 ← Hsig (𝑋,𝑚,𝑅)
Λ𝑖 ← Lagrange(𝑇, 𝑖 )
𝜎𝑖 ← 𝑑𝑖 + 𝑏𝑒𝑖 + 𝑐Λ𝑖𝑥𝑖

return 𝜎𝑖

SignAgg(𝑃𝐾, 𝜌, {𝜎𝑖 }𝑖∈𝑇 ,𝑚)
(𝐷, 𝐸 ) ← 𝜌

(𝑋, (𝑋1, . . . , 𝑋𝑛 ) ) ← 𝑃𝐾

𝑏 ← Hnon (𝑋,𝑇 , 𝜌,𝑚)

𝑅 ← 𝐷𝐸𝑏

𝑠 ← ∑
𝑖∈𝑇 𝜎𝑖

𝜎 ← (𝑅, 𝑠 )
return 𝜎

ShareVal(𝑃𝐾,𝑇 , 𝑖, 𝜌, 𝜌𝑖 , 𝜎𝑖 ,𝑚)
(𝐷𝑖 , 𝐸𝑖 ) ← 𝜌𝑖

(𝐷, 𝐸 ) ← 𝜌

(𝑋, (𝑋1, . . . , 𝑋𝑛 ) ) ← 𝑃𝐾

𝑏 ← Hnon (𝑋,𝑇 , 𝜌,𝑚)

𝑅 ← 𝐷𝐸𝑏

𝑐 ← Hsig (𝑋,𝑚,𝑅)
Λ𝑖 ← Lagrange(𝑇, 𝑖 )

return (𝑔𝜎𝑖 = 𝐷𝑖𝐸
𝑏
𝑖 𝑋

𝑐Λ𝑖
𝑖
)

Verify(𝑃𝐾,𝑚, 𝜎)
(𝑋, (𝑋1, . . . , 𝑋𝑛 ) ) ← 𝑃𝐾

(𝑅, 𝑠 ) ← 𝜎

𝑐 ← Hsig (𝑋,𝑚,𝑅)
return (𝑅𝑋𝑐 = 𝑔𝑠 )

Figure 3: Main signing algorithms (top) and share validation
and verification algorithms (bottom) of FROST [20, 6].

𝑥 (but 𝑥 itself will never be reconstructed during signing). Different

methods can be used to create this setup, e.g., a suitable distributed

key generation (DKG) protocol for the discrete-logarithm setting,

or simply a trusted dealer. The results in this work are independent

of the specific key generation method, as long as the resulting

keys fulfills some basic correctness condition, which essentially

states that the aggregate public key 𝑋 can be obtained from the

“individual” public keys 𝑋𝑖 for 𝑖 ∈ 𝑇 via the Shamir secret sharing

interpolation in the exponent.

Definition 2.5. Let 𝑛 = poly(𝜆) and 𝑡 ≤ 𝑛. A key generation

protocol Gen is correct for discrete-logarithm based keys in Shamir
secret sharing (dlog-sss-correct) for 𝑛 and 𝑡 if for every honest signer

index 𝑖∗ ∈ [𝑛], and for all p.p.t. adversaries A,

Pr[¬((C1) ∧ (C2)) | (𝑃𝐾, sk𝑖∗ ) ← ⟨Gen𝑖∗ (𝑛, 𝑡),A(𝑛, 𝑡)⟩ ] ≤ negl(𝜆),

where (𝑃𝐾, sk𝑖∗ ) with 𝑃𝐾 = (𝑋, (𝑋1, . . . , 𝑋𝑛)) and sk𝑖∗ = 𝑥𝑖∗ is the
output of Gen𝑖∗ (𝑛, 𝑡), and conditions (C1) and (C2) are defined as

𝑋 =
∏
𝑖∈𝑇

𝑋
Λ𝑇 ,𝑖

𝑖
for all 𝑇 ⊆ [𝑛] s.t. |𝑇 | = 𝑡, (C1)

𝑋𝑖∗ = 𝑔
𝑥𝑖∗ . (C2)

Here, Λ𝑇,𝑖 denotes the Lagrange coefficient for 𝑖 ∈ 𝑇 defined as

Λ𝑇,𝑖 =
∏
𝑗∈𝑇 \{𝑖 } 𝑗/( 𝑗 − 𝑖) .

For the sake of concreteness, the reader may assume that Gen
in instantiated with the PedPoP DKG protocol [6], which has been

designed specifically for FROST. This protocol is a variant of Ped-
ersen’s DKG [29, 15] with added proofs of possession, which in this

context mean non-interactive zero-knowledge proofs of knowledge

of the individual secret keys and which are necessary to support

𝑡 ≥ 𝑛/2, see Crites et al. [6] for the protocol description and a de-

tailed discussion. The protocol assumes a reliable broadcast channel

to ensure that signers agree on the public key 𝑃𝐾 and makes use

of an additional hash function Hpop. It is easy to verify that this

protocol is perfectly dlog-sss-correct, i.e., the probability term in

Definition 2.5 is 0.

A more sophisticated alternative is the recent DKG protocol

by González et al. [16], which improves over the aforementioned

DKG by making it robust. (This is orthogonal to our work, which

focuses on robust signing.)

