
Publicly Auditable Secure Multi-Party Computation*

Carsten Baum�, Ivan Damg̊ard�, and Claudio Orlandi§

{cbaum,ivan,orlandi}@cs.au.dk
Aarhus University, Denmark

Abstract. In the last few years the efficiency of secure multi-party computation (MPC) increased in
several orders of magnitudes. However, this alone might not be enough if we want MPC protocols to be
used in practice. A crucial property that is needed in many applications is that everyone can check that
a given (secure) computation was performed correctly – even in the extreme case where all the parties
involved in the computation are corrupted, and even if the party who wants to verify the result was not
participating. This is especially relevant in the clients-servers setting, where many clients provide input
to a secure computation performed by a few servers. An obvious example of this is electronic voting,
but also in many types of auctions one may want independent verification of the result. Traditionally,
this is achieved by using non-interactive zero-knowledge proofs during the computation.
A recent trend in MPC protocols is to have a more expensive preprocessing phase followed by a very
efficient online phase, e.g., the recent so-called SPDZ protocol by Damg̊ard et al. Applications such as
voting and some auctions are perfect use-case for these protocols, as the parties usually know well in
advance when the computation will take place, and using those protocols allows us to use only cheap
information-theoretic primitives in the actual computation. Unfortunately no protocol of the SPDZ
type supports an audit phase.
In this paper, we show how to achieve efficient MPC with a public audit. We formalize the concept of
publicly auditable secure computation and provide an enhanced version of the SPDZ protocol where,
even if all the servers are corrupted, anyone with access to the transcript of the protocol can check
that the output is indeed correct. Most importantly, we do so without significantly compromising the
performance of SPDZ i.e. our online phase has complexity approximately twice that of SPDZ.

Keywords: Efficient Multi-Party Computation, Public Verifiability, Electronic Voting.

*This is the full version of the paper which was published under the same title at the 9th Conference on Security
and Cryptography for Networks (SCN 2014).

�Partially supported by the European Research Commission Starting Grant 279447.
�Supported by the Danish National Research Foundation, the National Science Foundation of China (under the

grant 61061130540) and also from the CFEM research center within which part of this work was performed.
§Supported by The Danish Council for Independent Research (DFF).

1 Introduction

During the last few years MPC has evolved from a purely theoretical to a more practical tool. Several recent
protocols (e.g. BeDOZa [7], TinyOT [31] and the celebrated SPDZ [18,16]) achieve incredible performance for
the actual function evaluation, even if all but one player is actively corrupted. This is done by pushing all the
expensive cryptographic work into an offline phase and using only simple arithmetic operations during the
online phase1. Since these protocols allow the evaluation of an arbitrary circuit over a finite field or ring, one
can in particular use these protocols to implement, for instance, a shuffle-and-decrypt operation for a voting
application or the function that computes the winning bid in an auction. It is often the case that we know
well in advance the time at which a computation is to take place, and in any such case, the aforementioned
protocols offer very good performance. In fact the computational work per player in the SPDZ protocol is
comparable to the work one has to perform to compute the desired function in the clear, with no security.

However, efficiency is not always enough: if the result we compute securely has large economic or political
consequences, such as in voting or auction applications, it may be required that correctness of the result can
be verified later. Ideally, we would want that this can done even if all parties involved in the computation
are corrupted, and even if the party who wants to verify the result was not involved in the computation.

The traditional solution to this is to ask every player to commit to all his secret data and to prove in zero-
knowledge for every message he sends, that this message was indeed computed according to the protocol.
If a common reference string is available, we can use non-interactive zero-knowledge proofs, which allow
anyone to verify the proofs and hence the result at any later time. However, this adds a very significant
computational overhead, and would lead to a horribly inefficient protocol, compared to the online phase of
SPDZ, for instance.

It is therefore natural to ask whether it is possible to achieve the best of both worlds and have highly efficient
MPC protocols with a high-speed online phase that are auditable, in the sense that everyone who has access
to the transcripts of the protocol can check if the result is correct even when all the servers are corrupted.
In this paper we answer this question in the affirmative.

1.1 Contributions and Technical Overview

The model. In this work we will focus on client-server MPC protocols, where a set of parties (called the
input parties) provide inputs to the actual working parties, who run the MPC protocol among themselves and
make the output public2. We will focus on the setting of MPC protocols for dishonest majority (and static
corruptions): as long as there is one honest party we can guarantee privacy of the inputs and correctness of
the results, but we can neither guarantee termination nor fairness. We will enhance the standard network
model with a bulletin board functionality. Parties are allowed to exchange messages privately, but our protocol
will instruct them also to make part of their conversation public.

Auditable MPC. Our first contribution is to provide a formal definition of the notion of publicly auditable
MPC as an extension of the classic formalization of secure function evaluation. We require correctness and
privacy when there is at least one honest party, and in addition ask that anyone, having only access to the
transcript of the computation published on the bulletin board, can check the correctness of the output. This
is formalized by introducing an extra, non-corruptible party (the auditor) who can ask the functionality if
the output was correct or not3. We stress that the auditor does not need to be involved (or even exist!)

1The offline phase is independent from the inputs and the circuit to be computed – only an upper bound on the
number of multiplication gates is needed.

2Note that the sets need not be distinct, and using standard transformations we can make sure that the servers
do not learn the inputs nor the output of the computation (think of the inputs/output being encrypted or secret
shared).

3Of course, this only holds in the case where the computation did not abort.

2

before and during the protocol. The role of the auditor is simply to check, once the computation is over,
whether the output was computed correctly or not.4

SPDZ recap. Given the motivation of this work, we are only interested in the notion of auditable MPC
if it can be achieved efficiently. Therefore our starting point is one of the most efficient MPC protocols for
arithmetic circuits with a cheap, information-theoretic online phase, namely SPDZ.
In a nutshell SPDZ works as follows: At the end of the offline phase all parties hold additive shares of
multiplicative triples (x, y, z) with z = x · y. Now the players can use these preprocessed triples to perform
multiplications using only linear operations over the finite field (plus some interaction). Moreover, these
linear operations can now be performed locally and are therefore essentially for free. However an adversary
could send the honest parties a share that is different from what he received at the end of the offline phase.
To make sure this is not the case, SPDZ adds information-theoretic MACs of the form γ = α · x to each
shared value x, where both the MAC γ and the key α are shared among the parties. These MACs are trivially
linear and can therefore follow the computation. Once the output is reconstructed, the MAC keys are also
revealed and the MACs checked for correctness, and in the case the check goes through, the honest parties
accept the output.

Auditable SPDZ. In order to make SPDZ auditable, we enhance each shared value x with a Pedersen
commitment gxhr to x with randomness r. The commitment key (g, h) comes from a common reference string
(CRS), such that even if all parties are corrupted, those commitments are still (computationally) binding.
To allow the parties to open their commitments, we provide them also with a sharing of the randomness r
(each party already knows a share of x). It is easy to see that this new representation of values is still linear
and is therefore compatible with the existing SPDZ framework. During the computation phase, the parties
ignore the commitments (they are created during the offline phase, and only the openings must be sent to
FBulletin) and it will be the job of the auditor to use the linear properties of the commitments to verify
that each step of the computation was carried out correctly. Clearly the offline phase of SPDZ needs to be
modified, in order to produce the commitments to be used by the auditor. Moreover, we have to make this
preprocessing step auditable as well.

1.2 An Example Application: Low-latency Voting from MPC

Our work can be seen as a part of a recent trend in understanding how generic MPC protocols perform (in
terms of efficiency) in comparison to special-purpose protocols (see [15,24] for a discussion on private-set
intersection). A notable example of special purpose secure computation protocols are mixed-networks (mix-
nets), first introduced by Chaum in 1981 [13]. Here we show how our publicly auditable version of SPDZ
compares favorably with mix-nets in terms of latency.
In mix-nets a number of clients submit their encrypted inputs to some servers, who jointly shuffle and decrypt
the inputs in such a way that no one should be able to link the input ciphertexts with the output plaintexts,
if at least one of the shuffling servers is honest. Mix-nets are of prime importance in electronic voting (like
e.g. the famous Helios [1] system). A disadvantage of mix-nets is that they are inherently sequential : server
i cannot start shuffling before receiving the output of the shuffle performed by server i− 1. Now, given that
the voter’s privacy depends on the assumption that there is at least 1 out of n uncorrupted server, it is
desirable to increase the number of parties involved in the shuffle as much as possible. However, when using
mix-nets the latency of the protocol is linear in n, and therefore increasing n has a very negative impact on
the total efficiency of the protocol, here measured by the time between the last voter casts his vote and the
output of the election is announced. We argue here that implementing a shuffle using a generic protocol like
SPDZ makes the latency independent of the number of servers performing the shuffle.

4In terms of feasibility, auditable MPC can be achieved by compiling a strong semi-honest protocol with NIZKs
– a semi-honest MPC protocol alone would not suffice as we cannot force the parties to sample uniform randomness,
nor can we trust them to force each other to do so by secure coin-tossing when everyone is corrupted. However, this
would not lead to a very practical solution.

3

More formally, let n be the number of servers, m the number of input ciphertexts, λ a computational security
parameter and sec a statistical security parameter. The computational latency of mix-nets, here defined as
the time we have to wait before all servers have done their computational work, will be at least O(n ·m ·λ3).5

Using SPDZ, the computational latency is O(m · log(m) · sec2),6 since the total complexity of SPDZ is linear
in n and the servers work in parallel (this was even verified experimentally). Therefore mix-nets are more

expensive by a factor of
(

n
logm ·

λ3

sec2

)
: This is a significant speedup when n grows – note also that typical

values of λ for public-key cryptography can be one or two orders of magnitudes greater than typical values
for a statistical security parameter sec (only field operations are performed during the SPDZ online phase).
Clearly, to verify the impact in practice one would have to implement both approaches and compare them.
We leave this as an interesting future work.

The above comparison only considers the efficiency of the two approaches. However, as argued before, in
applications like voting it is crucial to allow the voters to check that the outcome of the election is correct.
Most mix-nets protocol already achieve public verifiability using non-interactive zero-knowledge proofs for
the correctness of shuffles. This motivates our study of auditable generic protocols.

1.3 Related Work

For certain applications, there already exist auditable protocols. The idea is known in the context of e.g.
electronic voting as public verifiability, and can also be found concerning online auctions and secret sharing.
To the best of our knowledge, the term public verifiability was first used by Cohen and Fischer in [14].
Widely known publicly auditable voting protocols are those of Schoenmakers [35] and Chaum et al. [12]
and the practical Helios [1]. Also stronger notions for voting protocols have been studied, see e.g. [34,29,37].
Verifiability also appeared for secret sharing schemes [35,22,36] and auctions [30,33]. We refer the reader
to the mentioned papers and the references therein for more information on these subjects. It is crucial to
point out that our suggested approach is not just another voting protocol – instead we lift verifiability to
arbitrary secure computations. In this setting, the notion of public verifiability has not been studied, with
the exception of [19], where the author presents a general transformation that turns universally satisfiable
protocols into instances that are auditable in our sense. This transformation is general and slows down the
computational phase of protocols, whereas our approach is tailored for fast computations.

In publicly verifiable delegation of computation (see e.g. [23,21] and references therein) a computationally
limited device delegates a computation to the cloud and wants to check that the result is correct. Verifiable
delegation is useless unless verification is more efficient than the evaluation. Note that in some sense our
requirement is the opposite: We want our workers to work as little as possible, while we are fine with asking
the auditor to perform more expensive computation.

External parties have been used before in cryptography to achieve otherwise impossible goals like fairness [26],
but note that in our case anyone can be the auditor and does not need to be online while the protocol
is executed. This is a qualitative difference with most of the other semi-trusted parties that appear in
the literature. A recent work [4] investigated an enhanced notion of covert security, that allows anyone to
determine if a party cheated or not given the transcript of the protocol – note that the goal of our notion is
different, as we are interested in what happens when all parties are corrupted.

2 Defining Auditable MPC

In this section, we formalize our notion of publicly auditable MPC. We add a new party to the standard
formalization which only performs the auditing and does not need to participate during the offline or the
online phase. This auditor does not even have to exist when the protocol is executed, but he can check

5The λ3 factor is there because of the re-randomization step that is crucially done in every mix-net. Using “onions”
of encryptions would not be more efficient.

