
Qin MJ, Zhao YL, Ma ZJ. Practical constant-size ring signature. JOURNAL OF COMPUTER SCIENCE AND TECHNO-

LOGY 33(3): 533–541 May 2018. DOI 10.1007/s11390-018-1838-z

Practical Constant-Size Ring Signature

Meng-Jun Qin, Yun-Lei Zhao∗, Member, CCF , and Zhou-Jun Ma

Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai 201203, China

State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710126, China

State Key Laboratory of Cryptology, State Cryptology Administration, Beijing 100878, China

E-mail: {mjqin16, ylzhao, zjma14}@fudan.edu.cn

Received October 31, 2017; revised March 28, 2018.

Abstract Bitcoin has gained its popularity for almost 10 years as a “secure and anonymous digital currency”. However,

according to several recent researches, we know that it can only provide pseudonymity rather than real anonymity, and

privacy has been one of the main concerns in the system similar to Bitcoin. Ring signature is a good method for those users

who need better anonymity in cryptocurrency. It was first proposed by Rivest et al. based upon the discrete logarithm

problem (DLP) assumption in 2006, which allows a user to sign a message anonymously on behalf of a group of users even

without their coordination. The size of ring signature is one of the dominating parameters, and constant-size ring signature

(where signature size is independent of the ring size) is much desirable. Otherwise, when the ring size is large, the resultant

ring signature becomes unbearable for power limited devices or leads to heavy burden over the communication network.

Though being extensively studied, currently there are only two approaches for constant-size ring signature. Achieving

practical constant-size ring signature is a long-standing open problem since its introduction. In this work, we solve this

open question. We present a new constant-size ring signature scheme based on bilinear pairing and accumulator, which is

provably secure under the random oracle (RO) model. To the best of our knowledge, it stands for the most practical ring

signature up to now.

Keywords ring signature, constant size, bilinear pairing, accumulator

1 Introduction

Since Bitcoin was first proposed by Satoshi in

2008[1], as the basic technology of Bitcoin, blockchain

has gained a lot of popularity. However, in most

blockchain applications, anonymity could not be gua-

ranteed, and applications like Bitcoin can only provide

pseudonymity[2] rather than real anonymity. There are

lots of researchers that study the bitcoin anonymity[2-4]

and try to track the person in the real world who starts

the transaction; thus how to keep anonymous in a tran-

saction has been one of the main concerns in the sys-

tem like Bitcoin. Fortunately, ring signature can make

it possible.

Ring signature scheme was first proposed by Rivest

et al.[5] It allows a user to sign a message on behalf of a

group of users even without their coordination. Diffe-

rent from group signature[6], ring signature scheme has

no reliable third party, which is called the group man-

ager who controls all the privacy information about the

real signer in the group. With ring signature, when a

user (e.g., Bob) wants to sign a message without reveal-

ing his identity, he can choose a set of potential signers

including himself to protect his own identity. These

potential signers are chosen arbitrarily, and may even

not know that they are included in some ring. How-

ever, from the signature, everyone appears to be the

real signer with the same probability, which ensures the

anonymity of ring signature.

Regular Paper

Special Section on Blockchain and Cryptocurrency Systems

This work is supported in part by the National Key Research and Development Program of China under Grant
No. 2017YFB0802000, the National Natural Science Foundation of China under Grant Nos. 61472084 and U1536205, the Shang-
hai Innovation Action Project under Grant No. 16DZ1100200, the Shanghai Science and Technology Development Funds under Grant
No. 6JC1400801, and the Shandong Provincial Key Research and Development Program of China under Grant No. 2017CXG0701.

∗Corresponding Author

©2018 Springer Science +Business Media, LLC & Science Press, China

534 J. Comput. Sci. & Technol., May 2018, Vol.33, No.3

With the development of information technology,

privacy has been one of the most important concerns

in people’s daily life. Since ring signature can pro-

tect the signer’s privacy, it is used in many interest-

ing applications. The first application is providing a

way of leaking a message secretly, as described in [5],

so that the receiver can make sure that the message is

actually generated by some official source, and at the

same time the person who leaks the message cannot

be distinguished from all possible persons who appear

in the ring signature. Another popular application is

providing untrackability[7] in a digital cryptocurrency,

named Monero[8]. Here, roughly speaking, untrackabi-

lity means that for each incoming transaction, all pos-

sible signers have the same probability of issuing this

transaction. In this way, the real sender of the tran-

saction is protected from being tracked. In addition,

ring signature also has applications in designated veri-

fier signatures[9], e-voting[10], and more[11-12].

Readers who want to know the details of how ring

signature works in cryptocurrency may refer to [8].

1.1 Related Work

For ease of reference, the existing ring signature

schemes are briefly summarized in Table 1.

Rivest et al.[5] proposed the first ring signature

scheme, based upon the discrete logarithm problem

(DLP) assumption, by constructing a circle equation

using trapdoor permutation. Many of the following

schemes[13-14] followed this idea but with different tech-

niques to form the circle equation.

