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Abstract— Revelio (CVCBT 2019) is a proof of reserves
protocol for MimbleWimble-based cryptocurrencies which
provides privacy to a cryptocurrency exchange by hiding the
exchange-owned outputs in a larger anonymity set of unspent
outputs. A drawback of Revelio is that the proof size scales
linearly in the size of the anonymity set. To alleviate this,
we design RevelioBP, a Bulletproofs-based proof of reserves
protocol with proof sizes which scale logarithmically in the
size of the anonymity set. This improvement allows us to
use the set of all UTXOs as the anonymity set, resulting
in better privacy for the exchange. On the downside, the
higher proof generation and verification time of RevelioBP
than that of Revelio might affect practical deployment
of RevelioBP. Through implementation of RevelioBP, we
quantitatively analyse trade-offs in design of MimbleWimble
proofs of reserves in terms of scalability and performance.
We conclude that unless proof size is a concern for exchanges,
Revelio is a marginally better choice for proof of reserves.
On the other hand, if an exchange is willing to pay in
terms of proof generation time, RevelioBP offers proof sizes
significantly smaller than Revelio.

Index Terms—Cryptocurrency, MimbleWimble, Grin, Proof
of Reserves

1. Introduction

A proof of reserves protocol is used by a cryptocur-
rency exchange to prove that it owns a certain amount
of cryptocurrency. If privacy of the amount or outputs
owned by the exchange is not an issue, then proving
reserves involves a straightforward proof of the ability
to spend the exchange-owned outputs (for example, see
[1]). Non-private proof of reserves protocols are unlikely
to be adopted by exchanges as they may reveal business
strategy. Privacy-preserving proof of reserves protocols
have been proposed for Bitcoin [2], [3], Monero [4],
and MimbleWimble [5]. In fact, the protocols proposed
by Decker et al [2] and Dagher et al [3] go one step
further and give a privacy-preserving proof of solvency,
i.e. they prove that the reserves owned by the exchange
exceed its liabilities towards its customers. However, the
work in [2] relies on a trusted hardware assumption. And
the proof of liabilities protocol in [3] is secure only if
every exchange customer checks the proof. In general, it
seems that designing proof of reserves protocols is easier
than designing proof of liabilities protocols as the former

depend on the public blockchain state while the latter
depend on the exchange’s private customer data.

Even without a robust proof of liabilities protocol, a
privacy-preserving proof of reserves protocol based on
homomorphic commitments is valuable. For example, the
proof of reserves protocols in [3]–[5] generate a Pedersen
commitment Cres to the amount of reserves. Exchanges
can easily prove that Cres is a commitment to an amount
which exceeds a base amount abase. While the base amount
may not be exactly equal to the total liabilities of the
exchange, it can be based on the trade volume data pub-
lished by the exchange [6]. This technique will help early
detection of exchange hacks and exit scams. For example,
in Februrary 2019 the Canadian exchange QuadrigaCX
claimed that it had lost access to wallets containing cus-
tomer funds due to the death (in December 2018) of
their CEO who had sole custody of the corresponding
passwords and keys. But an official investigation found
that the wallets had been empty since April 2018, several
months before the CEO’s death [7], [8]. This discrepancy
would have been detected earlier if the exchange had been
required to give perioidic proofs of reserves.

MimbleWimble is a design for a scalable
cryptocurrency which was proposed in 2016 [9]. Beam
and Grin are two implementations of the MimbleWimble
protocol which are available on several exchanges [6].
Revelio [5] was the first proof of reserves protocol
for MimbleWimble coins which provided some privacy
to exchanges by hiding the exchange-owned outputs
inside an anonymity set of outputs. As the anonymity
set is revealed as part of the proof of reserves, a larger
anonymity set results in better privacy for the exchange.
Since the Revelio proof size scales linearly with the
anonymity set, it becomes an impediment in scaling the
anonymity set to the set of all unspent transaction outputs
(UTXOs). To solve the scalability issue of Revelio, we
designed RevelioBP leveraging the Bulletproofs [10]
framework, resulting in the proof size being logarithmic
in the anonymity set size.

Our Contribution. In this paper, we present RevelioBP, a
proof of reserves protocol for MimbleWimble with proof
sizes scaling logarithmically in the size of the anonymity
set and linearly in the size of the exchange-owned output
set. This makes it feasible to choose the anonymity set to
be the set of all UTXOs on the blockchain. To make quan-
titative comparisons, we have implemented RevelioBP in
Rust. At the time of writing this paper, the number of



UTXOs on the Grin blockchain is approximately 161,000
[11]. A Revelio proof of reserves for this anonymity set
will have size 32 MB as against 0.27 MB using RevelioBP
instead.* This reduction in proof size, however, comes
at the cost of larger proof generation and verification
times. If an exchange is willing to compromise on the
size of the proof and is required to give frequent proofs
of reserves, Revelio serves as a better choice. If proof sizes
are critical for an exchange and it is willing to spend more
time generating the proof, RevelioBP clearly outperforms
Revelio. In conclusion, we quantitatively highlight the
trade-off between proof size and performance in using
Revelio and RevelioBP, both of which are based on the
discrete log assumption.

2. Preliminaries

2.1. Notation

Let G = {G, q, g} be the description of a cyclic group
G of prime order q with generator g of G. Let h ∈ G
be another random generator of G such that the discrete
logarithm relation between g and h is not known. Let Gn
and Znq be the n-ary Cartesian products of sets G and Zq
respectively.

Group elements which are Pedersen commitments are
denoted by uppercase letters and randomly chosen group
elements are denoted by lowercase letters.

Bold font denotes vectors. Inner product of two vectors
a,b ∈ Znq is defined as 〈a,b〉 :=

∑n
i=1 ai · bi where a =

(a1, . . . , an),b = (b1, . . . , bn). Further, Hadamard and
Kronecker products are defined respectively as, a ◦ b :=
(a1 ·b1, . . . , an ·bn) ∈ Znq , a⊗c := (a1c, . . . , anc) ∈ Znmq
where c ∈ Zmq . For a base vector g = (g1, . . . , gn) ∈ Gn,
vector exponentiation is defined as ga =

∏n
i=1 g

ai
i ∈ G.

For a scalar u ∈ Z∗q , we denote its consecutive powers
in the form of a vector un := (1, u, u2, . . . , un−1). To
represent the exponentiation of all components of a vector
a by the same scalar k ∈ Zq, we use a◦k to mean
(ak1 , a

k
2 , . . . , a

k
n). If an element a is chosen uniformly from

a set A, such a choice is denoted by a $← A. For a positive
integer n, let [n] denote the set {1, 2, . . . , n}.

2.2. Outputs in MimbleWimble

In MimbleWimble, coins are stored in outputs which
consist of Pedersen commitments of the form C = grha ∈
G where g, h ∈ G and r, a ∈ Zq. Here a represents
the amount of coins stored in the output and r is a
blinding factor. Each commitment is accompanied by a
range proof which proves that the amount a lies in the
range {0, 1, 2, . . . , 264 − 1}.

