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Abstract

Proof-of-work (PoW) is a popular algorithmic tool used to enhance net-
work security by imposing a computational cost on participating devices.
Unfortunately, traditional PoW schemes require that correct devices work
perpetually in order to remain vigilant against possible malicious behavior.
In other words, computational costs are unbounded regardless of whether the
network is under attack. This shortcoming is highlighted by recent studies
showing that PoW is highly inefficient with respect to operating cost and
ecological footprint.

We address this issue by designing a general PoW scheme for secur-
ing open distributed systems, whereby the cost to devices grows slowly as
a function of the cost incurred by an attacker. Consequently, if the network
is attacked, our scheme guarantees security, with algorithmic costs that are
commensurate with the cost of the attacker. Conversely, in the absence of
attack, algorithmic costs are small.

Our results hold in a dynamic system where participants join and depart
over time. We demonstrate how our PoW scheme can be leveraged to ad-
dress important security problems in distributed computing including: Sybil
attacks, Byzantine consensus, and Committee election.

∗This work is supported by the National Science Foundation grant CCF 1613772 and by a re-
search gift from C Spire.
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1 Introduction

Twenty-five years after its introduction by Dwork and Naor [33], proof-of-work
(PoW) is enjoying a research renaissance. Originally, PoW was conceived of as
a technique for preventing malicious users from acquiring more than their “fair
share” of a system resource such as bandwidth1 or a server’s computational power.
In recent years, PoW provides a critical primitive for cryptocurrencies such as Bit-
coin [74], along with other blockchain technologies such as Ethereum [36], Block-
Stack [12], and Chain Incorporated [51, 81].

Yet, despite success with BitCoin and its analogs, PoW has not fulfilled its
promise of mitigating a wider range of malicious behaviors such as application-
layer distributed denial-of-service (DDoS)2 and Sybil attacks [31]. These are well-
known and enduring security problems for which PoW seems well-suited, and yet
proposals [15, 20, 46, 54, 63, 67, 82, 93, 94] built around PoW have yet seen only
limited deployment.

A Barrier to Widespread Use. A major impediment to the widespread use of PoW is
“the work”. Current PoW schemes require a significant expenditure of resources
to secure a system, even when the system is not under attack.

Cryptocurrency systems have cleverly provided monetary incentives for per-
forming the computational work necessary to ensure PoW-based security. They
have been extremely successful, both in terms of practical impact [25,32,35,49,66],
and research impact [14, 37, 45, 74, 91].

However, the perpetual resource burning inherent to systems like Bitcoin is un-
desirable for several reasons. First, energy consumption: in 2015, the Economist
calculated that Bitcoin consumes at least 1.46 terawatt-hours of electricity per year,
or enough to power 135, 000 American homes [34]. This has significant environ-
mental and economic impact that will increase as technologies like Bitcoin become
more widely used. Second, scalability: high energy consumption prevents using
current PoW approaches on the many other large open systems that also require
security. Third, feasibility: in networks of battery-powered devices – for exam-
ple, in many ad-hoc wireless settings – energy must be used sparingly, so cur-
rent PoW systems are simply infeasible. Finally, security: when the mechanism
that provides security is expensive, agents will likely selfishly seek to reduce costs
and thereby compromise security.

1Dwork and Naor were motivated to reduce spam email.
2For example, see [20, 46, 54, 67, 82, 93, 94].

2



In light of these problems, we seek to reduce the cost of PoW systems and focus on
the following question: Can we design PoW systems where the resource costs
are low in the absence of attack, and grow commensurately with the effort ex-
pended by an attacker?

In this paper, we design and analyze algorithms that answers this question in
the affirmative. Initially, our result is presented in the context of the Sybil attack;
however, it applies more generally to safeguarding a distributed system from any
attack where an adversary seeks to obtain significantly more than its fair share of
network resources. We formalize this guarantee in Theorem 1 of Section 1.3, and
we later elaborate on the application of our result in more general scenarios in
Section 5.

1.1 Related Work on Sybil Attacks

There is a large body of literature on mitigating Sybil attacks (for example, see
surveys [53, 71, 78]). Due to space constraints, we summarize only closely related
results. Critically, none of these prior results have the desired property that the
resource costs to the good IDs grow commensurately with the cost incurred by the
adversary.3

Most relevant to our work are prior results that employ testing:
1. PoW via computational testing [15] is a popular technique and has been used

to safeguard open systems in [58, 63, 92]. Unfortunately, in these prior works,
nodes must continually issue puzzles – for example, every 5 seconds in the
experiments of [63] – in order to protect against potential attacks. That is, even
in the absence of an attack, the system is always in a “hyperalert” state leading
to significant computational waste. This leads to the good IDs incurring a cost
that is linear in the lifetime of the system, not linear in the amount spent by the
adversary.

2. In wireless settings, radio-resource testing is a well-known defense [73, 78].
Radio-resource testing has been employed in a setting with a single resource
provider [43] and later extended to decentralized systems [42]. However, these
approaches suffer the same drawback; the system must constantly perform tests
to guarantee security which leads to wasted bandwidth in the absence of attack.
Again, the good IDs incur a cost that is linear in the lifetime of the system, not
linear in the adversary’s cost.
3We note that this can be characterized as a resource-competitive approach [8,41]. However, due

to space constraints, we omit a discussion of resource-competitive algorithms since it is not critical
to understanding our results.
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Finally, as an alternative to testing approaches, there has been significant work on
leveraging social networks to mitigate Sybil attacks [62, 70, 95, 98, 99]. However,
information on social-network connections may not be accessible, or may not even
exist (also, interestingly, more recent work argues that topological assumptions
necessary to some of these defenses may not hold in practice [97]). A similar idea
is to establish unique IDs using geographical constraints [5, 87] or the physics of
wireless signals [30,40,64]. Containment strategies – where good IDs are insulated
to an extent from bad IDs – are examined in overlays [28, 86].

1.2 Our Model

Attack Model. We consider a system composed of physical nodes and virtual
identifiers (IDs). A good node is defined by having at most one ID; this is referred
to as a good ID. Any node with more than a single ID is assumed to be under the
control of an adversary who controls these corresponding bad IDs.

Speaking of a single adversary – rather than a collection of adversarial nodes
– allows us to address the worst-case scenario where such nodes can communicate
and collude perfectly in order to launch attacks on the system. We emphasize that
the adversary may create as many IDs as it wishes.4

The adversary is assumed to be computationally bounded so that we can make
use of public key cryptography. We emphasize however that our solutions do not
require any public key (PKI). That is, nodes generate their own key pair, but we
do not require a certificate authority to bind a node to its public key, nor do we
require any type of key management system.