In [15], Boneh et al. first used bilinear pairings in

constructing ring signature schemes. The construction

proposed in [16] uses ZAP as the building tool, which

is a 2-round, public coin, witness-indistinguishable

proof system for the NP (non-deterministic polynomi-

nal) problem. For most of the existing ring signature

schemes[5,13-16], the signature size grows linearly with

the ring size. Therefore, when the ring size is large, the

resultant ring signature becomes unbearable for some

power limited devices or leads to heavy burden over

the communication network. The first sub-linear size

ring signature was introduced by Chandran et al.[17]

under the assumptions of strong-Diffie-Hellman (SDH)

and subgroup decision problem (SGD), and then fol-

lowed by Yuen et al.[18] and Ghadafi[19]. The scheme

proposed in [19] is based on a relatively non-standard

assumption called q asymmetric double hidden strong

Diffie-Hellman (q-ADH-SDH). In these schemes, the

public keys in the ring are represented by a matrix, and

then non-interactive witness indistinguishable proofs

are used to prove the set memberships.

To the best of our knowledge, there are only two

ring signature schemes whose signature size is indepen-

dent of the size of the ring. The first one was proposed

by Dodis et al.[11] based on anonymous identification

in ad hoc groups, with efficient implementations based

upon the strong RSA assumption in the random oracle

model via Fiat-Shamir transformation. But the strong

RSA based instantiation in [11] uses quite complex Σ-

protocols, and may not be practical enough.

The latest approach was recently proposed in [21]

by using a generic constant-size set member proof.

But their instantiation is based on the q-strong Diffie-

Hellman (q-SDH) assumption and the symmetric exter-

nal Diffie Hellman (SXDH) assumption via the Boneh-

Boyen signature scheme, which makes it less efficient in

practice. To the best of our knowledge, implementing a

practical constant-size ring signature based on the DLP

assumption remains open.

Table 1. Overview of Some Existing Ring Signature Schemes

Reference Size Assumption Model Note

Rivest et al.[5] O(n) DLP RO Circle equation using trapdoor permutation

Abe et al.[13] O(n) DLP RO Hash and trapdoor one-way function

Liu et al.[14] O(n) DDH RO Circle equation using hash

Boneh et al.[15] O(n) Co-CDH RO Bilinear pairings

Bender et al.[16] O(n) PKE, ZAP Standard Generic construction

Chandran et al.[17] O(
√
n) SDH & SGD Standard Proof for set membership commitment

Yuen et al.[18] O(
√
n) SDH & SGD Standard Linkable and/or threshold

Ghadafi et al.[19] O(
√
n) q-ADH-SDH[20] Standard Sub-linear size set membership proof

Dodis et al.[11] O(1) Strong-RSA RO Ad-hoc anonymous identification, relatively complex Σ-protocols

Bose et al.[21] O(1) q-SDH & SXDH Standard Generic constant-size set membership proof

Ours O(1) DLP RO Accumulator, and bilinear pairings

Note: RO: Random Oracle. DDH: Decisional Diffie-Hellman. Co-CDH: Co-Computational Diffie-Hellman.

Meng-Jun Qin et al.: Practical Constant-Size Ring Signature 535

1.2 Our Contribution

In this work, we present a new constant-size ring

signature scheme based on bilinear pairing and accu-

mulator, which is provably secure under the DLP as-

sumption in the random oracle model. To the best

of our knowledge, this is the first constant-size ring

signature scheme based on the DLP assumption, and

stands for the most practical ring signature up to now.

In particular, compared with the existing constant-size

ring signature schemes, our scheme is simpler and more

efficient, making it more suitable for large size ring and

easy for implementation in practice. Along the way,

we make a detailed comparative study on some of the

existing ring signature schemes in the literature.

2 Preliminaries

Notations. Let N be the set of positive integers.

We denote by Zq an additive group of integers of prime

order q. A string means a binary one which is {0, 1}∗.
The empty string is denoted as ǫ. If x1, x2, ..., xn are ob-

jects, then x1||x2||...||xn denotes an encoding of them as

strings (e.g., concatenation) from which the constituent

objects are easily recoverable. If S is a set, |S| means

the number of elements in the set, and s ←R S denotes

the operation of choosing an element s from S uniformly

at random. If b is an integer, then a ← b means a = b.

If A is a randomized algorithm, then A(x1, ..., xn; ρ) de-

notes its output on inputs x1, ..., xn and random coins

ρ, while y ←R A(x1, ..., xn) means that we choose ρ at

random and let y = A(x1, ..., xn; ρ). Assume S,C are

two sets, S \ C denotes removing all the elements that

appear in C from S. A PT algorithm means the algo-

rithm can be executed in polynomial time, and PPT de-

notes probabilistic polynomial time. Pr[E : R1, ..., Rn]

denotes the probability of event E after the sequential

execution of random processes R1, ..., Rn.

2.1 Bilinear Pairing

A bilinear pairing is defined to be G =

(p, q,G1, G2, GT , e, g1, g2), where G1 = g1, G2 = g2

and GT are multiplicative groups of prime order p. Let

e : G1 ×G2 → GT be a map with the following proper-

ties.

• Bilinear. ∀g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zq:

e(ga1 , g
b
2) = e(g1, g2)

ab.

• Non-Degenerate. There exists u ∈ G1, v ∈ G2

such that e(u, v) 6= O, where O stands for the identity

element of the group.

• Computability. There is an efficient algorithm to

compute e(u, v) for all u ∈ G1, v ∈ G2.

There are three main types of pairings according to

the literature[9,22].

• Type-1. The groups G1, G2 are the same.