The group elements g and h are assumed to have an
unknown discrete logarithm relationship. For example, in
Grin G is the secp256k1 elliptic curve group, g is the
base point of the secp256k1 curve, and h is obtained
by hashing g with the SHA256 hash function [12]. The
unknown discrete logarithm relationship makes the com-
mitment computationally binding, i.e. a polynomial-time
adversary cannot find r′ 6= r and a′ 6= a such that
C = grha = gr

′
ha
′
.

*Under the assumption that the exchange owns 5% of all UTXOs.

To spend an output having the commitment C = grha,
knowledge of the blinding factor r is required [13]. As
spending ability is equivalent to ownership, a proof of
reserves protocol for MimbleWimble involves a proof of
knowledge of blinding factors of several outputs.

2.3. From Omniring to RevelioBP

In Monero, source addresses in a transaction are ob-
fuscated using ring signatures and the amounts are hidden
in Pedersen commitments [14]. The current transaction
structure in Monero, called ring confidential transaction
(RingCT), has proof sizes which scale linearly in the ring
size. Omniring [15] is a recent proposal for RingCTs
with proof sizes which scale logarithmically in the ring
size. It relies on Bulletproofs [10] to achieve this size
reduction. Given a ring R = (R1, R2, . . . , Rn) of public
keys where Ri = hxi for h ∈ G, xi ∈ Zq, the Omniring
construction enables a prover to prove knowledge of the
private keys xi1 , xi2 , . . . , xim corresponding to a subset
RS of R without revealing RS . For each public key Rj
in this subset RS , the prover also outputs a tag given by
tagj = gx

−1
j for g ∈ G. This tag is used to detect double

spending from a source address.
The design of RevelioBP is inspired by the Om-

niring construction. Given the set of UTXOs Cutxo =
(C1, C2, . . . , Cn) on the blockchain where Ci = grihai

for some ri, ai ∈ Zq, the prover in RevelioBP proves
knowledge of blinding factors ri and amounts ai for all Ci
in a subset Cown of Cutxo without revealing Cown. For each
output Cj ∈ Cown, the prover outputs a tag tagj = g

rj
t h

aj

where gt ∈ G is a randomly chosen group element. In
RevelioBP, the tag has a dual role. Firstly, it is used to
detect output sharing between exchanges. Secondly, the
product of the tags is a Pedersen commitment to the total
reserves of the exchange.

3. RevelioBP Proof of Reserves Protocol

To spend a MimbleWimble output having the com-
mitment C = grha, knowledge of the blinding factor r is
required [13]. Technically, the ability to spend an output
also requires knowledge of the amount a. But the amount
can be at most 264 − 1, and hence can be found by brute
force search given C and r.

Let Ctutxo be the set of UTXOs on a MimbleWimble
blockchain after the block with height t has been mined.
An exchange will own a subset Ctown ⊂ Ctutxo, where
ownership implies knowledge of the blinding factor for
each output C ∈ Ctown. Using the RevelioBP protocol, the
exchange can construct a Pedersen commitment Cres to
an amount which is equal to the sum of the amounts
commited to by each of the outputs in Ctown. Given a
Pedersen commitment Cliab to the total liabilities of the
exchange, it can give a proof of solvency via a range proof
which shows that the amount committed to in CresC

−1
liab is

non-negative. If there is no suitable method to construct
Cliab, then the exchange can reveal a base amount abase and
prove that Cresh

−abase is a commitment to a non-negative
amount.

While RevelioBP does not reveal Ctown, it does re-
veal its cardinality st = |Ctown|. We give a reasonable
workaround for this issue in Section 3.1.



If the Decisional Diffie-Hellman (DDH) assumption
holds in the group G, the RevelioBP proof of reserves
protocol satisfies the following properties:
• Inflation resistance: Using RevelioBP, a probabilistic

polynomial time (PPT) exchange will not be able to
generate a commitment to an amount which exceeds
the reserves it actually owns.

• Collusion detection: Situations where two exchanges
share an output while generating their respective Rev-
elioBP proofs will be detected.

• Output privacy: A PPT adversary who observes Reve-
lioBP proofs from an exchange cannot do any better than
random guessing while identifying members of Ctown.

The security proofs are given in Section 5.

3.1. Proof Generation

The RevelioBP protocol requires one randomly chosen
group element gt ∈ G per block such that the discrete
log relation between gt and g, h is unknown. All the
exchanges need to agree upon the procedure used to
generate the sequence of gts. For example, gt could be
generated by hashing the contents of the block at height
t. An exchange giving a RevelioBP proof of its reserves at
the block with height t performs the following procedure:

1) From the UTXO set Ctutxo at block t, the exchange
constructs the vector C = (C1, C2, . . . , Cn) where
the Cis are all the UTXOs arranged in the order of
their appearance on the blockchain. So n = |Ctutxo|.
To keep the notation simple, we do not make the
dependence of C and n on t explicit.

2) The exchange owns a subset Ctown =
{Ci1 , Ci2 , . . . , Cis} of Ctutxo where
1 ≤ i1 < · · · < is ≤ n. For each Cij ∈ Ctown, the
exchange knows rj and aj such that Cij = grjhaj .
Using this information, the exchange constructs the
tag vector I = (I1, I2, . . . , Is) where Ij = g

rj
t h

aj .
Note that Ij is a Pedersen commitment to the
amount aj with blinding factor rj using bases gt,
h. So the only difference between Cij and Ij is
that the base g in the former is replaced with gt
in the latter.

3) Let a = (a1, a2, . . . , as) and r = (r1, r2, . . . , rs)
be the amount and blinding factor vectors cor-
responding to the exchange-owned outputs. Let
eij ∈ {0, 1}n be the unit vector with a 1 in position
ij and 0s everywhere else. Let E ∈ {0, 1}s×n be
the matrix with ei1 , ei2 , . . . , eis as rows.
The exchange publishes (t, I) and generates a
zero-knowledge argument of knowledge ΠRevBP of
quantities (E, a, r) such that for all j = 1, 2, . . . , s

Ceij = grjhaj , Ij = g
rj
t h

aj . (1)

4) The exchange publishes its RevelioBP proof as
(t, I,ΠRevBP) and claims that Cres =

∏s
j=1 Ij is

a Pedersen commitment to its reserves
∑s

j=1 aj .
Note that the tag Ij is a deterministic function of the
output Cij at a given block height t. So if two exchanges
try to use the same output in their respective RevelioBP
proofs, the same tag Ij will appear in both their proofs,
revealing the collusion.

The reason for changing the base gt with the block
height is to change the tag of the same output across
RevelioBP proofs at different block heights. If gt were
unchanged (as in Revelio [5]), then the appearance of
the same tag in two RevelioBP proofs at different block
heights will reveal that some exchange-owned output has
remained unspent between these two block heights.

As Cres is a Pedersen commitment with respect to
bases gt and h, the Pedersen commitment Cliab to the
exchange’s liabilities should also be generated using these
bases. Otherwise, it will be not be possible to generate a
range proof on CresC

−1
liab .

The proof reveals the cardinality s of Ctown. An ex-
change which wants to hide the number of outputs it owns
can create some outputs which commit to the zero amount
and use these to pad the outputs with non-zero amounts.
For example, suppose that the number of outputs owned
by the exchange is expected to be in the range 600 to
1000. It can create 400 outputs which commit to the zero
amount and use these to always pad the number s revealed
in the proof to be always 1000. Of course, the exchange
would need to spend a nominal amount as transaction fees
for the creation of such outputs.

