
Practical Delegation of Computation using Multiple
Servers

Ran Canetti
∗

Tel Aviv University & Boston
University

canetti@tau.ac.il

Ben Riva
∗

Tel Aviv University
benriva@tau.ac.il

Guy N. Rothblum
†

Microsoft Research, Silicon
Valley Campus

rothblum@alum.mit.edu

ABSTRACT
The current move to Cloud Computing raises the need for verifi-
able delegation of computations, where a weak client delegates his
computation to a powerful server, while maintaining the ability to
verify that the result is correct. Although there are prior solutions
to this problem, none of them is yet both general and practical for
real-world use.

We demonstrate a relatively efficient and general solution where
the client delegates the computation to several servers, and is guar-
anteed to determine the correct answer as long as even a single
server is honest. We show:

• A protocol for any efficiently computable function, with log-
arithmically many rounds, based on any collision-resistant
hash family. The protocol is set in terms of Turing Machines
but can be adapted to other computation models.

• An adaptation of the protocol for the X86 computation model
and a prototype implementation, called Quin, for Windows
executables. We describe the architecture of Quin and exper-
iment with several parameters on live clouds. We show that
the protocol is practical, can work with nowadays clouds, and
is efficient both for the servers and for the client.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection

General Terms
Algorithms, Experimentation, Security

∗Research supported by the Check Point Institute for Information
Security.
†Most of this work was done while the author was at the Depart-
ment of Computer Science at Princeton University and Supported
by NSF Grant CCF-0832797 and by a Computing Innovation Fel-
lowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

Keywords
Verifiable Computation, Cloud Computing

1. INTRODUCTION
These days, the IT world is moving towards the pay-per-use

paradigm (aka Cloud Computing). Companies of all sizes reduce
their computing assets and shift to a use of computing resources in
the clouds. This shift is predicted to increase in the near future and
become a significant portion of the IT market. One consequence of
this shift is that the IT world outside the clouds is moving to a use of
weaker and smaller computer devices, like Virtualized Thin Desk-
tops, Tablet PCs and Smartphones. Whenever stronger resources
are needed, those devices will use the cloud.

Since cloud services are often given by an outside entity with
different interests than those of the client, this model carries within
it many security problems. One problem, however, stands out as
an inherent and very basic one: How can the client verify the cor-
rectness of the cloud’s computation? This question is not easily
answered by the existing tools of security and cryptography.

There are many possible reasons for a cloud to answer incor-
rectly. For instance, a cloud would like to improve its revenue by
investing less resources while charging for more. Or, a cloud might
benefit somehow from certain outputs of the computation, thus it
can try to maximize specific results. Or, a disgruntled employee
of the cloud provider could modify the executed program. Con-
sequently, the client must be able to verify the correctness of that
result. To be effective, we would like the verification process to use
considerably less resources than those required to actually perform
the computation from scratch.

This problem has been considered extensively in the theoretical
computer science community, most notably by using Probabilisti-
cally Checkable Proofs (e.g., [15, 20]). (See Section 1.2.) However,
although those solutions are very efficient in terms of asymptotic
complexity, they are currently impractical.

A natural idea, pursued in this work, is to take the basic concept
behind cloud computing, the pay-per-use paradigm, and extend it
also for integrity. If a client wants to get better assurance of the
integrity of his cloud computations, he can pay a little more to get
such assurance. And if he already pays a little more, why should
it be to the same cloud? He can split his payment among several
clouds as they are all accessible on the net anyhow.

One simple way of achieving this goal could be to use a number
of clouds, and then have the client execute the program by himself
in case of inconsistency. However, what about the case where it is
impossible or impractical for the client to execute the program even
in case of inconsistency?

For this case, the following idea has been proposed: Instead of
executing his program on one specific cloud provider, the client

picks N different cloud providers. Next, the client asks each of
those cloud providers to execute his program and return the out-
put. Now, the client takes the plurality value of those answers to be
the correct answer. As long as there is a majority of honest cloud
providers (even if the client does not know which ones), the client
gets the correct answer. Indeed, this approach is used in Grid Com-
puting, e.g., BOINC [1].

The main downside of this approach is, of course, the need for
an honest majority of clouds. In particular, this method requires at
least three clouds to be viable. Can one do better? In particular,
can we get practical efficiency improvements over the single cloud
case, with access to only two clouds, only one of which is honest
and for a client that cannot compute the function by himself?

We provide a positive answer to this question. Specifically, we
are interested in the following model: The client asks for the re-
sult of the function f(x) from two (or more) cloud servers. In case
they make contradictory claims about f(x), the client engages in
a protocol with each of the servers, at the end of which the client
can efficiently determine the true claim as long as there is at least
one honest server. As for efficiency, we require that the computa-
tional requirements from an honest server are not much more than
those required to compute the function in the first place, and that
the client’s running time is much smaller than the time required to
compute the function. We call this model Refereed Delegation of
Computation (RDoC) since the client acts like a referee.

Our model is closely related to the Refereed Games (RG) model
of Feige and Kilian [10] where they focus on two unbounded com-
peting servers and polynomial time referee/client. However, we are
faced with the additional challenges of building protocols with effi-
cient honest servers, with a super-efficient client and for any num-
ber of servers. In fact, our model can be also considered as refereed
games with multiple efficient servers and super-efficient clients.

We remark that although our main motivation is a solution for
the setting of cloud computing, our results are also useful for other
client-server applications. E.g., Grid computing, or when using
several processors for redundancy in realtime systems. (Indeed in
the latter case there is a need to determine the identities of the faulty
processors.)

1.1 Our Contributions
For the description here we restrict attention to the case when

there are exactly two servers, one honest and one malicious (but
the client does not know which is honest). We later show how to
extend our protocol for more than two servers. We show an effi-
cient and full-information RDoC protocol for any efficiently com-
putable function, with logarithmically many rounds, based on any
collision-resistant hash function family. Here, by full information
we mean that the servers can see the full internal state of the client
and the communication between the client and the servers is pub-
lic. The honest servers’ work grows only quasi-linearly with the
complexity of the computation. This protocol is highly generic and
can work with any reasonable computation model.

Previously, Feige and Kilian [10] gave a private information but
unconditionally sound protocol with similar parameters. It also
follows from their results that it is unlikely that an information-
theoretically sound full-information protocol with similar perfor-
mance can be obtained (in particular, this is impossible unless all
of P can be computed in poly-logarithmic space).

Our protocol, which builds directly on the protocol of Feige and
Kilian, is qualitatively more practical than known techniques for
delegating computation in the single-server setting. In particular,
all known protocols rely either on arithmetization and PCP tech-
niques [20, 12], or provide only amortized performance advan-

tages and rely on fully homomorphic encryption [11, 9]. Neither
approach is currently viable in practice. Moreover, all known pro-
tocols work with the (arguably less practical) circuit representation
of the computation.

