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Abstract

Decentralized cryptocurrencies still suffer from three interrelated weaknesses: Low trans-
action rates, high transaction fees, and long confirmation times. Payment Channels promise
to be a solution to these issues, and many constructions for real-life cryptocurrencies, such as
Bitcoin, are known. Somewhat surprisingly, no such solution is known for Monero, the largest
privacy-preserving cryptocurrency, without requiring system-wide changes like a hard-fork of its
blockchain.

In this work, we close this gap by presenting PayMo. This first payment channel protocol is
fully compatible with Monero’s transaction scheme and can be readily used to perform off-chain
payments. Notably, transactions in PayMo are identical to standard transactions in Monero,
therefore not hampering the coins’ fungibility. Using PayMo, we also construct a provably
secure and scriptless atomic-swap protocol compatible with the transaction scheme of Monero:
One can now securely swap a token of Monero with a token of several major cryptocurrencies
such as Bitcoin, Ethereum, Ripple, Cardano, etc. Before our work, atomic swaps protocol for
Monero existed only for a limited set of other currencies via ad-hoc approaches.

Our main technical contribution is a new construction of an efficient verifiable timed linkable
ring signature, where signatures can be hidden for a pre-determined amount of time in a verifiable
way. Our scheme is fully compatible with the transaction scheme of Monero, and it might be of
independent interest to develop other applications on Monero.

We implemented PayMo and our results show that, even with high network latency and
with a single CPU core, two regular users can perform up to 93500 payments over 2 minutes (the
block production rate of Monero). This is approximately five orders of magnitude improvement
over the current payment rate of Monero.
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1 Introduction

Modern cryptocurrencies, such as Bitcoin or Monero, realize the digital analog of a fiat currency
without a trusted central authority. They typically consist of two main components: (i) A public
ledger that publishes all transactions, and (ii) a transaction scheme that describes the structure and
validity of transactions. Compared to traditional centralized solutions, decentralized cryptocurrencies
suffer from three weaknesses: First, they have a relatively low transaction rate; for example, the
current transaction rate of Bitcoin is about four transactions per second while it is 0.1 transactions
per second in case of Monero [1]. Second, the transaction fees are relatively high, about 0,60$ per
transaction in the case of Bitcoin and about 0.25$ in Monero [2]. Third, the confirmation of a
transaction takes (on average) one hour in the case of Bitcoin and 20 minutes in the case of Monero.
Payment Channels (PC) [3], and its generalization Payment Channel Networks (PCN) [3]–[6] have
emerged as one of the most promising solutions to mitigate these issues and have been widely
deployed to scale payment in major cryptocurrencies, such as Bitcoin [7], Ethereum [8] or Ripple [9].
These solutions are commonly referred to as layer 2 or off-chain solutions.

A PC allows a pair of users to perform multiple payments without committing every intermediate
payment to the blockchain. Abstractly, a PC consists of three phases: (i) Two users Alice and
Bob, open a payment channel by adding a single transaction to the blockchain. This transaction
is a promise from Alice that she may pay up to a certain amount of coins to Bob, which he must
claim before a certain time T . (ii) Within this time window, Alice and Bob may send coins from
the joint address to either of them by sending a corresponding transaction to the other user. (iii)
The channel closes when one of those payment transactions is posted on the chain, thus spending
coins from the joint address. While realizing PCs for Bitcoin is an established task due to the
functionality available in the Bitcoin scripting language, several challenges arise when considering
privacy-preserving cryptocurrencies like Monero or Zcash [10]. Bolt [11] is a PC proposal for Zcash
while Moreno-Sanchez et al. [12] developed a PC protocol for Monero. However, their proposal has
various shortcomings (see below for a more details) and, as a consequence, is unlikely to be integrated
into Monero. In this work, we aim to close this gap by constructing a PC protocol that is fully
compatible with the transaction scheme of Monero and can be used to make off-chain transactions.
Brief Look into Monero. Monero is the largest privacy-preserving cryptocurrency [13], and the
notion of privacy it offers is that: Any external observer cannot learn who the sender or the receiver
of a transaction are and the number of coins being transferred. Monero achieves these properties
with Ring Confidential Transactions (RingCT) as its cryptographic bedrock. Briefly, a RingCT
is a transaction scheme where the sender of the transaction ’hides’ his key in an anonymity set
(ring). Comparing with Bitcoin, where transactions have typically one source address, the amount in
plain, one or two recipient address(es), and a simple signature (ECDSA), the RingCT based Monero
transactions contain a ring of addresses, destination addresses, commitments to amounts, related
consistency proofs, and a (linkable ring) signature, making the transactions considerably larger.
Moreover, the size of a Monero transaction grows linearly with the size of the anonymity set. This
results in a major setback to the scalability of Monero and often requires users to make tough choices
between better privacy (high transaction fee) and smaller transactions (lower transaction fees). There
has been a line of research [14]–[17] that proposes new and efficient RingCT constructions that result
in smaller transaction sizes. These approaches help to increase privacy because they support larger
ring sizes and therefore do not increase the transaction fees. However, the central three issues that
PCs are addressing remain open: Increasing the transaction rate, reducing the transaction fees in
general, and therefore supporting fast micro-payments, as well as fast verification time. Moreover,
all these on-chain solutions require system-wide changes in the Monero protocol, and it is unclear if
Monero will fork and adapt to one of these schemes.
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Unfortunately, layer two solutions (such as PCs) proposed for Bitcoin do not extend to Monero
as they crucially rely on some scripting functionalities offered by the Bitcoin blockchain absent in
Monero. To the best of our knowledge, all layer two solutions that have been proposed for Monero
(like that of [12]) are not compatible with its transaction scheme and require a hard fork.

1.1 Our Contribution

The contributions of this work can be summarized as follows.
1. We propose PayMo (Section 6), the first payment channel protocol that is fully compatible

with the transaction scheme of Monero (Section 4). A notable feature of our solution is that
PC transactions are syntactically identical to standard transactions in Monero, thus retaining the
fungibility1 of the Monero coins.

2. At the heart of our proposal is a new cryptographic primitive, called verifiable timed linkable
ring signatures (VTLRS), that we define and construct (Section 5). Our solution relies on well-
established cryptographic assumptions and our techniques used in building a VTLRS may be of
independent interest.

3. We show that PayMo also enables the first secure scriptless atomic-swap protocol for Monero,
compatible with its transaction scheme. With our solution, one can securely (atomically) exchange
Monero tokens with other prominent currency tokens like Bitcoin, Ethereum, Ripple, Cardano, etc.

4. We demonstrate the practicality of our approach by benchmarking PayMo (Section 7). Our
analysis shows that PayMo can be used on today’s hardware by Monero’s users. In terms of
performance, at its full power, PayMo supports close to 93500 payments for 2 minutes between two
regular users with one CPU core each. Here 2 minutes is the block production rate of Monero. This
is a significant increase in payments in Monero, which currently supports only one payment from an
address per 2 minutes.

1.2 Related Work and Discussion

In the following we compare our approach with existing systems and we discuss some of the choices
behind practical aspects of our design.
Comparison with [12]. The first PC proposal for Monero was recently put forth by Moreno-
Sanchez et al. [12], however, their solution requires a hard fork with major changes to the Monero
transaction scheme and is not backward compatible. Specifically, a PC in their protocol is a joint
address comprising two public keys (left and right) and the linkability tag of such a joint address
is generated differently from the current specification of Monero, to facilitate either keys to spend
from the joint address and preserve double-spend linkability. They also require an explicit time-lock
functionality for the joint address which allows the left key to spend before the time-lock expires
and the right key after the expiry.

We stress that, even assuming that Monero will fork in the near future to integrate their scheme,
the adoption procedure still requires one to solve some challenges: Since the tag generation in [12] is
different from the currently used algorithm, one needs to perform massive system-wide changes to
the Monero protocol itself, requiring every Monero user to spend from their existing, unspent keys
(with old tag generation) to a new key (with the new tag generation) during a specific time interval.
And after this time, interval spending is allowed only with the new tag generation algorithm, and all
spending attempts with the old tag will be rejected. This is highly undesirable as it requires every

1Fungibility is a property of a currency whereby two units can be substituted in place of one another. This means
that all tokens are essentially the same in value, and therefore there is no specialty for some coins due to some
transactions operating on them.
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Monero user to be online and make transactions, and any user unable to make this switch during
this time interval loses his coins permanently. At the time of writing, it is not clear whether such
a proposal will ever be implemented in Monero [18]. An additional limitation of their proposal in
terms of transaction privacy is that, since the time-lock information of the payment channel or the
payment channel expiry time is publicly available on-chain, it could lead to censorship from miners.
A miner could refuse to accept a payment channel transaction if it is too close or too far away from
the corresponding channel expiry time.

On the contrary, PayMo does not require any changes to the transaction scheme of Monero,
nor it needs to add any functionality to the scripting language. Any interested pair of users can
run PayMo without the knowledge of any other user in the Monero system. Furthermore, any
PayMo related transaction posted on-chain is identical to posting any other regular transaction
in Monero. Consequently, our PC protocol is readily usable in Monero today, without making any
system-wide modifications. However, we note that our PC protocol cannot be extended to a PCN
without modifying some features of the Monero blockchain, while in [12], they have a PCN protocol
(still requiring the same modifications to Monero as in their PC protocol).
Time-Lock Puzzles. One of the main challenges that we face in constructing a fully-compatible
PC for Monero is the lack of a time-lock functionality of its scripting language. To “simulate” this
functionality off-chain, our constructions will resort to the usage of time-lock puzzles [19]. This
approach translates waiting time into performing some inherently sequential computational task,
such as repeated squares on unknown order groups. The drawback of this solution is that PC users
must run a background process for each PC that they are part of.

We believe that the benefits offered by PCs (e.g. the significant increase in transaction volume)
largely outweigh the burden of maintaining an additional background computation running. Con-
sidering that the typical time-lock duration for channels is in the order of a couple of days, the
computational cost associated with it appears to be modest, especially in comparison with the one
required to run proof-of-work based consensus. To further mitigate this issue, we also propose an
approach to batch multiple puzzles’ solution into a single one (see Section 5.2 for details).

In terms of practicality, the sequential function that we consider (repeated squaring) has been
the subject of a large academic [20]–[22] and industrial [23]–[25] effort to study its exact complexity
on commodity machines. Functionalities that rely on repeated computation of squares have been
integrated in the Chia network [26], [27] and is currently being considered by Ethereum [25], [28],
[29].