Finally, note that an exchange can under-report its
reserves by excluding an output it owns from the subset
Ctown used to generate the RevelioBP proof. An exchange
may choose to do this if its liabilities are much lower than
its reserves.

3.2. Proof Verification

Given a RevelioBP proof of reserves (t, I,ΠRevBP)
from an exchange referring to the block height t, the
verifier performs the following procedure:

1) First, it reads the set of all UTXOs at block height
t and forms the vector C = (C1, . . . , Cn) such that
Cis are listed in the order of their appearance on
the blockchain.

2) It verifies the argument of knowledge ΠRevBP by
checking that the verification equations described
in Protocol 1 hold.

3) Finally, the verifier checks if any of the tags in the
I vector appear in another exchange’s RevelioBP
proof for the same block height t. If the same
tag Ij appears in the RevelioBP proofs of two
different exchanges, then collusion is declared and
the proofs are considered invalid.

4. ZK Argument of Knowledge ΠRevBP

Let C = (C1, . . . , Cn) be the vector representation of
the UTXO set Ctutxo at block height t. Let I = (I1, . . . , Is)
be the tag vector published by the exchange as part of the
RevelioBP proof. The exchange constructs an argument of
knowledge ΠRevBP to convince a verifier of the following:

(i) It knows rj and aj such that Ij = g
rj
t h

aj ∀j ∈ [s].
(ii) There exist indices ij ∈ [n] such that Cij = grjhaj

∀j ∈ [s].

Note that while the existence of the indices ij will be
proved by ΠRevBP, the indices themselves are not revealed.
Since the term haj is common in both equations in the



above statements, combining the two equations, we can
equivalently state that the exchange knows rj and ij such
the following holds for all j ∈ [s]

Ijg
−rj
t = Cijg

−rj . (2)

In other words, knowledge of rj and ij for all j ∈ [s]
suffices for an honest exchange to construct ΠRevBP.

Consider the language LRevBP given in (3) where
r = (r1, r2, . . . , rs) ∈ Zsq and eij ∈ {0, 1}n is a unit
vector with a 1 at index ij and zeros everywhere else.
The language depends on the common reference string
crs = {G, q, g, h, gt}.

LRevBP =

{
(C, I)

∣∣∣∣∣ ∃(r, ei1 , . . . , eis) such that
Ijg
−rj
t = Ceij g−rj ∀j ∈ [s]

}
(3)

To leverage the Bulletproofs framework for the con-
struction of a log-sized argument of knowledge for the
language LRevBP, we need to do the following:

(i) Embed the secrets (r, ei1 , . . . , eis) as the exponents
in a Pedersen vector commitment satisfying some
inner product relation.

(ii) Using the public information (C, I), construct the
base vectors of the Pedersen vector commitment
in such a way that the prover would not know the
discrete logarithm relation between elements of the
base vectors.

The first requirement seems natural since the Bullet-
proofs technique helps us prove the knowledge of expo-
nents in a Pedersen vector commitment satisfying some
inner product relations. The second one is a more technical
requirement. In Bulletproofs, the elements in the base
vectors g,h ∈ Gn are uniformly chosen from the group
G to ensure that a discrete logarithm relation between
them is not known to a PPT prover. The soundness of
the Bulletproofs protocol relies on this assumption. Lai et
al [15] noted that if base vector components are chosen
from a blockchain a prover might know the discrete
logarithm relation between them. To solve this problem,
they proposed using a base vector which is the Hadamard
product of the vectors taken from the blockchain (with a
random exponent) and a randomly chosen base vector.

To construct a base vector satisfying the above require-
ments, we write the statement of LRevBP from (3) as

g−rjg
rj
t Ceij I−1j = 1 ∀j ∈ [s]. (4)

For u $← Zq, combining the above constraints, we have∏
j∈[s]

(
g−rjg

rj
t Ceij I−1j

)uj−1

= 1,

=⇒ g−〈u
s,r〉g

〈us,r〉
t Cu

sEI−u
s

= 1, (5)

where E is an s × n matrix having the eij vectors as
rows. We write the exponents in (5) as compressed secrets,
namely ξ = −〈us, r〉, ξ′ = 〈us, r〉, ê = usE and let
Î = I−u

s

. Given a vector p ∈ Gn+3 and a scalar w ∈ Zq,
we construct the base and exponent vectors as follows

g′w :=
(
(g‖gt‖C‖Î)◦w ◦ p

)
, (6)

a′ := (ξ‖ξ′‖ê‖1). (7)

Note that the compressed secrets are a linear combination
of the actual secrets. We need to append the actual secrets
(r, ei1 , . . . , eis) for completeness to (7). Thus, we have

gw :=
[(

(g‖gt‖C‖Î)◦w ◦ p
)
‖g′
]
, (8)

a :=
[
(ξ‖ξ′‖ê‖1)‖(ei1‖ . . . ‖eis‖r)

]
. (9)

where g′ $← Gsn+s. We now state a lemma in regards
to the non-trivial discrete-log relation between the com-
ponents of the base vector gw.

Lemma 1. If the components of p are chosen uniformly
from G and independent of (C, I), then a PPT adver-
sary cannot find a non-trival discrete logarithm relation
between components of gw.

Proof : As the components of p and g′ are uniformly
chosen from G, the components of gw are iid with a
uniform distribution in G. Hence a PPT adversary cannot
find a non-trivial discrete logarithm relation between these
components. �

We can now construct a Pedersen vector commitment
as A = (h′)rga

whb for appropriately chosen b ∈ ZNq ,h $←
GN where N = |a|, satisfying the first requirement in
using the Bulletproofs framework. Owing to (5), (8), (9),
we have ga

w = ga
w′ for any w,w′ ∈ Zq. Thus, the above

vector commitment to a remains the same for any w ∈ Zq.
By successfully running the Bulletproofs protocol twice
on A with respect to two different bases (h′‖gw‖h) and
(h′‖gw′‖h) we can extract the secret vector a such that
A = (h′)rga

whb = (h′)rga
w′h

b. This solves the problem of
extractability (soundness) of the protocol. In summary, we
are now ready to construct a Bulletproofs-based argument
of knowledge proving that the exchange some outputs
from the entire set of UTXOs.

The interactive protocol ΠRevBP = (Setup, 〈P,V〉) for
the language LRevBP is shown in Protocol 1. Note that
Setup, prover P and verifier V are PPT algorithms. The
notation used in the protocol is given in Figures 1, 2, 3,
4, 5.

Notation Description

Î = Î(u) := I−u
s

Compressed key-images
E ∈ Zs×n2 vec(E) = (ei1 , . . . , eis)
ê = usE

Compressed secrets (ê, ξ, ξ′)
ξ := −〈us, r〉

satisfying gξgξ
′

t CêÎ = 1
ξ′ := 〈us, r〉
cL, cR Encoding of witness (Fig. 2)
N = sn+ n+ s+ 3 Size of the vectors cL, cR
(v0, . . . , v4)(u, v, y) Constraint vectors (Fig. 3, 4)
α,β, δ,µ,ν,θ(u, v, y) Compressed constraint

vectors (Fig. 3, 4, 5)
EQ(γL,γR) System of equations (Fig. 5)

Figure 1. Notation used in the argument of knowledge



cL := ( ξ ‖ ξ′ ‖ ê ‖ 1 ‖ vec(E) ‖ r )

cR := ( 0n+3 ‖ 1sn − vec(E) ‖ 0s )

Figure 2. Honest encoding of witness.
v0

v1

v2

v3

v4

 :=


· · · · ysn ·
v 1 · · · (v − 1)us

· · −yn · us ⊗ yn ·
· · · ys ys ⊗ 1n ·
· · · · ysn ·


Figure 3. Definitions of constraint vectors where dots mean

zero scalars or vectors.