Unforgeability. After Komlo and Goldberg [20] gave a heuristic

argument for the unforgeability of FROST under chosen-message

attacks (EUF-CMA), Crites et al. [6] gave a full EUF-CMA proof

under the one-more discrete logarithm (OMDL) assumption in the

combination of the random oracle model (ROM) and the algebraic

group model (AGM). The considered EUF-CMA notion covers at-

tacks on unforgeability under polynomially many concurrent signing
sessions [20, 6]. This is a crucial prerequisite for FROST to be suit-

able for our wrapper protocol ROAST (Section 4), which relies on

the ability to start multiple concurrent signing sessions of the un-

derlying threshold signature scheme.

While all techniques presented in this work are compatible with

the FROST scheme as initially described by Komlo and Goldberg

[20],we consider an optimized variant of FROST in this paper,which
supports aggregation of presignatures (see the PreAgg algorithm).

This optimization has been discovered in the context of (𝑛-of-𝑛)

multisignatures and proven secure by Nick et al. [28] for their

multisignature scheme MuSig2, which has an essentially identical

signing protocol to FROST and only differs in the key setup. A

careful inspection of the proof shows that the simulation technique

of Nick et al. [28], which is used therein to handle presignature

aggregation, immediately carries over to FROST as well.
5

Identifiable Aborts. We prove that FROST provides identifiable

aborts. Though we are not aware of any prior formal treatment, we

stress that it is a well-known fact that FROST offers the possibility

to detect disruptive signers [20, p. 10].

5
The proof by Nick et al. [28] tells us that the crucial prerequisite is that for any two

signing round oracle queries 𝜎𝑖 ← SignRound(sk𝑖 , 𝑃𝐾,𝑇 , state𝑖 , 𝜌,𝑚) and 𝜎 ′𝑖 ←
SignRound(sk𝑖 , 𝑃𝐾,𝑇 ′, state′𝑖 , 𝜌 ′,𝑚′ ) with state𝑖 = state′𝑖 ,we have that (𝑇, 𝜌,𝑚) ≠
(𝑇 ′, 𝜌 ′,𝑚′ ) implies 𝑏 ≠ 𝑏′ with overwhelming probability, where 𝜎𝑖 = 𝑑𝑖 + 𝑏𝑒𝑖 +
𝑐Λ𝑖𝑥𝑖 and 𝜎

′
𝑖 = 𝑑𝑖 +𝑏′𝑒𝑖 + 𝑐Λ𝑖′𝑥𝑖 . This holds for our variant of FROST because𝑇 ,𝜌 ,

and𝑚 are included in the derivation of 𝑏 via Hnon .
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Theorem 2.6 . The semi-interactive threshold signature scheme
FROST = (Gen, PreRound, PreAgg, SignRound, SignAgg, ShareVal,
Verify) (Figure 3), where Gen is any dlog-sss-correct key generation
protocol (Definition 2.5), is IA-CMA secure (Definition 2.4).

Proof. There are two possible winning cases for an adver-

sary A in IA-CMA
A
Σ (1

𝜆, 𝑛, 𝑡, 𝑖∗), i.e., the honestly created signa-

ture share 𝜎𝑖∗ does not pass validation via ShareVal (successful
framing, see line 13), or every signature share passes validation

but the honestly aggregated full signature does not verify (break of

accountability, see line 18).

No break of non-frameability. To see that the winning condition

of A in line 13 of IA-CMA
A
Σ (1

𝜆, 𝑛, 𝑡, 𝑖∗) never holds, observe that
by construction, a signature share 𝜎𝑖∗ created by an honest signer

S𝑖∗ is of the form 𝜎𝑖∗ ← 𝑑𝑖∗ + 𝑏𝑒𝑖∗ + 𝑐Λ𝑖∗𝑥𝑖∗ . It passes validation if

𝑔𝜎𝑖∗ = 𝐷𝑖∗𝐸
𝑏
𝑖∗𝑋

𝑐Λ𝑖∗
𝑖∗ , where Λ𝑖∗ , 𝑏, and 𝑐 are computed identically

in SignRound and ShareVal, as well as 𝑔𝑑𝑖∗ = 𝐷𝑖∗ and 𝑔
𝑒𝑖∗ . Thus,

validation passes if 𝑋𝑖∗ = 𝑥𝑖∗ , which holds due to condition (C2) of

the dlog-sss-correctness of Gen.

No break of accountability. To see that the winning condition of

A in line 18 of IA-CMA
A
Σ (1

𝜆, 𝑛, 𝑡, 𝑖∗) never holds, observe SignAgg
obtains value 𝑠 in the output signature 𝜎 = (𝑅, 𝑠) by adding up

signature shares 𝜎𝑖 for 𝑖 ∈ 𝑇 , i.e. 𝑠 =
∑
𝑖∈𝑇 𝜎𝑖 . If all these signa-

ture shares 𝜎 pass validation together with their corresponding

presignature shares 𝜌𝑖 = (𝐷𝑖 , 𝐸𝑖 ), then we get

𝑔𝑠 = 𝑔
∑

𝑖∈𝑇 𝜎𝑖 =
∏
𝑖∈𝑇

𝑔𝜎𝑖

=
∏
𝑖∈𝑇

𝐷𝑖𝐸
𝑏
𝑖 𝑋

𝑐Λ𝑖

𝑖
(1)

= 𝐷𝐸𝑏

(∏
𝑖∈𝑇

𝑋
Λ𝑖

𝑖

)𝑐
(2)