It is possible that some parties possess hardware with more powerful processing power and could
solve time-lock puzzles much earlier than other parties. In a recent work [30], it was shown that this
hardware disparity could result in a 60% difference in the time taken to solve a time-lock puzzle
using reasonable AWS machines. This could affect security for a party who is caught off-guard by
another party who ended up solving the puzzle much earlier (in real-time) than expected. One way
to deal with this problem is for the “victim“ party to take action well before a conservative estimate
(based on concrete lower bounds on sequential squaring [31]) of when the other party might solve the
puzzle. For instance, if Alice has to solve a time-lock puzzle for time T to take some action against
Bob, Bob must make sure to counter this step well ahead of time corresponding to T.
Uni-directional vs Bi-directional Channels. While the protocol in [12] with the system-wide
changes to Monero supports bi-directional PCs, PayMo only supports uni-directional PCs. That
is, payments from Alice to Bob and from Bob to Alice require opening two separate channels.
Bi-directional is desirable in practice as they increase the payment network’s capacity, and achieving
them in a Monero-compatible way is an interesting open problem.
Other Related Work. Payment Channels and Payment Channel Networks [3], [4] have been
proposed as solutions to address the problem of high-frequency payments in Bitcoin. Typical
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proposals use a special Hash Time-Lock Contract (HTLC) that lets a user get paid if he produces a
pre-image of a certain hash value before a specific time, referred to as the time-lock of the payment.
Malavolta et al. [5] propose a PCN protocol that does not rely on HTLC and offers better on-chain
privacy using a new tool called Anonymous Multi-Hop Locks (AMHL). Bolt [11] is a payment channel
protocol specially tailored for Zcash [10] which uses zk-SNARKs [32]–[34], and is not compatible
with the transaction scheme of Monero, which is the focus of this work. Specifically, BOLT relies
on a relative time-lock script offered by the blockchain layer (during channel closure) that is not
offered by Monero. As a result, it is unclear how to adapt BOLT to Monero. A generalisation of a
payment channel with complex conditional payments is a state channel [35]–[37] that requires highly
expressive scripting functionalities from the underlying blockchain. Since Monero does not offer
such expressive scripting functionalities and since our focus is only on fast micro-payments, we focus
only on payment channels. Recently Gugger [38] proposed a mechanism for atomic swaps between
Bitcoin and Monero. However their swap protocol is only semi-scriptless because they require a
hash function verification from the bitcoin script. On the other hand, all PayMo requires signature
verification from the Bitcoin and Monero and, therefore, improves both the coins’ fungibility in their
respective chains.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we give a brief technical overview of
our core techniques and intuition into our PayMo protocol. In Section 3 we introduce the building
blocks required for our protocols and in Section 4 we formally present the definitions, security
and construction of the transaction scheme of Monero. We present the formal definitions and the
construction of VTLRS in Section 5. In Section 6 and ?? we present the PayMo protocol and our
atomic swap protocol, respectively. Finally, we benchmark our protocol and present the experimental
results in Section 7.

2 Technical Overview

In the following outline we first introduce the notion of Verifiable Timed Linkable Ring Signature
(VTLRS) and we show a construction compatible with the transaction scheme in Monero. Then we
describe how to leverage VTLRS to construct payment channels (PCs) that are fully compatible
with Monero. Finally, we discuss how to extend our protocol to support atomic swaps with tokens
from other currencies and how to integrate our approach in the current implementation of Monero.

For ease of presentation, we consider a simplified representation of a transaction in Monero
consisting of: A ring of one-time public keys (addresses) R, a linkability tag tag , a signature σ and
the target public key (recipient address). We omit other components of a Monero transaction as our
tools and techniques only deal with the above components and it can be naturally extended to the
current transaction scheme of Monero with all components in place2.

2.1 VTLRS for Monero

We introduce and formalize the notion of Verifiable Timed Linkable Ring Signature (VTLRS). A
VTLRS lets a user create a timed commitment of a linkable ring signature on a message (transaction)
such that the recipient of the commitment can force open the commitment and learn the signature
only after a pre-specified time T. The recipient also receives a proof that convinces him that the

2A Monero transaction is based on RingCT [17] which additionally consists of commitments to hide the amounts
and range proofs to prove that they are well-formed.
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force opening would indeed reveal the valid linkable ring signature on the message. Our construction
of VTLRS is compatible with the linkable ring signature transaction scheme that is currently
implemented in Monero, where the message is now a Monero transaction.

On a high-level, to commit to a VTLRS, the committer takes a (linkable ring) signature on a
transaction tx and encodes it into a time-lock puzzle [19], which keeps it hidden until time T. To
convince the verifier that the puzzle contains a valid signature on the transaction tx , the committer
also computes a non-interactive zero-knowledge (NIZK) proof for such a statement. The challenge
here is to design an efficient NIZK proof that certifies the validity of the encoded signature. General
solutions exist [30], [39], [40] only for common signature schemes, like Schnorr, ECDSA and BLS.
Efficient NIZKs. To design an efficient NIZK, we adopt a cut-and-choose approach, where the
signature is redundantly encoded into many puzzles and the validity can be checked by revealing
the random coins corresponding to a subset of them. If implemented naively, this would clearly
compromise the privacy of the signature. Instead, we harness the structural properties of signature
of Monero to reveal only isolated components, while at the same time keeping the signature hidden.
More specifically, the committer computes a t-out-of-n secret sharing of a special component of
the signature. Given a t − 1 subset of the shares (which are revealed by the cut-and-choose) the
verifier can check whether these opened shares are valid shares of the signature component and
that the opened puzzles were indeed valid puzzles (using the random coins supplied by the prover).
If the check is successful, then the verifier is convinced that at least one of the unopened puzzles
contains a well-formed share, which is enough to reconstruct a valid signature. The scheme is made
non-interactive using the Fiat-Shamir transformation [41].
Time-Lock Puzzles. We then instantiate the time-lock puzzles with [42] and use the homomorphic
properties of such a scheme to combine puzzles in such a way that the computation needed to force
open is the same as that to force open a single puzzle. We stress that the use of homomorphism is
not just crucial for the efficiency of the solver (verifier), but is also important for security. Without
homomorphism, a user with ñ = n− (t− 1) processors can solve ñ puzzles in parallel and in total
time T. On the other hand, users with less number of processors will have to solve the puzzles one
after another, thereby spending more time than T time. This could lead to scenarios in PCs where
an adversarial party has an unfair advantage with respect to an honest user and could post a valid
transaction ahead of time, effectively stealing coins.

2.2 Payment Channels in Monero

Channel opening Payment

1
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�� ,    ��� ���,�
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Figure 1: Three phases to a (uni-directional) payment channel protocol between Alice and Bob in PayMo.
The channel opening phase has three steps. Steps run individually and jointly through interaction are denoted
with (Alice) or (Bob) and (Alice-Bob) respectively. Signature σAB inside a dotted box indicates that only
Bob learns the signature after interaction with Alice.

Equipped with our efficient VTLRS scheme, we show how Alice and Bob can run a payment
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channel protocol to make payments (i.e., a joint address where both signatures are needed in order
to perform a transaction). A pictorial description of our PC protocol (PayMo) is given in Figure 1
and its three main subroutines (channel opening, payment, and channel closing) are discussed below
briefly.
Channel opening. Alice and Bob jointly generate a spending key pkAB and a redeem transaction
tx rdm that spends the coins from pkAB (belonging to some ring R) to some address of Alice pkA,0.
The transaction tx rdm also contains the joint tag tagAB that is needed to prevent double-spending.
Note that pkAB is an address that is not yet present on the chain. Bob then generates a VTLRS of
the signature σAB on tx rdm with timing hardness T. Bob gives the VTLRS commitment and proof
(generated using Com(tx rdm, σAB,T) in Figure 1) to Alice, who then posts the transaction tx fund on
the Monero blockchain. Such a transaction initializes the channel by sending funds from one of her
addresses pkA to the joint key pkAB. The channel is now created and initialized on-chain and its
expiry time is set to T. Note that after time T Alice will be able to recover the signature tx rdm and
therefore redeem the remaining funds in the address pkAB, if any.
Payment. When Alice wishes to pay Bob, they jointly generate a transaction tx pay,i for the i-th
payment. tx pay,i spends from pkAB (in some ring R1) and sends it to some address of Bob pkB,0.
They jointly generate a signature σAB,i on tx pay,i, in such a way that only Bob learns the signature.
Channel closing. If Bob wishes to close the channel, he takes the last exchanged transaction
payment tx pay,j with Alice and posts it along with σAB,j on the Monero blockchain. In case Bob has
not posted any such payment and time T has passed, Alice by then learns σAB from the VTLRS
on tx rdm (that was given by Bob during channel opening). Alice can now post tx rdm and σAB on
the Monero blockchain and redeem the coins from the channel. In either case, once a transaction
spending from pkAB is posted on-chain, the payment channel is considered closed.

2.3 Atomic Swaps for Monero

Consider a scenario where Alice has a Monero token that she wants to swap with a token of another
currency (Bitcoin, Ethereum, Ripple, etc.) held by Bob, which we denote by

B →C A→M B

The atomicity guarantee in this swap states that Bob transfers a token of the currency to Alice if and
only if Alice transfers a token of Monero to Bob. The first step to build such a protocol is to construct
an atomic multi-hop lock (AMHL) [5] protocol compatible with our VTLRS scheme. An AMHL
allows several parties to establish n+ 1 locks in a path, denoted by `0, `1, . . . , `n. On a high level,
AMHL guarantees that the lock `i can be “unlocked” if and only if `i+1 is also released. Furthermore,
locks are associated with signatures over transactions and unlocking `i implies that the i-th party
learns the corresponding signature σi. Given an AMHL, one can setup a multi-hop payment by
locking transactions over all the intermediaries and release the last lock only once the receiver
is reached. This triggers a cascade reaction where each intermediary unlocks the corresponding
signature σi and can therefore redeem its payment. To build an AMHL compatible with our VTLRS,
we adapt the scheme from [5] to the linkable ring signature used in Monero. We defer the details of
the construction to ??.

Equipped with this tool, our approach consists in setting up payment channels between the parties
in both currencies: On the Monero front the (uni-directional) payment channel is denoted by pkMAB,
and on the other currency, the channel is denoted by pkCBA. Then, using AMHL, the parties setup
payment locks on payment transactions from these channels, which enforces the conditional payment:
If Bob posts a transaction paying the coin from pkMAB, then Alice recovers enough information to
compute a valid transaction from pkCBA, by the security of the AMHL scheme. On the other hand, if
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Bob does not post any transaction, eventually the channels expire and the respective parties recover
their coins.

One important aspect that we need to address is to ensure that the timelock tM of the payment
channel pkMAB is less than the timelock tC of the channel pkCBA. Precisely we want tC = tM + δ for
some conservatively chosen δ > 0. This is because Alice wants to ensure that after Bob releases the
lock of AMHL and gets the Monero token from pkMAB , she has some time (δ) to release her lock and
get the currency token from pkCAB. This means that, the timing hardness T of VTLRS that is used
in (the PayMo) channel pkMAB is set such that the associated time tM satisfies tM := tC − δ.
Interoperability. Our AMHL protocol is compatible with the LRS-based transaction scheme of
Monero (that uses ed25519 curve) and Schnorr signature (that use the ed25519 curve) transaction
schemes of [5]. In case of atomic swaps, this means that we can swap a Monero token with any
currency that uses Schnorr signatures with ed25519 curve, for example, Ripple [43] or Cardano [44].
To atomically swap with cryptocurrencies that implement Schnorr/ECDSA signatures over different
curves, one has to additionally include a NIZK proof of equality of discrete logarithms over different
groups [38]. For a comprehensive overview of atomic swaps over different curves, we refer the reader
to [12].

