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Abstract

In standard models of secure computation, point-to-point channels between parties are as-
sumed to be authenticated by some pre-existing means. In other cases, even stronger pre-existing
setup—e.g., a public-key infrastructure (PKI)—is assumed. These assumptions are too strong
for open, peer-to-peer networks, where parties do not necessarily have any prior relationships
and can come and go as they please. Nevertheless, these assumptions are made due to the
prevailing belief that nothing “interesting” can be achieved without them.

Taking inspiration from Bitcoin, we show that precise bounds on computational power can
be used in place of pre-existing setup to achieve weaker (but nontrivial) notions of security.
Specifically, under the assumptions that digital signatures exist and each party can solve cryp-
tographic “time-lock” puzzles only at a bounded rate, we show that without prior setup and
with no bound on the number of corruptions, a group of parties can agree on a PKI with which
they can then realize pseudonymous notions of authenticated communication, broadcast, and
secure computation. Roughly, “pseudonymous” here means that inputs/outputs are (effectively)
bound to pseudonyms rather than parties’ true identities.

1 Introduction

Standard models of secure computation assume that the point-to-point channels between parties are
authenticated by pre-existing means, whether via some physical property of the underlying network
or using keys shared by the parties in advance. When security against an unbounded number of
corruptions is desired, even stronger pre-existing setup—specifically, a public-key infrastructure
(PKI) or some other means of implementing broadcast—is frequently assumed.

Such setup may not exist in many interesting scenarios, especially open, peer-to-peer networks
in which parties do not necessarily have any prior relationships, and can come and go as they please.
Nevertheless, such setup is often assumed due to the prevailing belief that nothing “interesting” can
be achieved without them. For example, Barak et al. [5] show that without authenticated channels,
an adversary can partition the set of honest parties and, for each set, substitute arbitrary inputs for
honest parties outside that set. As another example [25, 33], broadcast cannot be achieved if 1/3
or more of the participating parties can be corrupted, even given authenticated channels, without
some stronger form of setup such as a PKI [12].
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We revisit the above and ask: can nontrivial notions of security be realized without prior means
of authentication or other forms of setup? Taking inspiration from Bitcoin [31] we show that, indeed,
nontrivial security can be realized without setup but based instead on some assumption about the
distribution of computational resources among parties. Especially, we consider a network that
provides guaranteed, bounded-delay delivery of honest parties’ messages, but no authentication.
We also assume the existence of time-lock cryptographic puzzles that can be solved only at some
bounded rate, plus secure digital signatures. We show that these assumptions can be leveraged
to allow a set of n parties to realize Interactive Set Consistency (ISC), a relaxation of Interactive
Consistency [33], regardless of the number of corrupted parties. In ISC each party has an input, and
outputs a set of size n such that (1) all honest parties agree on the same set S, and (2) all honest
parties’ inputs are included in S. Such a protocol can naturally be used to establish a PKI among
the parties; this PKI can then be used to provide “authenticated communication,” “broadcast,”
and “secure computation with unanimous abort” [20] in the presence of an unbounded number of
corruptions. (If an honest majority is assumed, we can achieve “secure computation with fairness
and guaranteed output delivery.”) The preceding terms are in quotes because we do not achieve
them in the usual sense, but instead realize pseudonymous versions of them. Roughly, this means
that inputs/outputs are bound to pseudonyms (effectively, parties’ public keys) rather than parties’
true identities.1 We refer the reader to later sections of our paper for a formal model of the puzzles
we assume, as well as a more precise definition of “pseudonymous.”

Inspiration from Bitcoin. Our model is inspired by Bitcoin [31], which is widely regarded as
the first broadly successful e-cash system. In place of trusted setup assumptions, Bitcoin relies (at
least informally) on cryptographic puzzles and the assumption that no single entity controls more
than half the computational resources in the system. The phenomenal success of Bitcoin calls for
a deeper theoretical understanding of precisely what security guarantees can be achieved by these
types of assumptions.

We stress, though, that our work is not intended to model the Bitcoin protocol itself, and
we readily admit that in our initial attempt to provide a formal treatment we have made some
simplifying assumptions. For example, we assume that the network guarantees (bounded-delay)
delivery of messages to every party, that the number of parties is fixed (and known) at the outset,
and that each party has equal computational power. Relaxing these assumptions is left for future
work. Regardless, our initial results are promising and show that distributed computation models
based on assumptions about resources rather than authenticated identities can lead to non-trivial
security guarantees.

Related work. Okun [32] studied distributed computing problems for several variations of anony-
mous network models. The weakest model he considered, the anonymous “port-unaware” model, is
most similar to ours, since a process does not learn whether two messages received originate from
the same sender. However, our model is slightly weaker still: in the port-unaware model, each
corrupt process can send at most one message to a correct process in a round, whereas in ours the
adversary can deliver an arbitrary number messages to correct processes. Okun’s positive result

1The notion of pseudonymity we mean can perhaps best be illustrated with regard to authenticated communication.
The typical notion of authenticated communication is that Alice can be assured that some message she receives
originated at Bob, and not some other party. Pseudonymous authenticated communication, in contrast, allows Alice
to be assured that she receives a message from someone who calls himself “Bob,” and that this is the same entity
(or at least is controlled by the same entity) who sent her a message previously using the same name. However, this
party may not be named Bob in any absolute sense.
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here (a randomized port-unaware agreement algorithm) crucially relies on this and is inapplicable
to our model - hence our use of additional assumptions about puzzles to obtain positive results.
Similarly our communication model is related to (but weaker than) other models such as partial
broadcast [10] and homonymous networks [11].

Cryptographic puzzles (also called proofs of work) have been analyzed and proposed for a
variety of other purposes, including timed-release encryption [34], spam prevention [4, 13, 26], DoS
resistance [21, 23], and defense against Sybil attacks [7].

Aspnes et al. [3] studied Byzantine agreement without a PKI in a model where computational
puzzles can be solved at some bounded rate. This work also assumes pre-existing authenticated
channels between honest parties. Moreover, their feasibility results do not extend to an unbounded
number of corruptions.

The success of Bitcoin [31] has renewed interest in the use of proof-of-work puzzles for coordi-
nating public peer-to-peer networks. For example, both [30] and [18] have presented formal models
in which the core Bitcoin protocol can be shown to satisfy relaxed notions of the consensus problem
given the assumption that a majority of the network is honest, building on the informal argument
originally made in [31]. We reiterate that the goal of our work is not to analyze the Bitcoin protocol
itself, but rather to explore the possibilities of related (and more abstract) models.

Our positive general results for pseudnoymous secure computation are most closely related to
the prior work of Barak et al. [5], who show that a weak form of secure computation can be realized
without authenticated channels. Roughly speaking, secure computation in their setting means that
an adversary can partition the honest parties into disjoint subsets and then run the protocol with
each of those subsets, in each case substituting inputs of its choice for the inputs of the other
honest parties. The guarantees we provide here are stronger, albeit under a stronger assumption.
Specifically, our notion of pseudonymous secure computation ensures that all honest parties’ inputs
are incorporated into a single computation; moreover, it ensures unanimous abort and, in the case
of an honest majority, guaranteed output delivery. We also show how to achieve pseudonymous
broadcast (i.e., guaranteed output delivery in this specific case) even with an unbounded number
of corruptions.