= 𝑅

(∏
𝑖∈𝑇

𝑋
Λ𝑖

𝑖

)𝑐
(3)

= 𝑅𝑋𝑐 , (4)

where equality (1) follows from the validation condition 𝑔𝜎𝑖 =

𝐷𝑖𝐸
𝑏
𝑖
𝑋
𝑐Λ𝑖

𝑖
in ShareVal, equalities (2) and (3) hold by construction

of PreAgg and SignAgg, respectively, and equality (4) holds due to

condition (C1) of the dlog-sss-correctness of Gen.
Since all our arguments were unconditional except the conditions

(C1) and (C2) of the dlog-sss-correctness of Gen, we obtain

AdvIA-CMA

A,FROST,𝑛,𝑡,𝑖∗ (𝜆) = Pr

[
IA-CMA

A
FROST (1

𝜆, 𝑡, 𝑛, 𝑖∗) = true
]

= Pr[¬((C1) ∧ (C2)) | (𝑃𝐾, sk𝑖∗ ) ← ⟨Gen𝑖∗ (𝑛, 𝑡),A1 (𝑛, 𝑡)⟩ ]
≤ negl(𝜆) . □

3 WARM-UP: FROSTLAND
In the far country of Frostland, a democratic council is responsible

for legislation. The constitution states that for a new bill to pass, a

majority of 𝑡 = 7 of 𝑛 = 13 council members need to sign it.

Readers not familiar with the Frostlandic culture might assume

that the main difficulty in the democratic process is finding a ma-

jority in the council and that signing the bill is only a formality.

However, in Frostland, signing is a complicated task. Frostlanders

are very proud of their aesthetic heritage. Each of the 13 council

members owns a unique and beautiful watermark, and a bill is only

valid if the paper it’s written on carries the watermarks of all signers

(and no others).

The signing process is, therefore, as follows: Find a majority

coalition of council members, manufacture a sufficient amount of

paper carrying the watermarks of these council members (but no

other council members’ watermarks), write the contents of the bill

on the watermarked paper, and finally, collect signatures on the

bill from exactly those members.
6
However, if one of the members

of the coalition fails to provide a signature during the final step,

e.g., because she is out of the office for an indefinite period of time,

the process stalls. In particular, it is not possible to ask another

member to sign because the paper carries the disruptive member’s

watermark (instead of the newmember’s watermark). The only way

to move forward is to start an entirely new signing process from

scratch, which involves finding a new majority of council members

and going through the cumbersome process of manufacturing paper

with a new set of watermarks.

This peculiarity makes signing very complicated, and the council

members employ a secretary whose task is to facilitate the process.

Unfortunately for the secretary, it is not clear upfront which council

members support a proposed bill. From time to time,members try to

disrupt the signing process in an attempt to prevent other members

from passing the bill and refuse to sign even though they have

indicated support for a bill. In the worst case, it could even happen

that all 13 council members claim to support the bill, but in fact,

only 7 or fewer of them support it.

The poor secretary has multiple options: First, the secretary

could choose a group of 7 council members who claim to support

the bill, manufacture paper with their watermarks, prepare a single

copy of the bill on that paper, and ask the chosen group to sign

that copy. If any council members in the chosen group actively

refuses to sign correctly (e.g., by giving a wrong signature) and

thereby forces the signing to abort, the secretary can identify the

disruptive members, fret about the dishonesty in the council, replace

the disruptive members with other members, and prepare a new

copy of the bill (which involves manufacturing new paper with

different watermarks). However, the very bureaucratic rules in the

constitution of Frostland mandate that each council member is

given an indefinite amount of time to check a bill before signing or

refusing it, and as a result, the entire signing procedure can take

very long. Some particularly annoying council members sit in front

of the bill for hours and hours, pretending to check that the copy

has been prepared correctly, and the secretary cannot tell whether a

given member will eventually sign or just keep sitting there forever.

As a result, this procedure can take very long and even get stuck.

Alternatively, the secretary could prepare a separate copy of the

bill for each group of 7 members and ask all supporting council

members to sign each copy on which their watermark appears.

While this procedure is guaranteed not to get stuck, the secretary,

who is proficient in combinatorics, knows that the procedure is not

6
In Frostland, a valid signature reveals the set of signers who create it, which is in

contrast to digital signatures produced by FROST. However, whether the signature
reveals the set of signers is irrelevant to the techniques presented in this work.
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suitable in practice because it requires him to prepare

(𝑛
𝑡

)
=

(
13

7

)
=

1716 copies in total.

As a solution to this problem, the secretary uses the following

procedure: In the beginning, all council members that signal support

for the bill are asked to gather in the council building. The secretary

maintains a list of all these members and whenever there are at

least 7 members on the list (which is also the case in the beginning

of the procedure), he calls a group of 7 members to his office, and

strikes out their names on the list. He then obtains paper with

the watermarks of those 7 members, writes a copy of the bill on

that paper, and asks the council members in the group to sign it.

Whenever a council member has completed signing the copy, they

leave the office and wait for a new call while the secretary adds

their name back to his list.