2.4 Integration in Monero

We finally discuss how to integrate our proposal in the current code of Monero. An additional
challenge stems from the fact that each public key in the ring used in a transaction is associated
with a key_offset field [45]. This field stores the index of the key with respect to the global set of
public keys as a way to optimise the look up of keys during transaction verification. Recall that,
during channel opening, Alice and Bob need to generate the redeem transaction tx rdm that spends
from the payment channel key pkAB before tx fund (that spends to pkAB) is posted on the blockchain.
This means that, in order to sign a correctly formed transaction tx rdm, one needs to guess ahead of
time the offset position of pkAB.

There are two ways to bypass this obstacle. (1) Modify the current implementation (not the
transaction scheme) to adopt a different look up strategy for public keys, that allows users to sign
transactions that spend from a key that is not posted on the blockchain yet. (2) Instead of generating
a VTLRS commitment of a signature on tx rdm, Bob can generate a timed commitment to his share
of the joint secret key skAB, for time T. After force opening the commitment, Alice learns skAB
and can use it to correctly sign tx rdm, since the offset of pkAB is fixed at this point. Clearly, one
needs an efficient mechanism to ensure that the timed commitment of Bob indeed contains a valid
share of skAB. This can be realized using a verifiable timed discrete-log (VTDLog) scheme, and an
efficient instantiation was recently proposed in [30].

While using VTDLog is a viable option to construct Monero-compatible PCs, we argue that
VTLRS is a more desirable solution, since it enables the usage of stealth addresses [17]. Stealth
addressing reduces interaction between the sender and the receiver of a payment in the following way:
Alice (sender) generates a one-time public key opkB for Bob (recipient) given access to Bob’s master
public key mpkB, and then sends coins to opkB. Bob can later spend from opkB by generating the
one time secret key oskB using his master secret key mskB. This way the receiver is not required to
send a recipient key to the sender every time he wishes to receive funds. Since the VTDLog-based
solution leaks information about the long term secret key of a party, stealth addressing scheme used
currently in Monero, is no longer a viable option, as one could link all future transactions of Bob
once oskB is disclosed [46]. Note that this issue does not arise in the VTLRS-based scheme, since
neither user learns the secret key shares of the other user involved.

More details about integrating payment channels in the current code of Monero can be found
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in Appendix G.

2.5 Extensions

Notice that Alice is required to perform persistent computation to open her VTLRS commitments.
This could limit the number of channels that Alice can operate simultaneously. However, the persistent
computation of opening a VTLRS commitment can be securely outsourced to a decentralized
service [47] at a market determined cost. This relieves Alice of any potentially heavy computation
related to VTLRS opening, provided she has enough funds to outsource using the service from [47].
Therefore the number of channels Alice operates is no longer limited by her computational power.

PayMo supports payment channels with uni-directional payments. A payment channel with
bi-directional payments allows both Alice and Bob to make payments to each other using their
channel. A recent work [48] proposed Sleepy Channels, the first bi-directional payment channel
protocol compatible with Monero. However, the key tools that they require to achieve this, are based
on our work. Specifically, they crucially rely on VTLRS and the channel operations of PayMo,
to realise timed payments and payment revocation, which are essential for bi-directional payment
channels.

3 Preliminaries

We denote by λ ∈ N the security parameter and by x ← A(in; r) the output of the algorithm A
on input in using r ← {0, 1}∗ as its randomness. We omit this randomness and only mention it
explicitly when required. We denote the set {1, . . . , n} by [n]. We model parallel algorithms as
Parallel Random Access Machines (PRAM): In this model multiple processors are attached to a
single block of memory and n number of processors can perform independent operations on n number
of data in a particular unit of time. We consider probabilistic polynomial time (PPT) machines as
efficient algorithms. We briefly recall the cryptographic primitives used in our protocols and
Time-Lock Puzzles. Time-lock puzzles [19] allow one to conceal a secret for a certain amount
of time T. Homomorphic Time-Lock Puzzles (HTLPs) [42] allow one to perform homomorphic
computation on honestly generated puzzles. It consists of a setup algorithm (PSetup), that takes
as input a time hardness parameter T and outputs public parameters of the system pp, a puzzle
generation algorithm (PGen) that, on input the public parameter and a message, generates the
corresponding puzzle. One can then evaluate homomorphically functions over encrypted messages
(PEval) and solve the resulting puzzle in time T (PSolve). The security requirement is that for every
PRAM adversary A of running time ≤ Tε(λ) the messages encrypted are computationally hidden.

In [42], Malavolta and Thyagarajan show an efficient construction that is linearly homomorphic
over the ring ZNs , where N is an RSA modulus and s is any positive integer. The scheme is perfectly
correct and is secure under the sequential squaring assumption [19].
Non-Interactive Zero-Knowledge. Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be an NP relation with
corresponding NP-language L := {stmt : ∃wit s.t . R(stmt ,wit) = 1}. A non-interactive zero-
knowledge proof (NIZK) [49] system for L is initialized with a setup algorithm Setup(1λ) that
outputs a common reference string crs. A prover can show the validity of a statement stmt with
a witness wit by invoking PNIZK,L(crs, stmt ,wit), which outputs a proof π. The proof π can be
efficiently checked by the verification algorithm VNIZK,L(crs, stmt , π). A NIZK proof for language L
is simulation extractable if one can extract a valid wit from adversarially generated proofs, even if
the adversary sees arbitrarily many simulated proofs. A NIZK must also be zero knowledge in the
sense that nothing beyond the validity of the statement is leaked to the verifier.
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Threshold Secret Sharing. Secret sharing is a method of creating shares of a given secret and
later reconstructing the secret itself only if given a threshold number of shares. Shamir [50] proposed
a threshold secret sharing scheme where the sharing algorithm takes a secret s ∈ Zq and generates
shares (s1, . . . , sn) each in Zq. The reconstruction algorithm takes as input at least t shares and
outputs a secret s. The security of the secret sharing scheme demands that knowing only a set of
shares smaller than the threshold size does not help in learning any information about the secret s.
Universal composability. To model security and privacy in the presence of concurrent executions
we resort to the universal composability framework from Canetti [51] extended to support a global
setup [52]. In this framework, parties interact with a trusted ideal functionality through secure
authenticated channels. A protocol is executed in the presence of any adversary A that corrupts any
subset of the parties, prior to the beginning of the execution (static corruption). Both honest parties
and the adversary receive their input from a special entity, called the environment. Let EXECτ,A,E
be the ensemble of the outputs of the environment E when interacting with the attacker A and users
running protocol τ (over the random coins of all the involved machines).

Definition 1 (Universal Composability) A protocol τ UC-realizes an ideal functionality F if
for any PPT adversary A there exists a simulator S such that for any environment E the ensembles
EXECτ,A,E and EXECF ,S,E are computationally indistinguishable.

Synchrony and Communication. We assume synchronous communication between users, where
the execution of the protocol happens in rounds. We model this via an ideal functionality Fclock as
it is done in [53], [54], where all honest parties are required to indicate that are ready to proceed to
the next round before the clock proceeds. The clock functionality that we consider is fully described
in [52]. This means that all entities are always aware of the given round3. We also assume the
existence of secure message transmission channels between users modelled by Fsmt.
Blockchain. We assume the existence of a blockchain B (just as in [4], [5], [55]) that we model
as a trusted append-only bulletin board: The corresponding ideal functionality FB maintains the
chain B locally and updates it according to the transactions between users. The functionality is also
parameterized by a signature scheme that lets any user generate key pairs and can post a signed
transaction transferring coins from one user to another. At any point in the execution, any user U
can send a distinguished message read to FB, who sends the whole transcript of B to U . We denote
the number of entries of B (or the length of the chain) by |B|. We refer the reader to [55] for a
formal definition of this functionality. In all of our protocols we model the Monero blockchain as FB.

4 Transaction Scheme of Monero

We review the basic definitions of Linkable Ring Signatures (LRS) following Lai et al. [17]. In
contrast to their work, our definitions do not consider the “confidential transaction” part, and only
focus on the signature of the transaction scheme, for conceptual simplicity.

4.1 Definition

A ring signature [56] scheme allows to sign messages such that the signer is anonymous within a set
a possible signers, called the ring. The members associated to the ring are chosen “on-the-fly” by the
signer using their public-keys. Linkability [57] means that anonymity is retained unless the same
user signing key is used to sign twice. This is achieved by associating a unique linkability tag to
each signing key that is revealed while generating a signature.

3Parties could synchronise their clocks over the internet
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In a transaction scheme, we have a block of data referred to as a transaction, that determines
the amount of coins transferred from one user address (source) to another user address (target) and
it is accompanied by an authentication token (signature) of the sending user. Since the sending user
is represented through the source address in the transaction, the signature is checked for validity
with respect to the source account. Combining linkable ring signatures and a transaction scheme,
we have a linkable ring signature based transaction scheme (LRS-TS), where the message signed is
the transaction which consists of: A ring of addresses (LRS public keys) and their associated coins
(out of which one of the addresses is the source account), and one or more target addresses. The
authentication token of the transaction is a linkable ring signature on the transaction (as message),
with the ring of addresses as the ring, and the secret authentication key of the source address as the
the signing key of the linkable ring signature scheme. To prevent leakage of the source address it is
assumed that each address in the ring of addresses have the same amount of associated coins4.

Definition 2 A Linkable Ring Signature (LRS) transaction scheme ΠLRS consists of the PPT algo-
rithms (Setup,OTKGen,TagGen, Spend,Vf) which are defined as follows:
pp ← Setup(1λ): outputs the public parameter pp.
(pk , sk)← OTKGen(pp): The one-time key generation algorithm outputs a public-secret key-pair
(pk , sk).
tag ← TagGen(sk): The tag-generation algorithm takes as input a secret key sk . It outputs a tag
tag.
(tx , σ)← Spend(R, I,O, µ): The spend algorithm takes as input a set R of public keys with each
key associated with c coins, a tuple I = (j, sk , tag) consisting of an index j, a secret key sk , and a
tag tag, a set O consisting of target public keys and some metadata µ . It outputs a transaction
tx := (R, tag ,O, µ) and a signature σ.
b← Vf(tx , σ): The verify algorithm inputs a transaction tx and a signature σ. It outputs a bit b
denoting the validity of σ.

Security. We have three properties of LRS-TS, namely (1) Privacy : LRS-TS should ensure privacy
of the source account, meaning an adversarial observer on the blockchain should not learn any
information about the source address from a transaction other than the fact that it is a member
of the ring of one-time addresses, (2) Non-Slanderability (Unforgeability): LRS-TS must ensure
that an adversarial user cannot steal the coins of an honest user (unforgeability) or spend coins
on behalf of an honest user (non-slanderability), and (3) Linkability : LRS-TS must ensure that an
adversary cannot double spend his coins and any such attempts must be linkable. We refer the
reader to Appendix A for the formal definitions.