At any time, we assume that the adversary has computational power at most a
1/α fraction of the computational power of the good nodes, where α > 2 is some
known constant. That is, the adversary has less computational power than the cu-
mulative computational power held by the good nodes by a factor of α; this is a
standard assumption for PoW schemes [65, 68, 75]. Note that we are not assum-
ing we know the adversary’s computational power exactly, only a (possibly loose)
upper bound.

System Dynamism. The system is dynamic with IDs joining and departing over
time, and time is discretized into rounds. We pessimistically assume that all
join/departure events are scheduled in a worst-case fashion by an adversary. Good
IDs are assumed to tell the server when they depart, while bad IDs may decide to
leave without any notification.

The minimum number of good IDs in the system at any point is assumed to
be at least n0. Our goal is to provide security and performance guarantees for

4In practice, for example, an attacker can spoof IP and MAC addresses.
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N = O(nγ0) joins and departures of IDs, for any desired constant γ ≥ 1. In
other words, the guarantees on our system hold with high probability (w.h.p.)5

over this polynomial number of dynamic events.

1.3 Main Results

Our main results are summarized below. We measure computational cost as effort
required to solve computational puzzles (see Section 1.4 for details), and we mea-
sure bandwidth cost as the number of messages sent and received. The lifetime of
the system is defined as the time until at least N join or leave events.

Theorem 1. Let TC and TB denote the total computational and bandwidth costs,
respectively, incurred by the adversary. Let gnew denote the number of good IDs
that have joined the system. Then, w.h.p. COM2 has the following properties:

• The fraction of good IDs always exceeds at least 1/2.

• The cumulative computational cost to the good IDs is O (TC + gnew).
• The cumulative bandwidth cost to the good IDs is O (TB + gnew).

There are two important ramifications of Theorem 1. First, the good IDs obtain
a large, constant fraction of the system resources. In particular, there is nothing
special about a 1/2-fraction and this can be increased as we increase the value of
α in our attack model.

Second, the computational and bandwidth costs incurred by the good IDs grow
slowly with the cost incurred by the adversary. Recalling our discussion in Sec-
tion 1, this is precisely the type of result we sought. When there is no attack on the
system, the costs are low and solely a function of the number of good IDs; there is
no exorbitant overhead. But as the adversary spends more to attack the system, the
costs required to keep the system secure grow commensurately with TC and TB .

1.4 Computational Puzzles

All nodes have access to a hash function, h, about which we make the standard
random oracle assumption [7,17,59]. Succinctly, this assumption is that when first
computed on an input, x, h(x) is selected independently and uniformly at random
from the output domain, and that on subsequent computations of h(x) the same
output value is always returned. We assume that both the input and output domains
are the real numbers between 0 and 1. In practice, h may be a cryptographic
hash function, such as SHA-2 [80], with inputs and outputs of sufficiently large bit
lengths.

5With probability at least 1− n−c0 for any desired c > 0.
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In general, a node must find an input x such that h(x) is less than some thresh-
old. Decreasing this threshold value will increase the difficulty, since one must
compute the hash function on more inputs to find an output that is sufficiently
small.6

We assume that each node can perform µ hash-function evaluations per round
for µ > 0. Additionally, we assume that µ is of some size polynomial in n0 so that
logµ = Θ(log n0).7

For any integer ρ ≥ 1, we define a ρ-round puzzle to consist of finding ` =
C logµ solutions, each of difficulty τ = ρ(1 − δ)µ/(C logµ), where δ > 0 is a
small constant and C is a sufficiently large constant depending on δ and µ.

Let X be a random variable giving the expected number of hash evaluations
needed to compute ` solutions. ThenX is a negative binomial random variable and
we have the following concentration bound (see, for example, Lemma 2.2 in [4]).

For every 0 < ε ≤ 1, it holds that

Pr(|X − E(X)| ≥ εE(X)) ≤ 2e−ε
2`/(2(1+ε))

Given the above, we can show8 that every good ID will solve a ρ-round puzzle
with at most ρµ hash function evaluations, and that the adversary must compute
at least (1 − 2δ)dρµ hash evaluations to solve every ρ-round puzzle. Note that
for small δ, the difference in computational cost is negligible, and that µ is also
unnecessary in comparing costs. Thus, for ease of exposition, we assume that
each ρ-round puzzle requires computational cost ρ to solve.Finally, a node v
uses a public key Kv, generated via public key encryption, as its ID. The input to
a puzzle always incorporates Kv and s, where the solution string s is selected by
v (for good IDs, s will be a random string).

Uses of Puzzles. In our algorithms, puzzles are used in two distinct ways (although,
they are constructed in the same manner). First, when a new ID wishes to join the
system, it must provide a solution for a β-round puzzle; this is Step (1) in the
pseudocode of Figure 1. Here, the input to the puzzle is Kv||s. We note that, in the
case of a bad ID, this solution may have been precomputed by the adversary. This
is not a problem since the purpose of this puzzle is only to force the adversary to
incur a computational cost (it is not used to preserve guarantees on the fraction of
good IDs in the system).

6Many other types of puzzles exist (for examples, see [52, 55, 84]) and our results are likely
compatible with other designs.

7It is reasonable to assume large µ since, in practice, the number of evaluations that can be
performed per second is on the order of millions to low billions [9, 10, 50].

8By using a union bound over the N joins and departure events, for C sufficiently large as a
function of δ and γ.
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Algorithm 1: COM2

Input. The following sets are defined:
Sold ← set of IDs present at beginning of current epoch
St ← set of IDs present at time t

Execute the following steps for the lifetime of the system:
1. Upon joining, each ID v solves a β-round puzzle and sends

the solution sv to the server which adds v to St upon confirming the validity
of sv

2. For any round t, if |(St ∪ Sold)− (St ∩ Sold)| ≥ |Sold|/3, then the server :

• Issues a 1-round puzzle to each ID via broadcasting random string r

• Sold ← set of IDs that returned valid solution

• St ← Sold

The second way in which puzzles are used is to limit the fraction of bad IDs in
the system; see Step (2) in Figure 1. An announcement is periodically made that
all IDs already in the system should solve a puzzle. When this occurs, a random
string, r, of Θ(logN) bits is generated and included as part of the announcement.
The value r must also be appended to the inputs for all requested solutions in this
round; that is, the input is Kv||s||r. These random bits ensure that the adversary
cannot engage in a pre-computation attack — where it solves puzzles and stores
the solutions far in advance of launching an attack — by keeping the puzzles un-
predictable. For ease of exposition, we omit further discussion of this issue and
consider the use of these random bits as implicit whenever this second type of
puzzle is issued.

While the same r is used in the puzzle construction for all IDs, we emphasize
that a different puzzle is assigned to each ID since the public key used in the con-
struction is unique. Again, this is only of importance to the second way in which
puzzles are used. Using the public key in the puzzle construction also prevents
puzzle solutions from being stolen. That is, ID Kv cannot lay claim to a solution
found by ID Kw since the solution is tied to the public key Kw.