At high level, in this protocol the client searches (using binary
search) for inconsistencies between the intermediate states of the
two servers’ computations. On finding an inconsistency, the client
can detect the cheater by performing only a single step of the dele-
gated computation. The collision-resistant hash functions are used
to allow the servers to “commit” to the (large) intermediate internal
states of the computation using small commitments.

In addition, in contrast with prior protocols, our protocol is full-
information (or public coins). This means that, in a setting where
messages between clients and servers are digitally signed, the pro-
tocol guarantees that as soon as a server cheats, the client detects
the cheating and obtains a publicly verifiable proof of this fact. This
is a strong guarantee: we view the servers as rational self-interested
parties (say cloud computing service providers). An honest server
can convince even third parties that all of the cheating servers are
cheaters. Assuming that pointing out cheaters is rewarded and
cheating is penalized, playing honestly becomes (always) a dom-
inant strategy for rational servers.

We stress that in case all servers agree upon the result, there are
no overheads for the servers, nor for the client. The overhead kicks
in only in case the servers do not agree. In this case, the overhead
is only poly-logarithmic in the size of the computation.
Quin. We adapt the protocol for the X86 computation model. A
simplistic adaptation would be to simply run a Turing Machine sim-
ulator for X86; but this would result in highly inefficient code. In-
stead, we adapt the protocol to the X86 computation model: Instead
of Turing Machine transitions we have assembly instructions, and
instead of working tapes we have the machine’s stack and heap
memories. This highly improves the practicality of the protocol,
and shows its flexibility.

We present a prototype implementation of this adaptation for the
Windows environment. Our implementation, which we call Quin,
works directly with X86 assembly instructions. However, we do
not require the programmer to write his code in assembly. The pro-
grammer can write his code in C language and later on build the
program to run with our framework. This is an important feature
since it makes the implementation almost transparent for the ap-
plication programmer. Moreover, with small modifications to our
prototype, it allows future support for other languages that compile
to X86 assembly.

Since our protocol requires the ability to execute a program for a
given number of steps, stop its execution and store its state to a file,
and later on, be able to resume execution from a stored state, we use
a binary instrumentation framework, Intel’s PIN [17], to add assem-
bly instructions for counting the number of executed instructions
and comparing it to a given threshold. Then, we combine several
low-level techniques that work directly with the process memory in
order to efficiently dump/restore a state to/from a file.

Another requirement of our protocol is that the client should be
able to simulate one step of the computation by himself, given only
a small part of some stored state. While for Turing Machines this
seems easy, for high-level languages it can be complicated (e.g.,
in Java, a single step can be a heavy computation that depends on
many variables). However, focusing only on X86 instructions that
are more “simple” and depend on a small number of variables (or
memory), we can meet this requirement by using an X86 emula-
tor that we feed with the required registers and memory data. We
extend the Python X86 emulator PyEmu [3] to support emulation

of instructions given only a remote access to the process memory
(since we do not want to transfer the entire memory to the client).

Last, our protocol assumes that each execution of the delegated
program is fully deterministic (i.e. for a fixed input, the Turing
Machine’s tableau must be the same for each execution of the ma-
chine on this input), and therefore, the delegated program has to
use only deterministic system calls. However, useful library calls
like malloc() are not deterministic and depend on the state of
the operating system. We overcome this problem by implementing
deterministic versions of malloc() and free() that use pre-
allocated memory that is allocated in a nearly deterministic address.
We suggest how to extend the idea of function stubs for other sys-
tem/library calls.

We experiment with this prototype on live clouds and show that
the overhead is almost reasonable for real-world applications. For
some parameters we get a slowdown factor of “only” 8, compared
to the original application. Furthermore, the result implies that a
large portion of the overhead is due to implementation issues. Thus,
a product-level implementation of the protocol could achieve much
smaller overheads. See Section 4.4 for further details regarding the
overheads.

1.2 Related Work
Prior work has studied the question of proving the correctness of

general computations. (Most previous works focused on interactive
proofs between a verifier and a prover. However, the problems are
closely related: Given an interactive protocol for proving the cor-
rectness of a computation of f , one can easily get verifiable delega-
tion of computation by asking the server for y = f(x) and a proof
that y is the correct result.) Babai et al. [7] consider this question in
a setting where the prover is a non-adaptive oracle. Kilian [15] and
Micali [20] build on their techniques and show efficient computa-
tionally sound protocols, whose security is based on cryptographic
assumptions and where soundness holds only against computation-
ally bounded cheating provers. Micali gets a non-interactive com-
putationally sound proof based on the existence of a Random Or-
acle whereas Kilian gets a four-message interactive computation-
ally sound proof assuming the existence of collision resistance hash
family. Goldwasser et. al. [12] present an information theoretically
sound interactive proof protocol for verifiable computation for any
language in L-uniformNC.

We note that, with the exception of [12], the above works are
based on Probabilistic Checkable Proofs (PCP) [6]. Although con-
structions of PCP are very efficient by means of asymptotic com-
plexity, they are far from being practical.

Gennaro et al. [11], Chung et. al. [9] and Applebaum et al. [5]
consider a model with a pre-processing stage. Based on the exis-
tence of a fully homomorphic encryption, they construct computa-
tionally sound protocols, where in an offline pre-processing stage
the verifier runs in time proportional to the size of the computa-
tion. Afterwards, in a one-round online stage, the verifier (using
the result of the pre-processing stage) runs in time proportional to
the size of its inputs and the computation results. In these works, as
long as the verifier does not encounter cheating provers, the same
pre-processing information can be used in multiple rounds, yield-
ing improved amortized complexity.

We remark that in all the above works, the verifier has to know
all the inputs, including any randomness that the server uses for the
computation (our protocol also shares this requirement).

A related proof model with several provers is the model of Multi-
Prover Interactive Proofs, suggested by Ben-Or et al. [8]. In this
model, even if all of the provers cheat, the verifier will detect that
they are cheating. However, soundness is guaranteed assuming that

malicious provers cannot communicate or coordinate their strate-
gies during the protocol. This is in contrast to the refereed games
of Feige and Kilian [10] and to our model, where soundness is guar-
anteed as long as one server is honest, even if all malicious servers
communicate during the protocol. In addition, the client learns who
are the cheating provers.

As for more applied prior work, there are works that in some
sense restrict the computation type (e.g. [21] for computations that
have short intermediate states, or, [13] for functions with easy to
sample domains) and there are several works that use trusted hard-
ware that allow almost any type of computation (e.g. [22, 18]). In
the latter one, the client trusts some small tamper-resistant hard-
ware (e.g. a tamper-proof coprocessor) that the server has, and
using this hardware the server can prove the correctness of its com-
putation. We note that using tamper-resistant hardware is concep-
tually similar to trusting another weak third-party (in this case,
the hardware manufacturer). Nonetheless, this direction is very
promising by means of practicality and generality.