• Type-2. G1 6= G2, but there exists an isomorphic

ζ : G2 → G1 that can compute G1 from G2 efficiently.

• Type-3. G1 6= G2, and there are no efficiently

computable homomorphisms between G1 and G2.

For simplicity, we will use type-1 bilinear pairings in

our construction, but it should be noticed that type-2

or type-3 also works for our construction. Because no

matter whether the exponent is in the position of g1 or

g2, the result keeps the same.

2.2 Accumulator

Definition 1. An accumulator is a tuple

({Xλ, Fλ}), where λ ∈ N , {Xλ} is called the value

domain of the accumulator, and {Fλ} is a collection

of pairs of functions such that each (f, y) ∈ Fλ is de-

fined as f : Uf ×Xf → Uf for some Xext
f ⊇ Xλ, and

y : Uf → Uy is a bijective function where Uf and Uy de-

note the value domain of functions f and y respectively.

In addition, the following properties are satisfied.

• Efficient Generation. There exists an efficient al-

gorithm that takes as input a security parameter 1λ and

outputs a random element (f, y) ∈R Fλ, possibly to-

gether with some auxiliary information. And in the fol-

lowing sections, we denote the algorithm by ACC.Gen.

• Quasi-Commutativity. For every λ ∈ N, (f, y) ∈
Fλ, u ∈ Uf , x1, x2 ∈ Xλ : f(f(u, x1), x2) =

f(f(u, x2), x1). For any λ ∈ N, (f, y) ∈ Fλ and

X = {x1, x2, ..., xn} ⊂ Xλ, we call y(f(f(u, x1), ..., xn))

the accumulated value of the set X over u. Due to

quasi-commutativity, the value f(f(u, x1), ..., xn) is in-

dependent of the order of xi and is denoted by f(u,X).

• Efficient Evaluation. For every (f, y) ∈ Fλ, u ∈
Uf and X ⊂ Xλ with polynomially-bound size:

y(f(u,X)) is computable in time polynomial in λ, and

we use ACC.Eval to represent the process of computing

the accumulated value. Also, there is a witness w mean-

ing that some variable x has been accumulated within

v = f(u,X) iff f(w, x) = v, and we use ACC.Wit to

denote computing the witness w.

In this paper, we use the same accumulator as

in [23], where the function pair (f, y) is defined as

f : Zq × Zq → Zq, y : Zq → Zq, namely, f : (β, x) →
β(x + d), where d ←R Zq and β ∈R Zq, and y is the

identity function y(x) = x. By this accumulator, for

536 J. Comput. Sci. & Technol., May 2018, Vol.33, No.3

any X = {x1, ..., xn} ⊂ Zq, a typical form is that

f(β,X) = β(x1+d)...(xn+d), and it is obvious that all

the above three properties in Definition 1 are satisfied

(the reader is referred to [23] for proof details). It is

easy to see that the main drawback of our accumula-

tor is that it needs a trusted third party to compute

both accumulated value and witness, but as described

in [24], we can also use multiparty computation tech-

nique to solve this problem.

2.3 General Forking Lemma

In order to prove that our constant-size ring sig-

nature scheme satisfies unforgeability under the in-

sider corruption, we use a generalization of the Forking

Lemma[25] proposed by Bellare and Neven.

Lemma 1 (General Forking Lemma[25]). Fix an in-

teger γ > 1 and a set H of size |H | > 2. Let A be a

randomized algorithm that takes x, h1, h2, ..., hγ as in-

put and returns a pair (J, σ) where J ∈ {0, ..., γ} and σ

is referred to as a side output. Let IG be a randomized

algorithm that we call the input generator. The accept-

ing probability of A is defined as acc = Pr[J > 1 :

x ←R IG, h1, ..., hγ ←R H ; (J, σ) ←R A(x, h1, ..., hγ)].

The forking algorithm FA (Algorithm 1) associated to

A is the randomized algorithm that takes x as the input

and proceeds as follows.

Algorithm 1. FA(x)

1: Pick coins ρ for A at random
2: h1, ..., hγ ←R H

3: (J, σ) ← A(x, h1, ..., hγ ; ρ)
4: if J = 0 then

5: return (0, ǫ, ǫ)
6: endif

7: h′

J , ..., h
′

γ ←R H

8: (J ′, σ′) ← A(x, h1, ..., hJ−1, h
′

J , ..., h
′

γ ; ρ)
9: if (J = J ′ and hJ 6= h′

J) then

10: return (1, σ, σ′)
11: else

12: return (0, ǫ, ǫ)
13: endif

Let frk = Pr[b = 1 : x ←R IG; (b, σ, σ′) ←R

FA(x)], then

frk > acc(
acc

γ
− 1

|H |). (1)

The complete proof of this lemma can be found in

[25]. The general idea is that if randomized algorithm A

accepts with probability α, then a rewind of A accepts

with the probability roughly α2. Besides, we should

notice that the same random coins are used in both the

first and the execution of A.

3 Ring Signature Definitions

Definition 2. A ring signature scheme is a tuple

(Gen, Sign, Verify) of PT algorithms, where each of

them means generating a key pair, signing a message,

and verifying the signature for the message using the

corresponding public keys, respectively. Formally they

are described as follows.

• Gen(1l). It takes as input a security parameter 1l,

and returns a public key PK also called the verification

key and a private key SK also known as the signing

key.