θ := v0, µ :=

4∑
i=1

zivi, ν := z4v4,

θ◦−1[j] = θ[j]−1 if θ[j] 6= 0; else 0, ∀j ∈ [N ],

α := θ◦−1 ◦ ν, β := θ◦−1 ◦ µ,

δ := z3〈1s+1,ys+1〉+ 〈α,µ〉+ 〈1N ,ν〉.

Figure 4. Definitions of constraint vectors (continued).

EQ(γL,γR) = 0 ⇐⇒
〈γL,γR ◦ v0〉 = 0, (10)
〈γL, v1〉 = 0, (11)
〈γL, v2〉 = 0, (12)
〈γL, v3〉 = 〈1s+1,ys+1〉, (13)
〈γL + γR − 1t, v4〉 = 0. (14)

Figure 5. A system of equations guaranteeing integrity of
encoding of witness.

Protocol 1. Argument of knowledge for LRevBP.

Setup(λ,L):

L(G, q, g, h, gt) as defined in (3),
Generate following elements randomly from G
h′ $← G,p $← Gn+3, g′ $← Gsn+s,h $← GN

Output: crs = (G, q, g, h, gt, h′,p, g′,h)

〈P(crs, stmt, wit),V(crs, stmt)〉 :

P:
(i) rA $← Zq

(ii) g0 = (p ‖ g′)
(iii) A := (h′)rAgcL

0 hcR

P −→ V: A

V: u, v, w $← Zq, V −→ P: u, v, w

P, V:
(i) Î := I−u

s

(ii) gw :=
[(

(g‖gt‖C‖Î)◦w ◦ p
)
‖g′
]

P:
(i) rS $← Zq, sL $← ZNq , sR ∈ ZNq s.t. ∀j ∈ [N ]

sR[j] =

{
sj $← Zq if n+ 4 ≤ j ≤ N − s,
0 otherwise

(ii) S = (h′)rS gsL
w hsR

P −→ V: S

V: y, z $← Zq, V −→ P: y, z

P:
(i) Define the following polynomials in ZNq [X]

l(X) := cL +α+ sL ·X
r(X) := θ ◦ (cR + sR ·X) + µ

t(X) := 〈l(X), r(X)〉 = t2X
2 + t1X + t0

for t2, t1, t0 ∈ Zq. Also, t0 = δ.

(ii) τ1, τ2 $← Zq
(iii) T1 = gt1hτ1 , T2 = gt2hτ2

P −→ V: T1, T2
V: x $← Zq , V −→ P: x

P:
(i) l := l(x) = cL +α+ sL · x ∈ ZNq

(ii) r := r(x) = θ ◦ (cR + sR · x) + µ ∈ ZNq
(iii) t̂ := 〈l, r〉 ∈ Zq
(iv) τx := τ2x

2 + τ1x

(v) r := rA + rSx

P −→ V: l, r, t̂, τx, r

V:
(i) t̂ ?

= 〈l, r〉 // t̂ was computed correctly

(ii) gt̂hτx ?
= gδT x1 T

x2

2 // t̂ satisfies t0 + t1x+ t2x
2

(iii) (h′)rgl
whθ

◦−1◦r ?
= ASxgαwhβ // Check if l = l(x)

// and r = r(x)

As the prover has to send vectors l, r ∈ ZNq in the
last round, the ΠRevBP protocol results in a communication
cost of O(N) for the prover, where N is the length of the
secret vectors. We reduce this to O(log2(N)) using the
inner-product argument in [10]. Concretely, the language
for the inner-product argument is expressed as

LIP =

{
P ∈ G, c ∈ Zq

∣∣∣∣∣ ∃(a,b) such that
P = ucgahb ∧ c = 〈a,b〉

}
(15)

where a,b ∈ Z|a|q , g,h $← G|a|, u $← G. Thus, in our
case, we construct a Pedersen vector commitment to (l, r)

P = ut̂gl
w(h′)r = ut̂(h′)−rASxgαwhβ,

where h′ = hθ
◦−1

. Note that P , as shown above, could be
computed by the verifier. Thus, running the inner-product
argument with input (P, t̂) proves the knowledge of
(l, r) using O(log2N) communication. Furthermore,
since the ΠRevBP protocol is public-coin, we can make it
non-interactive using the Fiat-Shamir heuristic [16].

Theorem 1. The argument presented in Protocol 1 is
public-coin, constant-round, perfectly complete and
perfect special honest-verifier zero-knowledge.

Proof sketch: The ΠRevBP protocol is public-coin since
all of the challenges from V are generated uniformly
randomly from Zq. Given a crs = (G, q, g, h, gt)



and an honest prover with knowledge of witness
wit = (r, ei1 , . . . , eis) for a stmt = (C, I) ∈ LRevBP,
it is easy to see that the three verification conditions
at the end of Protocol 1 hold. Thus, the protocol is
perfectly complete. Next, we need show that ΠRevBP is
perfect special honest-verifier zero-knowledge (SHVZK)
by constructing an efficient simulator S, which can
simulate the transcript of ΠRevBP without knowing
the witness. Note that the difference between special
HVZK and HVZK is that in the former, the simulator
S takes the verifier challenges as input while in the
latter, simulator S is allowed to choose the challenges
by itself. Perfect SHVZK implies that no adversary,
even if it is computationally unbounded, would be able
to distinguish between the simulated and the honestly
generated transcripts for valid statements and witnesses.
For the protocol to be perfect SHVZK, the simulated
transcript needs to be identically distributed to the
transcript of ΠRevBP. Detailed construction of S is shown
in Appendix A.1.

Theorem 2. Assuming the discrete logarithm assump-
tion holds over G, ΠRevBP has computational witness-
extended-emulation for extracting a valid witness wit .

Proof sketch: Proving that ΠRevBP has computational
witness-extended emulation implies showing that it is
computationally sound. To do so, we need to construct
a PPT extractor E , which when given enough number of
transcripts of ΠRevBP via rewinding, succeeds in construc-
tion of a valid witness as defined in the language LRevBP.
We show the detailed construction of E in Appendix A.2.

5. Security Properties of RevelioBP
In this section, we discuss the security properties of

the ΠRevBP protocol, namely inflation resistance, collusion
detection, and output privacy (as defined in Section 3). We
defer the rigorous treatment of the security properties to
an extended version of this paper.

5.1. Inflation Resistance

Theorem 2 proves that a PPT exchange can include
the tag Ij = g

rj
t h

aj in the vector I only if it knows the
blinding factor rj and amount aj corresponding to the
output Cij = grjhaj . Thus an exchange can only create
tags corresponding to outputs it owns. Furthermore, since
each tag Ij is forced to be a Pedersen commitment to
the same amount as the output Cij , the exchange cannot
inflate the amount being contributed by Ij to Cres. Thus
Cres is a Pedersen commitment to the actual reserves∑s

j=1 aj .