2 A Centralized Defense

To simplify the presentation of our result, we begin by demonstrating a centralized
solution. To this end, we consider a server which can communicate directly with
each ID in the system. We emphasize that our assumption of a server is removed
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later in Section 3.
Our first algorithm Commensurate Computation (COM2) is described in Al-

gorithm 1. In this algorithm, each ID that wishes to join the system and receive
service is required to solve a β-round puzzle in order to register with the server.
We refer to this as an entrance fee. These puzzles are of the first type described
in Section 1.4 (which do not require a “time stamp” value r); we reiterate that the
only purpose of this puzzle Step (1) is to force a computational cost.

The server tracks the membership in the system using the set St. Whenever an
ID registers with the server, St is updated. Similarly, when a good ID informs the
server that it is departing, St is also updated. However, bad IDs may not provide
such a notification and, therefore, St is not necessarily accurate at all times.

At the beginning of the system, the server knows the existing membership de-
noted by Sold; assume |Sold| = n0 initially. At some point, |(St∪Sold)−(St∩Sold)| ≥
|Sold|/3. When this happens, it triggers the execution of Step 2 whereby all IDs are
issued a 1-round puzzle and must respond with a valid solution within 1 round.
The issuing of these puzzles is performed by the server by announcing r to all IDs.
A round is of sufficient length that the computation time to solve a 1-round puzzle
dominates the round trip communication time between the client and server.

The server verifies a puzzle solution by checking that (1) all C logµ inputs to
h submitted generate an output that is at most C logµ

(1−δ)µ ; and (2) each of these inputs
contains the string r and also the individual public key of the ID. Those IDs that fail
to submit valid puzzle solutions during step 2 are de-registered and permanently
blacklisted — that is, they are effectively removed from the system. The actions
in Step 2 are referred to as a test. Over the lifetime of the system, the execution of
COM2 is conceptually broken into sets of consecutive rounds called epochs which
are delineated by tests. The process outlined above is repeated where now the
server knows the existing membership exactly, Sold, at the beginning of each epoch
(thus, St is set to equal Sold at this point in Figure 1).

Initialization. Prior to the first epoch, the server issues puzzles to all IDs, and sets
variables by running the bullets under step 2 of Algorithm 1. Thus, initially Sold

contains less than a 1/3 fraction of bad nodes.

2.1 Analysis

For any epoch i, we letBi (respectivelyGi) denote the number of bad (respectively
good) IDs in the system at the end of epoch i, and we let Ni = Bi + Gi. Recall
that B0 < N0/3.

Lemma 1. For all i ≥ 0, Bi < Ni/3.
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Proof. This is true by assumption for i = 0. For i > 0, note that the adversary has
computational power less than Gi/2. Thus, after Step 2 that ends epoch i, we have
Bi < Gi/2. Adding Bi/2 to both sides of this inequality yields 3/2Bi < Ni/2,
from which, Bi < Ni/3.

Let nai , g
a
i , b

a
i denote the total, good, and bad IDs that arrive over epoch i.

Similarly, let ndi , g
d
i , b

d
i denote the total, good, and bad IDs that depart over epoch

i.
Note that the server will always have an accurate value for all of these variables

except for possibly bdi — recall from Section 1.2 that bad IDs do not need to notify
the server when they depart — and, consequently, ndi ; in these two cases, the server
may hold values which are underestimates of the true values.

Lemma 2. The fraction of bad IDs is always at most 1/2.

Proof. Fix some epoch i > 0. Recall that an epoch ends when |(St ∪ Sold)− (St ∩
Sold)| ≥ |Sold|/3 where |Sold| = Ni−1. Therefore, we have bai + gdi ≤ Ni−1/3.
We are interested in the maximum value of the ratio of bad IDs to total IDs at any
point during the epoch. Thus, we pessimistically assume all additions of bad IDs
and removals of good IDs come first in the epoch. We are then interested in the
maximum value of the ratio:

Bi−1 + bai
Ni−1 + bai − gdi

.

By Lemma 1, Bi−1 ≤ Ni−1/3. Thus, the we want to find the maximum of
Ni−1/3+b

a
i

Ni−1+bai−gdi
, subject to the constraint that bai + gdi ≤ Ni−1/3. This ratio is max-

imized when the constraint achieves equality, that is when gdi = Ni−1/3 − bai .
Plugging this back into the ratio, we get

Ni−1/3 + bai
Ni−1 + bai − gdi

≤ Ni−1/3 + bai
2Ni−1/3 + 2bai

= 1/2

Therefore, the maximum fraction of bad IDs is 1/2 at any point during any arbitrary
epoch i > 0.

Finally, we note that this argument is valid even though St may not account
for bad IDs that have departed without telling the server (recall this is possible as
stated in Section 1.2). Intuitively, this is not a problem since such departures can
only lower the fraction of bad IDs in the system; formally, the critical equation in
the above argument is bai + gdi ≤ Ni−1/3, and this does not depend on bdi .
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Lemma 3. For any i > 0, the total cost to the good IDs in epoch i is at most
β gai + 3

(
nai + ndi

)
.

Proof. The cost to each good ID in epoch i arises from (1) the entrance fee paid by
newly arrived IDs, and (2) the test that marks the end of epoch i. This aggregate
cost is thus at most:

β gai +Gi ≤ β gai +Ni

≤ β gai +Ni−1 + (nai − ndi )
≤ β gai + 4nai + 2ndi

The last inequality follows from noting that
(
nai + ndi

)
≥ Ni−1/3 for a test to

occur; again, note that this holds even if bad IDs do not alert the server that they
are departing over epoch i (as ndi is an upper bound on the true number of IDs that
have departed).

Lemma 4. For all j ≥ 0, the total cost to the good IDs over j epochs is at most
(β + 6)

(∑j
i=0 g

a
i

)
+ 6Tj

Proof. The total cost to the good IDs is the sum of the cost paid by the good IDs
in each epoch. In other words, for any j ≥ 0, the total cost is:

j∑
i=0

(β gai +Gi) ≤
j∑
i=0

(
β gai + 4nai + 2ndi

)
≤

j∑
i=0

β gai + 4

j∑
i=0

nai + 2

j∑
i=0

ndi

≤
j∑
i=0

β gai + 6

j∑
i=0

nai

≤ (β + 6)

j∑
i=0

gai + 6Tj

Where the third line follows since
∑j

i=0 n
a
i ≥

∑j
i=0 n

d
i . In the last inequality, we

denote the cost paid by the adversary by Tj . Again, this holds even if bad IDs do
not alert the server that they are departing over epoch i, since ndi is an upper bound
on the true number of IDs that have departed.