• Sign(SK,m,R). The signer outputs a signature

σ on a message m with respect to a ring R using the

signing key SK. We assume that the number of public

keys in the ring |R| > 2, and there is exactly one public

key in R corresponding to the signing key SK, and all

the keys in R are generated by Gen.

• V erify(σ,m,R). The verifier can be anyone, in-

cluding the adversary, who verifies the signature σ on

a message m with respect to the ring R. If the veri-

fier accepts the signature, then the algorithm returns 1;

otherwise, returns 0.

With the above definition, we can now describe how

a ring signature scheme works: at the beginning, each

of a collection of users runs Gen(1l) to generate a pair

of keys (PK, SK) under the same security parameter

l. When a user (e.g., Bob) wants to sign a message

m anonymously, he chooses a group of public keys R,

which can be done even without the coordination of

the owners of the public keys in R. Then Bob puts his

public key into R randomly, runs Sign(SK,m,R), and

outputs a signature (σ,R). At this time, from the view

of other users, each public key in R has essentially the

same possibility of generating the signature, and anyone

can verify the signature by running V erify(σ,m,R).

Definition 3. A ring signature scheme satisfies

completeness, if for every security parameter l, every

(PK, SK) outputted by Gen(1l), and every message

m ∈ {0, 1}∗, it holds that

V erify(Sign(SK,m,R),m,R) = 1,

where PK ∈ R.

Anonymity is a special property that ring signa-

ture enjoys, and it is this property that makes ring

signature much desirable and widely-used in privacy-

preserving applications in practice. Here, we use a simi-

lar anonymity definition from [17].

Definition 4. A ring signature scheme

(Gen, Sign, V erify) has perfect anonymity, if a sig-

nature on message m under public key PKi0 ∈ R and

Meng-Jun Qin et al.: Practical Constant-Size Ring Signature 537

a signature on message m under public key PKi1 ∈ R

have the same distribution, where i0 6= i1, R is the ring

and the same for both signatures. This means that the

signer’s key is hidden among all the honestly generated

keys in the ring. Formally, we require that, for any

PPT adversary A and security parameter l, it holds:

Pr[A(σ) = 1 : (m, i0, i1, R) ← AGen(1l);

σ ← Sign(SKi0 ,m,R)] = Pr[A(σ) = 1 :

(m, i0, i1, R) ← AGen(1l);σ ← Sign(SKi1,m,R)],

where A selects i0, i1 such that (PKi0 , SKi0),

(PKi1 , SKi1) have been generated by Gen(1l).

In short, unforgeability means that an efficient ad-

versary cannot generate a valid signature (σ,m,R), si-

multaneously satisfying 1) V erify(σ,m,R) = 1, and 2)

the honest user does not sign m previously with respect

to the same ring R. We use the definition of strong un-

forgeability (with respect to insider corruption) from

[16].

Definition 5. A ring signature scheme

(Gen, Sign, V erify) is unforgeable with respect to in-

sider corruption, if for any PPT adversary A and for

any polynomial poly(·), the probability that A succeeds

in the following game is negligible in poly(·).
1) Key pairs {(PKi, SKi)}poly(l)i=1 are generated by

using Gen(1l), and the set of public keys S
def
=

{PKi}poly(l)i=1 is given to A.

2) A is given access to a signing oracle OSign(·, ·, ·),
where OSign(s,m,R) outputs Sign(SKs,m,R), and

we require that PKs ∈ R, where 1 6 s 6 poly(l), m

is the message waiting to be signed, and R ⊆ S is a

ring chosen by A.

3) A is also given access to a corrupt oracle

Corrupt(·), where Corrupt(i) outputs SKi.

4) A outputs (σ∗,m∗, R∗), and succeeds if

V erify(σ∗,m∗, R∗) = 1, A never queried (∗,m∗, R∗),

and R∗ ⊆ S \C, where C is the set of corrupted users.

4 Construction of Constant-Size Ring

Signature

4.1 System Setup

Let G = g and GT be groups of prime order p,

and e : G × G → GT be a bilinear map. Let the dis-

crete logarithm problem (DLP) be intractable over G.

Let H0 : {0, 1}∗ → Zq, H1 : {0, 1}∗ → Zq be cryp-

tographic hash functions. Here, the reason why we

use two hash functions is for the simplicity of proof.

For i = 1, ..., n, each user i has a distinct public key

PKi and a private key xi such that PKi = gxi . Let

R = {PK1, PK2, ..., PKn} be a list of n public keys.

For the accumulator presented in Subsection 2.2, we

choose y to be the identity function y(x) = x; thus in

the rest of this paper we simply use the value of func-

tion f to represent the accumulated value. Recall that

f is defined as f : (β, x) → β(x + d), where β, d ∈ Zq.

In addition, we need to run ACC.Gen to generate f and

corresponding Ppub = gd as well. The system parame-

ter param = {G,GT , g, p, q, f, Ppub, e(g, g), H0, H1}.

4.2 Signature Generation

Before signing a message, the signer needs to know

the message m ∈ {0, 1}∗, the system parameter param,

a list of public keys R = {PK1, PK2, ..., PKn}, and

private key xs corresponding to the signer’s public key

PKs (1 6 s 6 n). LetR′ = {PKi}ni=1,i6=s, which means

that R = R′ ∪ {PKs}. Let L = {H0(PKi)}ni=1 and

L′ = {H0(PKi)}ni=1,i6=s. The signature is generated by

the following procedures.