There are works that consider verification of peers in distributed
computations (e.g., [14] for verifying peers that are state machines)
but usually these works assume the different players (i.e. the servers
in our model) communicate among themselves or through a trusted
server. In the model of cloud computing, we prefer that all commu-
nication will be held only between the client and the servers. That
way, the servers do not know whom they are “playing” against (or
even against how many) and the client does not have to trust any
third party servers.

Our construction is not based on probabilistically checkable proofs
or Fully Homomorphic Encryption, which are not practical yet, nor
does it rely on trusted hardware. Furthermore, it does not require
the arguably complex transformation of a Turing Machine program
to a boolean circuit.

1.3 Organization
In Section 2 we define the model of Refereed Delegation of

Computation (RDoC) and show how to extend RDoC with two
servers to N servers. In Section 3.3 we present in detail our RDoC
protocol. In Section 4 we describe the difficulties of implementing
the protocol, our design choices, the adaptation of the protocol for
X86 CPU and the architecture of Quin. In Section 4.4 we show
experimental results of Quin on live clouds and in Section 4.5 we
outline several future improvements.

2. REFEREED DELEGATION
OF COMPUTATION

A refereed delegation of computation for a function f is a proto-
col between a client (or a referee)R andN serversP1, P2, . . . , PN .
All parties may use local randomness. The client and the servers
receive an input x. The servers claim different results for the com-
putation of f(x) and the client should be able to determine the cor-
rect answer with high probability. We assume that at least one of
the servers is honest.

DEFINITION 1 (REFEREED DELEGATION OF COMPUTATION).
Let (P1, P2, . . . , PN , R) be an ε-RDoC with N servers for a func-
tion f if the following holds:

• For any input x and for all i ∈ {1, . . . , N}, if server Pi is
honest then for any P ∗1 , . . . , P

∗
i−1, P

∗
i+1, . . . , P

∗
N the output

of R is f(x) w.p. at least 1− ε.

• The complexity of the client is at most quasi-linear in |x| and
the complexity of the (honest) servers is polynomial in the
complexity of evaluating f .

If soundness holds only for polynomially bounded (in |x|) servers
then we say that it is a computationally sound RDoC. Furthermore,
if the client starts by sending all its local random choices to all
servers, and if all the communication between the client and the
servers is public, we call it a full-information RDoC.

For completeness of the description, we briefly review the model
of Refereed Games [10]. A refereed game (RG) for a language L
is a protocol between a referee R and two competing unbounded
servers P1 and P2. All three parties may use local randomness.
The referee and the servers receive x ∈ {0, 1}∗. Without loss of
generality we can assume P1 claims that x ∈ L and P2 claims
that x /∈ L, and the referee should be able to determine the correct
answer with probability at least 2/3.
From Two Servers to N Servers. In the next sections we only
discuss the case where there are two servers. Here we show how,
given any RDoC with two servers and negligible error probabil-
ity, one can construct a RDoC with N servers and negligible error
probability, where we only need to assume that at least one of them
is honest.

The idea is to execute the RDoC with two servers between each
pair of servers. By the soundness of the RDoC with two servers,
with high probability there exists an honest server Pi that convinces
the client in all of his “games”. The client outputs the claimed
result of Pi.

This solution can be executed in parallel for all pairs, and there-
fore keeps the number of rounds the same. However, it requires
N·(N−1)

2
different executions of the protocol.

3. PROTOCOL FOR TURING MACHINES

3.1 Preliminaries: Merkle Hash Tree
Merkle Hash Tree (MHT) [19] is a common primitive that allows

one to hash a long string of n characters in a where the hash can
later be used to reveal any part of the string and supply a short
proof of consistency. Given a collision-resistant hash function H
and a string str of length n, the tree has n leaf nodes where leaf
node i has the value of H(str[i]). The next level has the values of
H(H(str[i]) ◦ H(str[i + 1])) for i = 1, 3, . . . n − 1, and so on
for the other levels. The highest level, the root, is the hash for the
full string str. The proof of consistency for character i is the hash
values along the path from the root to H(str[i]) and their siblings.

Given a Merkle Hash Tree of string str, denote by MHroot(str)
the value of the root, by MHproof (str, i) the proof of consistency
for i-th character, and by VerifyMHProof(root, i, stri, p) the veri-
fication function that given a claimed p = MHproof (str, i) outputs
True if p is a valid proof of consistency, and False otherwise. Note
that the size of MHroot(str) depends on the output length of the
hash function and the size of MHproof (str, i) is logarithmic in the
length of str.

Denote by str[i]=x the string that equals to str except for the i-
th character that is x. We observe the following property of Merkle
Hash Trees: Given a proof of consistency p for the i-th character of
str, anyone can efficiently (i.e. in logarithmic time in the length of
str) compute MHroot(str[i]=x). This can be done by computing
the hash of x and then iteratively computing the hashes along the
path from i to the root.

3.2 Reduced Turing Machine Configuration
Given a Turing Machine configuration (state, head, tape), let

the reduced-configuration of (state, head, tape) be the tuple

(state, head, tape[head],MHroot(tape)).

For simplicity of the description, we denote by k the maximal

length of the tape during the execution of the Turing Machine. Note
that the size of the reduced-configuration is logarithmic in k, and
therefore for computation of size T , it is at most logarithmic in T .

Given two reduced Turing Machine configurations rc1 = (s1, h1,
v1, r1) and rc2 = (s2, h2, v2, r2) that are claimed to be consec-
utive, and a proof of consistency of the first configuration p1 =
MHproof (t, h1) where t is the tape of configuration rc1, one can
efficiently verify this claim by checking the following:

1. Verify that VerifyMHProof(r1, h1, v1, p1) is True.

2. Simulate a single step of the Turing Machine on s1, h1, v1
and get the next state s′, new head position h′ and the written
character v′

3. Verify that s′ == s2 and h′ == h2.

4. Using p1 and v′, compute r′ = MHroot(t[h1]=v′). (This can
be done without knowing t using the previous observation.)

5. Verify that r′ == r2.

If one of the above checks fail, then the claim is false.
Denote by VerifyReducedStep(rc1, rc2, p1) the function that given

two reduced configurations rc1, rc2 and proof of consistency p1

outputs False if any of the above checks fails, and True otherwise.

3.3 The Protocol
We base our protocol on the work of Feige and Kilian [10] where

they present a refereed game with polynomial number of rounds
and private communication channels (therefore not full informa-
tion) for any EXPTIME language. Their protocol uses arithmetiza-
tion for consistency checks and then takes advantage of the locality
property of a single Turing Machine step (each Turing Machine
transition uses only O(1) local information: the current state, the
current head position and the current character). In their protocol
for languages in EXPTIME, the referee is polynomial in the length
of the input x.