We now give the proof for Theorem 1:
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Proof. By Lemma 2, w.h.p. the fraction of bad IDs is less than 1/2, and so the
first claim follows. The computational cost follows directly from Lemma 4. The
bandwidth cost follows by noting that each good ID must send a message (to the
server) upon joining the system and also each time it solves a puzzle.

3 A Distributed Version of COM2

We now consider defending against attacks in the absence of a server. We spread
the server’s responsibilities over a subset of the IDs, called a committee, and this
gives rise to new challenges:
• First, there is no longer a central authority that can be trusted to conduct a

computational test. Therefore, this test must be done in a distributed fashion.

• Second, while a server can unilaterally decide whether an ID is good or bad, this
determination now needs to be made and agreed upon by the committee mem-
bers.

• Third, while the correctness of the server is not impacted by joins and depar-
tures, the correctness of the committee may be compromised if the fraction of
good IDs becomes too small.
Our distributed version of COM2 overcomes these challenges through a com-

bination of techniques embodied by the two protocols: COMMITTEE MAINTE-
NANCE, which is analogous to COM2, and MEMBERSHIP ELECTION, which deals
with the rebuilding the committee. The details of our approach are described be-
low; however, we first discuss the system model.

System Model. As before, the bad IDs can collude to maximize their gains and are
under the control of an adversary with computational power at most a 1/α fraction
of the computational power of the good nodes. We assume that α ≥ 5 (see proof
of Lemma 5).

Again, the minimum number of good IDs in the system at any point is assumed
to be at least n0 and we aim to provide guarantees for N = O(nγ0) joins and
departures by IDs, for any desired constant γ ≥ 1.

Over time, committees are disbanded and rebuilt; the details are presented later.
An epoch begins when a new committee is completed and begins to be used (the
old committee being disbanded). We maintain the same notation: for any epoch i,
Bi andGi denote the number of bad and good IDs in the system at the end of epoch
i, respectively, and we let Ni = Bi + Gi. We assume that at the time of system
creation, the fraction of bad IDs is less than 3/10; in particular, B0 < (3/10)N0

(this aligns with the result proved in Lemma 5).
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Our models for communication and joins/departures of IDs are described be-
low.

Communication Model. We now change our communication model somewhat to
align more closely with the related literature. All IDs may communicate using a
diffuse primitive, denoted by BCAST, which allows a good ID to send a value to
all other good IDs within a known bounded constant amount of time, despite the
presence of an adversary. The assumption of such a “blackbox” protocol is com-
mon in the literature on PoW schemes such as Bitcoin [11, 39, 65, 68]. Moreover,
empirical studies suggest that the Bitcoin overlay, for example, allows for such a
communication protocol [69]. For ease of exposition, we assume that the time to
diffuse a message is negligible when compared to the time to solve computational
puzzles.

Can a message mv from a committee member ID Kv be spoofed? This is
prevented in the following manner. ID Kv signs mv with its private key to get
signv, and then sends (mv||signv||Kv) via BCAST. Any other ID can use Kv

to check that the message was signed by the ID Kv and thus be assured that ID
Kv is the sender. This technique is implicitly used in MEMBERSHIP ELECTION to
send a system-wide random string r; however, for succinctness, we omit the details
from the pseudocode.

We again mention that while our solution employs public/private key pairs, no
public key infrastructure is required for the same reasons as given in Section 1.2.

Joins and Departures. As before, the system size may vary wildly over time, in-
creasing and decreasing polynomially in n0 above a minimum number of n0 good
IDs.

We pessimistically assume that the adversary schedules the joins and depar-
tures by IDs in the system. The adversary clearly knows whether an ID is good or
bad, and can inform its scheduling decisions based on this information. However,
the adversary is oblivious to which IDs belong to a committee.9

Unlike our model in Section 2, we do not assume that a good ID can make
its departure known explicitly. This corresponds to a more challenging scenario
where the adversary can abruptly eject good IDs from the system by causing them
to crash or fail via a network attack (for example, a DDoS attack).

We do impose a loose constraint on the rate of departures: at most an ε0-
fraction of good IDs may depart in any single round, where ε0 > 0 is a small,
known constant. This assumption is necessary since otherwise an extremely rapid

9One can imagine a variety of attacks aimed at causing good nodes/IDs to fail, and the array of
techniques available for mitigating such attacks in the literature. Such security issues are important
against an adversary that might target committee members, but only complementary to the focus of
our work here; thus, we omit further discussion of them.
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number of departures can leave the system bereft of a functioning committee. Note
that this constraint still allows for an amount of dynamism that is linear in the
current system size.

Committee Construction. In constructing a new committee, there is a sequence
of membership intervals

(
1

2k/d
, 1
2(k+1)/d

]
for k ≥ 1 and where d is a constant

we can set subject to d ≥ 20γ (this is required for the proof of Lemma 5). For
each interval, the ID that generates the smallest hash function output in the kth

interval becomes the kth committee member. This determination is handled by
the current committee; the details are given in COMMITTEE MAINTENANCE and
MEMBERSHIP ELECTION (see Algorithms 2 and 3).

Given that the adversary has a 1/α-fraction of the computational power held by
the good IDs, we expect the newly-formed committee to have a majority of good
IDs. This is argued formally in Section 3.1.

Algorithm Overview and Intuition. In our distributed version of COM2, the role
of the server is now taken over by a committee. Over the lifetime of the system,
this committee should always satisfy two invariants: (1) a majority of the IDS are
good and (2) it has size Θ(log n0).

As joins and departures occur, these two invariants may become endangered.
In response, a new committee is built from scratch. The details of this construction
are described below and in the pseudocode of Algorithms 2 and 3.

Note that we are only describing/analyzing the construction and maintenance
of the committee in this section. This committee can replace the server in the
algorithm of Section 2 (pseudocode in Algorithm 1), and all prior cost analysis
remains valid.

Throughout, let Cold denote the set of IDs who are members of the committee at
the beginning of the current epoch (which the formation of this new committee
delineates). Let Ct denote the set of IDs forming the committee at any time t in the
current epoch. A new committee needs to be constructed whenever the number of
departures from the committee is at least |Cold|/3.

When this condition is met, the members of Ct agree on and diffuse (via BCAST)
a random string r as in Section 2. Agreement can be accomplished via any secure
multi-party computation technique for generating random bits; for example, the
result in [89] suffices.

How is r sent such that each good ID trusts it came from the committee? Re-
call that a node v that joins the system generates a public key, Kv, and the corre-
sponding private key, kv; the public key is used as its ID. If ID Kv is a committee
member, it will sign the random string r using its private key kv to obtain signv.
Then, (r||signv||Kv) is sent using BCAST. Any good ID can verify signv via
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Kv to ensure it returns r. This implicitly occurs in Step 2 of COMMITTEE MAIN-
TENANCE, but we omit the details in the pseudocode for simplicity.