1) Compute

V = ACC.Eval(f, L),

W = ACC.Wit(f, L′).

Note that V = W (H0(PKs) + d).

2) Choose randomly r ←R Zq, and then compute

U = W + r and PU = gU .

3) Choose randomly k1, k2 ←R Zq, and compute

Π = e(g, PU)
−k1e(Ppub, g)

k2e(R′, g),

where e(R′, g) =
∏n

i=1,i6=s e(PKi, g).

4) Compute c = H1(m||V ||Ppub||PU ||Π||R).

5) Compute

s1 = k1 + cH0(PKs),

s2 = k2 + cr,

s3 = crH0(PKs)− xs.

6) The ring signature is

σ = (c, Ppub, PU , V, s1, s2, s3).

Note that the signer mainly performsN pairing ope-

rations and three exponentiations.

4.3 Signature Verification

Given a ring signature σ = (c, Ppub, PU , V, s1, s2, s3)

on a message m and a list of public keys R, the verifi-

cation algorithm works as follows.

538 J. Comput. Sci. & Technol., May 2018, Vol.33, No.3

1) Compute Π′ = e(g, PU)
−s1e(Ppub, g)

s2e(g,

g)s3e(Ppub, PU)
−ce(g, gV)ce(R, g), where e(R, g) =

∏n
i=1 e(PKi, g).

2) If c = H1(m||V ||Ppub||PU ||Π′||R), accept the sig-

nature; otherwise, reject it.

Theorem 1. Our constant-size ring signature

scheme satisfies completeness.

Proof. It is easy to see that our ring signa-

ture scheme is correct. For a signature σ =

(c, V, Ppub, PU , s1, s2, s3) on a message m and a list of

public keys R, we have

Ppub = gd,

s1 = k1 + cH0(PKs),

s2 = k2 + cr,

s3 = crH0(PKs)− xs,

thereby Π′ = e(g, PU)
−s1e(Ppub, g)

s2e(g, g)s3e(Ppub,

PU)
−c e(g, gV)ce(R, g) = e(g, PU)

−k1e(Ppub, g)
k2e(R′,

g)∆, where

∆ = e(g, PU)
−cH0(Ps)e(g, g)crH0(Ps)e(Ppub, g)

cr

e(Ppub, PU)
−ce(g, gV)c

= {e(g, PU)
−cH0(Ps)e(g, PU)

−cd}{e(g, g)crH0(Ps)

e(g, g)crd}e(g, gV)c

= e(g, PU)
−cH0(Ps)−cde(g, g)crH0(Ps)+crde(g, gV)c

= e(g, gU−r)−cH0(Ps)−cde(g, gV)c

= e(g, gW (H0(Ps)+d))−ce(g, gV)c

= 1.

Thus we can get Π′ = Π and c = H1(m||V ||Ppub

||PU ||Π′||R). �

5 Security Analysis

5.1 Unforgeability

Theorem 2. Assume that an adversary F has an

advantage ε against our constant-size ring signature

scheme, asking qHi
queries to random oracles Hi(i =

0, 1), and qs signature queries to signature oracle. Then

there is an algorithm B that solves the discrete loga-

rithm problem with probability

ε′ >
ε2

qH1

+
(qH1

+ qs)
2

4lqH1

− ε(qH1
+ qs)

2l−1
− 1

2l
,

where l is the security parameter.

Proof. The main idea of the proof is that we use

adversary F together with the general forking lemma

to generate two forgeries σ = (c, V, Ppub, PU , s1, s2, s3)

and σ′ = (c′, V ′, P ′
pub, P

′
U , s

′
1, s

′
2, s

′
3) satisfying

Ppub = gd,

P ′
pub = gd

′

,

V = W (H0(PKs) + d),

V ′ = W ′(H0(PKs) + d′),

U = W + r,

U ′ = W ′ + r′,

s3 = crH0(PKs)− xs,

s′3 = c′r′H0(PKs)− xs,

(2)

where c, r, d,W are parameters in the first signature

and c′, r′, d′,W ′ are parameters in the second signa-

ture. It holds that V = V ′, U = U ′, Ppub = P ′
pub

for the same public key PKs = gxs and ring R, and

the reason why this conditions hold will be described

later. In the group of prime order n, we can get

d = d′ from Ppub = P ′
pub; combining with V = V ′,

we can get W = W ′. Now since we have U = U ′ and

W = W ′, r = r′ would be hold. By subtracting the

last two equations with each other in (2), we can get

rH0(PKs) =
s3−s′

3

c−c′
and thus xs should be

xs =
c(s3 − s′3)

(c− c′)
− s3,

and once we find the exact xs, we successfully extract

the discrete logarithm of PKs.