Their construction can be directly scaled-down for languages in
P , yielding a protocol where the servers are polynomial in the in-
put size and the referee is quasi-linear. Correctness remains un-
conditional. However, the protocol requires private communication
channels between the referee and the two servers.

We modify their scaled-down protocol (for P languages) by re-
placing the use of arithmetization with Merkle Hash Trees. Al-
though it gives only computational soundness, it greatly simplifies
the protocol and gives us a negligible error probability for even one
execution of the protocol. Since the main overhead of the protocol
would be retrieving different states of the execution, this property
is highly important. Our protocol is full-information and in par-
ticular does not require private communication channels. In a set-
ting where messages between the players are digitally signed, the
client can obtain a publicly verifiable proof that a server is cheat-
ing. (Note that in case of private channels/private-information, and
specifically in the protocol of [10], colluding referee and server
can forge together a transcript that incriminates an honest server of
cheating. In the full-information model it is not possible.)

Given a Collision-Resistant Hash Function, our protocol is the
following. The client requests each server to execute the Turing
Machine that computes f(x). In case they answer the same, by
the assumption that one of them is honest, the answer is the correct
one. Else, the client continues to a binary-search phase. The client
asks the servers to send him the number of steps it takes to compute
f(x)), takes the smaller answer as the current bad row variable, nb,
and sets to 1 the current good row variable, ng . The client also asks

for the maximal length of their stored configurations and takes the
bigger answer to be k. Now, the client asks for the reduced con-
figuration of the (nb − ng)/2 + ng configuration. If one of the
answers is not a valid reduced configuration, the client outputs the
value of f(x) of the other server (this is the honest server). If an-
swers match, he sets ng = (nb − ng)/2 + ng , otherwise, he sets
nb = (nb − ng)/2 + ng . The client continues the binary search
in that way till he gets ng + 1 = nb. Note that the servers do not
have to remember all the configurations, instead, they can remem-
ber only two configurations, one for the last ng and one for the last
(nb − ng)/2 + ng . Then, when asked for the next configuration,
the server can continue the TM execution from one of those con-
figurations. Overall, in worst case scenario, the servers execution
time is not much more than executing the program twice.

Now, the client asks Server 1 for the consistency proof for con-
figuration ng , i.e. p = MHproof (tng , hng). Denote by rcng and
rcnb the reduced configuration that Server 1 sent to the client. If
VerifyReducedStep(rcng , rcnb , p) is True, the client outputs the
value of f(x) of Server 1. Otherwise, he outputs the value of f(x)
of Server 2.

Overall we have:

THEOREM 1. Assume the hash function in use is collision re-
sistant. Then the above protocol is a computationally sound, full-
information, RDoC with two servers and with negligible soundness
ε for any function computable in polynomial time. For functions
that can be computed by TMs taking T (n) steps and S(n) space
on input x with |x| = n, the protocol takes log T (n) + 3 rounds,
the client runs in time O(n + κ log T (n) + κ logS(n)) and the
servers run in time O(T (n) + κS(n) log T (n)), where κ is a se-
curity parameter.

Note that in case both servers are honest, there is no overheads.

PROOF (SKETCH). By the specification of the protocol, if Server
1 is honest then it always successfully convinces the client (no mat-
ter what a malicious Server 2 does).

A malicious Server 1 can deceive the client to output a false value
only if it can generate a fake consistency proof p that has the same
root of the Merkle Hash Tree as in the correct reduced configu-
ration ng . Let π be the above protocol, and let π′ be the above
protocol with the following change: in the last step the client asks
for the consistency proof from both servers and outputs the value of
the server that was honest (i.e., its consistency proof was consistent
with its reduced configurations ng and nb) or the output of Server
1 if they were both “honest” (i.e., both proofs were valid). Let ε be
the probability that Server 1 cheats in π and let ε′ be the probability
Server 1 cheats in π′. Since a malicious Server 1 from protocol π
can also cheat in protocol π′ then ε ≤ ε′. Now, assuming Server 1
in π′ is malicious, then the client in protocol π′ receives two differ-
ent consistency proofs with the same root, thus, he gets a collision
in some node along the path to index hng . By the security of the
collision resistant hash function, this can only happen with a negli-
gible probability. Therefore, ε is negligible.

3.4 Extensions
Reducing the number of rounds. In some scenarios, the number
of rounds might still be the bottle-neck of the protocol. We can
reduce the number of rounds by permitting larger messages and
longer running time of the servers.

For any constant number t we can reduce the number of rounds
to logt+1 T (n) (but slightly increase the communication size, by a
factor of t) using the following idea. Instead of asking the servers
for only one reduced configuration in each round, the client asks

for t reduced configurations. Specifically, the client asks for the
t steps that are equally spread between ng and nb. I.e., given
ng = 100, nb = 200, t = 4, the client asks for 120, 140, 160
and 180. Similar to the protocol from Section 3.3, the client up-
dates ng and nb according to the servers’ answers and continues to
the next iteration of the binary (or (t+ 1)-ary) search.
More than two servers. In addition to the general method for ex-
tending the protocol to N servers from Section 2, we can extend
this specific protocol also in the following way. The client executes
a Playoff between all servers. In the first round, the client exe-
cutes the protocol from Section 3.3 with all servers (he can do that
because the protocol uses only public communication), where he
marks a row as a good row only if all answers for this row match.
At the end of the binary search, the client checks if the reduced
configurations are consecutive for each one of the servers. After
the execution of this protocol, at least one malicious server will be
caught lying and will be declared as a cheater. The client continues
to the next round with the other servers, again, executes the pro-
tocol to find at least one cheater and then excludes him (or them)
from the next rounds. The protocol ends when all the remaining
servers agree on the output.

Since the client excludes at least one malicious server in each
round of the playoff, the number of rounds is bounded by the num-
ber of malicious servers.
Supporting large datasets. In order to support computations which
use large datasets (e.g. Databases), we can use the Merkle Hash
Trees again. We assume the client knows the root of the MHT of
the data (either because he delegated the data in the past, or by
keeping track of changes of the root). We modify the protocol from
Section 3.3 to work with another tape that includes the dataset and
we add to the reduced configuration also the root of the MHT of
this tape, the current head position and the MHT proof for its cur-
rent character. The rest of the protocol is the same. Note that the
client has to know the root of the MHT at the beginning of the
computation in order to be able to verify the initial configuration.
Reducing the server’s overhead. In the worst case, the execution
time of the servers in the protocol from Section 3.3 is not much
more than executing the program twice. The server “pays” one
execution time only for counting the number of instructions and
then half execution time for getting to the middle configuration.