A good ID Kv that is a member of the committee is assumed to be issuing
“heartbeat” messages; these are periodic announcements that the ID is still present
in the system. As with r, these messages are signed. We assume that the absence
of a heartbeat message for some sufficiently large time indicates to all IDs that the
corresponding committee member has departed. To simplify our presentation, we
omit further mention of this aspect.

MEMBERSHIP ELECTION (Algorithm 3) In MEMBERSHIP ELECTION, each
good ID, Kv must evaluate h(Kv||s||r) throughout a single round using randomly
chosen strings s. Of these evaluations, the string sv corresponding to the smallest
output found by Kv is BCAST as the message (Kv||sv) by ID Kv. Note that there
is no need to sign these messages; only messages originating from the committee
need to be signed.10

A good IDKw that receives such a message checks whether h(Kv||s||r) yields
the smallest output it has seen so far during this round and, if so,Kw tentatively sets
Kv as the kth committee member and propagates (Kv||sv) as dictated by BCAST;
otherwise, the message is discarded. By this process, if sv is the smallest value
in some membership interval, then the entire system (including Kv) learns this
via BCAST, and each good ID will consider Kv to belong to the committee be-
ing constructed. Note that this means that all good IDs eventually agree on the
membership of the committee.

Over the round during which this construction is taking place, the existing com-
mittee still satisfies the invariants (1) and (2) above (this is proved in Lemma 5).
In this way, the system is always live; that is, a functioning committee is always
available. After the round completes, the new committee members are known to
all good IDs in the system. Those “old” committee members that were present
prior to this construction are no longer recognized by the good IDs; we say the old
committee is disbanded. Finally, any messages that are received after this single
round are considered late and discarded.

Initialization. Prior to the first epoch, our algorithm is initialized as follows. First,
a global random string r is generated; this can be done using a ”heavy-weight”
algorithm such as that of [2]. Next, we run MEMBERSHIP ELECTION using this
random string r as the seed for the required puzzles.

10Recall that a solution cannot be stolen given that it is tied to the ID that obtained it via the puzzle
construction (recall our discussion in Section 1.2). The adversary might (bizarrely) obtain a solution
for a puzzle that incorporates a good ID Kv and then diffuse (Kv||sv), but that does not help the
adversary.
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Algorithm 2: COMMITTEE MAINTENANCE

Input. The following sets are defined:
Cold ← IDs in committee at beginning of the current epoch
Ct ← IDs in committee at time t of the current epoch

Execute the following steps for the lifetime of the system:
1. Each new ID generates a public key, Kv, and private key, kv
2. At any time t, if |Ct| ≤ 2

3 |Cold|, then the following is executed:
• Ct uses BCAST to diffuse a random string r
• Cold ← MEMBERSHIP ELECTION

• Ct ← Cold

Algorithm 3: MEMBERSHIP ELECTION

Each good ID Kv executes the following for a single round:
1. Perform hash-function evaluations with Kv||s||r as input; let sv be the input

for the smallest solution found in this round.

2. Use BCAST to diffuse (Kv||sv)
3. Upon receiving any (Kw||sw) from some ID Kw:
• If h(Kw||sw||r) is the smallest value received in the interval(

1
2k/d

, 1
2(k+1)/d

]
for some k ≥ 1, then tentatively set Kw to be the kth

member of the committee; and propagate (Kw||sw).
• At the end of the round, set the current tentative members of the committee

to the final members.

3.1 Analysis of Distributed COM2

In this section, we prove that COMMITTEE MAINTENANCE and MEMBERSHIP

ELECTION maintain the invariants that the committee has (1) a majority of good
IDs and (2) size Θ(logNi) for any epoch i over the lifetime of the system. Fur-
thermore, we derive bounds on the bandwidth and computational costs of these
algorithms.

3.2 Good Majority and Committee Size

To simplify our presentation, the claims made throughout this section are proved
to hold with probability at least 1−O(1/nγ+2

0 ). Of course, we wish the claims of
Theorem 1 to hold with probability at least 1 − 1/nγ+1

0 such that a union bound
over nγ0 joins and departures yields a w.h.p. guarantee. By providing this “slack” of
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an Ω(1/n0)-factor in each of the guarantees of this section, we demonstrate this is
feasible while avoiding an analysis cluttered with specific settings for the constants
used in our arguments.

Lemma 5. The following properties hold with probability at least 1−O(1/nγ+2),
for all t > 0:

• Cold has more than a 7/10-fraction of good IDs,

• Ct has more than a 1/2-fraction of good IDs,

• |Ct| = Θ(log n0),

for α ≥ 5 and d ≥ 35γ.

Proof. Recall that for an IDKv to become a committee member, it must obtain the
smallest value in

(
1

2k/d
, 1
2(k+1)/d

]
for the integer k ≥ 1 during the single round of

MEMBERSHIP ELECTION.
Let the indicator random variable Xv,k = 1 if ID Kv finds a solution in the kth

membership interval, although not necessarily the smallest value in this interval;
otherwise, Xv,k = 0.

Let the set of good IDs present at the beginning of epoch i be denoted by G.
These are the good IDs that execute MEMBERSHIP ELECTION. Let the random
variable XG,k =

∑
Kv,k∈G Xv,k which counts the number of hash-function evalua-

tions by good IDs that land in the kth membership interval.
Let the set of all bad IDs present at any point in epoch i be denoted byB. Define

XB,k =
∑

Kv,k∈BXv,k which counts the number of hash-function evaluations by
bad IDs that land in the kth membership interval.

Expected Value Calculation. We have:

E[XG,k] = E

 ∑
Kv,k∈G

Xv,k

 ≥ |G| µ
2k/d

= Gi−1
n`0

2k/d

for some constant ` ≥ 1 since µ is a polynomial in n0 (recall Section 1.2). Simi-
larly:

E[XB,k] = E

[ ∑
Kv∈B

Xv,k

]
≤ |G| µ

α2(k−1)/d
= Gi−1

n`0
α2(k−1)/d

Concentration Bounds on XG,k. Let η = Gi−1µ/(κ(γ+ 2) lnn0) for a sufficiently
large constant κ > 0. Since the Xv,ks are independent, a Chernoff bound tightly
bounds XG,k such that for a small constant δ > 0, we have:
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Pr

(
XG,k < (1− δ)Gi−1µ

2k/d

)
≤ Pr

(
XG,k < (1− δ)Gi−1n

`
0

2k/d

)
≤ exp

(
−δ

2Gi−1 n
`
0

2(k/d)+1

)
noting that µ = n`0. Consider k over the range from 1 to d lg η:

exp

(
−δ

2|G|n`0
2(k/d)+1

)
≤ exp

(
−(δ2/2)κ(γ + 2) lnn0

)
≤ O

(
1/nγ+2

0

)
for a sufficiently large constant κ ≥ 2/δ2.