The subtle difference between these two properties is that an adversary stealing funds has to
produce a valid authentication token (a signature) for the honest user’s one-time key. While an
adversary spending on behalf of an honest user (or slandering an honest user) may use only the tag
of the honest user’s key in his transaction and not necessarily generate the authentication token
for the honest user’s key. This way of spending makes the honest user’s coins unspendable: as the
corresponding tag has been used by the adversary already which makes any attempt by the honest
user to spend his funds (marked) as a double spend and therefore rejected by the blockchain.

We note that it is enough to prove that a LRS-TS satisfies our privacy, linkability and non-
slanderability definitions, as our formal definitions of linkability (Definition 9) and non-slanderability
(Definition 8) actually imply the notion of unforgeability.

4This assumption can be relaxed with the use of confidential transactions [58] where an account’s associated amount
is hidden using commitments.
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4.2 LRS-TS Construction in Monero

We give a formal description of the LRS-TS scheme deployed in Monero. The scheme (Figure 2) is
defined over a cyclic group G of prime order q with generator G and uses two different hash functions
HP : G→ G,HS : {0, 1}∗ → Z∗q .

The private-public key pair is the tuple (x,Gx) ∈ Z∗q ×G. Each secret key is associated with a
unique linkability tag that is set as tag := HP(pk)sk . The spend algorithm takes as input a ring of
public keys, the secret key and the tag of the public key that is a member of the ring. For ease of
understanding we make the assumption that the spending public key is always pk |R|. The algorithm
samples (s′0, s1, . . . , s|R|−1)← Z∗q and computes L0, R0, h0 and Li, Ri, hi for each index i ∈ [|R| − 1]
(as shown in Figure 2). The algorithm finally sets s0 := s′0 − h|R|−1 · sk and the signature consists of
σ := (s0, s1, . . . , s|R|−1, h0). The verification algorithm runs the same loop as in the spend algorithm
(except that it now ranges over the full ring) to obtain h|R| and it accepts only if h0 = h|R|.

Setup(1λ, 1α)

HP : G→ G
HS : {0, 1}∗ → Z∗q
pp := (G, q, G,HP,HS)

return pp

OTKGen(pp)

x← Z∗q
sk := x

pk := Gx

return (pk , sk)

TagGen(sk)

set tag := HP

(
Gsk
)sk

return tag

Spend(R, I,O, µ)

parse R := (pk1, . . . , pk |R|)

parse I := (j, sk , tag), s.t .

j = |R| and pk |R| = Gsk

tx := tx (R, I,O, µ)
(s′0, s1, . . . , s|R|−1)← Z∗q

L0 := Gs
′
0 , R0 := HP(pk |R|)

s′0

h0 := HS(tx ||L0||R0)

for i ∈ [|R| − 1] do

Li := Gsipk
hi−1

i ,

Ri := HP(pk i)
si taghi−1

hi := HS(tx ||Li||Ri)
endfor

set s0 := s′0 − h|R|−1sk

σ := (s0, s1, . . . , s|R|−1, h0)

return (tx , σ)

Vf(tx , σ)

parse tx :=

({
pkRi

}|R|
i=1

, tag ,
{
pkOi

}|O|
i=1

, µ

)
parse σ := (s0, . . . , s|R|−1, h0)

set s|R| := s0

for i ∈ [|R|] do

Li := Gsipk
hi−1

i

Ri := HP(pk i)
si taghi−1

hi := HS(tx ||Li||Ri)
endfor

return (h0 = h|R|)

Figure 2: LRS transaction scheme ΠLRS used in Monero. Here the spending key Gsk is assumed to be the
|R|-th element of the ring R.

Using the following theorems, we show that the construction shown in Figure 2 satisfies the
security notions of a LRS-TS as defined in Section 4.1. The formal proofs of the theorems are
deferred to Appendix A.4.

Theorem 4.1 (Privacy) If the Decisional Diffie-Hellman problem (DDH) is hard over the group
G (??) then the LRS transaction scheme used in Monero is private Definition 7 in the ROM.

Theorem 4.2 (Non-Slanderability) If the Discrete Logarithm problem (DL) is hard over the
group G (??), then the LRS transaction scheme used in Monero is non-slanderable Definition 8 in
the ROM.

Theorem 4.3 (Linkability) The LRS construction used in Monero is linkable Definition 9 in the
ROM.
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5 Verifiable Timed Linkable Ring Signature

In the following we define and construct a Verifiable Timed Linkable Ring Signature (VTLRS)
transaction scheme.

5.1 Definition

A VTLRS is a linkable ring signature based transaction scheme with the additional property that
one can commit to such a signature in a verifiable and extractable way.

Definition 3 (VTLRS) A Verifiable Timed Linkable Ring Signature Transaction Scheme, ΠVTLRS

for a LRS transaction scheme ΠLRS is a tuple of five algorithms (Setup,Com,Vfy,Op,FOp) where:
crs ← Setup(1λ): the setup algorithm outputs a common reference string crs which is implicitly taken
as input in all other algorithms.
(C, π)← Com(σ, tx ,T; r): the commit algorithm takes as input a signature σ, the transaction tx , a
hiding time T and randomness r. It outputs a commitment C and a proof π.
0/1← Vfy(tx , C, π): the verify algorithm takes as input a transaction m, a commitment C of hardness
T and a proof π and accepts the proof if and only if, the value σ embedded in C is a valid signature
on the transaction tx (i.e., LRS.Vf(tx , σ) = 1). Else it outputs 0.
(σ, r)← Op(C; r): the opening algorithm is run by the committer that as input a commitment C and
outputs the committed signature σ and the randomness r used in generating the commitment C.
σ ← FOp(C): the deterministic FOp algorithm takes as input the commitment C and outputs a
signature σ.

The correctness requirement of a VTLRS transaction scheme is formalized in the definitions below.

Definition 4 (Correctness of VTLRS) A Verifiable Timed Linkable Ring Signature Transaction
Scheme, ΠVTLRS := (Setup,Com,Vfy,Op,FOp) construction for a linkable ring signature transac-
tion scheme ΠLRS := (LRS.Setup, LRS.OTKGen, LRS.TagGen, LRS.Spend, LRS.Vf) is said to satisfy
correctness, if (i) for all λ ∈ N, (ii) all crs output by Setup(1λ), (iii) all transactions tx , all hiding
times T ∈ N, and (iv) all signature σ output by LRS.Spend, the following conditions hold

1. Vfy(tx ,Com(σ, tx ,T)) = 1,

2. for all randomness r such that (C, π) ← Com(σ, tx ,T; r) we have (σ, r) ← Op(C; r), and
σ ← FOp(C).

Beyond security of LRS-TS, a VTLRS must satisfy the notions of timed privacy and soundness,
defined below.
Timed Privacy. This notion requires that all PRAM algorithms whose running time is at most
t (where t < T), succeed in extracting σ from the commitment C and π with at most negligible
probability. The adversary is given the spending public key and the tag as input, and gets access
to a spending oracle. The challenge for the adversary here is to distinguish (within time T even
with parallelism) a commitment from being a commitment to a valid LRS signature with the above
attributes, to a simulated commitment.

Definition 5 (Timed Privacy) A VTLRS scheme ΠVTLRS = (Setup,Com,Vfy,Op,FOp) for a
LRS transaction scheme ΠLRS = (LRS.Setup, LRS.OTKGen, LRS.TagGen, LRS.Spend, LRS.Vf) is timed
private if there exists a PPT simulator S, a negligible function negl, and a polynomial T̃ such that
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for all polynomials T > T̃, all algorithms A = (A1,A2) where A1 is PPT and A2 is a PRAM whose
running time is at most t < T, and all λ ∈ N it holds that

Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk , sk)← LRS.OTKGen(pp)

tag ← TagGen(sk)

(R,O, µ)← ASpendO
1 (pk , tag , pp)

s.t . pk = pk |R| and tx := {R, tag ,O, µ}
b← {0, 1}, b′ ← ASpendO

2 (tx , Cb, πb)


≤ negl(λ)

where, pp ← LRS.Setup(1λ), crs ← Setup(1λ) and if b = 0, then (C0, π0) ← Com(σ, tx ,T) where
σ ← LRS.Spend(R, (|R|, sk , tag),O, µ) and if b = 1, (C1, π1)← S(pk , tx ,T).

Soundness. This says that the accepting verifier is convinced that given C, the FOp algorithm will
return a valid signature σ on transaction tx in time T. A VTLRS is simulation-sound if it is sound
even when the prover has access to simulated proofs for (possibly false) statements of his choice; i.e.,
the prover must not be able to compute a valid proof for a fresh false statement of his choice.

Definition 6 (Soundness) A VTLRS scheme ΠVTLRS = (Setup,Com,Vfy,Op,FOp) for a LRS
transaction scheme ΠLRS = (LRS.Setup, LRS.OTKGen, LRS.TagGen, LRS.Spend, LRS.Vf) is sound if
there is a negligible function negl such that for all PPT adversaries A and all λ ∈ N, we have:

Pr


b1 = 1 ∧ b2 = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

crs ← Setup(1λ)

(tx , C, π,T)← A(crs)

(σ, r)← FOp(C)

b1 := Vfy(tx , C, π)

b2 := LRS.Vf(tx , σ)


≤ negl(λ) .

5.2 Our VTLRS Construction

We give a construction of VTLRS transaction scheme for the LRS transaction scheme used in
Monero. Throughout the following overview, we describe the VTLRS as an interactive protocol
between a committer and a verifier, which can be made non-interactive using the Fiat-Shamir
transformation [41]. A formal description of our VTLRS is given in Figures 3 and 4, where hash
function H′ : {0, 1}∗ → J , with J being a set of indices in [n] such that |J | = t− 1, is used used to
implement the Fiat-Shamir transformation. We now give an intuitive description of the VTLRS
construction.
High-Level Overview. The commit algorithm proceeds as follows: Consider a signature σ :=

(s0, s1, . . . , s|R|−1, h0) generated by Spend algorithm of Figure 2 on a transaction tx :=
(
{pk i}

|R|
i=1 , tag ,O, µ

)
.

Let pk |R| be the spending key and the committer is privy to this knowledge (which we justify below).
The commit algorithm takes as input this transaction tx , signature σ and the hiding time T. To gener-
ate a VTLRS on transaction tx , the committer secret shares the values in sc := (s0, G

s0 ,HP(pk |R|)
s0)

using a t-out-of-n threshold sharing scheme in the following way:

1. For the first t − 1 shares, choose αi ∈ Zq uniformly at random and set Ki := Gαi and Yi :=
HP(pk |R|)

αi , respectively. Note that each share αi can be publicly verified for consistency by
recomputing Ki and Yi.
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2. For the remaining n − (t − 1) shares, use Lagrange interpolation in the exponent, i.e., for
i ∈ {t, t+ 1, . . . , n} set

αi =

s0 −
∑

j∈[t−1]

α
`j(0)
j

`i(0)−1

Ki =

 Gs0∏
j∈[t−1]K

`j(0)
j

`i(0)−1

Yi =

 HP(pk |R|)
s0∏

j∈[t−1] Y
`j(0)
j

`i(0)−1

where `i(·) is the i-th Lagrange polynomial basis. Note that here αi’s are integers in Zq while
Ki, Yi ∈ G.