Secure computation without a PKI, but when 1/3 or more of the parties can be corrupted, is
also studied in [15, 16, 20]. Some of these works also achieve secure computation with unanimous
abort, but none realize broadcast (with guaranteed output delivery) in the sense we do here. More
importantly, all these works assume pre-existing authenticated channels between parties.

Summary of contributions and organization of the paper. In Section 2 we describe our
model in more detail, as well as our formalizations of time-lock puzzles. We abstract away the
details of the underlying cryptographic puzzles by introducing ideal functionalities capturing the
assumption that puzzles can only be solved at a bounded rate. We consider two ideal functionalities
intended to model puzzles given different interpretations of the adversary’s strength f . The first
functionality, Fpuz, models the use of proof-of-sequential -work puzzles (also referred to as time-lock
puzzles) based on the assumption that the adversary’s computing resources (i.e., the f corrupted
processes) are inherently parallel and can not be used to solve a single puzzle in any faster time.
The second functionality, Fparpuz, is weaker, and models the use of (possibly parallelizable) proof-
of-work puzzles given an adversary who can compute sequentially at a rate f times faster than a
single process.

In Section 3, we define the problem of Interactive Set Consistency (ISC) and show that in
the Fpuz-hybrid model, there is a protocol that realizes ISC against any f < n corrupted parties
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using only f + 1 communication rounds. We further show that this round complexity is optimal in
this model. Additionally, we show that an O(f2)-round variation of our protocol can realizes ISC
in the Fparpuz-hybrid model. Finally, in Section 4 we define the notion of pseudonymous secure
computation and show that we can achieve it for all polynomial-time functions in the Fpuz-hybrid
(or Fparpuz-hybrid) model.

2 Our Model

Our basic underlying model is that of (stand-alone) secure computation as defined by Canetti [8].
However, we stress that in contrast to his work, we do not assume authenticated channels between
the parties. We will instead work in a hybrid world where the parties can access a functionality
that models their ability to solve a bounded number (here, assumed for simplicity to be one) of
computational puzzles per round. We provide further details in what follows.

Network model. Our underlying model consists of n parties in a fully connected, synchronous
network. Since we do not assume authenticated channels, however, some aspects of the model bear
explanation. The fact that there are no authenticated channels means that when a party receives
a message, it cannot tell from which other party that message originated, or whether a message
it receives in one round is from the same party as some other message it received in a different
round. The only thing we assume is that any message sent by an honest party in some round is
received by all other parties at the end of that round. (Honest parties cannot send a message to
only one specific receiver, since we do not wish to assume that parties have any prior knowledge of
each others’ identities. The fact that an honest party’s message is diffused throughout the entire
network is reminiscent of flooding protocols as well as how Bitcoin works.)

We consider an adversary who corrupts some parties and can cause them to behave arbitrarily.
The adversary can also inject messages into the network, meaning (in particular) that an honest
party may receive more than n− 1 messages in any given round. In contrast to honest parties, we
allow the adversary to send a message to any desired subset of the honest parties. We assume a
rushing adversary who receives the messages from the honest parties in the current round before
deciding on its own messages for that round. The only limitation we place on the adversary, as
noted implicitly earlier, is that it may not drop or modify honest parties’ messages. Thus, if an
honest party sends a message in some round, then each honest party receives that message (along
with whatever other messages the adversary chooses to send) at the end of that round.

The time-lock puzzle functionality, Fpuz. We wish to model the existence of computational
puzzles that are cheap to verify but expensive (and time-consuming) to solve and, in particular,
can only be solved at a bounded rate. A puzzle should also be tied to a specific value which is
presented along with a solution in order to enable verification. Puzzle solutions are assumed to be
uniform random strings for simplicity, though we only need them to be unpredictable.

We model the above requirements by working in a hybrid world where there is a reactive
functionality Fpuz which all parties can access twice per round. Let λ denote a (statistical) security
parameter. The functionality maintains a set T of puzzle/solution pairs (x, h), with x ∈ {0, 1}∗ and
h ∈ {0, 1}λ; the set T is initially empty. Then, in each round, the functionality does as follows:

1. Receive from each party Pi an input (solve, x(i)). (Note that only a single value is allowed.)
For i = 1, . . . , n, first check if a pair (x(i), h(i)) has been stored in T , and if so return h(i)

to Pi; otherwise, choose uniform h(i) ∈ {0, 1}λ, return h(i) to Pi, and store (x(i), h(i)) in T .
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2. Receive from each party Pi an arbitrary-length vector (check, (x
(i)
1 , h

(i)
1 ), . . .). Return to each

party Pi the vector of values (b
(i)
1 , . . .) where b

(i)
j = 1 iff (x

(i)
j , h

(i)
j ) ∈ T .

We stress that, as in [8], we continue to assume synchrony in the hybrid world. This means that if a
corrupted party does not provide input to Fpuz by the end of the next “clock tick,” the functionality
still returns output to those parties who did provide input.

Note that this model directly enforces the characteristic “time-lock ” property by requiring all
the processes to submit their solve requests before receiving any of the puzzle solutions. While
an adversary who corrupts f processes can solve f puzzles per round in total, it cannot solve one
puzzle in 1/f of a round (i.e., a puzzle request made in a round cannot depend on any puzzle
solution computed in the same round).

In detail, the precise order of events for executing each round is as follows:

1. Each party sends (at most) one puzzle-solving request to Fpuz and receives the corresponding
solution.

2. Each party determines a message to send.

3. Messages are delivered to each party.

4. Each party sends a list of puzzle solutions to Fpuz for verification.

Instantiation of time-lock puzzles. As described above, an essential characteristic of the puzzles
we model is that they cannot be solved any faster by the adversary than by a single honest process,
even though the adversary can corrupt many processes and therefore solve more puzzle instances
in total.

The approach taken by time-lock puzzle constructions is to have solving the puzzle require
an inherently sequential computation, and hence an adversary with additional parallel computing
resources cannot gain an advantage. In the first time-lock puzzle constructions [34], generating a
puzzle instance required knowing the (secret) puzzle solution ahead of time; this is appropriate for
applications like timed-release encryption, but unsuitable for our setting where there are no trusted
parties available. A recent construction by Mahmoody et al. [28] is the first to achieve public coin
time-lock puzzles, which do not require any trusted generation procedure. This construction is
provably secure in the random-oracle model, where each oracle call is assumed to have an intrinsic
sequential cost.

Given the construction mentioned above, the reader may ask why we do not work directly in
the RO model. The reason is that wish to simplify the functionality provided by these puzzles,
by assuming that (1) honest parties solve exactly one puzzle per round, and (2) corrupted parties
solve at most one puzzle per round, and (3) checking puzzle solutions incurs no cost. The actual
puzzle construction we referred to achieves this only approximately: the adversary may gain up to
some constant factor of (parallel) speed-up (with better-than-negligible probability of success) and
verifying a solution requires a nonzero number oracle queries (a polylogarithmic function of the
number needed to produce the solution).