6The m · logm factor comes from the optimal shuffle of Ajtai et al. [3].

4

the correctness of a result based on a protocol transcript. This formal hack makes it possible to guarantee
correctness even if everyone participating in the computation is corrupted7.

As mentioned, we put ourselves in the client-server model, so the parties involved in an auditable MPC
protocols are:

The input parties: We consider m parties I1, ...,Im with inputs (x1, . . . , xm).

The computing parties: We consider n parties P1, ...,Pn that participate in the computation phase.
Given a set of inputs x1, ..., xm they compute an output y = C(x1, ..., xm) for some circuit C over a finite
field. Note that {I1, ...,Im} and {P1, ...,Pn} might not be distinct.

The auditor: After the protocol is executed, anyone acting as the auditor TAudit can retrieve the transcript
of the protocol τ from the bulletin board and (using only the circuit C and the output y) determine if
the result is valid or not.

Our security notion is the standard one if there is at least one honest party (i.e. we guarantee privacy,
correctness, etc.). However standard security notions do not give any guarantee in the fully malicious setting,
i.e. when all parties are corrupted. We tweak the standard notions slightly and ask an additional property,
called auditable correctness.

This notion captures the fact that in the fully malicious case, the input cannot be kept secret from the
adversary A. But we still want to prove that if the computing parties deviate from the protocol, this will be
caught by TAudit, who has access to the transcript of the execution using a bulletin board FBulletin.

More formally, our definition for auditable correctness is as follows:

Definition 1 (Auditable Correctness). Let C be a circuit, x1, ..., xm be inputs to C, y be a potential
output of C and τ be a protocol transcript for the evaluation of the circuit C. We say that an MPC protocol
as satisfies Auditable Correctness if the following holds: The auditor TAudit with input τ outputs accept
y with overwhelming probability if the circuit C on input x1, ..., xm produces the output y. At the same
time the auditor TAudit will return reject (except with negligible probability) if τ is not a transcript of an
evaluation of C or if C(x1, ..., xm) 6= y.

In Figure 1 we present an ideal functionality that formalizes our notion of auditable MPC in the UC
setting (where we use the same notation as before). We use this ideal world-real world paradigm, because
it simplifies the proof, whereas the game-based definition gives a better intuition about auditability. The
protocol/simulator transcript can then be used as in Definition 1, and a protocol that is secure in the ideal
world-real world setting is also auditable correct according to the definition.

To simplify the exposition, FAuditMPC is only defined for one output value y. This can easily be generalized.

Note that we only defined our FAuditMPC for deterministic functionalities. The reason for this is that when
all parties are corrupted even the auditor cannot check whether the players followed the protocol correctly
in the sense of using real random tapes. This can be solved (using standard reductions) by letting the input
parties contribute also random tapes and define the randomness used by the functionality as the XOR of
those random tapes – but in the extreme case where all the input parties are corrupted this will not help
us.

3 An Auditable MPC Protocol

We now present an MPC protocol that is an extension of [18,16]. We obtain a fast online phase, which almost
only consists of opening shared values towards parties.

7We are not adding a semi-trusted third party to the actual protocol: Our guarantee is that if there exist at least
one honest party in the universe who cares about the output of the computation, that party can check at any time
that the output is correct.

5

Functionality FAuditMPC

Initialize: On input (Init, C, p) from all parties (where C is a circuit with m inputs and one output, consisting of
addition and multiplication gates over Zp):
(1) Wait until A sends the sets ABI ⊆ {1, . . . ,m}(corrupted input parties) and ABP ⊆ {1, . . . , n}(corrupted

computing parties)
Input: On input (Input,Ii, varidx, x) from Ii and (Input,Ii, varidx, ?) from all parties Pj , with varidx a fresh

identifier:

(1) If i 6∈ ABI then store (varidx, x). Else let A choose x′ and store (varidx, x
′).

(2) If |ABP | = n, send (Input,Ii, varid , x) to all Pj .

Compute: On input (Compute) from all parties Pj :
(1) If an input gate of C has no value assigned, stop here.
(2) Compute yc = C(x′1, . . . , x

′
m)

(3) if |ABP | = 0 set yo = yc.
if |ABP | > 0 output yc to A and wait for yo from A. If |ABP | < n, the functionality accepts only

yo ∈ {⊥, yc}. If |ABP | = n, any value yo ∈ Zp ∪ {⊥} is accepted.
(4) Send (output, yo) to all parties Pj .

Audit: On input (Audit, y) from TAudit (where y ∈ Zp), and if Compute was executed, the functionality does
the following:
if yc = yo = y then output accept y.
if yo = ⊥ then output no audit possible.
if yc 6= yo or y 6= yo then output reject.

Fig. 1: The ideal functionality that describes the online phase

Our setup. Let p ∈ P be a prime and G be some abelian group (in multiplicative notation) of order p where
the Discrete Logarithm Problem(DLP) is hard to solve. The MPC protocol will evaluate a circuit C over Zp,
whereas we use the group G to ensure auditability. Therefore, let g, h ∈ G be two generators of the group
G where h is chosen such that logg(h) is not known (e.g. based on some CRS). For two values x, r ∈ Zp, we
define pc(x, r) := gxhr.

We assume that a secure channel towards the input parties can be established, that a broadcast functionality
is available and that we have access to a bulletin board FBulletin (Fig. 2), a commitment functionality
FCommit

8 (Fig. 3) and a procedure to jointly produce random values PProvideRandom (Fig. 4)9. To implement
PProvideRandom let Us(q, l) be a random oracle with seed s ∈ {0, 1}∗ that outputs a uniformly random element
from Zlq. We use the bulletin board FBulletin to keep track of all those values that are broadcasted. Observe
that no information that was posted to FBulletin can ever be changed or erased.

Sharing values for the online phase. All computations during the online phase are done using additively-
shared values. The parties are committed to each such shared value using a MAC key α and a commitment
to the shared value. The key α is also additively-shared among the parties, where party Pi holds share αi
such that α =

∑n
i=1 αi, and the commitments to each value are publicly known.

We define the 〈·〉-representation of a shared value as follows:

Definition 2. Let r, s, e ∈ Zp, then the 〈r〉-representation of r is defined as

〈r〉 := ((r1, ..., rn), (γ(r)1, ..., γ(r)n))

8This other commitment functionality might be implemented by a hash function/random oracle, and is used
whenever the linear operations of the commitment scheme are not necessary.

9Note that the random oracle model and FCommit were already assumptions used in the original SPDZ protocol,
our extra assumptions are the existence of FBulletin and the DLP-hard group G.

6

The ideal functionality FBulletin

Store: On input (Store, id, i,msg) from Pi, where id was not assigned yet, the functionality stores (id, i,msg).
Reveal IDs: On input (All) from party Pi the functionality reveals all assigned id-values to Pi

Reveal message: On input (Getmsg, id) from Pi, the functionality checks whether id was assigned already. If
so, then it returns (id, j,msg) to Pi. Otherwise it returns (id,⊥,⊥).

Fig. 2: The ideal Functionality for the Bulletin board

The ideal functionality FCommit

Commit: On input (Commit, v, r, i, τv) by Pi, where both v and r are either in Zp or ⊥, and τv is a unique
identifier, it stores (v, r, i, τv) on a list and outputs (i, τv) to all players.

Open: On input (Open, i, τv) by Pi, the ideal functionality outputs (v, r, i, τv) to all players. If (NoOpen, i, τv) is
given by the adversary, and Pi is corrupt, the functionality outputs (⊥,⊥, i, τv) to all players.

Fig. 3: The Ideal Functionality for Commitments

where r =
∑n
i=1 ri and α · r =

∑n
i=1 γ(r)i. Each player Pi will hold his shares ri, γ(r)i of such a represen-

tation. Moreover, we define

〈r〉+ 〈s〉 := ((r1 + s1, ..., rn + sn), (γ(r)1 + γ(s)1, ..., γ(r)n + γ(s)n))

e · 〈r〉 := ((e · r1, ..., e · rn), (e · γ(r)1, ..., e · γ(r)n))

e+ 〈r〉 := ((r1 + e, r2, ..., rn), (γ(r)1 + e · α1, ..., γ(r)n + e · αn))

This representation is closed under linear operations:

Remark 1. Let r, s, e ∈ Zp. We say that 〈r〉 =̂ 〈s〉 if both 〈r〉, 〈s〉 reconstruct to the same value. Then it holds
that

〈r〉+ 〈s〉 =̂ 〈r + s〉, e · 〈r〉 =̂ 〈e · r〉, e+ 〈r〉 =̂ 〈e+ r〉

A value that is shared as above is reconstructed or opened10 by summing up all shares. The correctness of
this opening can be checked by checking the MAC(we will use a protocol where α will not be revealed).
A value 〈a〉 can either be publicly opened if every player Pi broadcasts its share ai, or opened towards Pi

if every other party Pj , j 6= i sends its share aj to Pi. Similarly, if the players open towards FBulletin this
means that they send their shares of the particular value to the bulletin board.
During the online phase, the parties either open sharings (without revealing the MACs) or do the linear
operations defined above. Together with the Beaver circuit randomization technique from [5] and a MAC
checking procedure for the output phase, this already yields an actively secure MPC scheme that is secure
against up to n− 1 corrupted players11.

The [[·]]-representation In order to make SPDZ auditable we enhance the way shared values are represented
and stored. In a nutshell we force the computing parties to commit to the inputs, opened values and outputs
of the computation. All intermediate steps can then be checked by performing the computation using the
data on FBulletin. The commitment scheme is information-theoretically hiding, and we will carry both the
actual value 〈r〉 as well as the randomness 〈rrand〉 of the commitment through the whole computation.
The commitment to a value r will be a Pedersen commitment (see [32]) pc(r, rrand). When we open a [[·]]-
representation, we reconstruct both r and rrand.

12 This way the commitment is also opened (it is already
published on FBulletin) and everyone can check that it is correct (but the computing parties do not need to
do so).

10We use both terms for it in this paper.
11Provided that the offline phase generates valid multiplication triples and random values together with MACs.
12Our different flavours of opening for 〈·〉-representations can be applied here as well.

7

Procedure PProvideRandom

Even though we do not mention minimum lengths of seeds here, they should be chosen according to a concrete
security parameter.

ProvideRandom(q, l) On input (Urandomness, q, l) from each party Pi:
(1) Each party Pi commits to a seed si ∈ {0, 1}∗ using FCommit. It also sends the commitment to FBulletin.
(2) Each party opens its commitment to all parties and FBulletin.
(3) Each party locally computes s = s1 ⊕ · · · ⊕ sn
(4) Each party outputs v ← Us(q, l).

Fig. 4: A protocol to jointly generate random values

Procedure PMult

Multiply([[r]], [[s]], [[a]], [[b]], [[c]]):
(1) The players calculate [[γ]] = [[r]]− [[a]], [[δ]] = [[s]]− [[b]]
(2) The players publicly reconstruct γ, δ, γrand, δrand and send these values to FBulletin.
(3) Each player locally calculates [[t]] = [[c]] + δ[[a]] + γ[[b]] + γδ
(4) Return [[t]] as the representation of the product.

Fig. 5: Protocol to generate the product of two [[·]]-shared values

Definition 3. Let r, rrand ∈ Zp and g, h ∈ G where both g, h generate the group, then we define the [[r]]-
representation for r as

[[r]] := (〈r〉, 〈rrand〉, pc(r, rrand))

where 〈r〉, 〈rrand〉 are shared among the players as before.

We define linear operations on the representations as before:

Definition 4. Let a, b, arand, brand, e ∈ Zp. We define the following linear operations on [[·]]-sharings:

[[a]] + [[b]] := (〈a〉+ 〈b〉, 〈arand〉+ 〈brand〉, pc(a, arand) · pc(b, brand))
e · [[a]] := (e · 〈a〉, e · 〈arand〉, (pc(a, arand))e)
e+ [[a]] := (e+ 〈a〉, 〈arand〉, pc(e, 0) · pc(a, arand))

With a slight abuse in notation, we see that

Remark 2. Let r, s, e ∈ Zp. It holds that

[[r]] + [[s]] =̂ [[r + s]], e · [[r]] =̂ [[e · r]], e+ [[r]] =̂ [[e+ r]]

In order to multiply two representations, we rely on the protocol in Figure 5 (as in [5]): Let [[r]], [[s]] be two
values where we want to calculate a representation [[t]] such that t = r · s. Assume the existence of a triple
([[a]], [[b]], [[c]]) such that a, b are uniformly random and c = a · b. Then one can obtain [[t]] using PMult.
Most interestingly, one does not have to perform the computations on the commitments during the online
phase. Instead, only the 〈·〉-representations are manipulated !