It is easy for the secretary to see that this procedure will succeed

andnot need toomany copies of the bill: If at least 7 councilmembers

actually support the bill and behave honestly, then at any point

in time, he knows that these 7 members will eventually sign their

currently assigned copy and be re-added to the secretary’s list. Thus

the secretary can always be sure that 7 members will be on his list

again at some point in the future, and so the signing procedure

will not get stuck. Moreover, since members are assigned a new

copy only after correctly signing the previously assigned copy, each

member can hold up the signing of at most one copy at a time. Thus,

even the maximum of 𝑛−𝑡 = 13−7 = 6 disruptive council members

can hold up the signing of at most 6 copies. At the very latest, the

7th copy of the bill will then be assigned only to honest council

members who will complete the signing and produce a correctly

signed bill.

4 ROBUST ASYNCHRONOUS SIGNING
Coming back from Frostland to the real world, the main goal of this

work is to turn semi-interactive signing with identifiable aborts into

robust and asynchronous signing. Our setting consists of 𝑛 signers

(or “council members”) S1, . . . ,S𝑛 that have completed the key

generation protocol Gen(𝑡, 𝑛) of a semi-interactive IA-CMA-secure

threshold signature scheme Σ, and are connected to a coordinator

(or “secretary”)𝐶 . The task of these parties is to sign a givenmessage

(or “bill”)𝑚, given as input to the coordinator.

We aim to design a signing protocol that works in an asynchro-
nous network and is robust against a malicious coalition of signers

whose goal is to prevent the honest signers from completing the

protocol. For simplicity, we are satisfied with a protocol that ensures

that the coordinator outputs a valid signature. Depending on the

application’s needs, the coordinator may also relay the signature

to the signers upon successful completion of the signing protocol.

ANote on Probabilities. Since our techniques in this section are of
a distributed-systems kind and non-cryptographic, we ignore neg-

ligible probabilities and computational restrictions in this section

for the sake of presentation, and make the simplifying assumption

that the adversary cannot break IA-CMA of Σ at all, i.e., that the

probability in Definition 2.4 is zero. (This is true for Σ = FROST
when usedwith a perfectly dlog-sss-correct key generation protocol

such as PedPoP [6], but our results in this section do not depend

on this and can work with a negligible IA-CMA error.) When Σ is

instantiated with a real scheme, where the adversary has a non-zero

but negligible probability of breaking IA-CMA, all statements hold

except with negligible probability.

Network and Adversary Model. The signers are connected to the

coordinator via reliable and authenticated point-to-point channels.

The network is asynchronous, i.e., we only assume that messages

between honest parties are delivered eventually.

An adversary against robustness aims to prevent the signers

from obtaining a valid signature on a message𝑚 given as input to

the coordinator. We assume the adversary controls 𝑓 ≤ 𝑛−𝑡 signers
both during key generation and signing but not the coordinator.

(We will explain in Section 4.4 how to eliminate the need for a

trusted coordinator.)

Robustness. Informally speaking, a threshold signing protocol is

robust if, under the above network and adversarymodel, for any keys

obtained via a run of the key generation protocol, the coordinator

outputs a valid signature in any execution of the signing protocol.

Definition 4.1 ((𝑛, 𝑡, 𝑓 )-Robustness). Given a set 𝐹 ⊆ [𝑛] of |𝐹 | =
𝑓 indices of malicious signers, let P1, . . . ,P𝑛 be algorithms for key

generation such that P𝑖 = Gen𝑖 for honest indices 𝑖 ∈ [𝑛] \ 𝐹 and

P𝑖 = A formalicious indices 𝑖 ∈ 𝐹 , and letP′
1
, . . . ,P′𝑛 be algorithms

for signing such that P′
𝑖
= S𝑖 for honest indices 𝑖 ∈ [𝑛] \ 𝐹 and

P′
𝑖
= A for malicious indices 𝑖 ∈ 𝐹 .
A threshold signing protocol is (𝑛, 𝑡, 𝑓 )-robust if for any message

𝑚, and for keys (𝑃𝐾, (sk1, . . . , sk𝑛)) ← ⟨P1 (𝑛, 𝑡), . . . ,P𝑛 (𝑛, 𝑡)⟩ ob-
tained via the key generation protocol, it holds that in an execution

of the signing protocol 𝜎 ← ⟨C(𝑃𝐾, 𝑛, 𝑡,𝑚),P′
1
(sk1, pk,𝑚), . . . ,

P′𝑛 (sk𝑛, pk,𝑚)⟩, where the adversary has control over the sched-

uling and delivery of network messages but must deliver network

messages from honest to honest parties (including the coordinator)

eventually, the coordinatorC(𝑃𝐾,𝑛, 𝑡,𝑚) eventually terminates and

outputs a signature 𝜎 for which Verify(𝑃𝐾, 𝜎,𝑚) = true.

Clearly, 𝑓 = 𝑛 − 𝑡 is optimal: No (unforgeable) threshold signing

protocol is 𝑓 -robust for 𝑓 > 𝑛−𝑡 because 𝑛− 𝑓 ≤ 𝑡 −1 signers alone
cannot create a signature. Since our approach yields an optimal

protocol, we may omit 𝑓 and work with the following definition.

Definition 4.2 (Robustness). A threshold signing protocol is robust
if for all 𝑡 ≤ 𝑛 and 𝑓 = (𝑛 − 𝑡) it is (𝑛, 𝑡, 𝑓 )-robust.

4.1 ROAST
We introduceROAST (RObustASynchronous Threshold signatures),
a generic wrapper that turns any given semi-interactive threshold

signature scheme Σ with identifiable aborts (IA-CMA), e.g., Σ =

FROST, into a robust and asynchronous threshold signature protocol.
As ROAST initiates multiple concurrent signing sessions of the

underlying threshold signature scheme Σ, ROAST is unforgeable if

Σ is unforgeable under concurrent signing sessions (EUF-CMA).