Relation to other notions of puzzles. The time-lock puzzles modeled by Fpuz are one form of
proof-of-work puzzle; however, several other notions have been discussed in the literature. Here we
discuss a two alternatives and how they relate to our model.
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(Possibly parallelizable) proof-of-work puzzles. All proof-of-work puzzle schemes are parame-
terized by a difficulty value N which indicates the expected amount of work needed to solve the
puzzle, but the time may be reduced with parallel resources. For example, a construction due
to Coelho [9] provides a very precise work guarantee – the puzzle takes almost exactly N steps
to solve – although most of the steps can be taken in parallel. In the appendix, we present an
variation of our model for proof-of-work puzzles generally, based on an ideal functionality Fparpuz;
we also present an adaptation of our main protocol for this model. (Alternatively, this can be seen
as modeling time-lock puzzle constructions used in a setting where the adversary runs sequentially
faster than honest processes by a factor of f .)

Scratch-off Puzzles. The cryptographic puzzles used in Bitcoin are not only parallelizable,
but in fact can be solved by any number of concurrent processes without communication. Each
process has a chance of independently producing a puzzle solution proportional to its computational
power. Hence, regardless of the distribution of computing resources among honest participants in
the Bitcoin network, puzzle solutions arrive according to a Poisson process. Miller et al. [30] point
out that this property is essential to the operation of Bitcoin, since it guarantees that independent
participants do not duplicate much work; in [29], it is argued that this process is integral to Bitcoin’s
incentive structure, since it ensures even weak participants have a proportional chance of finding
the next puzzle solution and thereby earning a reward.

Further remarks on our simplifying assumptions. We have aimed for the simplest model
that captures the features of interest. Yet the model (and our results) can be easily adapted or
generalized. The assumption that the communication rate is equal to the puzzle-solving rate (i.e.,
that exactly one puzzle can be solved by each party in each communication round) is without much
loss of generality, since the puzzle difficulty can be adjusted so this is the case. Alternately, as
long as the number of puzzles that can be solved per round is bounded, our protocols can be easily
modified so that they continue to provide the claimed guarantees.

Seemingly more worrisome is the assumption that the adversary has the same computational
abilities as the honest parties, and so solves puzzles at the same rate. This, too, is not an essential
feature, and we could easily adapt our protocols to handle an adversary who has β times more
computing power than honest parties. Such an adversary can be emulated in our current model
by simply viewing parties as “units of processing power,” and modeling a real-world network with
n parties, f of whom are corrupted, as a network with (n − f) + β · f parties, β · f of whom
are corrupted. However, a distinction must be made between an adversary who has β times
more parallel computing power (i.e., more processors) versus an adversary who has β times more
sequential computing power (i.e., faster processors). In the former case, either the Fpuz or Fparpuz
model could be modified as described above; in the latter case, we would need to resort to the
Fparpuz model.

We explicitly make puzzle verification “free” in our model to prevent the denial-of-service attack
in which the adversary overwhelms an honest party with (incorrect) puzzle solutions. (Recall that
in our model, an attacker can send as many messages as it likes to honest parties.) An alternate
way to deal with such attacks would be to change our network model and assume some fixed bound
on the number of messages the adversary can send honest parties.
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3 Interactive Set Consistency in the Fpuz- Hybrid Model

We define Interactive Set Consistency (ISC), and then show an ISC protocol in the Fpuz-hybrid
model.

Definition 1. A protocol for n parties, in which each party Pi begins with an input value vi,
realizes Interactive Set Consistency in the presence of f corrupted parties if the following holds with
all but negligible probability (in an associated security parameter) in the presence of any adversary
controlling up to f parties:

Boundedness Each honest party Pi outputs a (multi)set Vi containing at most n values.

Agreement Each honest party Pi outputs the same (multi)set V.

Validity For each honest party Pi, it holds that vi ∈ Vi.

The ISC problem is related to Interactive Consistency (IC) [33], with the difference being that
the latter has a stronger validity requirement: all honest parties agree on a vector ~V (rather than
a set), and for each honest party Pi it holds that ~V [i] = vi. ISC can be viewed as a pseudonymous
version of IC, since the honest parties may not learn which other party corresponds to each element
in the set V .

We now describe a protocol for realizing ISC in the Fpuz-hybrid model. (In Appendix B we
describe a modification of this protocol for a weaker model.) First we introduce some useful
notation.

Definition 2. A puzzle graph g is a tuple (sol, pk, children), where sol ∈ {0, 1}λ is a puzzle solution,
pk is an identity string, and children is a (possibly empty) set of puzzle graphs. A puzzle graph g is
recursively defined to valid if sol is a solution for a puzzle with identifier puz := pk‖children, and
either children = ∅ or else every graph in children is valid.

The notations sol(g), pk(g), and children(g) are used to select components of puzzle graph g.

Definition 3. We say that a puzzle graph h is at depth ` in puzzle graph g, where ` is a positive
integer, according to the following inductive rules:

• Any puzzle graph g is at depth 1 in itself.

• A puzzle graph h is at depth (`+ 1) in g if for some c ∈ children(g), h is at depth ` in c.

For short, we say h is depth-` if it is at depth ` in some puzzle graph g that is clear in context.

Signed messages. In our protocols, every correct process Pi first generates signing keys (pki, ski),
and then uses ski to authenticate messages it sends. For convenience we always transmit the public
key along with the corresponding message and signature. Since each correct process discards invalid
messages upon receipt, we hereafter assume that only valid messages are sent.

Definition 4. A signed message is a tuple (pk, σ,msg) where σ is a valid signature on msg under
public key pk.

As before, we abbreviate extraction of components of signed message s with pk(s), σ(s), msg(s).
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An (f + 1)-Round ISC Protocol using Time-Lock Puzzles

Initially, each process Pi generates a keypair (ski, pk
′
i) for a digital signature scheme. For convenience,

we attach the input value to the public key and let pki = pk′i‖vi, where vi denotes the input of Pi.
We refer to pki as the identity of process Pi.

For notational convenience, the subroutine solve(pk, children) (where children is a set of valid puzzle
graphs) produces a new puzzle graph g := (sol, pk, children), where sol is the solution returned from
querying the Fpuz functionality with (solve, pk‖{sol(c)‖c ∈ children}).
Process Pi uses the subroutine Signi(msg) to produce a signed message (pki, σ,msg) where σ is a
signature created using secret key ski.

• Round 1. In the first round, each process Pi computes the puzzle graph gi,1 = solve(pki, ∅).
It then sends gi,1 and Signski(pki) to all parties, and sets accepted := {pki}.

• Round 2 through f + 1. In each round 2 ≤ r ≤ f + 1, process Pi does:

1. Sets Gnew := ∅, Snew := ∅.
2. Receives (from the end of round r − 1) a set of valid puzzle graphs G. Invalid puzzle

graphs are discarded.