Therefore, the number of hashes by good IDs that fall in the kth interval is
at least (1 − δ)Gi−1µ/2

k/d with probability at least 1 − O(1/nγ+2
0 ). A similar

calculation yields upper bounds XG,k:

Pr
(
XG,k > (1 + δ′)|G|µ/2k/d

)
≤ O

(
1/nγ+2

0

)
Concentration Bounds on XB,k. Over the range of 1 ≤ k ≤ d lg η, a similar argu-
ment proves that for a small constant δ′′ > 0, XB,k = (1 ± δ′′)Gi−1µ/α2(k−1)/d

with probability at least 1−O(1/nγ+2
0 ).

However, can the adversary obtain outputs that belong to membership intervals
for k > d lg(η)? In such intervals, we expect only a small number of outputs and
we pessimistically assume that, if one exists, it belongs to the adversary (not to a
good ID).

Each such membership interval has size less than 1/(2jη) for j ≥ 1. With
probability at least 1 − O(1/nγ+2

0 ), the adversary will not obtain an output in
any interval for j ≥ (γ + 2) lg η. Thus, the adversary gains at most (γ + 2) lg η
additional committee members.

Size of Committee. We note that the same argument used above to bound the num-
ber of bad IDs for membership intervals with k > d lg(η) also applies to good IDs.
By this fact, and the above bounds, the total size of the committee is:

d lg(η) ≤ |Cold| ≤ d lg(η) + 2(γ + 2) lg η

since Gi−1 and µ are each a polynomial in n0, |Cold| = Θ(log n0) with probability
at least 1−O(1/nγ+2). Given that the committee size decreases by at most |Cold|/3
in an epoch, it follows that |Ct| = Θ(log n0).

Fraction of Good IDs. Each output that falls in the kth membership interval has the
same probability as any other of being the smallest. Therefore, pulling the above
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pieces together: with probability at least 1 − O(1/nγ+2), the probability that a
good ID obtains the smallest output in the kth interval for 1 ≤ k ≤ d lg(η) is at
least:

(1± ε)Gi−1µ/2k/d

(1± ε)Gi−1µ/2k/d + (1± ε′)Gi−1µ/α2(k−1)/d
≥ (1− ε′′)α

α+ 21/d

for a small constant ε′′ depending on small constants ε, ε′ > 0.
To obtain a lower bound on the number of good IDs in Cold, define the indicator

random variable Yk = 1 if a good ID has the smallest output in kth interval; other-
wise, Yk = 0. Let Y =

∑d lg(η)
k=1 Yk, noting our sum is up to the lower bound on

|Cold|,.

E[Y ] =E

d lg(η)∑
k=1

Yk

 =

d lg(η)∑
k=1

E[Yk]

≥
d lg(η)∑
k=1

(1− ε′′)α
α+ 21/d

=

(
(1− ε′′)α
α+ 21/d

)
d lg η

We now set d ≥ 20γ and make two observations. First, by a Chernoff bound,
with probability at least 1− O(1/nγ+2

0 ), the number of good IDs in Cold is at least
(1−ε′′′)α
α+21/20γ

(20γ) lg η for a small constant ε′′′ > 0.
Second, we derived above that |Cold| ≤ (1± δ′′)d lg(η) + 2(γ + 2) lg η. There-

fore, the fraction of good IDs in Cold is:

≥
(1− ε′′′) α

α+21/d
(d lg η)

(1 + δ′′)(d) lg(η) + 2(γ + 2) lg η

≥ (1− ε)
(

α

α+ 21/d

)(
d

d+ 2γ + 4

)
> 7/10

for α ≥ 5, d ≥ 35γ, and a sufficiently small constant ε > 0 depending on ε′′′ and
δ′′. This holds with probability at least 1−O(1/nγ+2

0 ).
Over the epoch, at most |Cold|/3 IDs can depart prior to MEMBERSHIP ELEC-

TION being executed. In the worst case, these are all good IDs. Since for any
positive quantities X and Y , X−(Y/3)

(2/3)Y = (3/2)(X/Y ) − (1/2), the fraction of

good IDs is at least 11/20, and this holds with probability at least 1−O(1/nγ+2
0 ).

Finally, recall that at most a constant ε0-fraction of good IDs may depart over
the single round in which MEMBERSHIP ELECTION is executing (see our model
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for joins and departures described in Section 3). By a Chernoff bound, for a suit-
ably small ε0 < 1/20, the fraction of good IDs that leave the committee is tightly
bounded such that the fraction of good IDs remaining in the committee exceeds 1/2
with probability at least 1−O(1/nγ+2

0 ) during this final round. Therefore, for the
current epoch, a majority of good IDs exists in the committee until MEMBERSHIP

ELECTION completes and a new committee is then available.

3.3 Cost Analysis

When computing the bandwidth cost for the decentralized network, we assume that
the good nodes are connected in a sparse overlay network. In particular, for epoch
i, we assume that the number of edges in this network is Õ(Gi). Then we have the
following lemma.

Lemma 6. Let TC and TB denote the total computational and bandwidth costs,
respectively, incurred by the adversary. Let gnew denote the number of good IDs
that have joined the system. Then COMMITTEE MAINTENANCE (Algorithm 2) has
costs as follows

• The total computational cost to the good nodes is O (TC + gnew).

• The total bandwidth cost to the good nodes is Õ (TB + gnew).

Proof. (Sketch) We begin with computational cost. In epoch i, the computational
cost to the good nodes occurs only during the call to MEMBERSHIP ELECTIONat
the end of the epoch, and equals Gi, which is no more than Gi−1 + gai .

By the end of epoch i, we know that a 1/3 fraction of the IDs in Cold leave.
Let Costi be the computational cost to the algorithm in epoch i, and let Ti be the
computation cost spent by the adversary in epoch i. There are two cases.

Case 1: At least a 1/6 fraction of the IDs that leave the committee are good. Since
the good IDs in the committee are a random sample of the good IDs in the system,
gdi = θ(Gi−1), with high probability. Thus, Costi ≤ c1g

d
i + gai for some constant

c1.

Case 2: At least a 1/6 fraction of the IDs that leave the committee are bad. Then,
at the beginning of the epoch, the adversary must have incurred θ(Gi−1) computa-
tional cost in order to obtain positions in the committee for this constant fraction
of bad IDs. Thus, Ti−1 = θ(Gi−1), and so Costi ≤ c2Ti−1 +gai for some constant
c2.

Combining these two cases, we have that for every epoch i, it is the case that
Costi ≤ c1g

d
i + c2Ti−1 + gai . By summing over all epochs, we get that the total

computational cost to the algorithm is no more than the following.
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∑
i

c1g
d
i + c2Ti−1 + gai ≤ c2TC +

∑
i

(c1 + 1)gai

= O (TC + gnew)

The communication costs are dominated by the cost of the call to MEMBER-
SHIP ELECTIONduring epoch i for each positive i. Recall that we assume the nodes
are connected in a network with Õ(Gi) edges.11 A record breaking analysis shows
that each edge in this network will send an expected θ(logGi) messages during the
call to MEMBERSHIP ELECTION.12 Thus the total bandwidth cost during the call
to MEMBERSHIP ELECTIONis Õ(Gi).