Figure 4 displays ROAST’s algorithms for the coordinator C and

the signers S1, . . . ,S𝑛 . The bulk of the work happens in C, whose
task is to maintain a set 𝑅 of responsive signers (corresponding to
the “list” of the secretary), i.e., signers that have responded to all

previous signing requests. As soon as the set 𝑅 contains 𝑡 signers,

C will initiate a new signing session of Σ with them, i.e., ask each

S𝑖 for 𝑖 ∈ 𝑅 to respond with a valid signature share 𝜎𝑖 .
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Along with 𝜎𝑖 , each signer S𝑖 is also required to provide a fresh

presignature share 𝜌′
𝑖
in preparation of a possible next signing

session of Σ. Combining both a signature share 𝜎𝑖 for the current

session and a presignature share 𝜌′
𝑖
for a future session in a single

response effectively creates a pipeline of signing sessions.

As we will prove below, one of the signing sessions of Σ will

eventually finish, i.e., the coordinator receives all the signature

shares and can return the final valid signature.

Conventions for Pseudocode. Weuse an event-based programming

paradigm to account for the asynchronous network. After executing

the code in the main body of the algorithm, the execution enters

an infinite event loop that processes a queue of incoming network

messages. Each message in the queue triggers the execution of

an “upon receive” block. Further incoming network messages in

the queue cannot be processed until after the “upon receive” block
has finished executing (i.e., until the end of the block or a “break”
instruction is reached). Multiple “upon receive” blocks never run
concurrently. If the queue is empty, execution waits until a message

arrives. The “send” keyword is used to send outgoing messages.

The “return” keyword breaks the execution of the entire algorithm

(i.e., not only the current block) and returns the indicated value.

The “proc” keyword is used to define a subprocedure.

4.2 Robustness Analysis
We are ready to prove our main result, the robustness of ROAST.

Theorem 4.3 . LetΣ be a semi-interactive IA-CMA-secure thresh-
old signature scheme. Then ROAST(Σ) is robust (Definition 4.2) and
the coordinator successfully terminates after initiating at most𝑛−𝑡 +1
signing sessions of Σ (i.e., after calling PreAgg at most 𝑛− 𝑡 + 1 times).

Proof. We first introduce some auxiliary definitions. We call

a reply by a signer in a session (of Σ) valid if it is not unsolicited

or malformed (line 11) and if it passes validation via the ShareVal
algorithm (line 18). We say that a session terminates if all replies by
all signers have been received by the coordinator C and they are

all valid. Given a session, we call a signer belonging to this session

pending (at a particular point of time) if it has not yet sent a valid

reply in the session or has sent an invalid reply. Given a trace of a

full execution of the protocol, we call a signer disruptive if there is
a session in the execution for which it never sends a valid message.

We now prove some basic facts about honest signers. By defi-

nition, honest signers are not disruptive, and there are at most 𝑓

disruptive signers in any execution of the protocol. Moreover, hon-

est signers will only send valid replies: By construction, an honest

signer will never send an unsolicited or malformed reply (line 11),

and by IA-CMA, an honest signer never sends replies that fail val-

idation via ShareVal (line 18). As a consequence, lines 11 and 18

are unreachable for replies from honest signers, and honest signers

will never be marked malicious by the coordinator C, i.e., they are

never added to the set𝑀 .

Observe that the protocol maintains the invariant that an indi-

vidual signer is pending in at most one session of Σ. This is ensured
by construction because signers which are pending in some session

will not be in the set 𝑅 and thus not be added to newly initiated

sessions (lines 24ff). This invariant is what enables us to show that

the protocol terminates successfully.

C(𝑃𝐾, 𝑛, 𝑡,𝑚)
1 : 𝑅 ← ∅ // S𝑖 is responsive if 𝑖 ∈ 𝑅

2 : 𝑀 ← ∅ // S𝑖 is known to be malicious if 𝑖 ∈ 𝑀

3 : 𝑃 [ ] ← array(𝑛) // 𝑃 [𝑖 ] is the latest presignature share of S𝑖
4 : sidctr ← 0 // Session counter

5 : 𝑆𝐼𝐷 [ ] ← array(𝑛) // 𝑆𝐼𝐷 [𝑖 ] is the session that includes S𝑖
6 : 𝑇 [ ] ← array(𝑛−𝑡+1) // 𝑇 [sid ] is the set of signer indices of session sid

7 : 𝑁 [ ] ← array(𝑛−𝑡+1) // 𝑁 [sid ] is the presignature of session sid

8 : 𝑆 [ ] ← array(𝑛−𝑡+1) // 𝑆 [sid ] is the set of sig. shares for session sid

9 : upon receive (𝜎𝑖 , 𝜌 ′𝑖 ) from S𝑖 , 𝑖 ∉ 𝑀
10 : if 𝑖 ∈ 𝑅 ∨ (𝑃 [𝑖 ] = ⊥ ∧ 𝜎𝑖 ≠ ⊥) then
11 : MarkMalicious(𝑖 ) ; break // Unsolicited or malformed reply

12 : if 𝜎𝑖 ≠ ⊥ then // Process sig. share

13 : sid ← 𝑆𝐼𝐷 [𝑖 ] // Look up session of S𝑖
14 : 𝑇sid ← 𝑇 [sid ] // Look up signers of session sid