It should be noticed that we assume the same pub-

lic key is used in both signatures (σ, σ′) generated by

the adversary in the above statement, but this may not

be true in practice. Suppose the adversary uses diffe-

rent public keys as the real signer’s public key, it is still

possible to solve the discrete logarithm of the signer’s

public key with non-negligible probability: running the

forking lemma algorithm n+1 times, where n is the size

of the ring. According to the pigeonhole principle, if we

got n+1 signatures for the same ring with size n, then

there are at least one pair of signatures with the same

public key, and by (2) we can solve the signer’s private

key, and DLP is solved. As for the probability with

respect to the above event, if we run forking lemma

algorithm once and get two different signatures with

non-negligible probability, then the probability of run-

ning n+ 1 times of the same algorithm should also be

non-negligible. Another thing that we should take more

care of is that, in the above proof, we assume the accu-

mulator we use in scheme is secure and this may lead

to extra assumptions. We are now going to give the

Meng-Jun Qin et al.: Practical Constant-Size Ring Signature 539

actual proof of Theorem 2. Assume there are an adver-

sary F that can attack our scheme with advantage ε,

and an algorithm B that tries to solve DLP by using

F . To handle the oracle queries, B maintains two lists

LH0
and LH1

, which are empty lists at the beginning,

and the algorithm B responds to F ’s oracle queries as

follows.

• H0 Queries on a Public Key pk ∈ {0, 1}∗. If pk

has already been defined in LH0
, then algorithm B re-

trieves ω from LH0
, and returns ω to the adversary F ;

otherwise B returns a random ω ∈ Zq and adds the

tuple (pk, ω) to LH0
.

•H1 Queries on a Tuple µ = (m||V ||Ppub||PU ||Π||R).

If µ has been defined in LH1
, then B retrieves c from

LH1
and returns c to F ; otherwise B chooses a new

random c ∈ Zn and adds the tuple (µ, c) to LH1
.

• Signature Queries on a Tuple (m,R). First of

all, algorithm B randomly picks γ ∈ {1, ..., n} where

n = |R|, and let Pγ be the public key of the real signer.

After that, B checks if all public keys in R have been

defined in LH0
, and queries H0 if not. Finally, B cal-

culates the signature as follows.

1) Choose U ∈ Zq randomly, and compute PU = gU .

2) Run ACC.Gen to obtain f and Ppub, and com-

pute V = ACC.Eval(f,X) where X is a set of results

returned by H0 queries on public keys R.

3) Choose c, s1, s2, s3 ∈ Zq randomly, then com-

pute Π = e(g, PU)
−s1e(Ppub, g)

s2e(g, g)s3e(Ppub, PU)
−c

e(g, gV)ce(R, g), and add the new tuple

((m||V ||Ppub||PU ||Π||R), c) into LH1
if it is not defined;

otherwise, set flag bad = true, and abort.

4) Return σ = (c, V, Ppub, PU , s1, s2, s3) as the sig-

nature.

Let Pr[bad] denote the probability of the event that

flag bad is set to be true, and l denote the security

parameter. We bound the accepting probability acc of

algorithm B as follows:

acc > ε− Pr[bad]

> ε− qH1
+ qs

2l
.

Now, since we have described how to simulate F ’s

environment, algorithm B can take the input of hash

function H1 as the input and runs the forking lemma

algorithm FB , which with the probability frk returns

two forgeries σ and σ′ corresponding to the list of public

keys R and message m. At this point we have success-

fully generated the two forgeries, and then we can use

the method mentioned at the beginning of the proof to

solve the discrete logarithm problem with the proba-

bility

ε′ > frk

>
acc2

qH1

− 1

2l

=
ε2

qH1

+
(qH1

+ qs)
2

4lqH1

− ε(qH1
+ qs)

2l−1
− 1

2l
.

We still have to show why the equalities in (2) in

both executions of B hold. In the case that F returned

(σ, σ′), let J be the index that algorithm B returned

after both executions by FB . In the first execution

of B, hJ = c is assigned to LH1
[m||V ||Ppub||PU ||Π||R]

when F makes its first query (m||V ||Ppub||PU ||Π||R).

Similarly, in B’s second execution, h′
J = c′ is as-

signed to LH1
[m′||V ′||P ′

pub||P ′
U ||Π′||R′] when F queries

(m′||V ′||P ′
pub||P ′

U ||Π′||R′). Up to this point, the envi-

ronments of F provided by B are the same in both the

first and the second execution, because B uses the same

inputs, random tape and values h1, ..., hJ−1 to generate

F ′s input, random tape and oracle responses. Thus the

two executions of F are identical up to this point, and

the arguments of both hash queries must be the same.

It implies that V = V ′, U = U ′, and Ppub = P ′
pub. �

5.2 Anonymity

In order to prove that our scheme satisfies

anonymity, we prove that our scheme is perfect zero

knowledge. In zero knowledge, the prover knows some

secret knowledge and needs to convince the verifier

about the secret without leaking any other informa-

tion about the secret knowledge. It means that there

exists a simulator that can simulate the response of

the prover, and the verifier cannot distinguish between

the real prover and the simulator. For more details

about the proof of the zero knowledge, readers may

refer to [26]. In our scheme, the simulator chooses

randomly Ppub, U, c, s1, s2, s3 ∈ Zq, computes V, PU ,

and then computes Π = e(g, PU)
−s1e(Ppub, g)

s2e(g,

g)s3e(Ppub, PU)−ce(g, gV)ce(R, g). We can see that the

distribution of the simulation is the same as the real

transcript, which completes the proof.