Since this is within logarithmic factors of the computational cost, we can apply
the same analysis as for the computational cost to achieve the bound given in the
lemma.
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Figure 1: Computational cost and cumulative computational
for good IDs in absence of an attack using the Bitcoin Dataset.

4 Empirical Validation

We simulate COM2 to evaluate its performance against a well-known PoW scheme
named SYBILCONTROL [63]. The experiments allow us to (1) compare the com-
putational cost incurred by the good IDs and (2) investigate the extent to which a
Sybil Attack can impact the fraction of good IDs under these two algorithms.

11The notation Õ indicates that polylog(n0) factors are omitted.
12The source of each edge perceives a random sequence of at most θ(Gi) values, and in expecta-

tion θ(logGi) of these will be the smallest seen so far, and so will merit a message along the edge.
See [47] for details.
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We simulate the centralized version of COM2. Our goal is to offer a proof of
concept, not a full-fledged comparison. In this vein, we simulate the centralized
algorithm as it greatly reduces the number of parameters that we need to correctly
estimate. Because the distributed version has asymptotically equal resource costs,
we expect similar performance for the distributed algorithm.

Finally, note that we performed Monte-Carlo Simulations for generating each
set of plots, where each observed value was averaged over 20 separate simulations.

Overview of SYBILCONTROL. Under this algorithm, the number of bad IDs are
limited through the use of computational puzzles. Each ID must solve a puzzle
to join the system. Additionally, each ID periodically (every 5 seconds) tests its
neighbors with a puzzle, removing those IDs from its list of neighbors that failed
to provide a solution within a time limit. It may be the case that an ID is a neighbor
to more than one ID and thus, receives multiple puzzles to solve simultaneously;
in this case, they are combined into a single puzzle whose solution satisfies all the
received puzzles. We implement our own simulation of the SYBILCONTROL algo-
rithm.

Points of Comparison. To compare both algorithms fairly, we assume that the
computational cost for solving a single PoW is 1 for both algorithms. Since in both
algorithms require that a new ID solves a puzzle to join the system, we refrain from
measuring this computational cost. We let the fraction of computational power of
the adversary, gα be the same for both algorithms.

We first examine performance on real-world Bitcoin data [76] [77] in Section
(4.1). In Section (4.2), we present a comparative study on three real-world peer-to-
peer networks, namely - BitTorrent, Skype and Bitcoin [90] [48] [76] [77] . Next,
we study the effect of joins and departures on the two algorithms presented in
Section (4.3), where we simulate session lengths governed by Weibull Distribution.
Finally, we execute a large-scale Sybil attack on a static system, initially consisting
of all good IDs and present our results in Section (4.4).

4.1 The Bitcoin Network

We simulate SYBILCONTROL and COM2 on a real-world dataset for the Bitcoin
Network [76] [77].This Bitcoin Dataset spans a period of one week and consists of
timestamps for join/departure events. In our experiments, we assume α = 10 and
investigate the computational cost under two scenarios: (1) in absence of bad IDs
and (2) when bad IDs are present (i.e., the system is under attack).

We simulate scenario (1) by assuming all the events in the dataset are result
of good IDs joining/departing the system. Figure 1a shows the computational cost
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to the good IDs for SYBILCONTROL and COM2 in the absence of an attack using
the Bitcoin Dataset. In Figure 1a, the dense green area signifies the high frequency
of computational cost paid by good IDs in SYBILCONTROL in comparison to the
increasingly-spaced blue plot for COM2. Also, from Figure 1b, it can be seen that
the cumulative computational cost to the good IDs differs by greater than 4 orders
of magnitude just after 13 hours of simulation and this gap keeps widening with
time. This empirical observation strengthens our belief in the cost efficiency of
COM2 in comparison to SYBILCONTROL.
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Figure 2: Computational cost and cumulative computational
cost versus time under a large-scale attack using the Bitcoin
Dataset.

Figure 2 shows the empirical results for the second scenario, where we simulate
a large-scale Sybil attack using the Bitcoin Dataset. The attack is orchestrated
using the following adversarial strategy. Every 5 seconds, the adversary adds n

3
bad IDs to the network from time t

3 to 2t
3 , where n is the total number of IDs at

the time and t = 60, 4970 seconds (7 days) is the total execution time. Given that
the adversary adds n

3 IDs every 5 seconds, a computational test is triggered in both
algorithms every 5 seconds.

In Figure 2a, the dense green region represents the computational cost paid by
the good IDs in SYBILCONTROL, the dense blue region represents that paid by
good IDs in COM2and the red region by the adversary. Due to the setup of the
stress test, the computational cost paid by good IDs in both the algorithms from t

3
to 2t

3 , is equivalent, thus the blue region overlaps the green. The cumulative cost
to the good IDs in SYBILCONTROL, COM2 and the adversary can be compared
through Figure 2b, which shows that the cost incurred in COM2 is less than that
to SYBILCONTROL and also, COM2’s cost is a function of the cost paid by the
adversary, unlike SYBILCONTROL.
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Figure 3: Computational Cost per unit Time for Peer-to-Peer
Networks.

4.2 Peer-to-Peer Networks

We next compare the performance of the two algorithms on three different peer-
to-peer (P2P) networks, namely BitTorrent, Skype and Bitcoin [90] [48] [76] [77].
For the BitTorrent network, we performed experiments on two BitTorrent servers,
namely - BitTorrent Debian and BitTorrent Flatout. The shape (k) and scale (λ)
parameter values of Weibull Distribution for session time of k = 0.38 and λ = 42.2
for Debian, and k = 0.59 and λ = 41.9 for FlatOut. The Skype supernodes had
also have a Weibull Distribution for session time with median session time of 5.5
hours, and shape parameter of 0.64. We generate the session time for 10,000 good
IDs from these parameter values and sample for the bitcoin network from the real-
world data obtained from [76] [77]. For all empirically generated data, 1 unit of
time corresponds to 1 second.

We simulate SYBILCONTROL and COM2 on each of these networks, and com-
pare the computational cost to the good IDs per unit time. Figure 3 illustrates
the results of the simulations. We observe that COM2 outperforms SYBILCON-
TROL in all three peer-to-peer systems in terms of computational costs of the net-
work. COM2 outperforms SYBILCONTROL by 34.51% in BitTorrent Debian, by
45.56% in BitTorrent FlatOut, by 99.94% in Skype Supernodes and 83.88% in
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Bitcoin.13

4.3 Effect of Joins and Departures

Empirical studies of session lengths in peer-to-peer network show Weibull Distri-
bution [96] as a better fit on real time data in comparison to the popularly-used
Poisson Distribution [90]. Hence, we used the Weibull distribution to generate the
session lengths of IDs.