5.2. Collusion Resistance

Suppose two exchanges generate RevelioBP proofs at
the same block height t. Ideally, each Ci ∈ Cutxo can
contribute to the reserves of at most one of the exchanges.
If exchange 1 who owns an output Ci = grihai reveals ri
and ai to exchange 2, both of them can try using Ci as a
contributing output in their proofs of reserves. Then while
creating their respective arguments ΠRevBP both exchanges

will be forced to include the tag Ij = grit h
ai in their tag

vectors, revealing the collusion. This technique will work
only if all exchanges agree to use the same sequence of
gts in their RevelioBP proofs. If exchanges 1 and 2 were
to use different bases gt and g′t to generate their proofs,
then collusion cannot be detected. As of now, pressure
from customers and regulators seems to be the only way
to ensure that all exchanges use the same gt.

5.3. Output Privacy

Let λ be the security parameter such that Setup(1λ)
generates the group (G, q, g) with log2 q ≈ λ. Suppose
an exchange publishes a polynomial number of proofs
of reserves at block heights t1, t2, . . . , tf(λ) where f is
a polynomial. Output privacy requires that a PPT distin-
guisher D, which is given the f(λ) proofs of reserves
as input, cannot do better than random guessing while
classifying an output as owned by the exchange. Note that
the ΠRevBP protocol itself does not reveal anything about
the secrets. Here, we intend to analyse privacy of outputs
due to the revelation of the tag vector.

The RevelioBP protocol provides output privacy under
the following assumptions:

(i) The blinding factors of the exchange-owned out-
puts are chosen independently, uniformly from Zq.

(ii) The DDH problem is hard in the group G, i.e. there
is no algorithm which can solve the DDH problem
in G with a running time polynomial in λ.

If the first assumption does not hold, a PPT adversary
could identify exchange-owned outputs given a RevelioBP
proof. For example, consider the case when two exchange-
owned outputs Ci and Cj have the same blinding factor
r but different amounts ai and aj , i.e. Ci = grhai

and Cj = grhaj . If the exchange uses both outputs
in a RevelioBP proof at block height t, then the tags
corresponding to the outputs will be Ii = grt h

ai and
Ij = grt h

aj . An adversary can figure out that these two
tags have the same blinding factor by checking if the
equality Iih

−a1 = Ijh
−a2 holds for some (a1, a2) ∈ V 2

where V is the range of possible amounts. As the size of
the set V is usually small, such a search is feasible. Once
the amounts ai and aj have been found, the adversary
could iterate through all possible output pairs (C,C ′) in
Ctutxo × Ctutxo and check if Ch−ai = C ′haj . If a pair of
outputs satisfying this equality is found, then the adversary
concludes that both of them belong to the exchange. By
requiring that the blinding factors are randomly chosen,
such attacks become infeasible.

To precisely define output privacy, we use an experi-
ment called OutputPriv which proceeds as follows:

1) For security parameter λ, the generate group pa-
rameters (G, q, g) ← Setup(1λ) where q ≈ 2λ. A
sequence of generators g1, g2, . . . , gf(λ) are chosen
uniformly from G. These generators will be used to
instantiate gt in each of the f(λ) RevelioBP proofs.

2) The exchange creates two outputs C1, C2 with
amounts a1, a2 and blinding factors r1, r2 $← Zq,
i.e. C1 = gr1ha1 and C2 = gr2ha2 .

3) The exchange chooses an integer b $← {1, 2}. Note
that Cb = grbhab .



4) The exchange now generates f(λ) RevelioBP
proofs where the UTXO vector is C = (C1, C2)
and the number of exchange-owned outputs is 1
in all of them. The lth proof reveals a single tag
Il = grbl h

ab for l = 1, 2, . . . , f(λ), i.e. the same
exchange-owned output is used to generate each
of the f(λ) proofs. Let the argument of knowl-
edge corresponding to the lth RevelioBP proof be
ΠlRevBP.

5) The f(λ) RevelioBP proofs consisting of tag
vector Ī = (I1, I2, . . . , If(λ)), argument vector
Π̄ = (Π1

RevBP, . . . ,Π
f(λ)
RevBP) along with the gener-

ators ḡ = (g1, g2, . . . , gf(λ)), outputs C1, C2, and
amounts a1, a2 are given as input to a distinguisher
D which outputs b′ ∈ {1, 2}, i.e.

b′ = D
(
Ī , Π̄, ḡ, C1, C2, a1, a2

)
(16)

6) D succeeds if b′ = b. Otherwise it fails.

Definition 1. The RevelioBP proof of reserves protocol
provides output privacy if every PPT distinguisher
D in the OutputPriv experiment succeeds with a
probability which is negligibly close to 1

2 .

To motivate the above definition, consider an adversary
who observes a RevelioBP proof generated by an exchange
for UTXO set Ctutxo having size n. The length of the tag
vector I reveals the number of outputs s owned by the
exchange. Suppose the adversary is asked to identify an
exchange-owned output from Ctutxo. If it chooses an output
uniformly from Ctutxo, then it succeeds with probability s

n .
But the adversary may itself own some outputs (say, na)
in Ctutxo. Then, the success probability can be increased
to s

n−na
. The above definition models the extreme case

when n− na = 2 and s = 1. The definition states that a
PPT adversary can only do negligibly better than a random
guessing strategy.

The justification for revealing the amounts a1, a2 to
the distinguisher D is that the amount in a MimbleWimble
output may be known to an entity other than the output
owner. For instance, a MimbleWimble transaction where
Alice sends some coins to Bob will result in a new
output whose blinding factor is known only to Bob but
the amount in this output is known to Alice. The above
definition captures the requirement that even entities with
knowledge of the amounts in outputs should not be able
to identify exchange-owned outputs from the RevelioBP
proofs. We have the following theorem whose proof is
given in Appendix A.3.
Theorem 3. The RevelioBP proof of reserves protocol

provides output privacy in the random oracle model
under the DDH assumption provided that the exchange
chooses the blinding factors in its outputs uniformly
and independently of each other.

6. Performance

We compare the performance of our proof of reserves
protocol with Revelio which was the first MimbleWimble
proof of reserves protocol [5]. In Revelio, an exchange
publishes an anonymity set Canon ⊆ Cutxo such that Cown ⊆
Canon. In RevelioBP, the anonymity set is always equal
to Cutxo. For a fair comparison, we set Canon = Cutxo in

Revelio. Let n = |Cutxo| and s = |Cown|. Revelio proof
sizes are O(n) while RevelioBP proof sizes are O(s +
log2(sn)). The logarithmic dependence of the RevelioBP
proof size on the UTXO set size n is the main advantage
of RevelioBP over Revelio. This is illustrated in Figure
6(a) where we compare the proof sizes of the Revelio
and RevelioBP protocols as a function of n for s = 20.
For a UTXO set size of 2 × 105, the RevelioBP proof is
a mere 2.5 KB compared to a 41 MB Revelio proof.