6 Comparison

In this section, we make a comparison among some

of the existing ring signatures on their efficiency, and

the efficiency is evaluated by the number of different

operations. Details can be found in Table 2. The re-

sults are calculated on the assumption that the size of

540 J. Comput. Sci. & Technol., May 2018, Vol.33, No.3

Table 2. Efficiency Comparison Among Some Existing Ring Signatures

Reference Size Number of Operations Used

EXP HASH XOR ADD MULTI PAIRING

[5] O(n) n 1 n− 1 ⊥ ⊥ ⊥
[13] O(n) n n ⊥ n ⊥ ⊥
[15] O(n) 2n 1 ⊥ ⊥ n ⊥
[14] O(n) 4n− 1 n ⊥ 1 1 ⊥
[16] O(n) – – – – – –

[17] O(
√
n) 12

√
n+ 5 ⊥ ⊥ 2

√
n+ 7 n+ 5

√
n+ 9 ⊥

[18] O(
√
n) 11

√
n+ 1 1 ⊥ 2

√
n+ 10 4

√
n+ 11 ⊥

[19] O(
√
n) 12

√
n+ 4 ⊥ ⊥ 6

√
n+ 5 n+ 6

√
n+ 10 ⊥

[11] O(1) – – – – – –

[21] O(1) 2n+ 1 ⊥ ⊥ 2 1 + n2 1

Ours O(1) 2 n+ 1 ⊥ 2n+ 4 3n+ 4 n− 1

the ring is n. And only the signature generation process

is taken into considered.

To describe the number of operations used in each

scheme, we denote by EXP the number of exponen-

tial operations, by HASH the number of hash ope-

rations, byXOR the number of exclusive-or operations,

byADD the number of modular addition or subtraction

operations, by MULTI the number of modular multi-

plication operations, and by PAIRING the number of

bilinear pairing operations. And ⊥ means that there is

no such operation in corresponding signature schemes.

Besides, for some schemes such as [16] and [11], we

use No Concrete Method (–) because the original pa-

per does not give the concrete algorithm to generate

the signature or these schemes use some other signature

schemes or public key encryption without mentioning a

specific name or process, therefore the overall efficiency

cannot be estimated.

The first four schemes[5,13-15] in Table 2 are size of

O(n), although they cost less on almost all the ope-

rations. In scheme [16], it uses both public-key en-

cryption and standard signature scheme, but these two

schemes both have different efficiencies in different im-

plementations; thus the overall efficiency cannot be cal-

culated exactly.

The next three schemes[17-19] are all of size O(
√
n),

and they use similar ideas to prove the set member-

ship, thereby their efficiencies are quite similar. Be-

sides, for schemes [18] and [19], additional one-time

signature[27-28] calculations need to be added.

The only two schemes of constant size were proposed

by Dodis et al.[11] and Bose et al.[21] respectively, but

the concrete methods are not given in scheme [11]. And

scheme [21] also needs to add five GSProve(·) calcula-
tions, but the concrete steps of GSProve(·) are not in-

cluded in the original paper[21], and this process costs

much. Finally, our scheme not only does not rely on

other signature schemes but also is quite easy to imple-

ment for it only contains few steps. And most impor-

tantly, it is also proved to be secure.

7 Conclusions

In this paper, we introduced a new constant-size

ring signature scheme which is more practical than ex-

isting schemes, and a proof of security was given in

details at the same time. Additionally, we made a de-

tail comparison between some of the existing ring signa-

tures on the efficiency of signature generation, including

schemes of linear size, sub-linear size, and constant size.

All the schemes have both advantages and disadvan-

tages. From Table 2, we can see that in each size range

(e.g., linear, sub-linear), the efficiency of each scheme

has not much difference, but some of their implemen-

tations are based on some other complicated schemes

(e.g., Full Boneh-Boyen signature in [21]), which makes

them not practical.

There are still many interesting problems to be

solved. For example, it would be valuable to explore

the possibility of achieving a constant-size ring sig-

nature with shorter length than our scheme, or with

higher efficiency in implementation. Using our scheme

to construct a real application such as e-voting system

or cryptocurrency is also an interesting problem.

References

[1] Satoshi N. Bitcoin: A peer-to-peer electronic cash system.

2008. https://bitcoin.org/bitcoin.pdf, Mar. 2018.

[2] Möser M. Anonymity of bitcoin transactions. In Proc.

Münster Bitcoin Conf., July 2013, pp.17-18.

Meng-Jun Qin et al.: Practical Constant-Size Ring Signature 541

[3] Ron D, Shamir A. Quantitative analysis of the full bitcoin

transaction graph. In Proc. the 17th Int. Conf. Financial

Cryptography and Data Security, April 2013, pp.6-24.

[4] Androulaki E, Karame G O, Roeschlin M, Scherer T, Cap-

kun S. Evaluating user privacy in bitcoin. In Proc. the 17th

Int. Conf. Financial Cryptography and Data Security, April

2013, pp.34-51.

[5] Rivest R L, Shamir A, Tauman Y. How to leak a secret:

Theory and applications of ring signatures. In Theoretical

Computer Science, Goldreich O, Rosenberg A L, Selman A

L (eds.), Springer, 2006, pp.164-186.

[6] Chaum D, van Heyst E. Group signatures. In Proc. Work-

shop on the Theory and Appl. Cryptographic Techniques,

April 1991, pp.257-265.

[7] van Saberhagen N. Cryptonote v 2.0, 2013. https://crypt-

onote.org/whitepaper.pdf, March 2018.