Shared randomness from an offline phase Our online phase relies on the availability of [[·]]-representations
of random values and multiplication triples. In Figure 6 we define the functionality FSetup that describes our
preprocessing protocol, which is essentially an auditable version of the SPDZ preprocessing functionality. If
all parties are corrupted, the functionality might output an incorrect result – however this can be checked
by the auditor. Since we assume that g, h come from a CRS, the audit is still correct in this setting.

8

Functionality FSetup

Let � be the pointwise multiplication of vector entries.

Initialize: On input (Init, p, l) from all players, the functionality stores the prime p and the SIMD factor l. A
chooses the set of parties ABP ⊆ {1, . . . , n} he corrupts.
(1) Choose a g ∈ G and s ∈ Z∗p, set h = gs. Send g, h to A.
(2) For all i ∈ ABP , A inputs αi ∈ Zp, while for all i 6∈ ABP , the functionality chooses αi ← Zp at random.
(3) Set they key α =

∑n
i=1 αi and send (αi, g, h) to Pi, i 6∈ ABP .

(4) Set the flag f = >.

Audit: On input (Audit), return reject if f = ⊥ or if Initialize or Compute was not executed. Else return
accept.

Macro Bracket(r1, . . . , rn, s1, . . . , sn, d): This macro will be run by the functionality to create [[·]]-representations.
(1) Define r =

∑n
i=1 ri, s =

∑n
i=1 si.

(2) If |ABP | = n, A inputs a vector ∆c ∈ Gd.
If ∆c is not the (1, . . . , 1) vector, set f = ⊥. If |ABP | < n set ∆c to the all-ones vector.

(3) Compute com = pc(r , s)�∆c.
(4) Run macro 〈r〉 ← Angle(r1, ..., rn, d) and 〈s〉 ← Angle(s1, ..., sn, d).
(5) Define [[r]] = (〈r〉, 〈s〉, com). Return [[r]].

Macro Angle(r1, . . . , rn, d): This macro will be run by the functionality to create 〈·〉-representations.
(1) Define r =

∑n
i=1 ri

(2) For i ∈ ABP , A inputs γi,∆γ ∈ Zdp, and for i 6∈ ABP , choose γi ∈R Zdp at random except for γj , with j
being the smallest index not in ABP (if there exists one).

(3) If |ABP | < n set γ = α · r +∆γ and γj = γ −
∑n
j 6=i=1 γi, else set γ =

∑n
i=1 γi.

(4) Define 〈r〉 = (r1, ..., rn,γ1, ...,γn). Return 〈r〉.

Fig. 6: The ideal functionality that describes the output of the offline phase

The online phase The online phase of our protocol is presented in Figure 7. To create the transcript, every
party puts all values it ever sends or receives onto FBulletin (except for the private reconstruction of input
values)13. The check of the MACs is done as in SPDZ using the protocol in Figure 8.

4 Security of the Online Phase

In this section, we will prove that for all poly-time adversaries A there exists a simulator SOnline such that
ΠAuditMPC is indistinguishable from FAuditMPC to every poly-time environment Z. As we argued before, this
also implies that ΠAuditMPC fulfills the auditable correctness requirement from Definition 1.
We start with the following Lemma from [16, Lemma 1] about correctness and soundness of the MAC check.
We then prove the security of the online phase in Theorem 1.

Lemma 1. Let p ∈ P. On input (a1, γ(a1), . . . , at, γ(at), p) PCheckMac is correct and sound:

If ∀i : α · ai = γ(ai) then it returns 1 with probability 1.
If ∃i : α · ai 6= γ(ai) then it rejects except with probability 2/p.

Theorem 1. In the FSetup,FBulletin,FCommit-hybrid model with a random oracle, the protocol ΠAuditMPC

implements FAuditMPC with computational security against any static adversary corrupting all parties if the
DLP is hard in the group G.

13This does not break the security, because (informally speaking) this is the same information that an A receives
if he corrupts n− 1 parties.

9

Protocol ΠAuditMPC

Initialize: On input (Init, C, p) from all parties (where p ∈ P and C is a circuit over Zp, with ρ multiplication
gates):
(1) The parties send (Init, p, l) to FSetup and obtain their shares αi.
(2) The parties choose the smallest τ ≥ ρ such that l|τ and send (GenerateData,m + 2, τ) to FSetup. If they

obtain ρ′ < ρ triples, they continue sending (GenerateData, 0, τ) until they obtained at least ρ triples in
total.

Input: On input (Input,Ii, varid, xi) by Ii and (Input,Ii, varid, ?) from all Pj , the parties and Ii do the following
(using a new random value [[r]]):
(1) [[r]] is privately opened as r, rrand to Ii.
(2) Let cr be the commitment of [[r]] on FBulletin. Ii checks that cr = pc(r, rrand). If not, the protocol is

aborted.
(3) Ii broadcasts ε = xi − r to all Pj and FBulletin.
(4) All players locally compute [[xi]] = [[r]] + ε

Compute: Upon input (Compute) from all Pi, if Initialize has been executed and inputs for all input wires of
C have been assigned, evaluate C gate per gate as follows:
Add: For two values [[r]], [[s]] with IDs varidr, varids:

(1) Let varidt be a fresh ID. Each party locally computes [[t]] = [[r]] + [[s]] and assigns varidt to it. The
commitments are excluded from the computation.

Multiply: Multiply two values [[r]], [[s]] with IDs varidr, varids, using the multiplication triple ([[a]], [[b]], [[c]]).
(1) Let varidt be a fresh ID. The parties invoke PMult.Multiply([[r]], [[s]], [[a]], [[b]], [[c]]) to compute [[t]] and

assign the ID varidt. The commitments are excluded from the computation.
Output: The parties open the output [[y]]. Let a1, ..., at be the values opened.

(1) All parties compute
r ← PCheckMac.CheckOutput(a1, γ(a1), . . . , at, γ(at), p)
If r 6= 0 then stop.

(2) All parties open the output [[y]] towards FBulletin.
(3) All parties compute

s← PCheckMac.CheckOutput(y, γ(y), yrand, γ(yrand), p)
If s 6= 0 then stop. Otherwise output y.

Audit:
(1) If the Output step was not completed, output no audit possible.
(2) Run Audit for FSetup. If it returns accept then continue, otherwise output no audit possible.
(3) We follow the computation gates of the evaluated circuit C in the same order as they were computed. For

the i-th gate, do the following:
Input: Let [[r]] be the opened value and varidx be the ID of input x. Set cvaridx = pc(ε, 0) · c, where c is

the commitment in [[r]] and ε is the opened difference.
Add: The parties added [[r]] with varidr and [[s]] with varids to [[t]] with varidt. Set cvaridt = cvaridr ·

cvarids .
Multiply: The parties multiplied [[r]] with varidr and [[s]] with varids (using the auxiliary values

[[a]], [[b]], [[c]], [[γ]], [[δ]] with their respective IDs). The output has ID varidt.
(a) Set cvaridt = cvaridc · cδvarida · c

γ
varidb

· pc(γ · δ, 0).

(b) Check that cvaridr · c−1
varida

?
= pc(γ, γrand,) and

cvarids · c−1
varidb

?
= pc(δ, δrand,). If not, output reject.

(4) Let y be the output of Output and cy be the commitment for the output value [[y]].
If cy = pc(y, yrand) then output accept y.
If cy 6= pc(y, yrand) then output reject.

Fig. 7: The protocol for the online phase

Proof. We prove the above statement by providing a simulator SOnline (see Figure 9). The simulator is
divided for two cases, for the honest minority (SOnline,normal in Figure 10) and the fully malicious setting
(SOnline,full in Figure 11).

10

Procedure PCheckMac

CheckOutput(v1, γ(v1), ..., vt, γ(vt),m) Here we check whether the MACs hold on t reconstructed values.
(1) Each Pi samples a value si and, to obtain the vector r, invokes PProvideRandom.P rovideRandom(m, t) with

the seed si.
(2) Each Pi computes v =

∑t
i=1 r[i] · vi.

(3) Each Pi computes γi =
∑t
j=1 r[j] · γ(vj) and σi = γi − αi · v.

(4) Each Pi commits to σi using FCommit as c′i.
(5) Each c′i is opened towards all players using FCommit.
(6) If σ =

∑n
i=1 σi is 0 then return 1, otherwise return 0.

Fig. 8: Procedure to check validity of MACs

Simulator SOnline

(1) Wait for the set ABP of corrupted players from Z.
(2) If |ABP | 6= n then forward all incoming messages that are not from SOnline,normal to SOnline,normal, and forward

all messages that come from SOnline,normal to the recipient.
If |ABP | = n then forward all incoming messages that are not from SOnline,full to SOnline,full, and forward all

messages that come from SOnline,full to the recipient.

Fig. 9: Simulator for the online phase

At least one honest party. The simulator runs an instance of ΠAuditMPC with the players controlled by
Z and simulated honest parties. For Initialize, Input, Add, Multiply it performs the same steps as in
ΠAuditMPC, only that it uses a fixed input 0 for the simulated honest parties during Input. Since every set
of at most n−1 shares of a value is uniformly random and does not reveal any information about the shared
secret, this cannot be distinguished from a real execution.

During Output, we adjust the shares of one simulated honest party to agree with the correct output y from
FAuditMPC: The simulator obtained the result y′ of the simulated computation, hence it can adjust the share
of a simulated honest party. Moreover, it also adjusts the MAC share as depicted in SOnline,normal using the
MAC key α provided by FSetup. As argued in [18], the distribution of these shares of the simulated honest
parties is the same as during a protocol execution.

The commitment is information-theoretically hiding, and since the discrete logarithm logg(h) is known to
SOnline,normal, it can compute a randomness value yrand that correctly opens the commitment in [[y]] as
posted on FBulletin for the value y instead of y′. It then adjusts a share of y′rand such that (y′, y′rand) open
the commitment. Once again, the distribution of this share of yrand′ agrees with the distribution in a real
protocol execution.

If moreover Z decides to stop the execution, then SOnline,normal will forward this to the ideal functionality
and Z will not receive any additional information, as in the real execution.

During the Audit phase, we also do exactly the same as in the protocol. Note that both Output and Audit
will always reveal the correct values from FAuditMPC in the simulated case. We have to show that in the real
protocol, the probability that A can cheat is negligible.

Output: There are three ways how the output can be incorrect with respect to the inputs and the calculated
function, which is if a multiplication triple was not correct even though it passed the check, or if a
dishonest party successfully adjusted the MACs during the computation, or it successfully cheated during
the output phase. As argued in [18], the first event only happens with probability 1/p. If A can adjust
the MACs correctly with non-negligible probability, then it can guess the secret MAC key α – which
contradicts that it only holds at most n− 1 shares of it which reveal no information. For the third case,
Lemma 1 implies that this can only happen with probability 2/p. Since we set p to be exponential in the
security parameter, the distributions are statistically indistinguishable.

11

Simulator SOnline,normal

The values g, h are provided as a CRS by this simulator, so s = logg(h) is known as well as α.

Initialize: On input (Init, C, p) from Z:
(1) Set up FBulletin and start a local instance Π of ΠAuditMPC with the dishonest parties (and simulated honest

parties).
(2) Run a copy of FSetup, with which Z and the simulated honest parties communicate through the simulator.
(3) Run Initialize and Compute of FSetup as in ΠAuditMPC.