The above steps ensure that we can reconstruct (via Lagrange interpolation) the valid s0 value that
is part of the signature σ from any t-sized set of shares of sc.

The committer then computes a time-lock puzzle Zi with time parameter T for each share αi
separately. The first message consists of all puzzles (Z1, . . . , Zn) together with Gs0 ,HP(pk |R|)

s0 and
all (Ki, Yi) as defined above.
Consistency Proof via Cut-and-Choose. After receiving the above first message, the verifier
chooses a random set I of size (t− 1) as the challenge set. For this set, the committer opens the
time-lock puzzles {Zi}i∈I and reveals the underlying value αi (together with the corresponding
random coins) that it committed to. The verifier wants to ensure that, (i) the puzzles are indeed
generated for the correct timing hardness T and can be successfully solved in that time and (ii) as
long as at least one of the shares in the unopened puzzles ({Zi}i∈[n]/I) is consistent with respect to
the corresponding partial commitments (Ki, Yi), then we can use it to reconstruct s0 and therefore
a valid σ. To do this, the verifier performs the following checks and accepts the commitment as
legitimate only if they are all successful:

1. All puzzles {Zi}i∈I are correctly generated using αi and the corresponding randomness (which
was also revealed above) with timing hardness T

2. All {αi}i∈I are consistent with the corresponding Ki, Yi, i.e., Ki = Gαi , Yi = HP(pk |R|)
αi .

3. All Ki, Yi are valid shares of Gs0 and HP(pk |R|)
s0 respectively, i.e., K`i(0)

i ·
∏
j∈I K

`j(0)
j = Gs0 and

Y
`i(0)
i ·

∏
j∈I Y

`j(0)
j = HP(pk |R|)

s0 .

Consequently, to fool a verifier, a malicious prover has to guess the challenge set I ahead of time to
pass the above checks without actually committing a valid s0 (signature σ). Setting the parameters
appropriately, we can guarantee that this happens only with negligible probability.
Signature Recovery via Homomorphic Packing. To recover s0 and the valid signature, the
verifier has to solve ñ = (n − t + 1) puzzles to force the opening of a VTLRS. To close the gap
between honest and malicious verifiers, we would like to reduce his workload to the minimal one
of solving a single puzzle. To achieve this goal, we use the linearly homomorphic time-lock puzzle
construction [42], combined with standard packing techniques to compress ñ puzzles into a single
one. Concretely, the verifier, on input (Z1, . . . , Zñ) homomorphically evaluates the linear function

f(x1, . . . , xñ) =

ñ∑
i=1

2(i−1)·λ · xi (1)

to obtain a single puzzle Z̃, which he can solve in time T. Observe that, once the puzzle is solved,
all signatures can be decoded from the bit-representations of the resulting message. However we
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need to ensure that: (1) The message space of the homomorphic time-lock puzzle must be large
enough to accommodate all ñ signatures and (2) The values αi encoded in the the input puzzles
must not exceed the maximum size of a signature (say λ bits).

Condition (1) can be satisfied instantiating the linearly homomorphic time-lock puzzles with a
large enough message space. On the other hand, condition (2) is enforced by including a range NIZK
(PNIZK,Lrng ,VNIZK,Lrng) for the language Lrng (defined below), which certifies that the message of each
time-lock puzzles falls into the range [0, 2λ].

Lrng :=

stmt = (Z, 0, 2λ,T) : ∃wit = (α, r) s.t .

(Z ← LHTLP.PGen(pp, α; r)) ∧ (α ∈ [0, 2λ])


We instantiate the range proof with the recently introduced protocol [30] which we recall for
completeness in Appendix D.

Setup(1λ)

crs rng ← ZK.Setup(1λ)

ppLRS ← LRS.Setup(1λ, 1α)

ppLHTLP ← LHTLP.Setup(1λ,T)

crs := (crs rng, ppLRS, ppLHTLP)

return crs

FOp(C)

parse C := (G̃, H̃, {si}i∈[|R|−1], h0, {Zi}i∈[n],T)

∀i∈[n]αi ← LHTLP.PSolve(pp, Zi)

s0 :=
∑
j∈[t]

(αj) · `j(0) // first t shares are valid

σ := (s0, . . . , s|R|−1, h0)

return σ

Op(C, {ri}i∈[n])

return (σ, {ri}i∈[n])

Com(σ, tx ,T)

parse crs := (crs rng, ppLRS, ppLHTLP)

tx :=
(
{pk i}

|R|
i=1 , tag ,O, µ

)
σ := (s0, s1, . . . , s|R|−1, h0)

∀i ∈ [t− 1] αi ← Z∗q ,Ki := Gαi , Yi := HP(pk |R|)
αi

for i ∈ {t, . . . , n} do

αi =

s0 − ∑
j∈[t−1]

αj · `j(0)

 · `i(0)−1

Ki =

 Gs0∏
j∈[t−1]K

`j(0)

j

`i(0)
−1

Yi =

 HP(pk |R|)
s0∏

j∈[t−1] Y
`j(0)

j

`i(0)
−1

endfor

for i ∈ [n] do

ri ← {0, 1}λ

Zi ← LHTLP.PGen(pp, αi; ri)

πrng,i ← PNIZK,Lrng(crs rng, (Zi, 0, 2
λ,T), (αi, ri))

endfor

I ← H′
(
Gs0 ,HP(pk |R|)

s0 , {(Ki, Yi, Zi, πrng,i)}i∈[n]
)

C := (Gs0 ,HP(pk |R|)
s0 , {si}i∈[|R|−1], h0, {Zi}i∈[n],T)

π := ({Ki, Yi, πrng,i}i∈[n], I, {αi, ri}i∈I)
return (C, π)

Figure 3: Verifiable Timed Linkable Ring Signature-Transaction Scheme

Security Analysis. In the following theorems we argue the security of our VTLRS construction.
The formal proofs of the theorems are deferred to Appendix C.
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Vfy(tx , C, π)

parse crs := (crs rng, ppLRS, ppLHTLP)

tx :=
(
{pk i}

|R|
i=1 , tag ,O, µ

)
C := (G̃, H̃, {si}i∈[|R|−1], h0, {Zi}i∈[n],T)

π := ({Ki, Yi, πrng,i}i∈[n], I, {αi, ri}i∈I)
for i ∈ [|R| − 1] do

Li := Gsipk
hi−1

i , Ri := HP(pk i)
si taghi−1 ,

hi := HS(tx ||Li||Ri)
endfor

L|R| := G̃ · pkh|R|−1

|R| , R|R| := H̃ · tagh|R|−1

h|R| := HS(tx ||L|R|||R|R|)
b1 := (h0 6= h|R|)

b2 := ∃j /∈ I

(
K
`j(0)

j ·
∏
i∈I

K
`i(0)
i 6= G̃

)

b3 := ∃j /∈ I

(
Y
`j(0)

j ·
∏
i∈I

Y
`i(0)
i 6= H̃

)
b4 := ∃i ∈ [n]

(
VNIZK,Lrng(crs rng, (Zi, 0, 2

λ,T), πrng,i) 6= 1
)

b5 := ∃i ∈ I (Zi 6= LHTLP.PGen(pp, αi; ri))

b6 := ∃i ∈ I (Ki 6= Gαi)

b7 := ∃i ∈ I
(
Yi 6= HP(pk |R|)

αi

)
b8 :=

(
I 6= H′

(
G̃, H̃, {(Ki, Yi, Zi, πrng,i)}i∈[n]

))
if
∨
i∈[8]

bi = 1 then return 0

else return 1

Figure 4: Verifiable Timed Linkable Ring Signature-Transaction Scheme
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Theorem 5.1 (Timed Privacy, Soundness) Let (SetupNIZK,Lrng ,PNIZK,Lrng ,VNIZK,Lrng) be a NIZK
for Lrng and let LHTLP be a secure time-lock puzzle with perfect correctness. Then the protocol as
described in Figures 3 and 4 satisfies timed privacy (Definition 5) and soundness (Definition 6) in
the ROM.

Knowing the Spending Key. In our VTLRS construction, the committer knows the spending
key pk |R| in the ring R that was used to generate σ on transaction tx . This is justified because, in
our applications the committer and the verifier are aware of the spending key as it is the joint public
key pk |R| for which the committer generates a VTLRS commitment (C, π) of a signature σ (that
the committer generates by interacting with the verifier).

5.3 Optimizations

We now discuss how to deal with the presence of a trusted setup and further optimize the computation
for solving puzzles.
On The Setup Assumption. Our VTLRS protocol requires a one-time setup that is computed by
a trusted party. The output of this setup procedure consists of the common reference string crs rng
for the range proof and the public parameters pp of the homomorphic time-lock puzzles. Specifically,
crs rng consists of sampling a random oracle and pp is a (uniformly sampled) RSA modulus N = p · q.
For our applications, it suffices that the verifier/solver of VTLRS does not learn the factorization of
N . This implies that the VTLRS commitment generator can sample N himself and make it part
of his public key. That is, our VTLRS can be implemented without a trusted setup (in the ROM).
However, there are some advantages in assuming a global modulus N (with unknown factors) which
is shared across all users, as discussed below.
Batch Force-Opening of VTLRS Commitments. Looking ahead to our PC application, the
VTLRS will substitute the time-lock functionality of a blockchain, i.e. the channel can be closed
once the signature is recovered. This however means that a user has to continuously solve as many
puzzles as currently open channels. This might limit the number of channels that one can keep open
at the same time. To mitigate this issue, we observe that assuming (i) a large enough message space
of the time-lock puzzles and (ii) global public parameters pp, one can batch the solution of different
puzzle into a single one using known constructions from [42]. This can be done by homomorphically
packing the messages in each puzzle into a single puzzle with a linear function (see Equation (1)) as
discussed before. Now, each user will have to solve at most a single puzzles at all times, regardless
of how many channels are open.

6 PayMo

In the following we describe our protocol PayMo, for (uni-directional) payment channels in Monero.

6.1 Payment Channel Definition

We formally define payment channels as an ideal functionality FPC in Figure 5, closely following the
functionality from [4].

Payment channels in the Blockchain B are of the form (c〈u0,u1〉, v, t), where c〈u0,u1〉 is a unique
channel identifier for the channel between users u0 and u1, v is the capacity of the channel, and t
is the expiration time of the channel. Note that any two users may have multiple channels open
simultaneously. The functionality maintains two additional internal lists C and P . The former is used
to keep track of the closed channels, while the latter records the the off-chain payments in a open
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channel. Entries in P are of the form (c〈u0,u1〉, v, t, h), where c〈u0,u1〉 is the corresponding identifier,
v is the amount of credit used, t is the expiration time of the channel, and h is the identifier for this
entry.