3. Receives (from the end of round r−1) a set of valid signed messages S, such that ∀s ∈ S,
pk(s) ∈ accepted. Invalid or redundant signatures are discarded.

4. For each g ∈ G, and for each puzzle graph h that is depth r in g, let Sh := {s ∈ S |
pk(s) = pk(h)}. if pk(h) /∈ accepted and |Sh| ≥ r − 1, then Pi:

(a) sets accepted := accepted ∪ {pk(h)},
(b) sets Gnew := Gnew ∪ g,

(c) sets Snew := Snew ∪ Sh ∪ {signi(pk(h))}.
5. After processing each received message, publishes gi,r := solve(pki, Gnew) and Snew.

After receiving messages at the end of round f + 1, process Pi performs steps 1–4 above (as
though in round f + 2) and outputs the set Vi := accepted.

Figure 1: Our ISC protocol for the Fpuz-hybrid model.

Intuition behind the protocol. Our protocol is closely related to the Dolev-Strong protocol
for Byzantine agreement (assuming a pre-established PKI), and follows the same communication
pattern: in each round r, a process accepts a value if it has received a collection of r signatures
on that value; the process then adds its own signature to the collection and relays it to the other
processes. However, since in our setting we do not have a PKI and processes do not know each
other’s public key, we must add an additional constraint (based on the Fpuz functionality) that
prevents the adversary from utilizing more than one keypair per corrupted process. Our constraint
is based on the observation that the adversary can solve at most f puzzles in one round, and any
depth-` subgraph in a puzzle graph received in round r must have been solved in round r− ` (due
to the time-lock nature of the puzzles modeled by Fpuz). Thus in our protocol, a correct process
only considers a public key “valid” if it comes along with a puzzle graph containing that public key
at sufficient depth.

Our protocol is defined in Figure 1. We now prove that it realizes ISC.

Lemma 1. For every correct process Pi, its identity pki is accepted by every correct process in

8



round 2.

Proof. This follows immediately from the protocol definition. In the first round, each correct
process Pi broadcasts its own depth-1 puzzle graph and signature on pki, and every other process
receives these messages and accepts pki in the next round.

Lemma 2. If a correct process Pi accepts a key pk in round r < f + 1, then every correct process
accepts pk in round r + 1 or earlier.

Proof. The proof is by induction on the round number r ≥ 1. For the base case, when r = 1
observe that each correct process Pi only accepts its own key pki, and by Lemma 1 every other
correct process accepts pki in round 2.

Suppose the lemma holds at round r, and suppose a correct process Pi accepts pk in round r.
First, we will prove that in round r+1, every other correct process receives at least r signatures

over pk from distinct previously-accepted keys. Pi must have received signatures on pk from r − 1
keys (not including its own), all of which must have been accepted by Pi prior to round r. Therefore,
applying the inductive hypothesis, every other correct process must have accepted these r−1 prior
to round r+ 1 (this holds vacuously in the case that r = 1). Pi creates and publishes an additional
signature on pk using its own key pki. By Lemma 6, every correct process has already accepted pki
by the end of round 2. Therefore in round r+ 1, every correct process receives at least r signatures
on pk from keys it has accepted.

Second, observe that if Pi accepts pk in round r, then it must have received a graph g containing
a depth-(r − 1) subgraph h such that pk(h) = pk. By solving an additional puzzle, Pi obtains a
puzzle graph gr,i in which h is at depth r. Since every correct party receives gr,i in round r + 1,
every correct party accepts in that round.

Lemma 3. Each correct process accepts at most n distinct keys.

Proof. Fix some r ≥ 1. If a correct process accepts a key pk in round r + 1, then it must have
received a puzzle graph g containing a depth-r puzzle graph. In the time-lock puzzles model, each
corrupted party can solve only one puzzle per round; therefore, the puzzle associated with any
depth-r puzzle graph received in round r + 1 must have been computed during round 1. Since at
most n puzzle solutions can be found in a single round, at most n distinct keys are ever accepted.

Theorem 1. For any f < n there is a polynomial-time ISC protocol with f + 1 rounds of commu-
nication, secure against f corrupted parties.

Proof. The Boundedness property follows from Lemma 3. Validity follows directly from Lemma 6.
To prove the Agreement property, we must prove that if a correct process accepts a key pk

in the final round f + 1, then every correct process has accepted pk by round f + 1 or earlier.
Suppose correct process Pi accepts pk in round f + 1. Then process Pi must have received f + 1
signatures on pk from previously-accepted keys (not including its own). Observe that among these
f + 1 previously-accepted keys, at least 1 must belong to some honest party Pj : by Lemma 1, the
keys of all n− f correct processes are accepted by Pi in round 1, and by Lemma 3 at most n keys
in total are accepted among all the correct processes. Since a correct process only signs pk after
accepting it, Pj must have accepted pk in round f or earlier. Therefore, by Lemma 2, if Pj accepts
pk in round f + 1, then every correct process accepts pk in round f + 2 or earlier.

9



Message Complexity. In the worst case, each process publishes n2 signed messages, n for each
accepted key. Since no more than n(f+1) puzzle solutions are solved in total, any puzzle graph can
be represented using only O(λnf) bits (i.e., the graphs should be represented in a way that avoids
duplicating shared children). Therefore since each process accepts at most n keys, it publishes
at most O(λn2f) message bits. As a further optimization, each process may keep track of which
subgraphs it has already published (e.g., after accepting a key in an earlier round) and avoid
publishing duplicates. This reduces the worst case message cost to O(λnf) bits per process.

3.1 A Lower Bound on the Round Complexity

The ISC protocol described above uses an optimal number of rounds for compliant protocols (i.e.,
protocols that are essentially deterministic, except for their use of digital signatures and interactions
with the puzzle oracle). Our lower bound proof is inspired by the Dolev-Strong lower bound for
authenticated Byzantine agreement [12], but requires non-blackbox modifications. In particular,
we show that the same lower bound still holds even with the additional bounded-rate Fpuz oracle,
despite the fact that this Fpuz oracle can be used to further constrain the adversary’s behavior.
Our overall approach is based on a simple bivalency proof of the original theorem [1].

In Appendix A, we prove the following lower bound on the round complexity of any compliant
ISC protocol:

Theorem 2 (Round complexity lower bound.). Suppose that the number of correct processes is at
least 2 (since otherwise the problem is trivialized), and that n > f + 1. Any compliant ISC protocol
in the Fpuz-hybrid model of computation that tolerates f faults must have at least f + 1 rounds.

4 Pseudonymous MPC from Time-lock Puzzles

In the previous section, we proved that our protocol (Figure 1) solves the ISC problem in the Fpuz
network model. This allows the participating parties to agree on a set of public keys, and honest
parties’ public keys are guaranteed to be included; effectively, this bootstraps a pseudonymous PKI.

In this section, we show that the ISC protocol can be utilized to achieve (pseudonymous) secure
computation for general tasks. In particular, we show that after running ISC, the pseudonymous
PKI can subsequently be used to implement a pseudonymous version of secure function evaluation
(SFE). Our approach is to first show that a standard algorithm (Dolev-Strong [12]) can be com-
posed with ISC in order to implement a pseudonymous version of secure broadcast (also known
as Byzantine agreement), and then finally composed with a standard broadcast-based algorithm
(BGW [6]), leading to SFE.