We have implemented RevelioBP in Rust over the
secp256k1 elliptic curve. The Revelio running times were
estimated using the simulation code made available by
Dutta et al [17]. All the experiments were run on an
Intel Core i7 2.6 GHz CPU. Our simulation code is open-
sourced on GitHub [18]. Figure 6(b) shows the RevelioBP
and Revelio proof generation and verification times as a
function of the UTXO set size for s = 20. For a constant
own set size s = 20, we observe the following:

(i) A linear growth in the running times of both Rev-
elioBP and Revelio as a function of n.

(ii) The RevelioBP proof generation is typically two
times slower than that of Revelio proof generation.

(iii) The verification of a RevelioBP proof is around 2.5
times faster than its generation because of a single
multi-exponentiation check in the verification of
inner product protocol.

(iv) The RevelioBP verification is 20% faster than the
verification of a Revelio proof.

Furthermore, while the running time of Revelio is
independent of s, it scales as O(sn) for RevelioBP. Figure
6(c) shows the generation and verification times as a
function of s for n = 103. This implies that for a constant
UTXO set size n, the verification in RevelioBP is faster
than Revelio only upto a particular s. Similarly, the dif-
ference between RevelioBP and Revelio proof generation
widens as s increases. To illustrate this in practical terms,
the size of the current UTXO set in the Grin blockchain
as of June 7, 2020 is 161,000 [11]. For this UTXO set size
and own output set size equal to 100, an exchange could
take upto 160 minutes to generate a RevelioBP proof while
taking less than 34 minutes to generate a Revelio proof.
The customers of the exchange can verify RevelioBP and
Revelio proofs in 68 and 34 minutes respectively. For an
exchange which owns 200 outputs in the current UTXO
set, the RevelioBP generation and verification times would
rise to 320 minutes and 130 minutes respectively, while
the timings of Revelio remain unchanged.

6.1. Scalability and Performance Trade-off

The smaller proof sizes of RevelioBP would enable
exchanges to store several historical proofs for audit pur-
poses. Further, if proofs of reserves are to be uploaded
on the blockchain for public verifiability, smaller proof
size becomes crucial. The benefits in scalability due to
RevelioBP comes at the price of performance. From the
customer point of view too, larger verification times are
undesirable given their limited computational resources.

The simpler formulation of Revelio, on the other hand,
allows faster generation and verification. Therefore, if
the proof size is not a concern for an exchange, using
Revelio can reduce computational cost for the exchanges
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Figure 6. Performance comparison of RevelioBP and Revelio for G = secp256k1 elliptic curve

as well as the customers. Moreover, the design of Revelio
allows parallelization of its proof generation as well as
verification. On the contrary, RevelioBP relies on the
recursive inner product protocol, preventing parallelization
of proof generation. Also, since the base vector used in
RevelioBP depends on the tag vector published by an
exchange, RevelioBP proofs of multiple exchanges on the
same blockchain state cannot be aggregated. Lastly, if
exchanges are required to generate proofs of reserves after
every K blocks are mined, the proof generation time needs
to be less than K minutes†. In such cases, proofs with
smaller running times would be preferred.

7. Conclusion

To avoid proof sizes which are linear in the size
of anonymity set, we have presented Bulletproofs-based
proof of reserves protocol RevelioBP with proof size
scaling logarithmically in the size of the anonymity set.
Having implemented RevelioBP, we conclude that the
smaller proof sizes it offers comes with the cost of larger
proof generation and verification times. Revelio, the first
proof of reserves for MimbleWimble, does better in terms
of generation and verification times. An exchange has to
make a trade-off between scalability and performance and
choose which protocol suits their needs better: RevelioBP
with smaller proof size and large generation times or
Revelio with larger proof sizes and faster generation times.
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Appendix A.

A.1. Proof of Theorem 1 (Perfect SHVZK)

Let the verifier challenges be (u, v, w, y, z, x). Simu-
lator S computes Î(u), gw(u,w) as described in ΠRevBP.
We will use δ(u, v, y, z) to make the dependence of δ
(as defined in Fig. 4) on the challenges explicit. Now, S
samples the following quantities uniformly from respec-
tive groups: S, T2 $← G, l, r $← ZNq τx, r $← Zq. It then
computes the remaining quantities corresponding to the
ones which were sent by P to V in ΠRevBP as follows:

t̂ = 〈l, r〉, (17)

T1 = (gt̂−δhτxT−x
2

2 )x
−1

, (18)

A = (h′)rS−xgl−α
w hθ

◦−1◦r−β. (19)

Finally, S outputs the simulated transcript (A,S,
T1, T2, l, r, t̂, τx, r). Note that since l, r are uniformly
sampled from ZNq , t̂ is uniformly distributed in Zq. T1 is
also uniformly distributed in G as g, h, T2 are uniformly
sampled from G and the corresponding exponents are
also uniformly distributed in Zq. Recall that gw is also
uniformly distributed in GN . Thus, A is also uniformly
distributed in G since the generators as well as exponents
in the equation for computing A are uniformly distributed
in the respective groups. This implies that all the elements
produced by S and those produced by ΠRevBP are identi-
cally distributed and also satisfy the verification equations
at the end of Protocol 1. Therefore, the protocol is perfect
special honest-verifier zero knowledge. �

A.2. Proof of Theorem 2 (Soundness)

To prove that ΠRevBP has witness-extended emulation,
first we state a couple of useful lemmas and a corollary.
Before we proceed, we define some notation and a new
system of constraint equations CS. Let γL,γR ∈ ZNq be

γL := (γL,1‖ γL,2 ‖ γL,3 ‖ γL,4 ‖ γL,5 ‖ γL,6 ),

γR := (γR,1︸︷︷︸
1

‖ γR,2︸︷︷︸
1

‖ γR,3︸︷︷︸
n

‖ γR,4︸︷︷︸
1

‖ γR,5︸ ︷︷ ︸
sn

‖ γR,6︸ ︷︷ ︸
s

),

where for i ∈ {L,R}, γi,j ∈ Zq for j ∈ {1, 2, 4}, γi,3 ∈
Znq , γi,6 ∈ Zsq and for some matrices ΓL, ΓR ∈ Zs×nq ,



γi,5 = vec(Γi) ∈ Zsnq . Define the constraint system CS
with parameter u such that CS(γL,γR) = 0 ⇐⇒

γL,5 ◦ γR,5 = 0sn, (20)
γL,1 = −〈us,γL,6〉, (21)
γL,2 = 〈us,γL,6〉, (22)
γL,3 = usΓL, (23)
ΓL1

n = 1s, (24)
γL,4 = 1, (25)
γL,5 = −γR,5 + 1sn. (26)

Lemma 2. For a fixed q > 2λ and u, v ∈ Zq, suppose there
exist γL,γR ∈ ZNq such that we have EQ(γL,γR) =
0 for sn different values of y and two different values
of v, then CS(γL,γR) = 0.

Proof : Since EQ(γL,γR) = 0 for sn different values of
y, the following polynomials in y of degree at most sn−1
have sn different roots. Thus, all of them must be equal
to zero polynomials.