The functionality has access to the current time via the global clock. It provides the users with
interfaces open, close and pay using which the user can open a channel, close the channel and make
payments using the channel, respectively. FPC initializes a pair of empty lists P, C. Users can query
FPC to open channels and close them to any valid state in P. On input a value µ and a channel
c〈u0,u1〉 from some user u0, FPC checks whether the channel is open and if the value µ is less than
the channel capacity. If so, the functionality updates the channel capacity and adds the new state di
(after the i-th payment) to P.

In terms of security of PC, observe that a payment in the channel or it can be closed only by
one of the users involved in the channel. If the time exceeds the channel expiry time and there is a
close channel request, the functionality ignores all the payments and everything returns to the state
as it were before any payments. Notice that payment amounts cannot exceed the channel’s latest
capacity, thereby ensuring users cannot pay with outdated state of balance or even mint new coins
out of thin air.

Open Channel: On input (open, c〈u,u′〉, v, u
′, t) from a user u:

• Check whether c〈u,u′〉 is well-formed (contains valid identifiers and it is not a duplicate).

• Send (c〈u,u′〉, v, t) to u′, who can either abort or authorize the operation.

• In the latter case, append the tuple (c〈u,u′〉, v, t) to B and the tuple (c〈u,u′〉, v, t, h) to P, for some random
h.

• Return h to u and u′.

Close Channel: On input (close, c〈u,u′〉, h) from either user u or u′:

• Parse B for an entry (c〈u,u′〉, v, t) and P for (c〈u,u′〉, v
′, t, h), for h 6= ⊥.

• If c〈u,u′〉 ∈ C and the current time T (according to the global clock) is greater than t, abort.

• Otherwise add (c〈u,u′〉, u
′, v′, t) to B and add c〈u,u′〉 to C.

• Notify the other user with the message (c〈u,u′〉,⊥, h).

Pay: On input (pay, µ, c〈u0,u1〉, t0) from a user u0:

• Parse B for an entry of the form (c〈u0,u1〉, v, t).

• If the entry exists, sample random h and send (h, c〈u0,u1〉, µ) to user u1.

• Check whether for all entries of the form (c, v′, ·, ·) ∈ P it holds that v′ ≥ µ and that t0 > T (where T is
the current time).

• If this is the case add di = (c〈u0,u1〉, v
′ − µ, t0,⊥) to P, where (c〈u0,u1〉, v

′, ·, ·) ∈ P is the entry with the
lowest v′.

• If any of the conditions above is not met, remove from P all the entries di added in this phase and abort.

Figure 5: Ideal functionality FPC for Payment Channels.

6.2 Auxiliary Interfaces

To ease the presentation of our main PC protocol, we introduce two interfaces that allow a pair of
users to generate a joint key and to jointly sign a transaction using the LRS of Monero. We define
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the corresponding ideal functionality FJ−LRS in Figure 6. Our PC protocol will then be described in
a hybrid world where parties have oracle access to the these ideal functionalities.

More concretely, the functionality FJ−LRS consists of two interfaces: (i) The KTGen interface
enables two users to generate joint one-time public keys and corresponding tags of the LRS transaction
scheme in such a way that neither user learns the corresponding secret key of the one-time joint public
key. (ii) The JSpend interface enables two users to spend from a joint one-time key by generating a
signature on a transaction of the users’ choice and letting users choose the {si}i∈[|R|−1] values of the
signature (refer to Figure 2). The interface returns the valid signature to one of the users.

KTGen(G, G, q)
Upon invocation by both users U0 and U1:
sample x← Zq and compute pk := Gx

set skU0U1 := x

Sample hash functions HS : {0, 1}∗ → Z∗q
and HP : G→ G
set tagU0U1

← G

choose random x0, x1 such that x0 + x1 = x

record (pk , tag , skU0U1 , x0, x1)

send x0, pk , tag ,HS,HP to U0

send x1, pk , tag ,HS,HP to U1

ignore future calls from (U0, U1)

JSpend(Ub, (s1, . . . , s|R|−1), U0, U1, tx )

Upon invocation by both users U0 and U1:
where Ub (b ∈ {0, 1}) gives inputs (s1, . . . , s|R|−1)

Retrieve pkU0U1
that was generated

parse tx := (R, tagU0,U1
, pkO, µ)

parse R := (pk1, . . . , pk |R|), s.t . pk |R| := pkU0U1

choose s′0 ← Z∗q
Compute

L0 := Gs
′
0 , R0 := HP(pk |R|)

s′0

h0 := HS(tx ||L0||R0)

for i ∈ [|R| − 1] do

Li := Gsipk
hi−1

i ,

Ri := HP(pk i)
si taghi−1

hi := HS(tx ||Li||Ri)
endfor

set s0 := s′0 − h|R|−1skU0U1

σ := (s0, s1, . . . , s|R|−1, h0)

return σ to Ub

Figure 6: Ideal functionality FJ−LRS

Instantiations. Due to space constraints, we only give a brief overview of the protocols that we
design to realize these ideal interfaces and we refer the reader to Appendix E for formal descriptions
and for the security analysis.

The joint key and tag generation (Figure 13) is standard extension of the protocol in [59]. The
interaction is between Alice and Bob, where Alice and Bob generate the joint public key pkAB similar
to a Diffie-Hellman key exchange. The parties then jointly generate the joint tag tagAB for pkAB,
with the exception that now the parties have to additionally prove in zero-knowledge that their
messages are consistent with the key exchange protocol. At the end of the protocol Alice and Bob
learn xA and xB, respectively, which are the shares of the joint secret key skAB := xA + xB. And
both Alice and Bob obtain the joint key pkAB := GxA+xB , the joint tag tagAB := HP(pkAB)xA+xB .

In the joint spending protocol (Figure 14), Alice and Bob generate a transaction tx that they wish
to sign on. The transaction contains tagAB as the spending tag and the ring R in the transaction
consists of the joint one-time key pkAB. Parties exchange messages in a consistent manner and run
the spending algorithm from Figure 2 in a joint manner. The interaction is scheduled such that
Alice sends the last message to Bob with which Bob can obtain a valid signature σ on tx with pkAB
as the spending key and tagAB as the spending tag. Note that Alice does not obtain σ at the end of
the interaction, which is crucial for our PC protocol.
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6.3 PayMo Protocol

With these tools we describe our main protocol. Our construction consists of three phases: Channel
opening, payment, and channel closing. We present a formal description of PayMo in Figure 7.
Throughout the following overview, we consider an example of a uni-directional channel from Alice
to Bob, where only Alice makes payments to Bob via the channel.
Channel Opening. The first step is for Alice and Bob to open a channel. This is done by generating
a joint address and tag via the KTGen interface of FJ−LRS, which returns pkAB and tagAB to both
parties. Alice and Bob then call the JSpend interface of FJ−LRS on a transaction tx rdm (that spends
the coins from pkAB to some address of Alice). The functionality returns the signature σ to Bob.
Bob then generates a VTLRS on a transaction tx rdm on σ and hands it over to Alice. The VTLRS
is generated with timing hardness parameter T, meaning that Alice learns the valid signature σ
on tx rdm only after time corresponding to the timing parameter T. This means that after time T,
Alice will learn a the signature σ and therefore will be able to redeem any remaining coin in the
address (if any). The channel is considered opened after Alice’s last step, which consists in posting a
transaction tx ′ that sends v coins to pkAB. It is crucial for security that Alice performs this step
only after she obtains a valid VTLRS on tx rdm.
Payments. For i-th payment Alice and Bob generate joint signatures on transactions tx rdm,i (that
spend from pkAB to some key of Bob) using JSpend interface of FJ−LRS. The transaction and the
corresponding signature are stored as Lpay := (tx rdm,i, σrdm,i).
Channel Closing. Whenever (before time T) Bob wishes to close the channel he can simply post
the most recent tx rdm,i and the corresponding valid signature tx rdm,i retrieved from Lpay. As it is
standard with payment channels, it is imperative that Bob posts a closing transaction before time T
has elapsed. After time T, Alice has had enough time to solve the VTLRS on tx rdm and consequently
recover a valid signature on it. Thus, she can redeem all unspent coins from the channel by posting
tx rdm and σ on the blockchain.

The following theorem states the security of PayMo. The savvy reader might notice that VTLRS
hides the signature only for a bounded (polynomial) amount of time, which seems to be at odds
with the standard UC setting, where the environment is a PPT machine of potentially unbounded
depth. We however stress that our simulator does not make any assumption on the depth of the
distinguisher and the security of VTLRS is called only in intermediate hybrids. We refer the reader
to Appendix F for the formal proof.

Theorem 6.1 Let ΠVTLRS be a VTLRS scheme with timed privacy and soundness as defined
in Definitions 5 and 6 and ΠLRS be a secure transaction scheme. Then, the payment channel protocol
PayMo described in Figure 7 with access to (FJ−LRS,FB,Fsmt,Fclock) UC realizes the functionality
FPC Figure 5.

7 Benchmarking

We implement prototypes of our VTLRS construction as described in Figure 3 and the PayMo
protocol as shown in Figure 7. We build our VTLRS prototype with rust using the curve25519-
dalek [60] library and primitives (LRS transaction scheme, and NIZK proof for Leqdl) built over this
curve have the security parameter λ = 128. All measurements were done on on a single CPU core of
an AWS t2 micro instance for easier comparison with the following specifications: 1 core of a Intel
Xeon E5-2676 v3 @ 2.40Ghz, 1GB of RAM, Ubuntu Linux 18.04.2 LTS (4.15.0-1045-aws) and rust
1.41.
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Alice(crs,T) Bob(crs,T)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .OpChannel(Alice,Bob, µ,T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

call KTGen(G, G, q) of FJ−LRS call KTGen(G, G, q) of FJ−LRS

obtain (xA, pkAB , tagAB ,HS,HP) obtain (xB , pkAB , tagAB ,HS,HP)

obtain (pkA,1, skA,1) from B set Lpay := ∅
R := (pk1, . . . , pk |R|)

where pk |R| := pkAB

(p̃k , s̃k)← OTKGen(pp)

set tx rdm :=
(
R, tagAB , p̃k , µ

)
tx rdm (s1, . . . , s|R|−1)← Z∗q

call JSpend
(
B, {si}i∈[|R|−1], tx rdm

) (s1, . . . , s|R|−1) call JSpend
(
B, {si}i∈[|R|−1], tx rdm

)
of FJ−LRS of FJ−LRS,obtain σ

if Vfy(tx rdm, C, π) 6= 1 then abort C, π (C, π)← Com(tx rdm, σ,T)

post (tx ′, σ′) to FB

where tx ′ :=
(
R′, tag ′, pkAB , µ

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i-th Payment, Pay(pkAB , µ

′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R := (pk1, . . . , pk |R|),
pkB,i (pkB,i, skB,i)← OTKGen(pp)

where pk |R| := pkAB

set tx rdm,i :=
(
R, tagAB , pkB,i, µ

′) tx rdm,i (s1, . . . , s|R|−1)← Z∗q

call JSpend
(
B, {si}i∈[|R|−1], tx rdm,i

) (s1, . . . , s|R|−1) call JSpend
(
B, {si}i∈[|R|−1], tx rdm,i

)
of FJ−LRS of FJ−LRS,obtain σrdm,i

Lpay := (tx rdm,i, σrdm,i)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ClChannel(pkAB , ·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ClChannel(pkAB , µ) ClChannel(pkAB , µ
′)