Input: On input (Input,Ii, varid, ·) by Ii and (Input,Ii, varid, ?) from and Z:
If Ii is honest then follow ΠAuditMPC for a fake input 0.
If Ii is dishonest then extract the input value xi from Π and send it to FAuditMPC. Execute this step with

xi in FAuditMPC.
Compute: Upon input (Compute) from Z, if Initialize has been executed and inputs for all input gates of C

have been provided, evaluate C gate per gate as follows:
Add: Follow the steps of Add in ΠAuditMPC.
Multiply: Follow the steps of Multiply in ΠAuditMPC.
Output: Obtain the output y from FAuditMPC and simulate ΠAuditMPC as follows:

(1) Generate correct shares for the simulated honest parties for Π:
(1.1) Let Pi be a simulated honest party and y′ be the output of Π with Z right now. Let [[y′]] =

(〈y′〉, 〈y′rand〉, c = pc(y′, y′rand)), where y′ =
∑
k y
′
o,k and y′rand =

∑
k y
′
rand,o,k. For all honest Pj

with j 6= i, let y′q,j = y′o,j , y
′
rand,q,j = y′rand,o,j

a.
(1.2) For Pi set y′q,i = y′o,i + (y− y′) and γ′q,i = γ′o,i +α(y− y′). We have s 6= 0, so s−1 mod p exists.

Set yrand = (y′ − y + s · y′rand)/s mod p, and y′rand,q,i = y′rand,o,i + (yrand − y′rand),
γ′rand,q,i = γ′rand,o,i + α · (yrand − y′rand).

(1.3) Let y′ =
∑
k yq,k, y

′
rand =

∑
k y
′
rand,q,k, γ′ =

∑
k γ
′
q,k and γ′rand =

∑
k γ
′
rand,q,k.

(2) Follow the protocol ΠAuditMPC to check the MACs according to step 1 of Output. If that step fails,
let FAuditMPC deliver ⊥ to the honest parties and stop.

(3) Send the shares of the simulated honest parties of the output [[y]] to FBulletin. If Z does not provide
shares of [[y]] for all dishonest parties, then let FAuditMPC set y′ = ⊥ and stop.

(4) Run PCheckMac as in ΠAuditMPC. If the MAC on the output [[y]] is correct, let FAuditMPC set y′ = y,
otherwise y′ = ⊥.

Audit: Run Audit as in ΠAuditMPC with the malicious players. Then invoke Audit in FAuditMPC and output
reject if it is the output of FAuditMPC. If not, reveal what FAuditMPC outputs.

aSimilarly, the MAC keys γ′o,j , γ
′
rand,o,j of those parties are not touched.

Fig. 10: Simulator for honest minority

Audit: We focus on the two cases when FAuditMPC and ΠAuditMPC disagree about the output of Audit.
The conditions under which SOffline,normal and ΠAuditMPC output no audit possible are the same.
(1) FAuditMPC outputs accept y when ΠAuditMPC outputs reject does not happen due to the con-

struction of SOffline,normal.
(2) FAuditMPC outputs reject when ΠAuditMPC outputs accept y. A replaced the output with ⊥, but
PCheckMac passed successfully. This happens with probability at most 2/p according to Lemma 1.

Fully malicious setting. The intuition behind SOnline,full is that we let Z send arbitrary messages during
the online phase. But since all messages for FSetup go through SOnline,full, we extract the used inputs after
the fact which we then can use with FAuditMPC. Observe that, since we cannot guarantee privacy, no inputs
must be substituted. During the Audit, we run the protocol of ΠAuditMPC also in the simulator (but with
different outputs, as we shall see). The difference between both again is the output of Audit in both worlds.

(1) FAuditMPC outputs accept y when ΠAuditMPC outputs reject does not happen due to the construction
of SOffline,full.

(2) FAuditMPC outputs reject when ΠAuditMPC outputs accept y. Z replaced the output with another
value y′ (and also y′rand) that open the commitment cy. But in step (3) of Compute, the simulator

12

Simulator SOnline,full

Initialize: On input (Init, C, p) from Z:
(1) Set up FBulletin and start a local instance Π of ΠAuditMPC with the dishonest parties.
(2) Run a copy of FSetup, with which Z communicates through the simulator.
(3) Run Initialize and Compute of FSetup as in ΠAuditMPC.

Input: On input (Input,Ii, varid, ·) by Ii and (Input,Ii, varid, ?) from Z:
If Ii is honest then ask FAuditMPC to reveal the input value xi.
If Ii is dishonest then extract the value xi from Π and send it to FAuditMPC.

Compute: Upon input (Compute) from Z, if Initialize has been executed and inputs for all input gates of C
have been provided, evaluate C gate per gate as follows:
Add: Follow the steps of Add in ΠAuditMPC.
Multiply: Follow the steps of Multiply in ΠAuditMPC.
Output:

(1) Follow the protocol ΠAuditMPC to check the MACs according to step 1 of Output. If that step fails,
let FAuditMPC set y′ = ⊥ and stop.

(2) If Z does not provide shares of [[y]] for all parties, then let FAuditMPC set y′ = ⊥ and stop.
(3) Run PCheckMac as in ΠAuditMPC. If the MAC on the output [[y]] is correct, let FAuditMPC set y′ = y,

otherwise y′ = ⊥.
Audit: Run Audit as in ΠAuditMPC with the malicious players. Then invoke Audit in FAuditMPC and output

reject if it is the output of FAuditMPC. If not, reveal what FAuditMPC outputs.

Fig. 11: Simulator for the fully malicious setting

already obtained y such that pc(y, yrand) = pc(y′, y′rand) for some yrand.
14. This implies a solution of the

DLP in poly-time, contradicting the assumption.
ut

5 An Implementation of the Offline Phase

We will now provide an implementation of FSetup. It consists two phases, where we first sample correlated
randomness for the online phase and then check whether the multiplication triples satisfy the required
relation. We also introduce an audit for the offline phase. The implementation relies on a cryptosystem that
allows a certain number of additions and multiplications of vectors of plaintexts (as in [18,16]). We will now
recap the definition of such the scheme, where the terminology follows [18].

5.1 A Suitable Cryptosystem

We define the plaintext space M as M = Zlp as the direct product of l Zp-instances. Let ’+’ and ’·’ be the
ring operations implied by the direct product.
The ring A, which is isomorphic to ZN for some integer N ∈ N+, is an intermediate space. Encryption will
work as a map from A to some additive abelian group B, that also respects multiplication and distributivity
law under certain conditions (which we will describe later). The operations of A will also be denoted as ’+’,’·’.
Addition will be component-wise, whereas there is no restriction on how the multiplication is realized.
In order to map m ∈M to an element a ∈ A and back, there exist the two functions

encode :M→A
decode : A →M

14Computing yrand from C and the randomization values of the inputs is straightforward. We omitted this com-
putation here.

13

where encode is injective. We want decode to be the inverse of encode (on its image) and to be structure-
preserving. Moreover, decode has to respect the characteristic of the field Zp and encode must return short
vectors15. This is formalized as follows:

(1) ∀m ∈M : decode(encode(m)) = m

(2) ∀m1,m2 ∈M : decode(encode(m1) + encode(m2)) = m1 + m2

(3) ∀m1,m2 ∈M : decode(encode(m1) · encode(m2)) = m1 ·m2

(4) ∀a ∈ A : decode(a) = decode(a mod p)

(5) ∀m ∈M : ||encode(m)||∞ ≤ τ with τ = p/2

Algorithms. We will now specify the cryptosystem with respect to M,A and B. The algorithms are
probabilistic polynomial time.

ParamGen(1λ,M) The algorithm outputs the dimension N of the ring A and descriptions for encode and
decode as well as a randomized algorithm Dd

ρ, an additive abelian group B and a set of allowable circuits

C. Dd
ρ outputs vectors r ∈ Zd such that Pr[||r||∞ ≥ ρ | r ← Dd

ρ] < negl(λ). B has the additive operation
⊕ and an operation ⊗ that is not necessarily closed, but commutative and distributive.
C is a set of allowable arithmetic Single Instruction Multiple Data (SIMD) circuits over Zlp, the cryp-
tosystem must be able to evaluate these circuits on ciphertexts that are generated in a certain way. The
SIMD property implies that there exists a function f ∈ Zp[X1, ..., Xn(f)] such that f̂ ∈ C evaluates the

function f l times on inputs in (Zp)n(f) in parallel.

Encpk(x, r) Let x ∈ A and r ∈ Zd then this algorithm creates a g ∈ B deterministically. One can also
apply this function to an m ∈ M, where it is implicitly assumed that Encpk(m) = Encpk(x′, r′) with
x′ ← encode(m) and r′ ← Dd

ρ.
For the ZKPoPKs, we require that Encpk is homomorphic for at least a small number V of correct
ciphertexts. More formally: Let x1, ...,xV ∈ image(encode), r1, ..., rV ← Dd

ρ. Then it holds that

Encpk(x1 + ...+ xV , r1 + ...+ rV) = Encpk(x1, r1)⊕ ...⊕ Encpk(xV , rV)

We think here of V being two times as large as the security parameter sec of the zero-knowledge proof
that we will present later.

Decsk(g): For g ∈ B this algorithm will return an m ∈M∪ {⊥}.

KeyGen(): This algorithm samples a public key/private key pair (pk, sk).

KeyGen∗: A meaningless public key pk is returned. Let (pk, ·)← KeyGen() and m ∈M be arbitrary. Then
pk will be such that

(1) Encpk(m) and Encpk(0) are statistically indistinguishable.

(2) pk and pk are computationally indistinguishable.

Correctness. Let n(f), f ∈ C be the number of input values of f and let f̂ be the embedding of f into
B where ’+’ is replaced by ⊕, ’·’ by ⊗ and the constant c ∈ Zp by Encpk(encode(c),0). For data vectors
x1, ...,xn(f), let f(x1, ...,xn(f)) be the SIMD application of f to this data.

15given a suitable basis for A that allows us define a norm || · ||∞.

14

Functionality FKeyGenDec

Key generation:

(1) When receiving (StartKeyGen) from all parties, run P ← ParamGen(1λ,M).
(2) Wait for randomness ri from every party Pi.
(3) Let r =

∑n
i=1 ri, and compute (pk, sk)← KeyGen() using the randomness r.

(4) Generate shares ski for all players consistent with sk, and send (pk, ski) to each party Pi.

Distributed decryption:
(1) When receiving (StartDistDec) from all players, check whether there exists a shared key pair (pk, sk). If

not, return ⊥.
(2) Hereafter on receiving (decrypt, c) for an (Bplain, Brand, C)-admissible c from all honest players, send c

and m← Decsk(c) to the adversary. On receiving m′ from the adversary, send (result,m′) to all players.
m,m′ can both be ⊥

(3) On receiving (decrypt, c,Pj) for an admissible c, if Pj is corrupt, send c,m← Decsk(c) to the adversary.
If Pj is honest, send c to the adversary. On receiving m′ from the adversary, if m′ 6∈ M, send ⊥ to Pj ,
if m′ ∈M, send Decsk(c) +m′ to Pj .

Fig. 12: The ideal functionality for distributed key generation and decryption

To formally express that the scheme is correct if certain bounds can be proven on the size of the randomness,
we say that the scheme is (Bplain, Brand, C)-correct if

Pr

[
Decsk(c) 6= f

(
decode(x1), ..., decode(xn(f))

) ∣∣∣∣ P ← ParamGen(1λ,M) ∧ (pk, sk)← KeyGen() ∧

f ∈ C ∧ (x1, ...,xn(f), r1, ..., rn(f)) ∈ An(f) × Zn(f) ∧

c← f̂(c1, ..., cn(f)) ∧
(
decode(xi) ∈M∧

||xi||∞ ≤ Bplain ∧ ||ri||∞ ≤ Brand ∧

ci ← Encpk(xi, ri)
)
i∈[n(f)]

]
< negl(λ)

for a negligible function negl(λ). If a ciphertext c can be obtained using this chain of operations described
above, then c is called (Bplain, Brand, C)-admissible.

Distributed decryption and key generation. We require that the cryptosystem supports distributed
key generation and decryption, as captured in FKeyGenDec.

Definition 5 (Admissible Cryptosystem). Let C contain formulas of the form(∑n

i=1
xi
)
·
(∑n

i=1
yi
)

+
∑n

i=1
zi

where arbitrary xi, yi, zi can be zero. A cryptosystem is called admissible if it is defined by the algorithms
(ParamGen,KeyGen,KeyGen∗, Enc,Dec), if it is (Bplain, Brand, C)-correct with

Bplain = N · τ · sec2 · 2(1/2+ν)sec , Brand = d · ρ · sec2 · 2(1/2+ν)sec

for some arbitrary constant ν > 0 and if it securely implements FKeyGenDec.