15 : 𝜌 ← 𝑁 [sid ] // Look up (aggregate) presignature of session sid

16 : 𝜌𝑖 ← 𝑆 [𝑖 ] // Look up presignature share of S𝑖
17 : if ¬ShareVal(𝑃𝐾,𝑇sid , 𝑖, 𝜌, 𝜌𝑖 , 𝜎𝑖 ,𝑚) then
18 : MarkMalicious(𝑖 ) ; break // Invalid sig. share from S𝑖
19 : 𝑆 [sid ] ← 𝑆 [sid ] ∪ {𝜎𝑖 } // Store valid signature share

20 : if |𝑆 [sid ] | = 𝑡 then // If we have 𝑡 valid signature shares, . . .

21 : 𝜎 ← SignAgg(𝑃𝐾, 𝜌, 𝑆 [sid ],𝑚) // aggregate them, . . .

22 : return 𝜎 // and output the final signature.

23 : 𝑃 [𝑖 ] ← 𝜌 ′𝑖 // Store received presignature share of S𝑖
24 : 𝑅 ← 𝑅 ∪ {𝑖 } // Mark S𝑖 as responsive.

25 : if |𝑅 | = 𝑡 then // If we now have 𝑡 responsive signers, . . .

26 : sidctr ← sidctr + 1 // initiate a new session with them.

27 : {𝜌𝑖 }𝑖∈𝑅 ← {𝑃 [𝑖 ] }𝑖∈𝑅 // Look up presignature shares

28 : 𝜌 ← PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈𝑅 ) // Build the presignature. . . ,

29 : foreach 𝑖 ∈ 𝑅
30 : send (𝜌, 𝑅) to S𝑖 // and send it to the signers.

31 : 𝑆𝐼𝐷 [𝑖 ] ← sidctr // Remember the session of S𝑖
32 : 𝑇 [sidctr ] ← 𝑅 // Remember the signers

33 : 𝑁 [sidctr ] ← 𝜌 // Remember the presignature

34 : 𝑅 ← ∅ // Mark signers as pending again.

35 : procMarkMalicious(𝑖 )
36 : 𝑀 ← 𝑀 ∪ {𝑖 }
37 : if |𝑀 | > 𝑛 − 𝑡 then
38 : fail // Too many malicious signers

S𝑖 (sk𝑖 , 𝑃𝐾,𝑚)
1 : (𝜌𝑖 , state𝑖 ) ← PreRound(𝑃𝐾 )
2 : send (⊥, 𝜌𝑖 ) to C
3 : upon receive (𝜌, 𝑅) from C
4 : 𝜎𝑖 ← SignRound(sk𝑖 , 𝑃𝐾, 𝑅, state𝑖 , 𝜌,𝑚)
5 : (𝜌𝑖 , state𝑖 ) ← PreRound(𝑃𝐾 )
6 : send (𝜎𝑖 , 𝜌𝑖 ) to C

Figure 4: ROAST
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Consider any execution of the protocol, and assume towards

contradiction that no session of Σ in this execution terminates.

Consider any point during the execution. We know that honest

signers are not excluded, and valid messages from honest signers

will eventually arrive in their corresponding sessions. Thus the

honest signers will eventually be added to 𝑅 (line 24). Since there

are at least 𝑡 honest signers, and since, by our assumption, the

execution does not terminate, we will eventually have |𝑅 | ≥ 𝑡 , and a
new sessionwill be initiated. This shows that at any point during the

execution of the protocol, a new session will be initiated eventually

(under our assumption that the execution never terminates). As a

result, there will eventually be 𝑓 + 1 sessions during the execution.

Consider now the point in time at which the (𝑓 + 1)-th session

is initiated. By the invariant, we know that at most 𝑓 disruptive

signers are pending in at most one session. So among the 𝑓 + 1
sessions, there exists a session in which all pending signers are non-

disruptive. This session will eventually terminate. This contradicts

our assumption that no session will terminate. Thus,we have shown

that there is a terminating session in any execution of the protocol.

By definition, we know that in this session, all signature shares

have been received by the coordinator C, and they are all valid,

i.e., they pass validation via the ShareVal algorithm. Thus by IA-

CMA, the final signature 𝜎 obtained via the SignAgg algorithm and

returned by the protocol (lines 21 and 22), will pass verification, i.e.,

Verify(𝑃𝐾,𝑚, 𝜎) = true.
It remains to show that the protocol will initiate at most 𝑛 − 𝑡 + 1

sessions of Σ. Suppose 𝑛− 𝑡 + 1 sessions have been initiated, but the

protocol has not terminated yet. This means none of the 𝑛 − 𝑡 + 1
sessions have terminated, and there is a pending signer in each of

the 𝑛 − 𝑡 + 1 sessions. By the invariant, these 𝑛 − 𝑡 + 1 pending

signers are distinct, and by construction, they are not in 𝑅. Then we

have |𝑅 | ≤ 𝑛 − (𝑛 − 𝑡 + 1) = 𝑡 − 1, which is not enough to initiate a

further session. We conclude that the protocol can initiate at most

𝑛 − 𝑡 + 1 sessions of Σ before terminating. □

4.3 Complexity Analysis
In this section, we analyze ROAST’s asymptotic performance.

Asynchronous Rounds. Under the standard notion of asynchro-

nous rounds [4], both the coordinator sending parallel requests to a

set of signers𝑇 and the honest signers in𝑇 sending their responses

count as a single asynchronous round. A “round trip” consisting

of a set of requests and responses counts as two asynchronous

rounds. After the initial preprocessing step of ROAST, which takes

one round, the signers respond to subsequent signing requests with

not only a signature share for the current session of Σ, but also
a presignature share for a possible next session. This pipelining

of sessions ensures that each session requires only two additional

asynchronous rounds. Since ROAST initiates at most𝑛−𝑡+1 signing
sessions before successfully producing a signature, the coordinator

will deliver a signature after at most 1 + 2(𝑛 − 𝑡 + 1) = 2(𝑛 − 𝑡) + 3
asynchronous rounds.