4.1 Why Pseudonymous Security?

Standard definitions of secure multi-party computation implicitly assume that each party has a
pre-established “real identity”. Without loss of generality, assume that the parties’ real identifiers
are {1, 2, . . . , n}, then the ideal functionality will collect everyone’s private inputs {x1, . . . , xn},
compute the function (y1, . . . , yn) := f(x1, . . . , xn) and give yi to the i-th party. Note that the
corresponding indices for the inputs and outputs are bound to parties’ pre-established identities.

This model, however, is inherently too strong for peer-to-peer networks like Bitcoin without PKI
or pre-established trust between peers. We formally show this in Claim 1 below, which motivates
the “pseudonymous” relaxation of standard security definitions.
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Claim 1. There is no protocol that simulates standard authenticated channels (i.e., secure eval-
uation of the function f(x1, x2, ..., xn) = (x1, x2, ..., xn)) in the Fpuz model, if there is even one
corruption.

Proof. The attack is as follows: the adversary corrupts one process, and uses the corrupted process
to simulate the correct behavior with a random input value. Let the random coins used by the
honest party Pi be r, and let the random coins of the corrupt party be r′. The key observation
is that nothing in the Fpuz model (i.e., neither the communication channel nor the puzzles) allow
any observable difference based on the party ids. Therefore the outcome when the random coins
are flipped (i.e., Pi has random coins r′ and the corrupted party has r) are identical.

4.2 Definition of Pseudonymous Security

Pseudonymous security captures the fact that every party in such a peer-to-peer-like network can
claim any pseudonym but must stick to the same pseudonym through out the computation. This
relaxed notion of secure computation is useful in many circumstances. First, many functions of
interest (such as majority value, average value, etc.) are invariant under any permutation of the
input values, and therefore unaffected by this relaxation. Second, in many scenarios the identity
of the other participants may simply be irrelevant. For example, in a game of online poker game
against an anonymous opponent, one might only be concerned that his opponent has deposited the
correct amount of valid digital currency.

To define pseudonymous SFE, we allow the adversary to choose an arbitrary permutation on
the inputs. Parties must learn their own position in the permutation (as well as the corresponding
output value), but may be unable to the permuted index of any of the other parties. We begin
with the definition in [2, 8] for standalone security against a non-adaptive adversary, and modify
it as necessary to match our model. The definition is based on an experiment involving a pair of
execution models, one for the ideal world (in which a hypothetical trusted third party collects the
parties’ inputs and computes the function) and one for the real world (in which parties execute the
secure protocol themselves). For the real world, we must modify the communication mechanism
to reflect our message diffusion primitive, rather than built-in point-to-point channels; we must
also add in the time-lock puzzle mechanism. For the ideal world, the key modification is that we
allow the adversary to choose a permutation, and then the function is evaluated on the permuted
input vector rather than the original vector, and parties receive the corresponding element of the
permuted output vector. The details of this execution model are elaborated below.

In the ideal world, we need to modify the ideal process as described in [2, 8] to include a
mechanism for the adversary to permute the inputs and outputs.

Let f : N× ({0, 1}∗)n×{0, 1}∗ → ({0, 1}∗)n be a function to evaluate. Each party Pi is given in-
put xi ∈ {0, 1}n and a security parameter λ. The parties wish to evaluate f(λ, ~x, r)1, ..., f(λ, ~x, r)n,

where r
$← {0, 1}s is a random string and s is a function of the security parameter. The output

for party Pi is the corresponding element of the output, f(λ, ~x, r)i, which is computed by a trusted
party T . The ideal-world adversary S is an interactive Turing machine that controls the corrupted
parties. We are modeling non-adaptive corruptions; the set of indices of corrupted parties is in-
dicated by C ⊂ {1, ..., n}, and the set of uncorrupted parties is indicated by I. The adversary S
receives the inputs and random coins drawn by the corrupted parties, as well as an auxiliary input
string z and the security parameter λ. The ideal process proceeds as summarized in Figure 2.
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Ideal-world Execution for evaluating function f with adversary S

• Input substitution: The ideal-process adversary S sees the inputs of the corrupted parties.
S is active and may alter these inputs based on the information known to it so far. Let ~b
be the |C|-vector of the altered inputs of the corrupted parties, and let ~y be the n-vector
constructed from the input ~x by substituting the entries of the corrupted parties by the
corresponding entries in ~b.

• Permutation: The ideal-process adversary S chooses a permutation perm ∈ Perm([n]) of
the party indices.

• Computation: Each party Pi passes its (possibly modified) input value, yi, to the trusted
party T . Let ~y′ be the vector obtained by applying the permutation perm to the inputs

(i.e., ~y′perm(j) = ~yj , for each j ∈ [n]). Next, T chooses r
$← {0, 1}s, and passes each Pi the

value perm(i), (i.e., its position in the permutation) and the value f(λ, ~y′, r)perm(i).

• Output: Each uncorrupted Pi outputs perm(i) and f(λ, ~y′, r)perm(i), and the corrupted
parties output ⊥. In addition, the adversary outputs some arbitrary function of the infor-
mation gathered during the computation in the ideal process. This information consists of
the adversary’s random input, the corrupted parties’ inputs, the entire permutation perm,
and the resulting function values {f(λ, ~y′, r)perm(i) : Pi is corrupted}.

Figure 2: Summary of ideal-world execution model for secure function evaluation

Functionality Fpuz

1. Receive from each party Pi an input (solve, x(i)). (Note that only a single value is allowed.)
For i = 1, . . . , n, first check if a pair (x(i), h(i)) has been stored in T , and if so return h(i)

to Pi; otherwise, choose uniform h(i) ∈ {0, 1}λ, return h(i) to Pi, and store (x(i), h(i)) in T .

2. Receive from each party Pi an arbitrary-length vector (check, (x
(i)
1 , h

(i)
1 ), . . .). Return to

each party Pi the vector of values (b
(i)
1 , . . .) where b

(i)
j = 1 iff (x

(i)
j , h

(i)
j ) ∈ T .
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Real-world (Fpuz-hybrid) Execution with adversary A

1. (a) Each party Pi starts with the security parameter λ, input xi, and random input ri.

(b) The adversary A starts with λ, random input r0, input z that includes a set C ⊂ [n]
of corrupted parties and their inputs {xi|i ∈ C}, and additional auxiliary input.

2. Initialize a round counter, l := 0.

3. As long as there exists an uncorrupted party that did not halt, repeat:

(a) Each uncorrupted party Pi, i /∈ C, performs a compute phase during which it may
interact with an instance of Fpuz using its oracle tape, subject to the constraint that
it may make at most one oracle query of the form (solve, x) in this round. Note that
the responses to these queries are not delivered until every query for this round has
been made.