The parameter sec ∈ N in the above definition comes from the ZKPoPKs that we will see later.

One can easily see that e.g. the Ring-LWE-based BGV scheme [10] or the BGH extension of LWE-based
BGV [9] have the required features. For more details, we once again refer to [18,16]

15

5.2 Zero-Knowledge Proofs of Plaintext Knowledge

If a shared value is reconstructed during the online phase of the protocol, then the related commitment should
be opened to the same value. We ensure this (and the correct generation of ciphertexts) during the offline
phase using NIZKs. Given the security parameter sec, 2 · sec ciphertexts c1, ..., c2·sec ∈ image(Encpk(·)) and
sec · l group elements d1,1, ..., dsec,l ∈ G, we prove the following relation:

RCTC =

{
(a,w) | a = (c1, ..., c2·sec ∧ d1,1, d2,1, ..., dsec,l, pk) ∧w = (x1, r1, ...,x2·sec, r2·sec) ∧[

ci = Encpk(xi, ri) ∧ csec+i = Encpk(xsec+i, rsec+i) ∧
||xi||∞ ≤ Bplain ∧ ||xsec+i||∞ ≤ Bplain ∧ decode(xi) ∈ Zlp ∧
decode(xsec+i) ∈ Zlp ∧ ||ri||∞ ≤ Brand ∧ ||rsec+i||∞ ≤ Brand ∧(
di,j = pc(decode(xi)[j], decode(xsec+i)[j])

)
j∈[l]

]
i∈[sec]

}
To prove this statement, we execute two instances of ΠZKPoPK from [18] for c1, ..., csec and
csec+1, ..., c2·sec simultaneously with the same randomness. The blinding values of the proof will also be put
into commitments (as well as for the randomness) to prove both that we can open the commitments and
that their opening values are equal to the plaintexts of the encryptions. We use an optimization for the
proofs due to [28] called proof with abort, which yields smaller parameters for the cryptosystem using the
zero-knowledge proofs with the Fiat Shamir heuristic ([20]). Moreover, its necessary to use this heuristic to
get good randomness into the proof - since both the sender and the receiver might be corrupted in the fully
malicious setting.
For the proof, we use the same notation as SPDZ: Let R ∈ Zsec×d be the matrix whose ith row is ri of ci
and R′ the similar matrix for rsec+i. Moreover, let V = 2 · sec− 1. For a vector e ∈ {0, 1}sec we define the
matrix Me ∈ ZV×sec2 as

Me(i, j) =

{
ei−j+1 if 1 ≤ i− j + 1 ≤ sec
0 else

In addition, we use as abbreviations the vectors c ← (c1, ..., csec) and c′ ← (csec+1, ..., c2·sec) for the
ciphertexts. Our plaintext values will be captured in the vectors x← (x1, ...,xsec),x

′ ← (xsec+1, ...,x2·sec)
and the commitments form the list d = (d1,1, d2,1, ..., dsec,l).
Given the protocol ΠZKPoPK from [18] (which is a honest-verifier zero-knowledge proof of knowledge for a
part of our relation) the following statement is straightforward:

Remark 3. The protocol ΠCTC is an honest-verifier zero- knowledge proof of knowledge for the relation
RCTC .

Proof. We observe that the protocol ΠCTC runs three instances of the SPDZ proof ΠZKPoPK in parallel, two
for the ciphertext vectors c, c′ and one for the commitments d. Correctness, soundness and honest-verifier
zero- knowledge follow directly for the first two instances due to the proof in [18], as we use different blinding
values a,a′ in both instances. Hence we obtain the statements about the ciphertexts and the norms of their
plaintexts, the randomness and the decodability of the plaintexts in RCTC . To fill in the gaps of the proof,
observe the following facts:

(1) Consider the connection between the plaintext values and the commitments. First of all, we use an
instance of the BeDOZa proof [7], and we use the same randomness (observe that the group operations
in the exponent coincide with the operations on the plaintexts). The connection between the plaintexts
and the committed values follows from the fact that our initially chosen blinding is the same for the
ciphertexts y,y′ and the commitments q. We also observe that the same randomness Me is used for
both cases, hence the operations on the ciphertexts carry over directly to the commitments.

16

The protocol ΠCTC

(1) For i ∈ {1, ..., V } the prover generates yi,y
′
i ∈ Zl and si, s

′
i ∈ Zd as follows: Let si, s

′
i be random such that

||si||∞, ||s′i||∞ ≤ 128 ·d ·ρ ·sec2. For yi,y
′
i, let mi,m

′
i ∈ Zlp be random elements and set yi = encode(mi)+ui,

y′i = encode(m′i) + u′i where both ui,u
′
i are generated such that each entry is a uniformly random multiple

of p subject to the constraint that ||yi||∞, ||y′i||∞ ≤ 128 ·N · τ · sec2
(2) For i ∈ {1, ..., V } the prover computes ai ← Encpk(yi, si),a

′
i ← Encpk(y′i, s

′
i) and

qi,j ← pc(decode(mi)[j], decode(m
′
i)[j]) for j ∈ {1, ..., l}. For S,S′ ∈ ZV×d, he sets S to be the matrix

where the ith column is si and S′ to have s′i as ith column respectively. Moreover, let y ← (y1, ..., yV),
y′ ← (y′1, ..., y

′
V),a← (a1, ...,aV) and a′ ← (a′1, ...,a

′
V),. For the commitments, we define qi ← (qi,1, ..., q1,l)

and q ← (q1, ..., qV).
(3) The prover sends a,a′, q to the verifier.
(4) The prover obtains e← U(2, sec) from the random oracle with seed a||a′||c||c′||d||q.

(5) The prover sets z ← (z1, ..., zV),z′ ← (z′1, ..., z
′
V) where z> = y> + Me × x>,z′> = y′> + Me × x′>.

Furthermore, he sets T = S +Me ×R,T ′ = S′ +Me ×R′. If the ∞-norm of any value of z or z′ is bigger
than 128 · τ ·N · sec2− τ · sec or the ∞-norm of any value of T ,T ′ is bigger than 128 · d · ρ · sec2− ρ · sec, then
the protocol is restarted.
If they are smaller, then the prover sends (z,z′,T ,T ′) to the verifier.

(6) The verifier obtains e from U(2, sec) using the seed a||a′||c||c′||d||q. Let ti be the ith row of T and t′i the
respective row of T ′. He computes f i ← Encpk(zi, ti), f

′
i ← Encpk(z′i, t

′
i) and sets

f ← (f1, ...,fV),f ′ ← (f ′1, ...,fV). In addition, the verifier computes the commitments
gi,j = pc(decode(zi)[j], decode(z

′
i)[j]) for i ∈ {1, ..., V }, j ∈ {1, ..., l}.

(7) The verifier checks whether decode(zi) ∈ Zlp, decode(z′i) ∈ Zlp and whether all of the following conditions hold:
(7.1) f> = a> ⊕ (Mec

>)

(7.2) f ′> = a′> ⊕ (Mec
′>)

(7.3) ||zi||∞, ||z′i||∞ ≤ 128 ·N · τ · sec2
(7.4) ||ti||∞, ||t′i||∞ ≤ 128 · d · ρ · sec2

(7.5) Let mi be the ith row of Me. Check that ∀i ∈ {1, ..., sec} ∀j ∈ {1, ..., l} : gi,j = qi,j ·
∏sec
k=1(d

mi[k]
k,j)

(7.6) If all these conditions hold, then the verifier accepts. Otherwise he rejects.

Fig. 13: The protocol for the zero-knowledge proof of plaintext knowledge

(2) It remains to show that the commitments do not break any property of one of the other proof instances.
Given two accepting proof instances for the same a,a′, q, we refer to the fact that the cryptosystem is
admissible. This means that the linear operations for the soundness proof give us plaintexts such that if
we solve the similar equations for the proof of the commitments, we obtain the same values as in these
plaintexts (this is because decode is homomorphic) except with negligible probability.

(3) For the construction of the simulator that shows the zero-knowledge property, we can use the simulator
for ΠZKPoPK two times (for the first two instances) with the same value from the random oracle and
obtain a,a′, e, z, z′,T ,T ′ that are distributed perfectly as in the real execution. This also then uniquely
defines the gi,j for the third instance. One can now use the linearity of the scheme to obtain satisfying
values q and thereby the whole transcript. Due to the linearity (and because there is only one commitment
for a combination of shared value & randomness) the commitments are also as in the protocol.

ut

Observe that ΠCTC would be the zero-knowledge proof that should be used in practice if the circuit contains
many gates. For a small number of gates, the amortization technique will not pay off. We remark that the
protocol ΠCTC can easily be adjusted to prove the relation RCTC for only two ciphertexts.

5.3 Resharing Plaintexts Among Parties

In order to compute the secred shared MAC, we compute the product of the shared value and the secret
MAC key α using the homomorphic encryption scheme and share the result. To perform this resharing, the

17

Procedure PReshare

PReshare(em):
(1) Each Pi samples a uniformly random f i ∈ Zlp. We denote f :=

∑n
j=1 f j

(2) Each Pi computes and broadcasts efi
← Encpk(f i) to all parties and FBulletin.

(3) Each Pi proves with a ZKPoPK that efi
is (Bplain, Brand, C)-admissible using the Random Oracle version

of ΠZKPoPK. It sends the proof to FBulletin.
(4) The players compute ef =

⊕n
i=1 efi

, set em+f = em⊕ef and check the ZKPoPKs. If they are not correct,
then they abort.

(5) The players decrypt em+f to obtain m+ f publicly.
(6) P1 sets m1 = m+ f − f1 and each other player Pi sets mi = −f i.

Fig. 14: A procedure that shares the plaintext of a publicly encrypted value

Procedure PComReshare

PComReshare(em, er,1, ..., er,n, r1, ..., rn):
(1) Each Pi samples a uniformly random f i ∈ Zlp. We denote f :=

∑n
j=1 f j

(2) Each Pi computes and broadcasts efi
← Encpk(f i) to all parties and FBulletin.

(3) For each k ∈ {1, . . . , l}, each party Pi publishes cf,i,k ← pc(f i[k],−ri[k]) on FBulletin.
(4) Each Pi proves with a ZKPoPK using ΠCTC that efi

, er,i are (Bplain, Brand, C)-admissible and that the
commitments hold. It sends the proof transcript to FBulletin.

(5) Each player checks whether the proofs are valid.
(6) The players locally compute ef =

⊕n
i=1 efi

and set em+f = em ⊕ ef .
(7) The players decrypt em+f using FKeyGenDec to obtain m+ f .
(8) P1 sets m1 = m+ f − f1 and each other player Pi sets mi = −f i.
(9) For k ∈ {1, ..., l}, P1 sets c′m,1,k = pc((m+ f)[k], 0)/cf,1,k and all other players Pi set c′m,i,k = c−1

f,i,k.
(10) All players set e′m ← Encpk(m+f)	(

⊕n
i=1 efi

) with the default value for the randomness of Encpk(m+
f).

Fig. 15: A procedure that shares the plaintext of a publicly encrypted value together with a commitment

original SPDZ protocol uses the procedure PReshare, which is depicted in Figure 14. The procedure shares
the plaintext of a ciphertext among n parties, such that the sum of the shares equals the plaintext if all
parties act honestly.
The following statements about PReshare are straightforward and can be verified in [18]:

Remark 4. Assuming a (Bplain, Brand, C)-admissible cryptosystem and FBulletin, then the following state-
ments are true about PReshare in the Random Oracle model:

(1) If all parties honestly follow the protocol, then they obtain correct and randomly distributed shares of
the plaintext of em w.h.p.

(2) If at least one and at most all parties are corrupted and the ZKPoPKs are correct, then the obtained
shares might not be correct (with respect to m), but the parties can obtain a ciphertext that contains
the shared value w.h.p.