Communication. As long as the network protocol is reasonably

efficient, the majority of the bandwidth will be used for presig-

nature shares and signature shares. We assume the size of pres-

ignature shares and signature shares is 𝑂 (𝜆) (and the same for

full presignatures and signatures, see Definition 2.3) as is the case

for FROST. Within each asynchronous round, the coordinator ex-

changes messages of size 𝑂 (𝜆) with each of the signers in that

round. Since there are at most 2(𝑛 − 𝑡) + 3 asynchronous rounds,
each containing 𝑡 signers, an execution of ROAST needs at most

𝑡 (2(𝑛 − 𝑡) + 3) ·𝑂 (𝜆) = 𝑂 (𝑛2𝜆) communication bandwidth in total.

Computation. Ignoring the time necessary to maintain state, each

signer will make one call to PreRound and one call to SignRound
per session of Σ, together with an extra redundant PreRound call

after the final session. The coordinator will make one call to PreAgg
and up to 𝑡 calls to ShareVal per session, as well as one final call to
SignAgg to obtain the final signature. Thus the total computational

effort of ROAST is at most

(𝑛 − 𝑡 + 1) (𝜏PreRound + 𝜏SignRound) + 𝜏PreRound

for each of the 𝑡 signers, and

(𝑛 − 𝑡 + 1) (𝜏PreAgg + 𝑡 · 𝜏ShareVal) + 𝜏SignAgg

for the coordinator.

4.4 Eliminating the Semi-trusted Coordinator
ROAST requires a semi-trusted coordinator to guarantee robustness

(but recall that unforgeability will hold even when the coordinator

is malicious). A simple method to eliminate the need for a semi-

trusted coordinator is to let the signers run enough instances of

the coordinator process: The 𝑛 signers choose among themselves

any set of 𝑛 − 𝑡 + 1 coordinators, e.g., just {S1, . . . ,S𝑛−𝑡+1}, and
start 𝑛 − 𝑡 + 1 concurrent runs of ROAST such that each of the

selected signers S𝑖 will act as coordinator C in one of the runs (in

addition to acting as S𝑖 ). If 𝑡 of the 𝑛 signers are honest (which

is a necessary condition to produce a signature at all), then one

of the 𝑛 − 𝑡 + 1 coordinators will be honest, and its run of ROAST
will eventually succeed, assuming that the point-to-point network

messages between honest signers are eventually delivered.

Assuming coordinators are supposed to broadcast the final sig-

nature obtained from a successful run back to all 𝑛 signers, total

communication and computation cost can be reduced in the op-

timistic case, at the expense of a higher worst-case latency: The

𝑛 − 𝑡 + 1 concurrent runs of ROAST do not need to be started si-

multaneously, e.g., honest signers can send their first reply in the

run with coordinator S𝑖 (where 𝑖 ∈ {2, . . . , 𝑛 − 𝑡 + 1}) only after

(𝑖 − 1)𝑑 seconds for some suitable value of 𝑑 , and only if they have

not obtained a valid signature from any other run.

4.5 Further Variants and Extensions
Because ROAST is simply a wrapper that runs concurrent sessions

of an underlying signature scheme Σ (which is assumed to be un-

forgeable under concurrent sessions), we can easily engineer vari-

ants and extensions without compromising security. For example, it

is straightforward to extend ROAST to support a batch of multiple

input messages simultaneously, either by replacing𝑚 with a vector

of 𝑘 messages and sending 𝑘 (pre)signature shares at once, or by

runningmultiple instances ofROAST concurrently. We sketch some

further variants and extensions in the remainder of this section.
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Preprocessing the first round of presignature shares. Since ROAST
assumes a threshold signature scheme in which the first round

(sending presignatures) can be preprocessed before knowing the

message𝑚 to be signed, ROAST can do the same: instead of pro-

viding 𝑚 to the coordinator and the signers as initial input, the

coordinator could be invoked without 𝑚 and immediately start

receiving presignature shares from signers. Whenever a message

𝑚 to sign arrives, the coordinator will send𝑚 to 𝑡 signers which

have provided presignature shares already, and will ask them for

their signature shares (as well as new presignature shares). This

reduces the latency between the arrival of a message to sign and

the delivery of the signature.

Signing a continuous stream of messages. We have described

ROAST as a one-shot algorithm that is called for exactly one mes-

sage and terminates after delivering a message. However, typical

real-world applications such as sidechains require the ability to

sign a continuous stream of incoming messages, e.g., in fixed time

intervals or reactively whenever a new message to sign appears.