The average session length ranged from as low as 0.1 seconds to 10000 sec-
onds. The system was initialized with 10000 good IDs and the simulations were
carried out until 15000 new IDs joined the network. Each new ID could be good
or bad with probability 0.5. For each value of average session length, we took the
mean of our observations over 30 runs.
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Figure 4: Computational Cost per unit time and Maximum Per-
centage of bad IDs in system versus Average Session length
(Churn)

As can be seen from the plots, with increase in the average session length (order
of hours), COM2 is able to give similar guarantees as SYBILCONTROL in terms of
the maximum percentage of bad IDs in the system at much lower computation cost
to the good IDs (See Figure 4). On the other hand, when session length are small
(order of minutes), COM2 is able to maintain a constant percentage of bad IDs in
the system whereas SYBILCONTROL is not able to give any such guarantees (the
percentage of bad IDs can become unbounded).

13We use the following definition of performance: ( COM2

SYBILCONTROL
− 1) ∗ 100
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Figure 5: Growth of Computational Cost and Cumulative Com-
putational Cost versus Time for system under threat

4.4 Performance Under Threat

Figure 5 shows the results of a Stress Test on the system: Initially, the system con-
sisted of 10000 good IDs, after 10 minutes of this static system, every 5 seconds n

3
bad IDs attempted to joined the system over a span of next 30 seconds, following
which n

3 bad IDs left the system every 5 seconds over the next 30 seconds. The
system was allowed to remain static for next 10 minutes. For Figure 5b, the com-
putational cost at each time step in the plot is the average of the computational cost
for last 100 time steps.

As can be seen in Figure 5a, the good IDs pay a computational cost even in
the absence of an attack for SYBILCONTROL, which is zero for COM2 until time
step 500. The plot for Cumulative Computation Cost to good IDs i.e., Figure 5b
grows linearly with time, no matter whether the system is under attack or not for
SYBILCONTROL, whereas in COM2 this cost is incurred only when system is under
attack from time step 600 to 660.

5 Applications

5.1 Byzantine Consensus

Background. The problem of Byzantine Consensus (BC) was introduced by Lam-
port, Shostak and Pease [61] (this problem is also referred to as Byzantine Agree-
ment). There are n nodes, of which some hidden subset are bad. These bad nodes
may deviate from a prescribed algorithm in an arbitrary way. The remaining nodes
are good, and will follow our algorithm faithfully. Each good node has an initial
input bit. The goal is for (1) all good nodes to decide on the same bit; and (2) this
bit to equal the input bit of at least one good node.
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Byzantine consensus enables the creation of a reliable system from unreliable
components. Therefore, it is not surprising that BC is used in areas as diverse as:
maintaining blockchains [14, 38, 45, 68]; trustworthy computing [16, 18, 19, 22, 23,
60, 88]; P2P networks [1, 79]; and databases [72, 83, 100]

A major shortcoming of current algorithms for BC is that they do not scale.
For example, Rhea et al. write: “Unfortunately, Byzantine agreement requires a
number of messages quadratic in the number of participants, so it is infeasible for
use in synchronizing a large number of replicas” [85] (see also [24], [21]). This
quadratic message cost hinders deployment in modern systems where the number
of participants can be large.

Recent results reduce the total number of messages to Õ(n3/2) [56, 57]. How-
ever, these algorithms (1) have high cost in practice; (2) are complicated to im-
plement; and (3) require non-constructive combinatorial objects such as expander
graphs.
How Our Result Applies. Our result allows us to reduce the communication cost
for BC. The bad nodes are again incarnated as a single adversary with equivalent
computational power. Each good node has a single ID, while the adversary is not
constrained in its creation of IDs.

We employ the result in Section 3. The members of the committee execute any
BC algorithm that requires a quadratic number of messages; this implies a message
cost of O(log2 n) generated by the committee. The committee then diffuses the
signed consensus value to all other IDs. On receiving these agreed upon values
from their committee members, the non-committee members take the majority of
these verified consensus values. Since committee has a majority of good members,
this results in all IDs holding the correct consensus value.

In this way, we are able to solve traditional BC with Õ(n) number of messages
in total. Additionally, via our guarantees in Section 3, we can solve a dynamic
version of BC, where IDs are joining and leaving, and can do so with computational
cost to the good IDs that is commensurate with the cost incurred by the adversary.

5.2 ELASTICO: Committee Election

Background. ELASTICO is a secure protocol [65], which aims to achieve agree-
ment on a set of transactions in a blockchain i.e., the state of the blockchain. Infor-
mally, the core idea is to partition the system into smaller fragments called commit-
tees, where each committee executes a BC protocol to agree upon its set of transac-
tions. Then, the committee that was formed last — referred to as the final commit-
tee — computes the final digest of all transactions in the system; these transactions
having been received from other committees. This final digest is broadcast to all
other participants in the system.

26



How Our Result Applies. In order to reduce message cost, ELASTICO makes
use of a special committee referred to as the directory committee (DC), which co-
ordinates the formation of all other committees. We propose the election of the
DC using our algorithms COMMITTEE MAINTENANCE and MEMBERSHIP ELEC-
TION in Section 3. This would ensure (1) the committee contains a majority of
good IDs for a polynomial number of join and leave events; and (2) bandwidth and
computational costs grow commensurately with the costs of the adversary.

6 Conclusion

We have described algorithms to efficiently use PoW computational puzzles to re-
duce the fraction of bad IDs in open systems. Unlike previous work, our algorithms
require the good nodes to expend computational resources that grow only linearly
with the computational resources expended by the adversary. In particular, assume
the adversary incurs computational cost TC and sends TB messages, and that gnew
good IDs enter the system. Then our algorithm requires O(TC + gnew) computa-
tional cost and sends O(TB + gnew) messages.

Many open problems remain. One of particular interest is: Can we adapt our
technique so secure multi-party computation? The problem of secure multi-party
computation (MPC) involves designing an algorithm for the purpose of computing
the value of an n-ary function f over private inputs from n nodes x1, x2, ..., xn,
such that the nodes learn the value of f(x1, x2, ..., xn), but learn nothing more
about the inputs than what can be inferred from this output of f . The problem is
generally complicated by the assumption that an adversary controls a hidden subset
of the nodes. In recent years, a number of attempts have been made to solve this
problem for very large n manner [3] [6] [13] [26] [27] [29] [44]. We believe that
our technique for forming committees in a dynamic network could be helpful to
solve a dynamic version of this problem, while ensuring that the resource costs to
the good nodes is commensurate with the resource costs to an adversary.
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