The procedure in PReshare is sufficient as long as one does not have to generate commitments. To add them,
we introduce the new procedure PComReshare which can be found in Figure 15.
We now give a similar characterization about PComReshare like in Remark 4:

Remark 5. Assuming a (Bplain, Brand, C)-admissible cryptosystem, FBulletin and a group G where the DLP
is hard, then the following statements are true about PComReshare in the Random Oracle model:

(1) If all parties honestly follow the protocol then they obtain correct and randomly distributed shares of
the plaintext of em and correct commitments for their shares (with randomness from the er,i) w.h.p.

18

Procedure PDataCheck

CheckTriples(t1, ..., t2κ): We put the triples into the checking and evaluation vectors C and O. Then, correctness
is established using the same trick as in PCheckMac. For a vector of triples C, we want to access all ith
[[·]]-representations in vector form as C(i).
(1) Let C ← (t1, ..., tκ) and O ← (tκ+1, ..., t2κ) a.
(2) The parties execute PProvideRandom.P rovideRandom(p, κ) using seeds si to generate the joint random

vector t.
(3) Calculate γ = t�O(1)−C(1) and ∆ = O(2)−C(2) locally.
(4) Open γ and ∆ towards all players.
(5) Each party evaluates v ← t�O(3)−C(3)−∆�C(1)− γ �C(2)−∆� γ and commits to its share of

v using FCommit.
(6) Each party broadcasts its opening value of the commitment to its share of v.
(7) Each party locally reconstructs v.
(8) For all positions i of v that are 0, output O[i] as a valid multiplication triple.

aObserve that one can get a lower error probability in the proof of soundness if the values are randomly
assigned.

Fig. 16: A procedure to check the validity of triples

(2) If at least one and at most all parties are corrupted and the ZKPoPKs are correct, then the obtained
shares might not yield a correct secret sharing of m, but the parties know how to open the ciphertexts
and commitments w.h.p.

(3) If at least one and at most all parties are corrupted and the ZKPoPKs are correct, then m and m′ might
be different. The parties know a sharing of m′, and em′ is an admissible ciphertext and the players are
committed to the values in the ciphertexts w.h.p. Moreover, the parties know how to open all provided
ciphertexts and commitments w.h.p.

Observe that these statements follow from Remark 4 and Theorem 3.

5.4 Generating and Checking Triples

Our protocol does not have a reliable decryption algorithm for encrypted values. This means that A will
always be able to influence the outcome of the decryption process. But we use the homomorphic property
of the encryption scheme to generate triples of random values, which we store as secret shared values.

To check the correctness of the triples during the offline phase, we employ a similar technique as in [16] and
sacrifice a triple to check the correctness of another one. This is formally done in procedure PDataCheck as
depicted in Figure 16.

We will now prove that, given a passed CheckTriples execution, the triples will have the multiplicative
property whp.

Lemma 2. Let D = (ParamGen,KeyGen,KeyGen∗, Enc,Dec) be an admissible cryptosystem. In the Ran-
dom Oracle model, the test CheckTriples is correct and an adversary corrupting all parties can pass the test
CheckTriples for κ triples, out of which at least one is not correct, with probability at most κ/|Zp|.

Proof. Correctness can be established by putting the formulas together. Let us consider two triples a, b, c ∈ Zp
and x, y, z ∈ Zp. For t · (a · b− c) = (x · y − z) with t ∈ Zp, the following cases can happen:

(1) a, b, c correct, x, y, z not: the adversary has no chance to win.

(2) a, b, c not correct, x, y, z is: the adversary can only win with probability 1/|Zp|.
(3) both not correct: there is only one t ∈ Zp such that the equation holds, hence winning probability is

1/|Zp|.

19

Procedure PDataGen

This procedure generates as many random values or multiplication triples as required. Note that we do not
guarantee that the triples are correct. We will check both requirements later. Denote with l the number of plaintext
slots in M and with ea an encryption of a ∈ M. Note that eα encrypts a ciphertext, where every plaintext item
equals the MAC key α.

RandomV alues(T, l): The parties generate random values, together with MACs and commitments to their shares.
Set h = dT/le, then for each j ∈ {1, . . . , h} the parties do the following:
(1) Each party Pi samples uniformly random ri, si ∈ M, calculates er,i ← Encpk(ri), es,i ← Encpk(si) and

broadcasts er,i, es,i to all players and FBulletin.
(2) For each k ∈ {1, . . . , l}, each party Pi publishes cr,i,k ← pc(ri[k], si[k]) on FBulletin.
(3) Each party Pi invokes ΠCTC on er,i, es,i, {cr,i,k}k∈{1,...,l} and publishes the transcript on FBulletin.
(4) Each party checks all the ZKPoPKs together with the commitments. If at least one transcript is not

correct, they stop here.
(5) The parties locally calculate er =

⊕
i er,i, es =

⊕
i es,i as well as {cr,k =

∏
i cr,i,k}k∈{1,...,l}.

(6) The parties locally calculate and reshare the product with the MAC key using
γr,i ← PReshare(er ⊗ eα), γs,i ← PReshare(es ⊗ eα).

(7) The values (ri[k], γr,i[k]), (si[k], γs,i[k]), (cr,k) are now the components of [[r[k]]] for Pi.
Triples(κ, l): The same as for RandomV alues, but the parties additionally multiply values to generate triples.

Set h = dκ/le, then for j ∈ {1, . . . , h} the parties do the following:
(1) Each party Pi samples uniformly random ai, bi,f i, gi,hi ∈M, calculates ea,i ← Encpk(ai),

eb,i ← Encpk(bi) as well as ef ,i ← Encpk(f i), eg,i ← Encpk(gi), eh,i ← Encpk(hi) and broadcasts the
ciphertexts to all players and FBulletin.

(2) For each k ∈ {1, . . . , l}, each party Pi publishes ca,i,k ← pc(ai[k],f i[k]) and cb,i,k ← pc(bi[k], gi[k]) on
FBulletin.

(3) Each party Pi provides a ZKPoPK for (ai,f i, (ca,i,k)k∈{1,...,l}) and (bi, gi, (cb,i,k)k∈{1,...,l}) using ΠCTC

and sends the transcript to FBulletin.
(4) Each party Pi checks the correctness of the ZKPoPKs of all other parties. If at least one transcript is not

correct, they stop here.
(5) The parties locally calculate ea =

⊕
i ea,i and eb =

⊕
i eb,i.

(6) The parties compute ea·b = ea⊗eb and invoke PComReshare(ea·b, (eh,i)i∈{1,...,n}, (hi)i∈{1,...,n}). As a result,
each party Pi obtains shares ci and all parties obtain a ciphertext ec such that c =

∑
i ci.

(7) Locally compute ef =
⊕

i ef ,i, eg =
⊕

i eg,i and eh =
⊕

i eh,i. The parties compute the product of eα
with ea, eb, ec, ef , eg, eh and invoke PReshare(·) on each such product to distribute a sharing of the MAC
on each such value.

Fig. 17: Procedure PDataGen to generate both triples and random values

If A cheats during this process and t is chosen uniformly at random, then he can cheat for every pair
of triples with probability at most 1/|Zp| as explained above. By the union bound, this yields κ/|Zp| for
CheckTriples. ut

In addition, we need a procedure that actually generates random values and triples in our desired [[·]]-
representation. Figure 17 specifies this procedure PDataGen formally.

5.5 The Offline Phase

In this subsection, we present the protocol ΠSetup which describes our full offline phase. We decided to
exclude most of the well-known protocol steps from [18,16] to focus on the audit part of ΠSetup. Basically,
the audit follows the computation and ensures that

(1) All encrypted values and commitments have zero-knowledge proofs.
(2) All zero-knowledge proofs are valid.
(3) Linear operations on commitments are carried out correctly.

20

Protocol ΠSetup

This procedure sets up the cryptosystem for the protocol. Moreover, the random data for ΠAuditMPC is generated
that is needed during execution.

Initialize: On input (init, p, l) from all parties:
(1) The parties use FKeyGenDec to generate a public key pk and a shared private key sk.
(2) The parties extract the generators g, h ∈ G from the common reference string.
(3) Each Pi generates a private αi ∈ Zp. Let α =

∑n
j=1 αj .

(4) Each Pi computes and broadcasts eαi = Encpk(diag(αi)).
(5) Each player Pi uses ΠZKPoPK to prove that eαi is a (Bplain, Brand, C)-admissible, diagonal element.
(6) Each player checks the zero-knowledge proofs from all other parties. If one is not correct, abort.
(7) All players compute eα =

⊕n
i=1 eαi .

Compute: On input (GenerateData, T, κ) from all parties and if l divides T and κ, the players execute the
subprocedures of PDataGen. Afterwards they check the results for correctness using PDataCheck.
(1) ([[r1]], ..., [[rT]])← PDataGen.RandomV alues(T, l)
(2) (t1, ..., tκ)← PDataGen.T riples(κ, l)
(3) (v1, ..., vκ′)← PDataCheck.CheckTriples(t1, . . . , tκ)
(4) Return ([[r1]], ..., [[rT]], v1, ..., vκ′).

Audit: If Compute was executed successfully, do the following together with FBulletin:
(1) Obtain all ids and messages on FBulletin.
(2) For every encryption ei and commitment cj , check whether there exists a transcript of ΠCTC or ΠZKPoPK

that guarantees its correctness. Otherwise return reject.
(3) For every transcript of ΠCTC or ΠZKPoPK, check whether the values for each instance are on FBulletin.

Otherwise return reject.
(4) Run the verifier part for each transcript of ΠCTC, ΠZKPoPK. If the verifier rejects, return reject.
(5) For each value [[a]] that was generated with PDataGen, check whether its commitment can be obtained from

the commitments to the shares as in PDataGen. If not, return reject.
(6) Run PDataCheck on the commitments of the triples simulating the invocation of PProvideRandom. If one of

the triples that were returned by Compute does not open to 0 in the sanity check, return reject.
(7) Check for every opened value r with randomness s and commitment c whether c = pc(r, s). If not, return

reject.
(8) Return accept.

Fig. 18: Protocol ΠSetup that performs the preprocessing for the online phase

(4) The procedure PDataCheck was executed correctly.
(5) All opened commitments are indeed correctly opened.

To ease notation, we define the function diag as diag : Zp → M, a 7→ (a, a, ..., a)︸ ︷︷ ︸
l times

. The offline phase is

described in Figure 18.

6 Security Proof of the Offline Phase

In this chapter, we will give a proof of security of the offline phase.

Theorem 2. Let D = (ParamGen,KeyGen,KeyGen∗, Enc,Dec) be an admissible cryptosystem. Then
ΠSetup implements FSetup with computational security against any static adversary corrupting at most all
parties in the (FCommit,FBulletin)-hybrid model with a Random Oracle if the DLP is hard in the group G.

Proof. Consider the simulator in Figure 19, we will now prove that ΠSetup is computationally indistinguish-
able from SOffline�FSetup. Once again, we will have different arguments for the honest minority and the fully
malicious setting. Observe that we assume in the protocol and in the simulator that we use the non-optimized

21

Simulator SOffline

Wait for the set of corrupted parties ABP from the environment, and let n be the number of players.

If |ABP | 6= n, then forward all incoming messages that are not from SOffline,normal to SOffline,normal, and send all
messages that come from SOffline,normal to the proper recipient.

If |ABP | = n, then forward all incoming messages that are not from SOffline,full to SOffline,full, and send all
messages that come from SOffline,full to the proper recipient.

Fig. 19: Simulator for the offline phase

Simulator SOffline,full, Part 1

Let n be the number of players.

Initialize:
(1) Choose random generators g, h ∈ G such that logg(h) is known and provide a CRS compatible with the

choice.
(2) The simulator sets up its own random oracle U locally and afterwards starts a local copy of FSetup, with

which the adversary communicates via the simulator.
(3) On input (init, p, l) from all parties, the simulator sends (init, p, l) to FSetup.
(4) The simulator runs an instance of FKeyGenDec to generate a public key pk and shares of a secret key sk

for all parties.
(5) Wait for the shares of eα,i from all parties Pi and the respective ZKPoPKs using ΠZKPoPK. If the proofs

are not correct, stop the execution of Initialize here. Otherwise, decrypt all eα,i to obtain αi.
(6) Send the αi to FSetup and compute α =

∑
i αi. Moreover, compute locally eα =

⊕
i eα,i.

Audit:
(1) Query FSetup with (Audit). Return the value of FSetup to the requesting party.