It is straightforward to adapt ROAST to such a setting. Unused

presignature shares can be stored after a successful signing round,

and the next incoming message can be signed starting from these

already provided presignature shares. This effectively pipelines

signing sessions of Σ not only for multiple attempts to sign a single

message but also across multiple messages to sign.

Scoring signers. When one (or both) of the aforementioned vari-

ants is used, the coordinator C may often find itself in a situation

wheremore than 𝑡 signers have already provided presignature shares
when a new message to sign arrives. (In fact, if 𝑡 ≤ 𝑛/2, there may

even be enough responsive signers to initiate multiple signing ses-

sions of Σ immediately.) In this case, the coordinator has the freedom

to select the 𝑡 signers for the next signing session, and it may be

beneficial for the coordinator to keep a simple score per signer to

facilitate the selection, e.g., based on the average response time of

the last few responses, or on the reliability of the signer.

Trading off for latency. In order to reduce latency at the cost of

higher communication and computation, the coordinator can allow

for signers to be in more than one session of Σ at a time, which

increases the probability of quickly finding a terminating session

with only honest signers. As long as the number of simultaneous

sessions for any signer remains a constant 𝑐 , any signer can block

at most 𝑐 sessions, and the protocol will eventually terminate after

initiating at most 𝑐 (𝑛 − 𝑡 + 1) sessions. This approach can also be

combined with the previous idea, i.e., highly reliable signers (with

a high score) will be assigned multiple concurrent sessions.

5 EMPIRICAL PERFORMANCE EVALUATION
In this section, we evaluate ROAST’s performance experimentally

in a realistic Internet setting.

Implementation. We performed our benchmarks using FROST as

the underlying signature scheme, and we implemented both FROST
and the ROAST wrapper in Python 3. We make the source code

and the raw benchmark results available [31]. The implementation

consists of a coordinator process C and a signer process S. The
coordinator C communicates with signersS𝑖 over TCP sockets. Our
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Figure 5: Running time of ROAST.

implementation produces Schnorr signatures on the secp256k1
elliptic curve as used in Bitcoin.

We make use of two additional optimizations to the algorithms

given in Figure 3 and Figure 4. The signers S𝑖 each precompute a

batch of 𝜌𝑖 values rather than generating a single 𝜌𝑖 value during

each preprocessing step, while the coordinator caches the value

of 𝐷𝐸𝑏 for a given FROST session rather than recomputing it on

each ShareVal call. These optimizations would be realistic for a

production implementation, and allow us to emphasize the impact

of the wrapper protocol (rather than the overhead of elliptic curve

operations) in our benchmarks.

Setup. The coordinator C ran on a server in San Francisco, while

the signers S𝑖 ran on a server in Munich. We measured a 158ms

round-trip time (RTT) between the two servers. Note that because

there is no communication among signers (only between the coor-

dinator and signers), running multiple signer processes on the same

server does not reduce the effect of network latency and still pro-

vides realistic benchmark results. We simulate malicious signers by

simply failing to respond to signing requests, which is very similar

to providing an invalid response (one that fails ShareVal) because
in the latter case, the coordinator simply discards the response and

ignores all subsequent responses from that signer.

We ran ROAST for a variety of configurations (𝑡, 𝑛, 𝑓 ) where
𝑡 honest signers out of 𝑛 total signers are required to produce a

signature and 𝑓 is the number of simulated malicious signers. For

each configuration, we ran 10 trials to obtain an average running

time. We did not optimize the wire protocol to minimize bandwidth;

however, the sum of incoming and outgoing bandwidth usage on

the coordinator never exceeded 500 Kbps even with 𝑛 = 100 signers.

Results. The plot in Figure 5 shows how the average running time

scales with the fraction of malicious signers. Our benchmark results

show that using the ROAST protocol is practical in production:

even with large parameters such as 𝑛 = 100 signers and under

high latency conditions (coordinator C and signers S𝑖 on different
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continents), the protocol only takes a few seconds to complete.

The preprocessing step for the initial FROST session accounts for

approximately half a second according to our raw data, and could be

removed by a further optimization (see Section 4.5). Elliptic curve

operations also account for a nontrivial fraction of the total running

time. We used the fastecdsa library [21] (which exposes low level

elliptic curves operations) for ease of integration with a Python 3

program, but using a faster library such as libsecp256k1 [35] will

reduce the running time even further.

Discussion. The running time grows slightly as a function of total

signers, but it growsmuchmore rapidly as a function of total FROST
sessions. Increasing the number of malicious signers increases the

expected number of sessions. Although Theorem 4.3 shows that the

coordinator C needs to initiate up to 𝑛 − 𝑡 + 1 sessions in the worst

case, our benchmarks show that in practice, performance is much

better than this worst case. Achieving the worst case number of

sessions requires that each session includes exactly one malicious

signer, but the subset of signers in each session depends on network

conditions in a non-deterministic manner. Since a typical real-world

attacker has only limited control over the scheduling of network

messages, achieving this worst case is very unlikely in practice.

Our results confirm that robustness is particularly powerfulwhen

combined with an asynchronous protocol, because honest signers

can always make progress and never need to wait for disruptive

signers. For the parameters we considered in our evaluation, any

signing protocol with multiple synchronous rounds would need

timeouts to be set on the order of a second or lower to have a signing

performance competitive to ROAST, but such aggressive timeouts

will introduce a significant risk that messages from honest signers

will sometimes arrive late in open networks such as the Internet.
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