〈γL,5 ◦ γR,5,ysn〉 = 0 by (10),
v · γL,1 + γL,2 + (v − 1)〈γL,6,us〉 = 0 by (11),

〈γL,3 − usΓL,yn〉 = 0 by (12),
(γL,4 − 1)ys + 〈ΓL1n − 1s,ys〉 = 0 by (13),

〈γL,5 + γR,5 − 1sn,ysn〉 = 0 by (14).

Furthermore, since EQ(γL,γR) = 0 for two different
values of v too, the coefficient of v and the constant term
in the second equation must both be zero. By comparing
coefficients, we get CS(γL,γR) = 0. �

Lemma 3. If CS(γL,γR) = 0 then each row of ΓL is a
unit vector of length n.

Proof : This follows from equations (20), (24) and (26). �
The following is a corollary of Lemma 1.

Corollary 1. Assuming the discrete logarithm assumption
holds over G, a PPT adversary cannot find a non-trivial
discrete logarithm relation between the components of
the base (h′‖gw‖h).

Proof : Since (h′,h) are generated uniformly from G, it is
infeasible for a PPT adversary to compute its discrete log
relation with base vector gw. Proving that a PPT adversary
cannot find a non-trivial discrete log relation between
components of gw follows from Lemma 1. �

With the above lemmas and corollary, we proceed
to construct an extractor E . Let pp ← Setup(λ) and
stmt, wit ← A(pp). The aim of E is to produce a
valid transcript and consequently the witness wit′ cor-
responding to that transcript. Since E has oracle access
to 〈P?(pp, stmt; wit),V(pp, stmt)〉 for any prover P?,
producing a valid transcript is trivial for E . We hence
focus on how E could extract a valid witness.

Extractor E runs P? on one value each of u, v, 2
different values of w, sn different values of y, 5 different
values of z and 3 different values of x. This results in
30 × sn transcripts. E fixes the values of (w, y, z) and
runs P? for x = (x1, x2, x3). Let the transcripts for the
respective x be (A,S, T1, T2, τxi , rxi , lxi , rxi , t̂xi) for
i = 1, 2, 3. Now E will extract the discrete logarithm
representations of A,S, T1, T2 using the above transcripts.

Extracting A: Choose ki ∈ Zq for i = 1, 2 such that∑2
i=1 ki = 1 and

∑2
i=1 kixi = 0. From (19), we have

2∏
i=1

Aki = h
∑

i rxi
kiS−

∑
i kixig(

∑
i ki·lxi

)−α(
∑

i ki)
w

h(
∑

i kiθ
◦−1◦rxi

)−β(
∑

i ki)

=⇒ A = h
∑

i rxi
kig(

∑
i ki·lxi

)−α
w h(

∑
i kiθ

◦−1◦rxi
)−β

=⇒ A = hr
′
Agc′L

w hc′R .

where r′A =
∑

i rxi
ki, c′L = (

∑
i ki · lxi

) − α and
c′R =

(∑
i ki · (θ

◦−1 ◦ rxi)
)
− β. Since we have consid-

ered the above extraction for a particular w out of the 2
of its values, r′A, c′L, c′R depend on w. To show that the
discrete logarithm representation of A is independent of
w, E repeats the above for a different w′. In particular,
we have A = hr

′′
Agc′′L

w′h
c′′R . Now we have two possibly

different representations of A. Write c′L = (c′L,1‖c′L,2)
and c′′L = (c′′L,1‖c′′L,2) of appropriate dimensions. We have

hr
′
Agc′L

w hc′R = hr
′′
Agc′′L

w′h
c′′R =⇒

1 = hr
′
A−r

′′
A(g‖gt‖C‖Î)w·c

′
L,1−w

′·c′′L,1(p‖g′)c′L−c′′Lhc′R−c′′R .

Now, if r′A 6= r′′A or c′L 6= c′′L or c′R 6= c′′R, since
(p‖g′‖h) is uniformly chosen after fixing (g‖gt‖C‖Î), we
would have violated the discrete logarithm assumption.
Thus, r′A = r′′A, c′L = c′′L, c′R = c′′R and letting c′L =
(ξ′‖ξ′′‖ê′‖ψ′), we get

1 = (g‖gt‖C‖Î)(w−w
′)·c′L

=⇒ 1 = (g‖gt‖C‖Î)c′L since w 6= w′

=⇒ 1 = gξ
′
· gξ

′′

t · C
ê′ · Îψ

′
. (27)

We will use equation (27) in the last part of the proof.

Extracting S: E samples some k1, k2 ∈ Zq such that∑
i ki = 0 and

∑
i kixi = 1. From (19), we have

S = hr
′
S g

∑
i ki·lxi

w h
∑

i ki·θ
◦−1◦rxi = hr

′
S gs′L
w hs′R . (28)

For a fixed w, the extracted A,S hold for all possible
(x, y, z) because otherwise, the discrete log assumption
would be violated owing to Corollary 1 as a non-trivial
discrete logarithm representation of 1 with respect to the
base (h′‖gw‖h) would be known.

Substituting these expressions of A,S in the expres-
sions for l, r from the protocol, we get

l′x = c′L +α+ s′L · x ∈ ZNq ,
r′x = θ ◦ (c′R + s′R · x) + µ ∈ ZNq .

These equalities must also hold for all (x, y, z)
because if that was not the case, then we would know
a non-trivial discrete logarithm representation of 1 with
respect to the base (h′‖gw‖h) due to Corollary 1.

Extracting T1, T2: E chooses ki ∈ Zq for i ∈
{1, 2, 3} such that

∑3
i=1 ki = 0,

∑3
i=1 kixi = 1 and∑3

i=1 kix
2
i = 0. Thus, we have

T1 =

3∏
i=1

T kixi
1 = g

∑3
i=1 ki t̂xih

∑3
i=1 kiτxi = gt

′
1hr

′
1 .



Similarly, to extract T2, E chooses k′i ∈ Zq for i ∈
{1, 2, 3} such that

∑3
i=1 k

′
i = 0,

∑3
i=1 k

′
ixi = 0 and∑3

i=1 k
′
ix

2
i = 1. Thus, we have

T2 =

3∏
i=1

T
k′ix

2
i

2 = g
∑3

i=1 k
′
i t̂xih

∑3
i=1 k

′
iτxi = gt

′
2hr

′
2 .

Again, the above expressions for T1, T2 hold for all
x, or otherwise we would have obtained a non-trivial
discrete logarithm representation of 1 with respect to
the base vector (g‖h), violating the discrete logarithm
assumption. Therefore, we have obtained t′1, t

′
2 ∈ Zq as

the exponents of g in the extracted T1 and T2 respectively.

Extracting witness: E parses c′L as below and outputs
the witness wit′

c′L = (ξ′‖ξ′′‖ê′‖ψ′‖vec(E′)‖r′),
wit′ = (r′, e′i1 , . . . e

′
is).

Finally, what remains to show is that the extracted
witness is a valid witness to the statement stmt. Using the
extracted t′1, t

′
2 we have

t′x = δ(u, v, y, z) + t′1x+ t′2x
2.

for all (x, y, z) or else we would violate the DL assump-
tion by having a DL relation between g, h. Let

t′0 := δ(u, v, y, z),

l′(X) := c′L +α+ s′L ·X,
r′(X) := θ ◦ (c′R + s′R ·X) + µ,

t′(X) := 〈l′(X), r′(X)〉.