Fig. 20: Partial simulator for the offline phase, fully malicious

version of ΠCTC. We presented an optimized approach earlier for reasons of efficiency, but will prove it using
a version with less overhead, to simplify the proof and hence focus on the important details. We also only
present a simulator for one round of the offline phase - the simulation of multiple rounds is straightforward.

Fully malicious setting In the fully malicious setting, we do not have to simulate any honest party. This
makes a few steps in the proof easier. Observe that we always have to catch the case that the adversary does
something not according to the protocol, which means that he can be caught during Audit.

Our simulator basically behaves as an observer would do in the protocol, i.e. it decrypts all information and
feeds it into FSetup. Hence we do not have to argue whether the simulation is perfect, but just show that
the probability of the event that happens when Audit from FSetup and from ΠSetup reveal different values
is negligible.

In our protocol, the audit process will return true if all zero knowledge proofs are correct, if the triple check
was done correctly and if the revealed values open the related commitments. We observe that, if one of these
conditions does not hold and hence the Audit fails, the same happens if the Simulator SOffline,full is used
(as we can simply check the opened values for the commitments and since the zero knowledge proofs are
complete). The case of the correctness of the triples is more subtle: A triple might be marked as correct even
though the multiplicative relation does not hold (see the proof of Lemma 2), but we allow Z to choose a set
of the triples that are multiplicative. If this set does not coincide with the set of correct triples, the audit
will fail later on.

22

Simulator SOffline,full Part 2

Compute:
(1) The simulator waits for the ciphertexts er,i, es,i, commitments cr,i,k and ZKPoPKs from all parties. It

sets cr,k =
∏
i cr,i,k for all k ∈ {1, ..., l}.

(2) The simulator decrypts the ciphertexts to ri ← Decsk(er,i), si ← Decsk(es,i) and sends them to FSetup.
(3) Compute ∆r[k] = pc(

∑
i ri[k],

∑
i si[k])/cr,k for all k ∈ {1, ..., l}. If the ZKPoPKS are not all correct,

then let ∆r be random values from G.
(4) Locally compute er =

⊕
i er,i, es =

⊕
i es,i as well as eαr = eα ⊗ er and eαs = eα ⊗ es.

(5) Do the following for x = αr and then x = αs:
(5.1) Wait for ef ,i from each party Pi and the related transcripts of ΠZKPoPK. If the ZKPoPKS are not

all correct, then let ∆r be random values from G. a

(5.2) Locally compute ea = ex ⊕
⊕

i ef ,i.
(5.3) Wait for the decryption a′ of ea using FKeyGenDec. Then let γ1 ← a′ −Decsk(ef ,1) and

γi ← −Decsk(ef ,i) for i ∈ {2, ..., n}.
(5.4) Let γx := (γ1, ...,γn).

(6) Send ∆r, γαr, γαs to FSetup.

(7) The simulator waits for the ciphertexts ea,i, eb,i, ef ,i, eg,i, eh,i, commitments ca,i,k, cb,i,k and ZKPoPKs
from all parties Pi. If one of the proofs is not correct, then let ca,i,k, cb,i,k be uniformly random values in
G.

(8) The simulator decrypts the ciphertexts to ai ← Decsk(ea,i), bi ← Decsk(eb,i),f i ← Decsk(ef ,i), gi ←
Decsk(eg,i) and hi ← Decsk(eh,i).

(9) Locally compute ea =
⊕

i ea,i, eb =
⊕

i eb,i, eh =
⊕

i eh,i and compute ea·b = ea ⊗ eb.
(10) Wait for e′c,i from each party Pi, the commitments (cc′,i,k)k∈{1,...,l} (using −hi as randomness) and the

related transcripts of ΠCTC. If one of the proofs is not valid, let cc′,i,k be random values in G.
(11) Locally compute e′c =

⊕
i e
′
c,i and ea·b+c = e′c ⊕ ea·b

(12) Wait for the decryption a′ of ea·b+c using FKeyGenDec.
(13) Let c1 ← a′−Decsk(e′c,1) and ci ← −Decsk(e′c,i) for i ∈ {2, ..., n}. Moreover, set ec = Encpk(a′)−

⊕
i e
′
c,i

with some standard randomness.
(14) For k ∈ {1, ..., l} compute cc,1,k = pc(a′[k], 0)/cc′,1,k and cc,i,k = c−1

c′,i,k for each i ∈ {2, ..., n} locally.
(15) For z ∈ {a, b, c, f, g, h} do:

(15.1) Compute ey ← eα ⊗ ez locally.
(15.2) Wait for ex,i from each party Pi and the related transcripts of ΠZKPoPK. If one of the proofs is not

valid, let cc,i,k be random values in G.
(15.3) Locally compute ex = ey ⊕

⊕
i ex,i.

(15.4) Wait for the decryption x′ of ex using FKeyGenDec. Then let γz,1 ← x′ −Decsk(ex,1) and
γz,i ← −Decsk(ex,i) for i ∈ {2, ..., n}.

(16) Send the subvectors with the indices l/2 + 1, ..., l of (ai,f i, bi, gi, ci,hi)i∈{1,...,n} to FSetup.
(17) Set ca,k =

∏
i ca,i,k, cb,k =

∏
i cb,i,k and cc,k =

∏
i cc,i,k for all k ∈ {1, ..., l}.

(18) Compute ∆a[k] = pc(
∑
i ai[k],

∑
i f i[k])/ca,k, ∆b[k] = pc(

∑
i bi[k],

∑
i gi[k])/cb,k and ∆c[k] =

pc(
∑
i ci[k],

∑
i hi[k])/cc,k for all k ∈ {1, ..., l}.

(19) For z ∈ {(a, f), (b, g), (c, h)} do
(19.1) Send the subvectors with the indices l/2+1, ..., l of ∆z[1], (γz[1],1, ...,γz[1],n) and (γz[2],1, ...,γz[2],n)

to FSetup.

(20) The simulator follows the procedure PDataCheck with all partiesb.
(21) Send the indices of the returned values from PDataCheck to FSetup.

aThis is unrelated to this particular proof, but it will make Audit fail as we want.
bI.e. it provides randomness using its version of U .

Fig. 21: Partial simulator for the offline phase, fully malicious, continued

23

Simulator SOffline,normal

Let ABP be the set of corrupted players and n be the number of players.

Initialize:
(1) Choose random generators g, h ∈ G such that logg(h) is known and provide a CRS compatible with the

choice.
(2) The simulator sets up its random oracle u locally and afterwards starts a local copy of FSetup, with which

the adversary communicates via the simulator.
(3) On input (init, p, l) from all parties, the simulator sends (init, p, l) to FSetup.
(4) The simulator runs an instance of FKeyGenDec to generate a public key pk and shares of a secret key sk

for all parties.
(5) Wait for the shares of eα,i for all Pi, i ∈ ABP and the respective ZKPoPKs using ΠZKPoPK. If the proofs

are not correct, stop the execution of Initialize here. Otherwise, decrypt all eα,i to obtain αi and send
them to FSetup.

(6) Decrypt the broadcasted values from the honest parties to obtain αi, i 6∈ ABP and compute α =
∑
i αi

locally.
Audit:

(1) Query FSetup with (Audit). Return the value of FSetup to the requesting party.
Compute:

(1) RandomV alues: The simulator behaves exactly as in the protocol, and additionally does the following:
– in step 1, it decrypts the ciphertexts er,i, es,i to obtain the vectors ri, si.
– in step 6 it calls SReshare for both er, es to obtain ∆γ,r,∆γ,s,γr,i,γs,i.
– call RandomV alues on FSetup and send the values ri, si in step 1.1 and ∆γ,r,∆γ,s,γr,i,γs,i in step

4 for i ∈ ABP to FSetup.
(2) Triples: The simulator behaves exactly as in the protocol, and additionally does the following:

– in step 2, additionally decrypt all obtained ciphertexts from step 1 to obtain ai, bi,f i, gi,hi for all
Pi.

– in step 6 run SComReshare to obtain ci.
– Obtain the values ∆γ,z,γz,i for z ∈ {a, b, c, f, g, h} using SReshare in step 7.
– Call Triples on the functionality FSetup. Then construct new vectors ai, bi, ci,f i, gi,hi out of the

existing ones. Pick those entries that have the following properties at the index j:
(2.1) j ∈ dl/2e+ 1, ..., l
(2.2) ai[j] · bi[j] = ci[j]
For i ∈ ABP send ai,f i, bi, gi in step 2.2, ci,hi in step 2.4 and ∆γ,a,∆γ,f ,γa,i,γf,i in first,
∆γ,b,∆γ,gγb,i,γg,i in the second and ∆γ,c,∆γ,hγc,i,γh,i in the third execution of the macro Bracket.

(3) the simulator runs CheckTriples with the adversary and the values of the honest parties. Announce as
result the set L of values as obtained from FSetup.

SReshare: The simulator performs the same steps as in the original SPDZ simulator (i.e. in addition to the
protocol):
– in step 2, it decrypts all ciphertexts ef ,i to obtain f i
– in step 5, it obtains (m+ f)′ from the adversary and (m+ f) using the secret key to decrypt em+f . It

then sets ∆γ = (m+ f)′ − (m+ f)
– the simulator sets m1 = (m− f)′ − f1 and mi = −f i for all remaining parties

SProReshare: The simulator performs the same steps as in the protocol, and in addition extracts the following
information:
– in step 2 it decrypts all ciphertexts ef ,i to obtain f i
– in step 7, it obtains (m+ f)′ from the adversary and (m+ f) using the secret key to decrypt em+f . It

then sets ∆p = (m+ f)′ − (m+ f)
– the simulator sets m1 = (m− f)′ − f1 and mi = −f i for all remaining parties

Fig. 22: Partial simulator for the offline phase, honest minority

Conversely, if SOnline,full � FAuditMPC returns reject on Audit then this happens if the simulator set
f = ⊥. In the case of the zero knowledge proofs, this happens if either the proof was not correct or the proof
was correct and the relation did not hold (which only happens with negligible probability).

24

Hence we see that events that trigger FAuditMPC to return reject if ΠSetup returns accept y only occur
with negligible probability. The converse can not happen at all, and the distinguishing probability must be
negligible as well.

At least one honest party The proof goes along the same lines as in [18], with the difference that we
now have commitments in the protocol and that the triples are already checked in this offline phase. Our
subsimulator can be found in Figure 22, which as in [18] makes use of the available decryption key. A key
difference is that we do provide commitments to the values of the honest parties to Z, but observe that
the commitments are distributed in the simulation as they are in the actual protocol (we can choose the
commitments for the multiplication in advance and later open one to the correct values using the trapdoor
logg(h)).
Based on Figure 22 one can argue that a protocol transcript does computationally not reveal any information
using KeyGen∗, rewinding of a local environment and the zero knowledge property of ΠCTC based on
Theorem 3, Remark 4 and 5 as well as Lemma 2 (this is equivalent to the proof in [18] and is therefore
omitted here). Moreover, the outcome of Audit is indistinguishable as a cheating A was already caught
using the zero knowledge proofs during Compute, and Audit simply also evaluates these checks.
The set of triples that FSetup outputs will be all those triples that are correct. In the protocol execution,
we will instead use the values that CheckTriples outputs. The statistical distance between those outputs is
κ/p as stated in Lemma 2, which is negligible for large enough p.
The security of SOffline now trivially follows. ut

7 Summary and Open Problems

In this paper, we described how to formally lift MPC into a setting where all servers are malicious. We
outlined how this concept can then be securely realized on top of the SPDZ protocol. Though our approach
can also be implemented for other MPC protocols, we focused on SPDZ since, even as an publicly auditable
scheme, its online phase is very efficient. We note that our protocol would also work for Boolean circuits,
but this would introduce a significant slowdown (since the MACs must then be defined as elements of an
extension field over F2, which leads to a significant overhead). It is an interesting future direction to design
an efficient auditable protocol optimized for Boolean circuits or circuits over fields with small characteristic.
With respect to online voting, there exist stronger degrees of auditability than we presented. An example
is the notion of universal verifiability (see e.g. [34,29]) where the auditor must not know the output of the
computation. We also do not provide accountability (see e.g. Küsters et al. [37]), and leave it as an open
question whether similar, efficient protocols can be achieved in this setting.
We leave a working implementation of our scheme as a future work. As our protocol is very similar in
structure to the original SPDZ, it should be possible to implement it easily on top of the existing codebase
of [16].