(b) Each uncorrupted party Pi, i /∈ C, generates {mi,l}, where each mi,l ∈ {0, 1}∗ is a
(possibly empty) message intended to be published during this round.

(c) The adversary A learns {mi,l|i ∈ [n]}, and generates {m†j,l|j /∈ C}, a set of messages to
be delivered just to Pj . During this phase, the adversary may make up to |C| oracle
queries of the form (solve, x).

(d) Each uncorrupted party Pi, i /∈ C, receives the messages sort(m†i,l ∪ {mj,l|j /∈ C}).
(e) l := l + 1.

4. Each uncorrupted party Pi, i /∈ C, as well as A, generates an output. The output of the
corrupted parties is set to ⊥.

Figure 3: A summary of the nonadaptive Fpuz-hybrid computation.
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We denote by IDEALf,S(z),I(~x) the random variable corresponding to the output of each party
Pi, as well as the output of the ideal-world adversary S.

The real-world execution is summarized in Figure 3. We use REALf,A(z),π,I(~x) to denote the
random variable consisting of the output values of each protocol party Pi, as well as the view of
the adversary A.

Definition 5. (Pseudonymous Multi-party Computation.) Let P = {Pi}ni=1 denote a set of
parties, let f : N × ({0, 1}∗)n × {0, 1}∗ → ({0, 1}∗)n be a function, and let ~x ∈ ({0, 1}∗)n denote a
vector of input values associated with each party. A protocol π pseudonymously computes f if for
every real-world adversary A, there exists an ideal-world simulator S, such that:

IDEALf,S(z),I(~x) ≈ REALf,A(z),π,I(~x).

4.3 Protocol for Pseudonymously Secure Multi-party Computation

The BGW protocol for multi-party computing makes use of two communication primitives: private
authenticated channels, and broadcast. We will need to emulate (the pseudonymous version of)
these in the Fpuz model.

For private channels, the parties must generate a public-key encryption keypair (in addition
to the signing key) at the outset, and then perform the ISC protocol using their public key as
their input value. Next, private messages can be sent to each pseudonym-holder by using standard
techniques to sign and encrypt the message, and publishing the ciphertext using the underlying
message diffusion primitive.

Since, at the end of ISC, each party has a signing key and a list of public keys serving as
pseudonyms for the other parties, it is possible to run existing protocols that make use of a stan-
dard PKI, such as the Dolev-Strong algorithm for Byzantine agreement (aka, secure broadcast).
Arbitrary subsequent instances of broadcast can be executed, making use of the synchronous mes-
sage diffusion channel and the keypairs established in the initial execution of ISC, but without any
further need to use the time-lock puzzles. We note that in order to compose executions of Byzan-
tine agreement, it is necessary to use a unique session identifier for each execution; this prevents
signatures on messages in one execution from being replayed in another execution. [27]

The pseudonymous protocol for securely evaluating a function f proceeds as follows:

1. First, each party Pi generates a signing and encryption keypair, pki and ski. Next, each party
executes the ISC protocol 1, using pki as its input value. At the end of the protocol, each
party obtains a vector ~pk of permuted public keys (in sorted order), in which pki is an element.
Let j be the index such that ~pkj = pki (i.e., j is the pseudonym of Pi).

2. Next, each party Pi executes the BGW protocol as in [6] though with index j. Note that
the BGW protocol uses both broadcasts and private messages. When the protocol calls for a
broadcast, the Dolev-Strong algorithm is executed using ~pk as the set of signing public keys,
as described above. When the protocol calls for a private message, the signing and encryption
keys are used as described above. Upon completion of the BGW protocol, party Pi outputs
its pseudonym j as well as the function output value it receives.

Theorem 3. (Pseudonymously Secure SFE.) In the Fpuz-hybrid model, we can achieve SFE for
general polynomial functions while ensuring pseudonymous security against a non-adaptive ad-
versary. Specifically, input completeness and guaranteed termination can be achieved with honest
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majority, i.e., f < n/2. In the presence of arbitrary number of corruptions, we can ensure security
with unanimous abort.

Proof. First we prove that the protocol described above satisfies the case for honest majority. Since
the underlying BGW protocol is executed intact, the existing simulator for this protocol, S ′, can
be reused, with the permuted player indices substituted for the correct indices. The main thing
for us to show is that the real-world execution of the ISC protocol in the first phase can indeed be
simulated.

Our simulator S first generates keypairs pki and ski for each simulated party. The view of
the real-world adversary consists of the messages sent by the honest parties in each round; this
communication pattern can be simulated perfectly. According to the agreement property of the ISC
definition, if a corrupted party does not complete the protocol, its public key may be replaced with
⊥; in any case, all uncorrupted parties arrive at a consistent vector ~pk with high probability. Since
the ISC protocol sorts this vector in lexicographical order, the simulator S instructs the trusted
party T to use this permutation.

After completing the ISC phase, our simulator S executes the BGW simulator S ′ in a sandbox,
placing each party Pi with the corresponding permuted index. Note that since S ′ is intended for
a model with broadcast and private channels, we must be able to simulate the protocols used
to implement these channels. It is trivial to simulate the broadcast protocol since the simulator
already knows the signing keys; the private channel can be trivially simulated by encrypting random
strings.

The BGW protocol, however, provides security only when an honest majority of participants
is assumed; for example, the adversary can learn the private inputs of the parties when a majority
of participants are corrupted. It is possible to compose our ISC protocol with other alternatives
as well, such as GMW [19], which guarantees privacy regardless of the number of corruptions. We
omit the details of this; the protocol and proof for composing ISC with GMW proceed exactly as
with BGW.

Adaptive Security Finally, we note that although for simplicity we have presented our results
for a non-adaptive adversary, our technique would also be applicable for an adaptive adversary. A
subtle issue arises when implementing secure broadcast in the adaptive setting, depending on a)
whether broadcast is defined to allow the adversary to corrupt the broadcast sender after learning
the value it attempts to send, and b) whether the underlying communication channel can be
interrupted [22]. If our diffusion channel is atomic and it is necessary to prevent an interrupted
broadcast against a dishonest majority, then the technique of [17] could be used.

5 Conclusions and Future Work

This work is inspired by peer-to-peer networks like Bitcoin, and makes an initial attempt to under-
stand what meaningful security properties can be achieved in such distributed networks. Contrary
to the wide-held belief that “nothing interesting” can be achieved in such networks without au-
thenticated channels or PKI, we show that by placing a strict bound on each party’s computational
resource, we can achieve a pseudonymous notion of secure computation for general functions. Al-
though our work does not directly reason about the security of the de facto Bitcoin protocol, our
result shows that distributed computation models resembling Bitcoin can lead to rich applications
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with non-trivial security guarantees, where security is bootstrapped from the bound on each party’s
computation resource.