If we allow the servers to store more configurations then we can
reduce the computation time for getting the middle configuration.
Instead of just counting the number of instructions, the server also
stores intermediate configurations. Let i be the current step of the
execution. During the count of instructions, the server remembers
the last three configurations for steps i3 = 2blog(i)c, i1 = i3/2 and
i2 = (i3−i1)/2+i1. Note that these values are changed only when
i = 2 ∗ i3, and by storing also configuration i3 + i1, the server can
compute them efficiently on-the-fly. In other words, the server al-
ways remembers at most four configurations and updates them dur-
ing the counting (without rewinding the computation). Now, when
requested for the middle configuration, the server takes the nearest
stored configuration (either for i1 or i2) and continues the execution
from that configuration. Overall, it reduces the computation of the
middle configuration from half to one sixth in the worst case (re-
sulting in overhead of 1 4

6
instead of 2). Repeating this method can

reduce this overhead even more but with the price of larger storage.

4. QUIN: ADAPTATION AND IMPLEMEN-
TATION OF THE PROTOCOL FOR X86

We show how to adapt the protocol from Section 3.3 for X86
CPU, and we present a prototype implementation that enables del-

egation of X86 executables for the Windows environment. Note
that Windows is a closed-source OS, and our implementation does
not require any changes to the OS. Everything runs in User-Mode.
See [4] for the source code of the prototype.

4.1 The Difficulties and Design Choices
Although the protocol in Section 3.3 seems easy to describe with

Turing Machines, its adaptation for real-world use is quite delicate.
An implementation of it must have the following key properties:

• Determinism: The protocol highly depends on the determin-
ism of the execution, therefore, the framework should be able
to execute the program in a completely deterministic way, in-
dependently of the OS.

• Stop, store and continue execution: The protocol requires
the ability to execute a program for a given number of steps,
stop its execution and store its current state to a file. Later,
we need to be able to continue the program execution from
any previously stored state.

At first, it seems obvious we can use a debugger. However,
this is not the common functionality most debuggers provide.
We require the ability to continue from any previously stored
state, whereas a normal debugger stops on a pre-determined
state and can continue execution only from that state.

• Simulate an instruction: In order to implement the last
step of the protocol (VerifyReducedStep()), the client should
be able to simulate any instruction given the instruction’s
operands.

When we were looking for candidate high-level languages we
had two key observations:

• Since our client has to simulate one instruction by itself, we
prefer to work with a language that has simple instructions.
By simple we mean that any single instruction takes a small
and bounded amount of time to compute, as opposed to, for
example, a single line of Java code which can theoretically
hide a very heavy computation. Ideally, we would like to
work with something that is similar to RISC assembly or Java
Bytecode.

• Interpreted languages like Java and Python have complex in-
terpreters that have their own internal states, which are usu-
ally not deterministic. E.g., their native code cache or their
internal memory management processes like the Garbage Col-
lector. Therefore, storing a state of an interpreted-language
program requires subtle changes of its interpreter to some-
how make it more deterministic.

In addition, there are many non deterministic events that depend
on the operating system, e.g., many OS interfaces return handles
to some of the OS internal structures like a pointer to an opened
file. Since most operating system calls are also non-deterministic,
we require that the program will not make any non-deterministic
operating system or standard library calls. We remark that this re-
striction can be bypassed by writing function stubs that preserve
that determinism of the program. Currently, we implemented such
stubs only for the essential malloc() and free() functions.
See Section 4.5 for further discussion. Similarly, multi-threading
could ruin the determinism, so we require that our delegated pro-
gram use only one thread.

4.2 Adaptation of the Protocol for X86
We decided to implement the prototype directly with X86 assem-

bly, for stand-alone programs. We believe that using X86 assembly
is both cleaner to use and general for further development (e.g.,
using C++ programs instead of only C).

Instead of the Turing Machine’s transitions table, the computa-
tion is described by assembly instructions. Each step of the proto-
col is now an execution of a single X86 instruction. When the client
needs to compute a single step by himself, he should be able to ex-
ecute a single X86 instruction given the needed registers and mem-
ory. We remark that some X86 instructions are non-deterministic
by definition (e.g. CPUID, RDTSC) and we assume the program
does not use them (this can be restricted during build).

The equivalent of a Turing Machine state is the current values
of all the CPU registers (e.g., eax, ebx, etc). We initialize those
registers before the execution of the program.

Last, we replace the Turing Machine working tapes with the pro-
cess’ stack and heap memories. We assume these memories are
initialized to zero, which is the equivalent of an empty tape. Un-
der reasonable assumptions on the cloud operating system we can
work with fixed base-addresses for those memories and therefore
get fully deterministic memory operations (i.e., even pointers to
the memory will have deterministic addresses for each execution
of the program).

The reduced-configuration equivalence in this model would be
the values of all CPU registers (the equivalent to the Turing Ma-
chine’s state and head position) and two hash values. Those hash
values are the root values of the Merkle Hash Trees of the current
stack and heap memories.

The proof of correctness of the resulting protocol is similar to
the proof of protocol from Section 3.3.

4.3 System Architecture
The client has a source code in C of a program prog.exe that

he wishes to delegate. The programmer does not have to write his
program in some new or restricted language, he can write his pro-
gram in the same way he writes any C program. For simplicity of
the description here we assume that the input to the program is part
of the program itself (hard-coded) and that the result of the pro-
gram is an integer. Specifically, we assume there is a function with
the prototype int client_program(). Those restrictions can
be easily eliminated (e.g., by using a pre-allocated buffers for in-
put/output before/after the program execution).

Given the source code, the client builds the program using a sup-
plied makefile. This makefile basically links the program with a
wrapper code, sets the code base-address to be static and statically
links all libraries. We set the code base-address to be static so the
operating system’s loader will load the program to the same mem-
ory address for all executions. Similarly, since shared libraries can
be loaded to any memory address, we statically link all libraries so
they will be (again) loaded to specific memory addresses.

The wrapper code corresponds to the Turing Machine initializa-
tion. It initializes to zero all the general use registers and the re-
quired stack memory, it allocates a large amount of memory to be
used as the program heap and calls client_program(). Also,
the makefile links a code for malloc() and free() that uses the
pre-allocated memory instead of the regular heap. Here we use the
fact that Windows allocates large memory segments (e.g. 2 GB) in
almost deterministic addresses. See Figure 1 for a pseudo-code of
the wrapper function.

After the client builds his program with the supplied makefile,
he sends the executable to each of the servers. Now, the protocol
itself starts.

int main(){
int i;
int result;
void *heap;
char *stack;
/* Init stack memory */
/* STACK_SIZE is usually 2^20 */
_asm{

mov stack, esp
}
for(i=0;i<STACK_SIZE;i++){

*(stack-i) = 0;
}
/* Init heap memory */
/* HEAP_SIZE is usually 2^30 */
heap = calloc(HEAP_SIZE);
/* Init all registers */
_asm{

mov eax,0
mov ebx,0
...
/* Setting esp to be the

start of a memory page */
mov eax, esp
and eax, 0xfff
sub esp, eax

}
/* Execute original program */
_asm{

call client_program()
mov result, eax

}
}

Figure 1: Quin wrapper function.