σ ← FOp(C) // After time T parse Lpay := (tx rdm,k, σrdm,k)

post (tx rdm, σ) to FB post (tx rdm,k, σrdm,k) to FB

Figure 7: PayMo protocol in Monero using VTLRS.
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Our evaluation covers several cryptographic primitives that are used as tools in the paper and
they are listed below. The measurements of the primitives were executed for 1000 times and the
median of all executions is reported.
Hash functions. All hashing operations (HS,HP,H and H′) are implemented using SHA-512 or the
Keccak variant used in Monero.
Elliptic Curve. For all Elliptic Curve Operations the Curve25519 implementation from curve25519-
dalek [60] in Ristretto form [61] was used. This curve is comparable in terms of speed to Monero.
NIZK Proofs. We implemented the NIZK proof from [62] for Leqdl (Appendix E) and the NIZK
range proof described in Figure 12 for Lrng. The prover and verifier times for the NIZK proof for
Leqdl is 0.079ms and 0.143ms, respectively. For the NIZK range proof Figure 12, we report the
measurements in Table 1 for two different choices of k (statistical soundness parameter). For better
security, in all our experiments below, we use k = 64 for the range proofs. Note that the choice of k
only affects the channel opening time of PayMo and not the channel’s payment throughput.
Table 1: Measurements for NIZK proof for Lrng (Figure 12) for different choice of statistical security
parameter k.

k Soundness error Prover (in ms) Verifier (in ms)

32 2.32× 10−10 129.33 145.47

64 5.42× 10−20 258.66 289.56

Linearly Homomorphic Time-Lock Puzzles (LHTLP). We implemented the LHTLP con-
struction [42] with a 1024 bit RSA modulus N . In our benchmark, the time taken for (one-time)
puzzle setup PSetup (including prime generation) is 730.43ms, the time taken for puzzle generation
PGen is 3.557ms. And the time taken by PSolve for solving a LHTLP puzzle of timing hardness
T := 1024, 2048 and 4096 is 2.708 ms, 4.070ms and 6.795ms, respectively.
VTLRS.We evaluated our VTLRS construction (Figure 3) by setting the cut-and-choose parameters
as n = 80 and t = 40 (probability of adversary breaking soundness is 9.3× 10−24). We observe that
the time needed for committing and verification in the VTLRS transaction scheme is dominated by
PGen. This is because during the generation of the range proofs, the committer needs to generate
k + n = 144 puzzles and the verifier needs to recompute (t− 1) + 1 = 40 puzzles during verification.
Our results show that Com and Vfy algorithms of our VTLRS construction take 586.76ms and
467.84ms in CPU time, respectively. For this, we implemented the LRS transaction scheme of
Monero with a ring size of 10 keys (which is the common size used in Monero today [63]), with one
spending key and one receiving key.

7.1 Evaluation of PayMo

We consider two different measurements: (i) Only the computation operations and not the cost of
serialisation and network transmission in PayMo. This shows the performance of the protocol on
the sender and receiver side of a PayMo channel. (ii) Total time taken by operations including
network operations and latency. To show the impact of network transmission in this measurement,
two settings with different network latency are considered.

We consider Alice and Bob who share a payment channel. To evaluate the performance of
PayMo, we measure the computation time of both users during the channel opening and payment
phase. Specifically, we measure the CPU time required by either users individually. Our results are
summarised in Table 2. In Table 3, we measure the total time taken for PayMo operations that
includes network latency between parties. Our results from Table 3 show that the time taken for
finishing a single payment is less a third of second even under high latency scenarios.
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Table 2: PayMo operations excluding network overhead.
Alice (in ms) Bob (in ms)

Joint key/tag (Figure 13) 0.13 0.31

Channel opening (Figure 7) 468.1 588.4

Channel payment (Figure 7) 1.30 1.28

Table 3: Evaluation of PayMo: Total time taken for PC operations including network latency. We consider
low latency setup S1 and high latency setup S2 with Round Trip Times between the two users of 0.3ms and
144 ms, respectively.

Setup S1 (in ms) Setup S2 (in ms)

Joint key/tag (Figure 13) 1.85 440.7

Channel opening (Figure 7) 1060 1351

Channel payment (Figure 7) 3.61 297.9

Interpretation. Our results from Table 2 show that by exploiting parallel request processing, the
receiver of one or more channel(s) can process around 780 payments per second per CPU core, while
the sender of one of more channel(s) can process around 770 payments per second per CPU core.
The parties can easily scale up their processing power if they spawn more PC nodes (or cores) as
done in the Lightning Network.

For instance, from the perspective of a payment service provider who has payment channels
with several users as the receiver of the channels, it can accept more than 93600 payments per
CPU core over a span of 2 minutes (average block production rate in Monero), from users with
PayMo channels with the service provider. In this case, only the receiver’s CPU time for payments
is considered, excluding the overhead for serialization and network.

To showcase the power of PayMo, in case of payments from Alice to Bob and assuming a round
trip latency time of 144ms per message, Alice and Bob can process close to 93500 payments per
CPU core (with acknowledgement of payment) over a span of 2 minutes. This is because during
message transmission, parties do not stay idle but instead spawn new payments in parallel. In case
the parties only make sequential payments, Alice can still make more than 400 payments over the
span of 2 minutes.

8 Conclusions

We presented PayMo, the first payment channel protocol that is fully compatible with Monero,
the largest privacy-preserving cryptocurrency. Our results show an increase in the transaction
throughput of several orders of magnitudes when compared with the current implementation of
Monero. As an exciting next step, we plan to test the large scale adoption of our approach for real
transactions in Monero.
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A Formal Definitions of LRS-TS

For the formalization of our security notions, we need to define the oracles shown in Figure 8. The
one-time key generation oracle OTAccGenO generates a fresh one-time key pair and returns the
one-time public key as the response to the oracle. The spend oracle SpendO takes as input the index
of the source one-time public key, the ring, a set of target public keys and metadata. The oracle
retrieves the corresponding one-time secret key and the tag previously generated and then runs the
Spend algorithm to generate a signature σ. It returns σ as the oracle reply. The tag generation
oracle TagGenO takes as input the index k and a flag value f . It retrieves the one-time secret key
generated before and generates the corresponding tag tag using TagGen algorithm. It additionally
checks if the flag f is set to 1. If so, it adds tag returns tag as the reply of the oracle. Otherwise, it
just returns a simple success message and does not reveal the tag.

A.1 Privacy

In order to define privacy, we consider an adversary that takes part in the PrivExp experiment.
The adversary is given access to the one-time key generation oracle, the spending oracle and the
tag generation oracle. It then outputs two challenge indices representing two one-time public keys
previously generated during some oracle query. It also outputs a ring, a set of target accounts and
some metadata. Both the one-time public keys are included in the ring The secret keys and the tags
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InitOracles()

// Initialize Lists
PK := SK := Wallet := ∅
// Initialize Sets
Spent := Rev := Σ := ∅

OTKGenO()

// Generate keys for a new honest user.
(pk , sk)← OTKGen(pp)

PK := PK‖pk , SK := SK‖sk
return pk

TagGenO(k, f)

// Instruct user k to generate the tag
// and optionally learn the tag.
// Store the output in Wallet[k] for SpendO.
tag ← TagGen(SK[k])

Wallet[k] := tag

if f = 1 then

Rev := Rev ∪ {tag}
return tag

else return “Success”

SpendO(I,R,O, µ)

// Instruct honest spender(s) to generate a signature.
// R is (incomplete) list containing malicious information.
// I instructs how to populate R and I
// with information of honest spenders.
// For each (j, k) in I, fill in I and R[j]

// using data retrieved from Wallet[k].
parse I := {(j, k)}
sk := SK[k]

tag := Wallet[k]

R[j] := pk

I := (j, sk , tag)

tx := tx(R, I,O, µ)

σ ← Spend(R, I,O, µ)

Σ := Σ ∪{(tx , σ)}
if Vf(tx , σ) = 0 then return 0

Spent := Spent ∪{tag }
return σ

Figure 8: Oracles for Security Experiments

of both the one-time keys are retrieved The experiment runs the spend algorithm and generates a
signature using one of the secret keys. The signature and the transaction are given to the adversary.
The adversary finally outputs a bit guessing which of the one-time keys was the spending key. The
adversary is said to win the experiment if the guess is correct, and the tags have not been revealed to
the adversary in some oracle query. The formal specification is given in Figure 9 and the definition
of the privacy property is given in Definition 7.

Definition 7 (LRS-TS Privacy) A LRS transaction scheme is private if for all PPT adversaries
A and all positive integers α ∈ poly(λ),

Pr
[
PrivExpLRS,A(1λ) = 1

]
≤ 1

2 + negl(λ)

where PrivExpbLRS,A is defined in Figure 9.

A.2 Non-Slanderability (and Unforgeability)

As explained above, slandering is the act of producing a valid signature on a trasnaction on behalf of
another user. Formally, we model non-slanderability (Definition 8) by defining a security experiment
in which the adversary produces a transaction-signature tuple, after several queries to the oracles
(Figure 8). The adversary is successful if the tuple is valid, not produced by the spend oracle, and
the tag specified in the slandering transaction was previously obtained in a spend oracle query or
a tag generation oracle query. Since a tag is computationally bound to a unique one-time key (as
required by the linkability property Figure 11), non-slanderability (which states that no adversary
can forge under a tag of a honest user key), naturally implies that no adversary can forge signatures
for honest keys. As a consequence, we do not need to define an unforgeability property explicitly.

Definition 8 (LRS-TS Non-slanderability) A LRS transaction scheme is non-slanderable if
for all PPT adversaries A and all α ∈ poly(λ),

Pr
[
NSlandExpLRS,A(1λ) = 1

]
≤ negl(λ)
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PrivExpLRS,A(1λ)

pp ← Setup(1λ), InitOracles()

O := {OTKGenO, SpendO,TagGenO}

(I,R,O, µ)← AO(pp)

I0 := I1 := ∅ // Preparing honest spenders as instructed by adversary.

parse I as {jt, kIt }1t=0

for t ∈ {0, 1}

skIt := SK[kIt ]

tagt := Wallet[kIt ]

R[jt] := pkIt

endfor

b← {0, 1}

Ib := (jb, sk
I
b , tagb)

txb := tx(R, Ib,O, µ)

σb ← Spend(R, Ib,O, µ)

if Vf(tx t, σt) = 0 then return 0

b′ ← AO (txb, σb)

b0 := b = b′

b1 := tag0 6= tag1

b2 := {tag0, tag1} ∩ Spent = ∅
b3 := {tag0, tag1} ∩ Rev = ∅
return b0 ∧ b1 ∧ b2 ∧ b3

Figure 9: Privacy Experiment

where the experiment NSlandExpLRS,A is defined in Figure 10.