This paper opens up numerous avenues for future research. In our work, we have made several
simplifying assumptions, and relaxing any of them is an important next step. For example, we
have assumed that there is a fixed number n of parties that is public knowledge at the outset of the
protocol. Is anything achievable if n is unknown? Alternately, what can be said in a partially syn-
chronous network where the maximum communications delay is unknown? In a different direction,
it would be interesting to explore a model in which parties were not malicious or honest, but are
instead only rational. Here, we could assign some “cost” to solving puzzles rather than assuming a
strict upper bound on how many puzzles a party could solve per round. This is the direction taken
in other work analyzing Bitcoin [14, 24]. It would be useful to reconcile this with approaches to
modeling rationality in secure multi-party computation.
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A Lower Bound on Round Complexity in the Fpuz Model

Dolev and Strong first showed that assuming authentication, any deterministic Byzantine agreement
protocol tolerating f faults (where n > f + 1) must have at least f + 1 messaging rounds [12].

Our lower bound proof is inspired a simple bivalency-based proof of this theorem [1]. We
basically must show that having the additional puzzle functionality does not change this lower
bound, even though this additional functionality can be used to further restrict behavior of the
adversary, since the adversary can only solve a limited number of computational puzzles per round.

For the purpose of our lower bound, we limit our concern only to compliant protocols (as
defined below) that are effectively deterministic. We must carefully explain what this means in our
setting, since the Fpuz functionality itself is randomized and our positive results make use of digital
signature algorithms.

Definition 6. A compliant protocol in the Fpuz-hybrid model must ignore the security parameter
and treat the public/private keys, digital signatures, and puzzle solutions as opaque strings. Protocols
may transmit opaque strings along communication channels and include them as input to oracle
queries and digital signature algorithms, but cannot otherwise inspect or modify their bits.

This definition in particular rules out protocols that use the signature algorithm or interaction
with Fpuz in order to perform coin flips.
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Theorem 2 (Round complexity lower bound.). Suppose that the number of correct processes is at
least 2 (since otherwise the problem is trivialized), and that n > f + 1. Any compliant ISC protocol
in the Fpuz-hybrid model of computation that tolerates f faults must have at least f + 1 rounds.

For the purpose of proving our lower bound, we limit ourselves to constructing adversaries that
are also compliant in the same sense, and in fact only need to crash processes (rather than induce
Byzantine behavior). Furthermore, our adversaries crash at most one process per round.

We will state a lemma that given these constraints, the same reasoning used in deterministic
models applies equally to compliant protocols in our model with high probability. 2 First we define
some notation useful for describing executions in our model.

A partial run is a finite sequence of system configurations (including the input values to each
process and the internal state of each process and the adversary) that transition according to
our model. The last element in an r-round partial run is the system configuration at the end
of r rounds. Note that since our execution model is randomized (due to coin flips taken by the
puzzle functionality and digital signature scheme), given an initial configuration our model defines
a probability distribution over r-round partial runs.

We define an equivalence relation among partial runs in our model. Two partial runs are
equivalent if they are equal up to a bijective transformation of keys, signatures, and puzzle solutions.
A partial run s can be represented as a pair (state, {oi}), where {oi, } is the sequence of every
occurrence of an opaque string in a configuration and state is the sequence of system configurations
with each occurrence of an opaque string taken out (and replaced with a symbol opaque). Another
partial run s′ is equivalent to s if s′ = (state, {F (oi)}) for some bijective function F : {0, 1}∗ →
{0, 1}∗. This implies that two partial runs are equivalent if their initial conditions are the same,
any decisions made by correct processes are the same, any processes that have crashed did so at
the same time, and the content of the internal states of each process and messages delivered differ
only in the representation of the opaque strings associated with signatures and puzzles.

Lemma 4. Consider a compliant protocol and compliant adversary (as per Definition 6). Then
for each round r, there exists a single equivalence class of r-round partial runs (which we call the
canonical partial run) such that with high probability, a partial run sampled from the distribution
of r-round partial runs belongs to this equivalence class.

Proof. As the protocols make only a (polynomially) bounded number of queries (to Fpuz or to
digital signature routines), with high probability the processes do not generate colliding keys or
puzzle solution strings, nor does any process “guess” a puzzle solution it has not received from Fpuz
or the communication channel.

Hereafter, we are only concerned with the canonical partial runs (rather than partial runs that
involve some unlikely string collision), and therefore the term partial run should be taken to mean
the class of canonical partial runs.

Let sr be an r-round partial run. We say that sr+1 is a one-round extension of sr if there exists
some adversary A such that sr and sr+1 are respectively the canonical r-round and r + 1-round

2Note that an alternative to invoking the above lemma would be to redefine digital signatures and our puzzle
functionality to inherently use opaque “tags” rather than concrete bit-strings - indeed this is the approach taken
in [12]. We have chosen our approach because it allows us to use a simple and concrete representation of the model
for presenting our positive results.
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partial runs given A. A partial run s is an extension of sr if it is a partial run obtained by extending
sr one round at a time and in which all processes have decided.

Having established a basis for applying deterministic reasoning to our model, the lower bound
proof can be carried out with simple modifications to the bivalency proof in [1]. We describe these
necessary modifications and then refer the reader to the text of [1] for the remainder of the proof.

The lower bound of [12, 1] applies to binary consensus, a somewhat different problem than ISC
in which processes must decide on a single bit). We can imagine that each process decides on 2λ

bits, one for each possible input value (at most n of these may be set to 1). The proof in [1] relies
on a notion of valences, which we now define in our setting. A partial run sr is v-valent (for some
value v) if in all extensions of sr, the correct processes decide on a set S where v ∈ S, and v-valent
if in all extensions v /∈ S. When v is clear from context, we abbreviate v-valent with 1-valent and
v-valent in order to more closely match the notation in [1]. A partial run is univalent (with respect
to v) if it is either v-valent or v-valent, and bivalent if it is neither v-valent nor v-valent.

The proof in [1] involves constructing pairs of executions that are indistinguishable to some of
the processes in the network. We next prove a lemma that guarantees that these constructions
remain indistinguishable, even in our setting where the processes may additionally interact with
Fpuz.

Lemma 5. For r < f , let sr be an r-round partial run in which at most r processes have crashed.
Consider the following two one-round extensions of sr: sr+1, in which one process crashes before
delivering its message to some process p, and s′r+1 in which the same process crashes after delivering
its message to p. Let s′ and s denote the runs extending s′r+1 and sr+1 respectively in which p crashes
at the beginning of the next round (before sending any messages). (Note that in the special case
r+1 = f , the processes terminate so the crash is unnecessary.) Let p′ (distinct from p) be a correct
process. Process p′ cannot distinguish between runs s and s′ (i.e., its behavior in both runs is the
same).

Proof. In the case of an ordinary message passing network, this is immediate, since p is the only
process that observes any difference in round r + 1 and p crashes before it can communicate to
any other process. However in our setting we must prove this holds in spite of the additional Fpuz
functionality, since in round r + 1, process p may affect Fpuz by solving a puzzle before crashing.
Without loss of generality, assume that in run s, p solves a puzzle puz and in s′ solves a puzzle
puz′. However, note that a) Fpuz records a puzzle solution sol randomly sampled from a space of
size 2λ, b) the recorded solution is returned only to process p, which crashes before it can transmit
any information about it to another process, and c) the other processes may only observe the
difference through interaction with Fpuz by calling sending (check, puz, sol) or (check, puz′, sol)
(i.e., by correctly guessing the puzzle solution). As the processes only make a polynomial number
of queries, this occurs with negligible probability.