The prototype consists of three main tools: QuinExecuter,
QuinClient and QuinServer. The client runs the QuinCl-
ient on his machine and the servers run QuinServer and Qui-
nExecuter on their machines. QuinExecuter is a tool for ex-
ecuting a program for a given number of instructions. It can store
the program state or continue execution from a previously stored
state. QuinClient and QuinServer are python implementa-
tions of the protocol itself.

The Merkle Hash Tree is computed with granularity of a 4Kbyte
(a page-size), i.e., the lowest level of the tree are hashes of 4Kbyte
segments. (This is why our wrapper function moves the esp regis-
ter to the beginning of a page.)

4.3.1 QuinExecuter
For executing a program for a given number of instructions, we

need a way to count in real-time the number of executed instruc-
tions. There are several ways to do that:

• Use the CPU internal instructions counters: this is a very
efficient method, but requires to change the OS in order to
differentiate between our instructions and other OS instruc-
tions.

• Extend the compiler: instead of emitting the programmer’s
code as is, add to it few assembly instructions that increment
a counter before each original assembly instruction.

The downside is that we have to do it for every high level
language compiler although the protocol itself works with
the assembly instructions.

• Use OS debug API: execute the program step-by-step. Since
it is out-of-process debugging, it is very inefficient.

• Static instrumentation: given an executable, transform it to a
new executable with the other needed instructions (i.e., that
increment a counter).

• Dynamic instrumentation: similar to static instrumentation,
but done in run-time.

Our method of choice is to use a dynamic instrumentation tool,
specifically Intel’s PIN [17]. Although dynamic instrumentation
has potential for substantial overheads over static instrumentation,
PIN has many benefits for our use. PIN is very efficient (compared
to other dynamic instrumentation frameworks), very convenient for
rapid development, well supported by Intel, and most importantly,
works the same in Windows and Linux environments. PIN runs
the program inside a Virtual Machine and uses Just-In-Time (JIT)
compilation of the instrumented code. The PIN developer writes
a piece of code that is called a PIN-tool, which is a description of
where to instrument and what code to put there. In order to run
the PIN-tool, only four binary files are needed (.exe and .dll
files), and no setup is required. The PIN-tool itself is another .dll
binary.
QuinExecuter is basically a PIN-tool. The naive way to

get our goal is that QuinExecuter adds instrumented code for
counting steps and checking whether we reached the needed num-
ber of steps. This would be the main overhead of our implementa-
tion, as for each executed instruction of the original executable we
add code that increments a 64 bit counter and checks whether this
counter reached some threshold. This means that for each assem-
bly instruction of the original program we add around 10-15 new
assembly instructions. Our implementation actually uses a simple
heuristic to reduce this overhead. Instead of adding the code for
each instruction, we add the code only once for each basic-block (a
sequence of code with only one entry point and one exit point). For
each basic block we increment the counter according to the basic
block’s number of instructions. Since we want to be correct with
a granularity of a single instruction, when we get close enough to
our threshold (say, 500 instructions below the threshold), we re-
instrument the code and add our code before each instruction (as
in the naive way). We note that since we are interested in precise
granularity for all types of computations, this heuristic seems to
have the best tradeoff between efficiency and accuracy.

After it reaches the needed number of steps, it dumps the current
state of the memories (we separate the stack and the heap for effi-
ciency) and all the registers values to a file. When requested, it can
do the opposite, start a new process, restore a state from a given file
and continue the execution of the process from this state. The way
it does those operations is by reading and writing directly the stack
and the heap whenever needed.

In order to handle memory, we use the following two methods:

• For stack memory: In order to get full determinism, all
memory should be initialized before use. Since the operat-
ing system do not initialize the stack by itself, our wrapper
function does it before the call to client_program().
We use the maximal stack size that is defined during the pro-
gram linkage.

• For heap memory: As already noted, we implemented our
own malloc() and free(). Those functions uses a pre-
allocated memory, and stores its state in a pre-defined mem-
ory areas, so when needed to dump or restore a state, our
PIN-tool can work directly with those internal structures.

For the protocol itself, we define the maximal size of the heap
memory to be constant (e.g., 230 bytes). As this memory is

pre-allocated, we set this memory to zero before the execu-
tion of client_program().

QuinExecuter is implemented in C and Assembly, and uses
several low-level techniques in order to get efficient instrumented
code.

We note that since we assume the client has the source-code of
the delegated program, we could have chosen to change the build
process in order to create a different executable that can directly
give us the above functionalities. However, our future goal is to re-
place the use of our makefile (that adds the wrapper function) with
another binary instrumentation, in a way that our PIN-tool could
work directly with any stand-alone executable (e.g. commodity
software). This PIN-tool will find main() and wrap it with our
wrapper function using instrumentation. In addition, it will locate
malloc() and free() and replace them with our implementa-
tion of those functions.

4.3.2 QuinServer
QuinServer is a pure Python program that takes an executable

as input and implements the server side of the protocol. It is a state-
machine. It waits for the client’s connection and then waits for his
commands. The first command the server receives is RUN, and,
as a response, the server executes QuinExecuter with the input
executable and returns its result to the client, including the return-
ing value of client_program(), the number of steps of the
execution and several other low-level information on the execution
itself. Then, if the client decides to proceed to the binary search
stage (in case of inconsistency between the servers’ answers), the
server receives the command GetReducedState i. As a response,
the server now sends the values of all CPU registers and two hash
values. Those hash values are the root values of the Merkle Hash
Trees of the current stack and the current heap. This command is
received for all the binary search requested configurations.

After the client finishes the binary search stage, it simulates one
instruction based on the registers that the servers sent for the ng

step. In case the simulated instruction requires to use some mem-
ory, either from the stack or the heap, the client sends the command
GetMemory i, address. Then, the server sends the memory value
of the requested address, augmented with a Merkle Hash Tree proof
that this value is consistent with the root values it sent before (for
step i).

4.3.3 QuinClient
QuinClient is a python program that implements the client

part of the protocol. It connects to the servers, sends the command
RUN to all of them and compares their answers. In case of con-
sistency, it can output the correct result of client_program()
and quit. In case of inconsistency, it executes the binary search
and finds the step where the servers disagree (by using the GetRe-
ducedState i command). Then, it simulates the instruction for step
ng using an open-source X86 emulator called PyEmu [3]. In order
to support the use of PyEmu in our prototype, we implemented a
new object that encapsulates the verifiable memory accesses using
the GetMemory i command. When PyEmu needs some memory
page, QuinClient asks one of the servers for it. The server sends
that page along with Merkle Hash Tree proof for this page. Then,
QuinClient verifies that proof and feeds PyEmu with the re-
ceived page. Last, QuinClient uses the emulation result (the
written memory data and the values of the registers) to compute
the correct reduced configuration for step nb, compares it to the
servers’ answers and declares the correct output. We remark that
PyEmu does not support the full X86 instruction set, but it does

support the instructions most compilers generate. (Also, it is easy
to add other instructions if needed.) Quin inherits this limitation.