[8] Noether S, Mackenzie A, The Monero Research Lab. Ring

confidential transactions. Ledger, 2016, 1: 1-18.

[9] Jakobsson M, Sako K, Impagliazzo R. Designated verifier

proofs and their applications. In Proc. Int. Conf. Theory

and Appl. Cryptographic Techniques, May 1996, pp.143-

154.

[10] Chow S S M, Liu J K, Wong D S. Robust receipt-free elec-

tion system with ballot secrecy and verifiability. In Proc.

Network and Distributed System Security Symp., Feb. 2008.

[11] Dodis Y, Kiayias A, Nicolosi A, Shoup V. Anonymous iden-

tification in ad hoc groups. In Proc. Int. Conf. Theory and

Appl. Cryptographic Techniques, May 2004, pp.609-626.

[12] Naor M. Deniable ring authentication. In Proc. the 22nd

Annu. Int. Cryptology Conf., August 2002, pp.481-498.

[13] Abe M, Ohkubo M, Suzuki K. 1-out-of-n signatures from

a variety of keys. In Proc. the 8th Int. Conf. Theory

and Appl. Cryptology and Information Security, December

2002, pp.415-432.

[14] Liu J K, Wei V K, Wong D S. Linkable spontaneous anony-

mous group signature for ad hoc groups. In Proc. the 9th

Australasian Conf. Information Security and Privacy, July

2004, pp.325-335.

[15] Boneh D, Gentry C, Lynn B, Shacham H. Aggregate and

verifiably encrypted signatures from bilinear maps. In Proc.

Int. Conf. Theory and Appl. Cryptographic Techniques,

May 2003, pp.416-432.

[16] Bender A, Katz J, Morselli R. Ring signatures: Stronger

definitions, and constructions without random oracles. In

Proc. the 3rd Theory of Cryptography Conf., March 2006,

pp.60-79.

[17] Chandran N, Groth J, Sahai A. Ring signatures of sub-

linear size without random oracles. In Proc. the 34th Int.

Colloquium on Automata Languages and Programming,

July 2007, pp.423-434.

[18] Yuen T H, Liu J K, Au M H, Susilo W, Zhou J Y. Efficient

linkable and/or threshold ring signature without random

oracles. The Computer Journal, 2013, 56(4): 407-421.

[19] Ghadafi E M. Sub-linear blind ring signatures without ran-

dom oracles. In Proc. the 14th IMA Int. Conf. Cryptography

and Coding, December 2013, pp.304-323.

[20] Fuchsbauer G. Automorphic signatures in bilinear groups

and an application to round-optimal blind signatures.

IACR Cryptology ePrint Archive Report 2009/320, 2009.

https://eprint.iacr.org/2009/320.pdf, Mar. 2018.

[21] Bose P, Das D, Rangan C P. Constant size ring signa-

ture without random oracle. In Proc. the 20th Australasian

Conf. Information Security and Privacy, July 2015, pp.230-

247.

[22] Galbraith S D, Paterson K G, Smart N P. Pairings for cryp-

tographers. Discrete Applied Mathematics, 2008, 156(16):

3113-3121.

[23] Nguyen L. Accumulators from bilinear pairings and appli-

cations. In Proc. Cryptographers’ Track at the RSA Confe-

rence, February 2005, pp.275-292.

[24] Ben-Sasson E, Chiesa A, Garman C, Green M, Miers I,

Tromer E, Virza M. Zerocash: Decentralized anonymous

payments from bitcoin. In Proc. IEEE Symp. Security and

Privacy (SP), May 2014, pp.459-474.

[25] Bellare M, Neven G. Multi-signatures in the plain public-

key model and a general forking lemma. In Proc. the 13th

ACM Conf. Computer and Communications Security, Oc-

tober 30-November 3, 2006, pp.390-399.

[26] Goldwasser S, Micali S, Rackoff C. The knowledge comple-

xity of interactive proof systems. SIAM Journal on Com-

puting, 1989, 18(1): 186-208.

[27] Bleichenbacher D, Maurer U. On the efficiency of one-

time digital signatures. In Proc. Int. Conf. Theory and

Appl. Cryptology and Information Security, November

1996, pp.145-158.

[28] Perrig A. The BiBa one-time signature and broadcast

authentication protocol. In Proc. the 8th ACM Conf.

Computer and Communications Security, November 2001,

pp.28-37.

Meng-Jun Qin received his B.S. de-

gree in computer science from Donghua

University, Shanghai, in 2016. He is

currently pursuing his M.S. degree in

computer science in Fudan University,

Shanghai. His research interests include

blockchain, consensus algorithm and

ring signature.text text text text text text text text text

text text text text text text text text text

Yun-Lei Zhao received his Ph.D.

degree in computer science from Fudan

University, Shanghai, in 2004. At the

same year he joined Hewlett-Packard

European Research Center, Bristol,

U.K., as a post-doctoral researcher.

Since 2005, he has been with Fudan

University, and is currently a professor

with the School of Computer Science, Fudan University,

Shanghai. His research interests are the theory and

applications of cryptography.

Zhou-Jun Ma received his M.S. de-

gree in computer science from Fudan

University, Shanghai, in 2017. He is cur-

rently working at Microsoft in Vancou-

ver. His research interests mainly focus

on digital signatures. text text text text

text text text text text text text text

text text text text text text text text

text text text text text text text text text