Now that we have defined the notions of (canonical) partial runs and valences in our setting
and established conditions under which indistinguishability holds despite the additional Fpuz, our
theorem follows from the proof in [1] verbatim.
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B ISC in the Proof-of-Parallelizable-Work Model

While in our main result we have considered inherently sequentially puzzles (i.e., puzzles that take
the adversary an entire round to solve, even with all f corrupted processes working together in
parallel), we are also interested in modeling puzzles that the adversary can solve faster using its
parallel resources. Equivalently, we may be interested in modeling an adversary that can compute
sequentially f times faster than a corrupt process.

We can model this via a modified functionality Fparpuz, which differs from Fpuz in that it
allows the adversary to make multiple rounds of interaction with the functionality within a single
communication round.

• Receive from each uncorrupted party Pi an input (solve, x(i)). (Note that only a single value
is allowed.) For i = 1, . . . , n, first check if a pair (x(i), h(i)) has been stored in T , and if
so return h(i) to Pi; otherwise, choose uniform h(i) ∈ {0, 1}λ, return h(i) to Pi, and store
(x(i), h(i)) in T .

• For up to f iterations, a single corrupted party Pi may request (solve, xi), and the input is
processed immediately as above.

• Receive from each party Pi an arbitrary-length vector (check, (x
(i)
1 , h

(i)
1 ), . . .). Return to each

party Pi the vector of values (b
(i)
1 , . . .) where b

(i)
j = 1 iff (x

(i)
j , h

(i)
j ) ∈ T .

As before, we allow parties to call Fparpuz with a check instruction any (polynomial) number
of times. Each of the honest parties is allowed to call Fparpuz with a solve instruction only once
per communication round; moreover, all of the solve instructions for a round must be sent before
any honest party receives its puzzle solution. However, the corrupted parties can call Fparpuz, one
after another in sequence, up to a total of f times within an overall communication round.

Protocol Intuition for the Fparpuz-Hybrid Model. Our protocol proceeds in two overall
phases. In the first phase, called the “mining” phase, each correct process constructs a chain of
O(f2) puzzle solutions associated with that process’s public key. In the second phase, the “com-
munication” phase, the processes publish their puzzle chains and propagate the puzzle chains they
receive from others. To ensure agreement, each process also signs and relays signatures according
to the Dolev-Strong algorithm. Signatures corresponding to public keys without associated puzzle
chains are ignored. The communication phase ends after f + 1 rounds.

Intuitively, the protocol works because every correct process is able to create a valid puzzle
chain for its own key, yet the corrupt processes are only able to create at most f puzzle chains
before the protocol terminates.

Definition 7. A length-` puzzle chain is defined inductively as follows:

• A puzzle graph g is a length-1 puzzle chain if children(g) = ∅.

• A puzzle graph g is a length-(`+ 1) puzzle chain if children(g) = {s}, pk(s) = pk(g), and s is
a length-` puzzle chain.

The protocol is defined in Figure 4.
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An O(f2)-Round ISC Protocol using Parallelizable Puzzles

Initially, each process Pi generates a signing keypair (ski, pki) according to some digital signature
scheme, where pki is the concatenation of the underlying public key and the ith input value. Hereafter
we refer to pki as the identity of process Pi. The subroutines solve and signi are the same as in 1.

• Mining Phase. In the first round, each process Pi constructs a puzzle graph

gi,1 := solve(pki, ∅)

where pki denotes the sender’s identity, and the message includes an empty history. In each
of the following rounds, up to round rmine = f(f + 1) + 1, each process extends its chain by
one puzzle solution

gi,r := solve(pki, {gi,r−1}).

The mining phase ends after rmine rounds. We abbreviate gi,rmine by gi.

• Communication Phase. Initially, in round 1 of the communication phase, each process Pi

1. sets accepted := {pki},
2. publishes gi,

3. and publishes signi(pki).

Thereafter, in each round 2 ≤ r ≤ f + 2, process Pi

1. Receives a set of signed messages S, such that ∀s ∈ S, pk(s) ∈ accepted and s has a
distinct pk and m (i.e., ∀s′ ∈ S\{s}, (pk(s),msg(s)) 6= (pk(s′),msg(s′))). Invalid or
redundant signatures are discarded.

2. Receives a set of length-rmine graphs G such that ∀g ∈ G, pk(g) /∈ accepted, and each g
has a distinct id (i.e., ∀g′ ∈ G\{g}, pk(g) 6= pk(g′)). Redundant or invalid puzzle chains
are discarded.

3. For each g ∈ G, let Sg := {s ∈ S|id(s) = id(g)}. If |Sg| ≥ r, then Pi:

(a) sets accepted := accepted ∪ {pk(g)},
(b) publishes g,

(c) and publishes Sg ∪ {signi(pk(g))}.

At the end of round f + 2 (of the communication phase), process Pi outputs the set accepted.

Figure 4: Our ISC protocol for the Fparpuz-hybrid model.

Lemma 6. For every correct process Pi, its identity pki is accepted by every other correct process
in round 2.

Proof. This follows immediately from the protocol definition. In round 1 of the communication
phase, each correct process Pi broadcasts its own puzzle chain and signature on pki, and every
other process receives these messages and accepts pki in the next round.

Lemma 7. If a correct process Pi accepts a key pk in round r < f + 2 (of the communication
phase), then every correct process accepts pk in round r + 1 or earlier.

Proof. The proof is by induction on the round number r ≥ 1. For the base case, when r = 1
observe that each correct process Pi only accepts its own key pki, and by Lemma 6 every other
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correct process accepts pki in round 2.
Suppose the lemma holds at round r, and suppose a correct process Pi accepts pk in round r.
First, note that in round r + 1, every other correct process receives at least r signatures over

pk from distinct previously-accepted keys (see the proof of Lemma 2).
Second, observe that Pi publishes a length-rmine chain g for pk in round r, and therefore every

other correct party receives g in round r+ 1. Thus, every correct process accepts pk in round r+ 1,
completing the proof by induction.

Lemma 8. Among the correct processes, at most n distinct keys are ever accepted.

Proof. Each accepted key requires a length-rmine chain, and each node in the chain must be as-
sociated with a consistent key. Each uncorrupted process only solves puzzles associated with its
own key. Since the corrupted processes can solve (in total) at most f puzzles per round, they
can solve at most f(rmine + f + 1) puzzles before the protocol terminates. Therefore, at most
bf(rmine + f + 1)/rminec = f + bf · (f + 1)/rminec = f length-rmine chains can be computed by
corrupt processes. Therefore, length-rmine chains are found corresponding to at most n distinct
keys.

Theorem 3. There exists a polynomial-time ISC protocol with O(f2) rounds of communication,
secure against f < n number of corrupted parties.

Proof. The proof of this theorem is identical to that of Theorem 3, substituting Lemmas 6,7, and
8 for Lemmas 1,7, and 3.
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