4.4 Evaluation
We conducted several experiments with our Quin prototype in or-

der to test the practicality of our protocol. We separated the evalua-
tion of the protocol and the evaluation of our main tool, QuinExe-
cuter, in order to better understand where the bottle-necks are.
We believe there are many possible directions for improving Quin-
Executer and therefore we want to get the exact weight of its
performance compared to the protocol’s overall performance.

Since our goal is to check practicality of the protocol in real-
world scenarios, we experimented with live cloud providers, Ama-
zon EC2 and Rackspace Cloud, which are currently among the
largest cloud providers. For our experiments we used the follow-
ing setup: 1) Laptop installed with Windows Vista, Intel 2.2 GHz
CPU, 1 GB of RAM. 2) EC2 virtual machines installed with Win-
dows 2008 32bit, 5 EC2 compute units, 1.7 GB RAM and 160 GB
storage. All are located in Amazon’s Virginia region. 3) Rackspace
virtual machines installed with Windows 2008 32bit, 2 GB RAM,
80 GB storage and default CPU. All are located in Rackspace’s
Chicago datacenter. The average round-trip time between the lap-
top and the clouds was 380ms (for packets of size 10K bytes).

As for the delegated program, we used a simple but very useful
program, Determinant.exe, that computes the determinant of
a given matrix. Although there are algorithms for computing deter-
minant that run in timeO(n3) (for n∗nmatrix), we used the naive
algorithm that runs in time O(n!), and uses O(n3) space.

4.4.1 QuinExecuter Performance
In order to isolate the overhead of the QuinExecuter itself,

we ran the following experiments:

1. Execution of the delegated program, Det_quin.exe, which
is Determinant.exe wrapped with our wrapper func-
tion. The overhead of our wrapper function itself is negli-
gible.

2. Execution of PIN with Det_quin.exe, without any instru-
mentation (i.e., pin -- Det_quin.exe). Since PIN is
a dynamic instrumentation tool that uses dynamic transla-
tion (JIT), this gives us an estimation of the overhead of this
translation (the PIN VM).

3. Execution of PIN with Det_quin.exe, with our PIN-tool
(i.e., pin -t quin.dll -- Det_quin.exe). This is
an execution of Det_quin.exe when we only count the
number of executed instructions (by adding instrumentation
code).

4. Execution of PIN with Det_quin.exe, with our PIN-tool,
for N steps (i.e., pin -t quin.dll -- Det_quin
.exe -n N). This is an execution of Det_quin.exe for
N steps when we count the number of executed instructions
and compare it to N . N is the total number of steps of the
execution of Det_quin.exe. This is the heaviest instru-
mentation we use in the protocol since it adds code both
for counting the number of executed instructions and for the
comparison to N .

We ran the above experiments on an Amazon EC2 virtual ma-
chine and on a Rackspace Cloud virtual machine. The left side of
Table 1 shows the results for those experiments. Each experiment
was executed three times. The numbers in the table represent the
average running times in seconds on Amazon EC2 and Rackspace
Cloud, respectively, separated by slashes.

Matrix
Size

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Quin Total Overhead
Factor

10 2/1 3/3 7/7 15/15 381 190
11 21/19 23/21 69/67 156/143 694 33
12 252/230 256/242 829/803 1899/1720 2243 8

Table 1: Evaluation results of PIN-tool experiments and Quin performance

We can observe (from experiment 2) that PIN itself introduces
an overhead of at least 1-2 seconds. This overhead is very influenc-
ing for the protocol since Quin executes PIN for each round of the
binary search and for many short executions, so we get that for x
rounds of the binary search we already have an overhead of at least
x seconds, and in most cases this overhead is much larger.

Furthermore, we can see that adding even few instrumentation
instructions increases the running time by large factors.

Those performance results are important, since it gives us a good
estimation of the protocol performance. The protocol starts with
executing Det_quin.exe and counting the number of steps, and
then, continues to an execution of the heavier instrumentation for
overall time that is proportional to the running time of the program
once. So, in theory (without considering network latency, servers’
overheads, etc) we expect that the protocol performance would be
something that is proportional to the sum of the fourth and the fifth
columns. (Note that these sums are bigger by factors of 10 − 20
than the plain execution.)

4.4.2 Performance of the Protocol
We executed several experiments of the full protocol. For each

experiment we ran the protocol several times with one cheating
cloud that cheats on one out of three randomly chosen states. Those
states were chosen to be close to the end of the computation (around
80%−85% of the total number of steps). We added to QuinServer
a code that, when asked, tries to cheat on all configurations from
some given step. Note that we focus on the efficiency of the clouds
since the client’s running time is very small (he just sends short
TCP messages to each cloud, and receives short answers that are
several hundreds of bytes for each round and around 5Kbyte for
the last round).

After evaluating the performance of QuinServer and notic-
ing that its execution is very expensive, we decided to modify the
underlying protocol as following: If (nb − ng) is greater than
some threshold (e.g., 50M), instead of asking for configuration
(nb−ng)/2+ng the client asks for configuration (nb−ng)/4+ng .
The rest of the protocol is the same. This change is essentially a
tradeoff between the number of rounds (that is increased) and the
number of executed instructions on the cloud (that is decreased pro-
portionally to the distance of the last ng configuration from the last
configuration).

We used one virtual machine on each cloud provider (as our two
clouds) and the laptop as our client. In the right side of Table 1
we show the average running times of the protocol for the program
Determinant.exe. The numbers represent the total Quin run-
ning times as recorded by the client (where only few seconds, com-
bined, are from the client work or from communication latency).
We remark that there are major performance differences, both be-
tween Amazon EC2 and Rackspace Cloud and between different
times of the day. The overhead factors are over the running times
of Det_quin.exe from experiment 1.

We can observe that the overhead of the protocol is reduced when
the original computation time grows. This suggests that the over-

head of the protocol itself is lower, and there are many implemen-
tation overheads. E.g., the PIN VM overhead that adds at least 1-2
seconds for each round and the PIN-tool large overheads we saw
in the previous section. We believe that a product-level implemen-
tation those parts can get much smaller overheads, presumably a
factor of 10-20 times slower on average for all computations.

Recall that the protocol from Section 3 has no overhead for the
servers in case both of them are honest. Therefore, since most of
the time both servers are honest, a more efficient solution would be
that the client starts by simply asking both servers for their answers,
and only in case of inconsistent answers he proceeds to the full
execution of Quin. This gives a solution with no overhead in case
both servers are honest.