Now, the following polynomial, for all (y, z), has at least
3 roots and hence must be a zero polynomial.

t′(X)− (t′0 + t′1X + t′2X
2).

We have t′(X) = t′0+t′1X+t′2X
2 and particularly, t′(0) =

t′0. The latter two quantities are given by

t′0 = z3 · 〈1s+1,ys+1〉+ 〈α,µ〉+ 〈1N ,ν〉, (29)
t′(0) = 〈c′L,θ ◦ c′R〉+ 〈c′L,µ〉+ 〈c′R,θ ◦α〉+ 〈α,µ〉

= 〈c′L,θ ◦ c′R〉+ 〈c′L, ζ〉 +

〈c′L + c′R,ν〉+ 〈α,µ〉, (30)

where ζ =
∑3

i=1 z
ivi. Equations (29) and (30) imply

z3〈1s+1,ys+1〉 = 〈c′L, v0 ◦ c′R〉+

3∑
i=1

zi〈c′L, vi〉

+ z4〈c′L + c′R − 1N , v4〉.

The above equation holds for 5 different values of
z. As the equation involves a degree 4 polynomial, the
coefficients on both sides must be equal. This implies that
EQ(c′L, c′R) = 0 for sn different values of y and 2 values
of v. By Lemma 2, we have CS(c′L, c′R) = 0. Further,
Lemma 3 implies that each row vector of E′ is a unit
vector of length n. Let vec(E′) = (e′i1 , . . . , e

′
is

) and write

ξ′ = −〈us, r′〉, ξ′′ = 〈us, r′〉, ψ′ = 1, ê′ = vsE′.

Also, let i′1, i
′
2, . . . , i

′
s be the indices of the non-zero

numbers in vector ê′. We now show that these exponents

computed from the extracted witness (r′, e′i1 , e
′
i2
, . . . , e′is)

are correct. From (27), we have

1 = gξ
′
· gξ

′′

t · C
ê′ · Îψ

′

= g−〈u
s,r′〉 · g〈u

s,r′〉
t ·

(
s∏
j=1

Cuj−1·e′ij

)
·

(
s∏
j=1

I−u
j−1

j

)

=

s∏
j=1

(
g−r

′
jg
r′j
t Ce′ij I−1j

)uj−1

.

The final equality can be interpreted as an evaluation
of an s-degree polynomial in the exponent at a random
point u. The probability of such an evaluation being zero
for a non-zero polynomial is bounded by s+1

q , which is
negligible since q > 2λ by the Schwartz-Zippel lemma.
Thus, we assume that the polynomial is always zero. This
implies that for all j ∈ [s], g−r

′
jg
r′j
t Ce′ij I−1j = 1. Now the

amount a′j can be calculated (after extracting (r′j , e′ij ))
by an honest PPT prover (or extractor) since the amount
lies in the finite range {0, 1, . . . , 264− 1}. Therefore, wit′

is a valid witness corresponding to the statement stmt for
the language LRevBP. �

A.3. Proof of Theorem 3

We will prove Theorem 3 by contradiction. We will
prove that if there is a PPT distinguisher D who can
succeed in the OutputPriv experiment with probability
at least 1

2 + 1
p(λ) for a polynomial p, then we can construct

a PPT adversary E who can solve the generalized DDH
problem [19] with success probability at least 1

2 + 1
2p(λ) .

This is a contradiction as the generalized DDH problem is
equivalent to the DDH problem and the latter is assumed
to be hard in the group G.

Let E be an adversary who is tasked with
solving the generalized DDH problem given a tu-
ple (g0, g1, . . . , gf(λ), u0, u1, . . . , uf(λ)) ∈ G2f(λ)+2. E
wants to distinguish between the following two cases:
• In the tuple (g0, g1, . . . , gf(λ), u0, u1, . . . , uf(λ)) ∈
G2f(λ)+2, gl $← G, ul $← G ∀l = 0, 1, 2, . . . , f(λ).

• In the tuple (g0, g1, . . . , gf(λ), u0, u1, . . . , uf(λ)) ∈
G2f(λ)+2, gl $← G, ul = grl ∀l = 0, 1, 2, . . . , f(λ)
where r $← Zq.

Let d = 1 and d = 2 denote the above two cases,
which are assumed to be equally likely. E needs to output
its estimate d′ of d. To estimate d correctly, E constructs
a valid input to the OutputPriv distinguisher D as
follows:

1) E sets g = g0 and chooses h $← G. It also chooses
amounts a1, a2 $← V .

2) E chooses an integer b uniformly from {1, 2}. It
sets Cb = u0h

ab and chooses the other output
uniformly from G. For l = 1, 2, . . . , f(λ), E sets
the tags Il = ulh

ab .
3) For l = 1, 2, . . . , f(λ), E creates the lth argument

ΠRevBP using the PPT simulator S in Appendix A.2
with gt = gl, C = (C1, C2), and I = (Il).

4) E feeds the computed quantities to D and gets

b′ = D

({
Ij ,Π

j
RevBP, gj

}f(λ)
j=1

, C1, C2, a1, a2

)
.



5) If b′ = b, then E sets d′ = 2. Otherwise, d′ = 1.
The motivation behind this construction is that when

D estimates b correctly it could be exploiting some struc-
ture in the inputs given to it.
• When d = 1, the u0, u1, . . . , uf(λ) components of the

tuple given to E are uniformly distributed. This makes
the distribution of (I1, I2, . . . , If(λ), C1, C2) identical
for both b = 1 and b = 2. This in turn makes the distri-
butions of the simulated arguments Π1

RevBP, . . . ,Π
f(λ)
RevBP

identical for both values of b. Thus D can only
estimate b with a success probability of 1

2 . Thus
Pr [b′ = b | d = 1] = 1

2 .
• When d = 2, the ul = grl for all l = 0, 1, . . . , f(λ).

By construction, the vector (I1, I2, . . . , If(λ), C1, C2)
has a distribution which is different for b = 1 and
b = 2. More importantly, the input E feeds to D
is identically distributed to the input D receives in
the OutputPriv experiment. If D can estimate b
correctly, then E bets on the distinguisher D’s ability
to win in the OutputPriv experiment and concludes
that the tuple it received is a generalized DDH tuple.

Clearly, if adversary D is PPT then so is E . Suppose
there is a PPT distinguisher D which succeeds in the
OutputPriv experiment with probability of success
which is lower bounded by 1

2 + 1
p(λ) where p is a poly-

nomial. Thus we have Pr [b′ = b | d = 2] ≥ 1
2 + 1

p(λ) .

The success probability of E is given by

Pr[d′ = d] =
1

2
Pr[d′ = 1|d = 1] +

1

2
Pr[d′ = 2|d = 2]

=
1

2
Pr[b′ 6= b | d = 1] +

1

2
Pr[b′ = b | d = 2]

≥ 1

2
· 1

2
+

1

2
·
(

1

2
+

1

p(λ)

)
=

1

2
+

1

2p(λ)
.

Thus, E succeeds in solving the generalized DDH
problem with a probability non-negligibly larger than 1

2 .
As a PPT adversary who can solve the generalized DDH
problem is equivalent to a PPT adversary solving the
classical DDH problem [19], we get a contradiction. �
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