Acknowledgements

We want to thank the anonymous reviewers for their helpful comments.

References

1. Ben Adida. Helios: Web-based open-audit voting. In USENIX Security Symposium, volume 17, pages 335–348,
2008.

2. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital goods. In EURO-
CRYPT, pages 119–135, 2001.

3. Miklós Ajtai, János Komlós, and Endre Szemerédi. An o(n log n) sorting network. In STOC, pages 1–9, 1983.

25

4. Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public verifiability. In ASI-
ACRYPT, pages 681–698, 2012.

5. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances in Cryptology —
CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer, Berlin, Germany,
1992.

6. Mihir Bellare, Juan A Garay, and Tal Rabin. Fast batch verification for modular exponentiation and digital
signatures. In Advances in Cryptology—EUROCRYPT’98, pages 236–250. Springer, 1998.

7. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and multi-
party computation. In Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 169–188. Springer Berlin Heidelberg, 2011.

8. Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and Amit Sahai. Secure computation against
adaptive auxiliary information. In CRYPTO (1), pages 316–334, 2013.

9. Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in lwe-based homomorphic encryption.
Cryptology ePrint Archive, Report 2012/565, 2012.

10. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12,
pages 309–325, New York, NY, USA, 2012. ACM.

11. Ernest F Brickell, Daniel M Gordon, Kevin S McCurley, and David B Wilson. Fast exponentiation with precom-
putation. In Advances in Cryptology—EUROCRYPT’92, pages 200–207. Springer, 1993.

12. David Chaum, Peter YA Ryan, and Steve Schneider. A practical voter-verifiable election scheme. Springer, 2005.
13. David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the

ACM, 24(2):84–90, 1981.
14. Josh D Cohen and Michael J Fischer. A robust and verifiable cryptographically secure election scheme. In FOCS,

volume 85, pages 372–382, 1985.
15. Emiliano De Cristofaro and Gene Tsudik. Experimenting with fast private set intersection. In TRUST, pages

55–73, 2012.
16. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Practical

covertly secure mpc for dishonest majority - or: Breaking the spdz limits. In ESORICS, pages 1–18, 2013.
17. Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation of boolean circuits using preprocessing.

In Theory of Cryptography, pages 621–641. Springer, 2013.
18. Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from somewhat ho-

momorphic encryption. In Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 643–662. Springer, Berlin, Germany, 2012.

19. Sebastiaan Jacobus Antonius de Hoogh. Design of Large Scale Applications of Secure Multiparty Computation:
Secure Linear Programming. PhD thesis, Technische Universiteit Eindhoven, 2012.

20. Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature problems.
In Advances in Cryptology—CRYPTO’86, pages 186–194. Springer, 1987.

21. Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large polynomials and matrix computations,
with applications. In ACM Conference on Computer and Communications Security, pages 501–512, 2012.

22. Eiichiro Fujisaki and Tatsuaki Okamoto. A practical and provably secure scheme for publicly verifiable secret
sharing and its applications. In Advances in Cryptology—EUROCRYPT’98, pages 32–46. Springer, 1998.

23. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct
nizks without pcps. In EUROCRYPT, pages 626–645, 2013.

24. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits better than custom
protocols? In NDSS, 2012.

25. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently. In
CRYPTO, pages 572–591, 2008.

26. Alptekin Küpçü and Anna Lysyanskaya. Optimistic fair exchange with multiple arbiters. In ESORICS, pages
488–507, 2010.

27. Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with precomputation. In Advances in cryptol-
ogy—CRYPTO’94, pages 95–107. Springer, 1994.

28. Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In Advances
in Cryptology–ASIACRYPT 2009, pages 598–616. Springer, 2009.

29. Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlasting privacy. In CRYPTO, pages
373–392, 2006.

30. Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism design. In Proceed-
ings of the 1st ACM conference on Electronic commerce, pages 129–139. ACM, 1999.

26

31. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach to
practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 681–700. Springer Berlin
Heidelberg, 2012.

32. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Advances
in Cryptology — CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer,
Berlin, Germany, 1992.

33. Kazue Sako. An auction protocol which hides bids of losers. In Public Key Cryptography, pages 422–432. Springer,
2000.

34. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In Advances in Cryptology—EUROCRYPT’95,
pages 393–403. Springer, 1995.

35. Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its application to electronic voting.
In Advances in Cryptology—CRYPTO’99, pages 148–164. Springer, 1999.

36. Markus Stadler. Publicly verifiable secret sharing. In Advances in Cryptology—EUROCRYPT’96, pages 190–199.
Springer, 1996.

37. Tomasz Truderung, Andreas Vogt, and Ralf Küsters. Accountability: definition and relationship to verifiability.
In Proceedings of the 17th ACM conference on Computer and communications security, pages 526–535. ACM,
2010.

A On the Efficiency of our Solution

In this section, we will outline why the practical efficiency of the offline and audit phase of our protocol
crucially depends on how fast commitments can be computed and checked. We will moreover present a few
optimizations for these tasks.

Asymptotic efficiency. In terms of asymptotic efficiency, our suggested online phase is as efficient as
the SPDZ protocol. Practically, the number of local field operations and sent values increases by a modest
factor of two, plus some additional work for each input-providing party (to check whether the commitment
is correct). It is an interesting open problem to see if one could get rid of even this minor slowdown.
To be more precise, we have to distinguish between the field operations in Zp and the group operations in G.
In the standard setting, where each party provides O(1) inputs and O(1) output values are jointly computed,
and where the number of gates in our circuit is upper-bounded by |C|, all operations of the online phase
(Input, Add, Multiply, Output) together can be performed by each player doing at most O(n · |C|) field
operations. Assuming that we use Pedersen commitments to implement FCommit in practice, we obtain an
extra O(n · log p) group operations during Input and Output. In terms of network load, each party sends
or receives O(n · |C|) field elements over the network during the Input phase and while the computation is
carried out, and O(n) elements from Zp and G during Output.
We moreover have to discuss our new Audit phase of the protocol (we exclude FSetup from the discussion).
The strategy of Audit is to follow the computation with the commitments. Here, the number of operations
in Zp is O(n · |C|), which is comparable to the online phase. In addition, the algorithm performs the gate
operations on commitments and checks whether every opening of a commitment was correct – this in total
requires O((n+ C) · log p) group operations.
To check whether the commitments are correctly opened, the audit process computes a random linear
combination of the opened commitments (using coefficients from Zp) and the values which should open
them (instead of checking all of them independently). This randomized check fails with probability 2− log p.
In practice, one would choose the coefficients of the random linear combination from the smaller interval
[0, ..., 2k − 1] (where we can have k � log p), thus saving operations in G.

Towards a faster offline phase. Though the offline phase of [18] can directly be extended to support
the computation of the commitments (as explained), one can use different optimizations for it. First of all,
computing the commitments can be made faster using preprocessing as in [11,27]. Moreover, it is possible
to reduce the total number of commitments (introducing a moderate slowdown during the online phase) as
follows:

27

Instead of computing one commitment per value, one can also use s pairwise distinct generators g1, ..., gs ∈ Zp
together with just one randomness parameter, where generator gi is used to commit to the ith value.
A representation (x1, ..., xt, r, g

x1
1 · · · g

xt
t h

r) of t values in parallel is componentwise linear, and multiplications
can also be performed as before (now for multiple elements in parallel). We observe that the computation of a
commitment with many generators can be substantially faster than computing all commitments individually.
This optimization, similar to [17], works for a large class of circuits. We moreover note that, in order to use
this optimization, one also has to precompute permutations between the representations which must then be
used during the online phase. This leads to a moderate slowdown during the evaluation of the circuit.

Tweaks for the audit phase. The audit process, as explained in Figure 7, basically consists of (1)
performing linear operations on commitments and (2) checking whether commitments open to the correct
values. Whereas we see no approach to speed up the first part, we will address the second one using a
well-known technique from [6].
Let c1, ..., cn ∈ G be the commitments and let x1, ..., xn, r1, ..., rn be the values that should open them. We
want to establish that ∀i ∈ {1, ..., n} : ci = gxihri .
The is to compute a random linear combination of all commitments, and thus check all of them at once. We
choose the coefficients of the random combination from the interval 0, ..., 2k − 1.
Now computing such a random linear combination will yield a false positive with probability ≈ 2−k, but we
can adjust the error probability here and make it independent of the field description size log p (remember
that also G has to be a DLP-hard group of order p). This also yields less computational overhead, as we
only have to raise group elements to at most 2kth powers. The algorithm looks as follows:

(1) Choose a← {0, ..., 2k − 1}n uniformly at random.

(2) Check that
∏
i c

a[i]
i =

∏
i(g

xihri)a[i] = g
∑

i a[i]xih
∑

i a[i]ri .

Bellare et al. show in [6] that this algorithm indeed fails to correctly verify with probability 2−k. Moreover,
one can use a recursive approach to gain further speedup for a large number of commitments. We refer to
[6] for more details.

B A Generic Implementation of Auditable MPC

Until now, we only provided a specific implementation of FAuditMPC based on the SPDZ protocol. We now
want to argue that it is possible to securely implement FAuditMPC using generic tools, namely a “strong”
semi-honest OT protocol in the sense that the protocol should be secure even if the adversary tampers
with the corrupted parties internal tapes (but follow the protocol honestly), and universally composable
non-interactive zero-knowledge proofs of knowledge(UC-NIZKoKs) in the CRS model.
First of all, note that UC-NIZKoKs trivially implement an auditable functionality: If the CRS and the
proof are posted on the bulletin board, then the auditor (i.e., anyone) can run the verifier algorithm and
double-check the output of the verifier.
Several notions of “strong” semi-honest protocols have been used in recent works – see Remark 1 in [25]
or the notion of “semi-malicious” in [8]. In all notions different requirements of security still hold when the
adversary can tamper with the randomness of otherwise semi-honest parties.
In our setting, we need that the OT protocol is still secure even if the adversary tampers with the random
tape of one of the parties, and in addition the protocol should still be correct even if the adversary tampers
with the random tape of both parties. Here security is defined as the usual notion of indistinguishability
of the joint distribution of the view of the corrupted party and the outputs of all parties (including the
honest ones) between a real execution of the protocol and a simulated one. The correctness requirements
can similarly be defined, but we only require that indistinguishability should hold w.r.t. the output of the
computation.
Note that in the case where there is at least one honest party, any semi-honest protocol can be turned into
one that gives full security (not only correctness) when the adversary tampers with the randomness of the
corrupted parties. The transformation goes as follows: At the beginning of the protocol Pi receives a random

28

string from all other parties and redefines his random tape as the xor of its original random tape and the
strings obtained externally. As long as one party is honest, Pi’s random tape will be uniformly distributed.
However it is easy to see that this transformation does not work when all parties are corrupted.
Fortunately many “natural” OT protocols, such as [2], are still correct even when the adversary tampers
with the randomness of all parties. Then we can construct an “auditable” GMW-protocol against active
adversaries using such an OT protocol and NIZKoK.
The protocol proceeds as follows: The input parties I1, ...,Im share their inputs using an n-out-of-n secret
sharing scheme and produce commitments to all of their shares. They now publish the commitments on
the bulletin board and send one share to each server Pj . Those commitments should be binding even if all
parties (including the input parties) are corrupted. This can be achieved by using e.g. a commitment scheme
where the receiver does not send any message to the sender.
Now the computing parties P1, ...,Pn engage in an execution of the GMW-protocol using the strongly-
correct OT and prove that all their messages are well formed using the NIZKoK. If there is at least one
honest party, this protocol can be shown to be secure following the GMW-protocol (the only step missing
is the “coin-flipping into the well” but this is taken care by the fact that the OT protocol enjoys “strong”
security against semi-honest corruptions). In the audit phase TAudit checks all the NIZKs on the bulletin
board and accepts y if they do and rejects if any NIZK verification fails. As the OT protocol is guaranteed
to be correct even when all parties use bad randomness but follow the protocol, the auditor only outputs
accept y if this is the correct output.

29

	Publicly Auditable Secure Multi-Party Computation