4.5 Restrictions and Further Improvements
Adding function stubs. Since the program has to be fully deter-
ministic, it can not call any non-deterministic external libraries or
OS APIs. This restriction can be overcome (to some extent) by
adding function stubs that hide the OS non-deterministic factors.
E.g., fopen() returns a pointer FILE* that points to some non
deterministic address. One could implement the functions ex_fo-
pen() and ex_fread() that instead of working with FILE*,
they work with some file identifiers that are generated determinis-
tically. Those functions use an internal table to translate that iden-
tifier to a matching FILE* pointer and call the required fopen()
or fread(). Last, QuinExecuter should treat calls to ex_fo-
pen() or ex_fread() as single instructions. Note that this
workaround can work only for functions that are non-deterministic
because of the OS implementation, and it can not work with func-
tions that are non-deterministic by definition (e.g., functions that
return current time or a packet from the network).
Different Operating Systems. Currently Quin runs only on Win-
dows because we make use of some of the Windows Loader low-
level properties. Since PIN supports Windows and Linux, under
minor changes to our PIN-tool, QuinExecuter can be used also
in Linux. As the delegated program is a plain stand-alone C pro-
gram that can be executed on any OS, and since QuinClient
and QuinServer are OS independent, an interesting improve-
ment would be to generalize QuinExecuter to be OS indepen-
dent.
Support any X86 executable. Our current prototype requires build-
ing the delegated executable with our supplied makefile. We stress
that it is a design decision since our future goal is to replace the
use of our makefile (that adds the wrapper function) with another
binary instrumentation, in a way that our PIN-tool could work di-
rectly with any stand-alone executable (e.g. commodity software).
Static Instrumentation instead of Dynamic Instrumentation. The
functionalities we need from PIN can be achieved by static instru-
mentation, which is much more efficient for cases of instrument
once, run many times. We saw in our evaluation that QuinExecut-
er adds the largest overhead of the implementation, therefore, any
performance improvement of it will dramatically improve the per-
formance of the overall protocol.

There are several static instrumentation frameworks for Linux

environments (e.g., DynInst [2], PEBIL [16]), but we did not find a
convenient framework that works also for Windows executables.
Using several computers in each cloud. Since the main bottle-
neck of our implementation is the executions of QuinExecuter,
we can use the following trick to reduce the overheads. Instead of
running QuinExecuter separately for each query, the cloud can
use several computers (or other CPU cores) and execute different
executions of QuinExecuter in parallel. E.g., when queried for
configuration i, the cloud executes QuinExecuter for i steps on
one machine, but also QuinExecuter for i+(nb− i)/2 steps on
a second machine. Then, if the next query is for step i+(nb−i)/2,
the cloud could answer with the result sooner than in the sequential
protocol.

Also, using parallel executions of QuinExecuter, we can ef-
ficiently reduce the number of rounds to logt+1 T + 3 as described
in Section 3.4.
Implementation for Interpreted Languages. As discussed be-
fore, interpreted languages such as Java and Python have complex
interpreters that usually maintain an internal state that depends on
many factors other then the program itself (e.g., garbage collector’s
tables). However, those interpreters already do many operations
that we can use (e.g., most interpreters do just-in-time compilation,
or have stubs for system calls). Therefore, if we could modify them
to be more deterministic, we might gain a very efficient solution.
During our work we have investigated several interpreters and we
believe that the above can be done.

Another environment that is potentially relevant for our proto-
col is the Platform as a Service (e.g., Google App Engine), which
usually provides kind of a stand-alone computation delegation ser-
vice for one process and a restricted set of “system calls”. Imple-
mentation of our protocol for interpreted languages may be very
appealing for such services.

5. REFERENCES
[1] BOINC, Validation and replication. http://boinc.

berkeley.edu/trac/wiki/ValidationSummary.
[2] DynInst, an application program interface for runtime code

generation. http://www.dyninst.org.
[3] PyEmu, a python IA-32 emulator.

http://code.google.com/p/pyemu.
[4] Quin’s source code.

http://www.cs.tau.ac.il/~benriva/quin.
[5] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to

soundness: efficient verification via secure computation. In
Proceedings of the 37th international colloquium conference
on Automata, languages and programming, pages 152–163.
Springer-Verlag, 2010.

[6] S. Arora and S. Safra. Probabilistic checking of proofs: a
new characterization of NP. J. ACM, 45:70–122, January
1998.

[7] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy.
Checking computations in polylogarithmic time. In
Proceedings of the twenty-third annual ACM symposium on
Theory of computing, pages 21–32. ACM, 1991.

[8] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson.
Multi-prover interactive proofs: how to remove intractability
assumptions. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 113–131. ACM,
1988.

[9] K. M. Chung, Y. Kalai, and S. Vadhan. Improved delegation
of computation using fully homomorphic encryption. In
Proceedings of the 30th annual conference on Advances in
cryptology, pages 483–501. Springer-Verlag, 2010.

[10] U. Feige and J. Kilian. Making games short (extended
abstract). In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 506–516. ACM,
1997.

[11] R. Gennaro, C. Gentry, and B. Parno. Non-interactive
verifiable computing: outsourcing computation to untrusted
workers. In Proceedings of the 30th annual conference on
Advances in cryptology, pages 465–482. Springer-Verlag,
2010.

[12] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating
computation: interactive proofs for muggles. In Proceedings
of the 40th annual ACM symposium on Theory of computing,
pages 113–122. ACM, 2008.

[13] P. Golle and I. Mironov. Uncheatable distributed
computations. In Proceedings of the 2001 Conference on
Topics in Cryptology: The Cryptographer’s Track at RSA,
pages 425–440. Springer, 2001.

[14] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview:
Practical accountability for distributed systems. In
Proceedings of the 21st ACM Symposium on Operating
Systems Principles, pages 175–188. ACM, 2007.

[15] J. Kilian. A note on efficient zero-knowledge proofs and
arguments (extended abstract). In Proceedings of the
twenty-fourth annual ACM symposium on Theory of
computing, pages 723–732. ACM, 1992.

[16] M. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely.
PEBIL: Efficient static binary instrumentation for linux. In
ISPASS, pages 175–183, 2010.

[17] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pages 190–200. ACM, 2005.

[18] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: an execution infrastructure for tcb
minimization. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2008, pages 315–328. ACM, 2008.

[19] R. C. Merkle. A digital signature based on a conventional
encryption function. In A Conference on the Theory and
Applications of Cryptographic Techniques on Advances in
Cryptology, pages 369–378. Springer-Verlag, 1988.

[20] S. Micali. Computationally sound proofs. SIAM J. Comput.,
30:1253–1298, October 2000.

[21] F. Monrose, P. Wycko, and A. D. Rubin. Distributed
execution with remote audit. In Proceedings of the 1999
ISOC Network and Distributed System Security Symposium,
pages 103–113. The Internet Society, 1999.

[22] E. Shi, A. Perrig, and L. V. Doorn. Bind: A fine-grained
attestation service for secure distributed systems. In
Proceedings of the 2005 IEEE Symposium on Security and
Privacy, pages 154–168. IEEE Computer Society, 2005.