NSlandExpLRS,A(1λ)

pp ← Setup(1λ), InitOracles()

(tx∗, σ∗)← AOTKGenO,TagGenO,SpendO(pp)

parse tx∗as

({
pkRi

}|R|
i=1

, tag,
{
pkOi

}|O|
i=1

, µ

)
b0 := Vf(tx∗, σ∗)

b1 := ((tx∗, σ∗) 6∈ Σ)

b2 := (tag ∈ Spent ∨ tag ∈ Rev)

return b0 ∧ b1 ∧ b2

Figure 10: Non-slanderability Experiment

A.3 Linkability

Linkability (Definition 9) roughly means that a user cannot double-spend coins from an account. In
more detail, we say that a LRS transaction scheme is balanced if the following two properties are
satisfied. First, the predicate CheckTag is required to be “binding" in a sense similar to a commitment
scheme. The binding property of CheckTag ensures that a tag is computationally bound to a source
one-time key (i.e., it is hard to come up with two tags for the same one-time public key), which in
turn ensures that checking for duplicate tags is sufficient to prevent double-spending. The second
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property requires that, for any efficient adversary A which produces a transaction with a signature,
there exists an extractor EA such that, if the signature is valid (Event 0), then the probability of
the following inconsistency occurring is negligible. (Event 1), the extractor EA extracted an index
j and a secret key sk , yet sk is inconsistent with the j-th ring key pkRj the tag tag according to
the predicate ChkTag, i.e., ChkTag(pkRj , sk , tag) = 0. The two properties can be interpreted in the
following way. If the spender attempts to spend from the same account twice by producing different
tags for the account, then with the spender and the extractor EA one can break the binding property
of ChkTag. Therefore double-spending is infeasible.

Definition 9 (LRS-TS Linkability) A LRS transaction scheme is linkable if:

1. ChkTag is binding. That is, for any PPT adversary A, for all positive integers α ∈ poly(λ),

Pr


ChkTag(pk , sk , tag) = 1

ChkTag(pk , sk ′, tag ′) = 1

(sk , tag) 6= (sk ′, tag′)

∣∣∣∣∣∣∣∣∣
pp ← Setup(1λ)pk ,
sk , tag ,

sk ′, tag ′

← A(pp)


≤ negl(λ)

2. For all PPT adversaries A, and all positive integers α ∈ poly(λ), there exists a PPT extractor
EA such that

Pr
[
LinkExpLRS,A,EA(1λ, 1α) = 1

]
≤ negl(λ)

where LinkExpLRS,A,EA(1λ, 1α) is defined in Figure 11.

LinkExpLRS,A,EA(1λ, 1α)

pp ← Setup(1λ)

(tx , σ)← A(pp)

(R, I,O, µ)← EA(pp, tx , σ)

parse R as
{
pkRi

}|R|
i=1

parse I as (j, sk , tag)

b0 := Vf(tx , σ)

b1 := ChkTag(pkRj , sk , tag) = 0

return b0 ∧ b1

Figure 11: Linkability Experiment

A.4 Security Analysis of Monero’s LRS-TS

A.4.1 Privacy

Intuition. The adversary is challenged in distinguishing a signature that was generated by one of the
two challenge indices. The challenge indices and the challenge ring are of the adversary’s choice. If
the adversary identifies the signer correctly then the signature is assumed to be correctly generated
with a valid DDH instance. If the adversary fails, then the DDH instance is assumed to be an invalid
one.
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Proof 1 (Privacy) Consider an adversary A that violates the privacy of the LRS scheme of Monero.
This means that we have

Pr
[
PrivExpLRS,A(1λ, 1α) = 1

]
>

1

2
+ negl(λ)

We construct a reduction S that simulates the privacy experiment for A and based on its output solve
the DDH problem. S answers the oracle queries made by A that it is given access to in the privacy
experiment. Specifically, let us denote the total queries made by A to OTKGenO as qK , to SpendO
as qS and to TagGenO as qT . Additionally, A can makes qHP

and qHS
oracle queries to HP and HS

respectively. We assume w.l.o.g that the adversary A does not make redundant queries to any of the
oracles. The total number of queries made by A to all oracles are upper bounded by some polynomial
p(λ).

We now describe the reduction procedure. S first receives as input (G, q, G,Ga, Gb, Gc) as the
DDH challenge. It runs the setup for LRS by running Setup(1λ, 1α) and obtains pp. It then invokes
A by giving it pp as input.

Oracle Queries S guesses some i ∈ [qK ] such that in the i-th query to the OTKGenO it sets
pk := Ga. It adds pk as the i-th entry to PK and set the i-th entry of SK as ⊥. It then returns pk .

For the spend oracle queries made by A of the form ({j, k},R,O, µ) if k = i, then S aborts the
execution. For all other cases of k 6= i, the reduction S runs the spend oracle as described in Figure 8
where it generates the signature honestly according to the algorithm in Figure 2.

For the tag generation queries from A of the form (k, f), if k 6= i, the reduction retrieves the
secret key from SK and generates the tag as specified in Figure 8. This involves checking if HP(GSK[k])
is already set, if not, it calls the HP oracle and retrieves the response. If additionally, f = 1, the
reduction reveals the tag tag. If k = i and f = 0, the reduction adds Gc to Wallet[k].

For oracle queries to HP of the form pk , the reduction checks if pk = Ga, and if so, sets the
oracle reply as Gb. For other cases, the reduction samples fresh random coins rj ← Z∗q for the j-th
query and sets the response as Grj . It records the oracle response (pk , grj ) into the list LHP

.
For oracle queries to HS of the form (tx ||L||R), the reduction samples random coins r′j ← Z∗q

and responds to the adversary with r′j.

Challenge phase S obtains the response from A in the form of (I,R,O, µ), where |R| = |R|.
Parse I := {j0, k0, j1, k1}. If k0 6= i and k1 6= i, the reduction aborts by outputting abort1. For ease
of understanding w.l.o.g, let us assume that k0 = i and that j0 = |R|. The reduction sets R[j0] = Ga

and retrieves Gc from Wallet[k0]. It then sets R[j1] = PK[k1] and parse R := (pk1, . . . , pk |R|). In
order to generate the challenge signature, the reduction does the following steps:

• Set tx ∗ := {R, Gc,O, µ}

• Sample h|R|, s|R| ← Z∗q and set h0 = h|R|, for j ∈ [|R| − 1],

– Check if (pk j , G
ej ) ∈ LHP

, and if not set HP(pk j) := Gej for random ej ← Z∗q
– Sample sj , hj ← Z∗q and set HS(tx ∗||Gsjpkhj−1

j ||Gejsj (Gchj−1)) = hj

• Set HS(tx ∗||Gs|R|(Ga)h|R|−1 ||(Gb)s|R|(Gc)h|R|−1) = h|R|

• Set σ∗ := (s|R|, s1, . . . , s|R|−1, h0) and return (tx ∗, σ∗) to A.
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Note that the random oracle queries set in this challenge phase are not queried by the adversary
before this phase except with negligible probability.

For any query made by the adversary to any of the oracles, the reduction answers by ensuring
consistency with the query-response set during the previous phases.

Adversary A outputs a bit b′ as its guess of the signer being R[jb′ ].

Analysis Let us denote b′′ to be the challenge bit for the reduction S: if b′′ = 1 then the DDH
challenge given to S is a valid DDH tuple and if b′′ = 0 then the DDH challenge is a random tuple.
We have the following:

Pr
[
S(Ga, Gb, Gc) = b′′

]
=

Pr
[
S(Ga, Gb, Gc) = b′′ ∧ abort1

]
+ Pr

[
S(Ga, Gb, Gc) = b′′ ∧ ¬abort1

]
We have Pr

[
S(G, q, G,Ga, Gb, Gc) = b′′ ∧ abort1

]
= 0 because, S outputs 0 or 1 only if it does

not abort the execution. We now rewrite,

Pr
[
S(Ga, Gb, Gc) = b′′ ∧ ¬abort1

]
=

Pr [¬abort1] · Pr
[
S(Ga, Gb, Gc) = b′′|¬abort1

]

We calculate the above probability as follows:

Pr
[
S(Ga, Gb, Gc) = b′′ | b′′ = 1 ∧ ¬abort1

]
= Pr

[
S(Ga, Gb, Gc) = b′′ | b′′ = 1 ∧ ¬abort1

∧ PrivExpLRS,A(1λ, 1α) = 1
]

+ Pr
[
S(Ga, Gb, Gc) = b′′ | b′′ = 1 ∧ ¬abort1

∧ PrivExpLRS,A(1λ, 1α) = 0
]

≥ 1 ·
(

1

2
+ negl(λ)

)
+

1

2
·
(

1− 1

2
− negl(λ)

)
=

3

4
+

negl(λ)

2

and
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Pr
[
S(Ga, Gb, Gc) = b′′ | b′′ = 0 ∧ ¬abort1

]
= Pr

[
S(Ga, Gb, Gc) = b′′ | b′′ = 0 ∧ ¬abort1

∧ PrivExpLRS,A(1λ, 1α) = 1
]

+ Pr
[
S(Ga, Gb, Gc) = b′′ | b′′ = 0 ∧ ¬abort1

∧ PrivExpLRS,A(1λ, 1α) = 0
]

≥ 0 · 1

2
+

1

2
·
(

1− 1

2

)
=

1

4
.

The probabilities for b′′ = 1 and b′′ = 0 are both 1
2 as it is a coin toss. We have the factor

1
qK

lower bounded by 1
p(λ) which is the probability with which S does not abort with output abort1

(meaning that its guess of the challenge key was correct). This leads to

Pr
[
S(Ga, Gb, Gc) = b′′

]
=

1

2
Pr [¬abort1]Pr

[
S(Ga, Gb, Gc) = b′′ | ¬abort1

∧ (b′′ = 1 ∨ b′′ = 0)
]

≥ 2

p(λ)

1

2

(
3

4
+

negl(λ)

2
+

1

4

)
=

2

p(λ)

(
1

2
+

negl(λ)

4

)
.

For the case where S aborts the simulation by outputting abort1, it can do no better than
guessing to solve the DDH problem instance. From this we learn that S solves the DDH instance
with probability greater than

(
1
2 + 1

p(λ) + negl(λ)
4

)
which is non-negligibly larger than 1

2 . This proves
the contradiction and hence privacy follows.

A.4.2 Non-Slanderability

Intuition. We make use of the forking lemma that is discussed by Bellare et al. [64]. The interaction
with the adversary breaking the non-slanderability of our scheme is recorded on a transcript tape.
After a successful slander, we rewind this tape to a forking point and repeat the interaction with
independent coins except maintaining consistency with the previous exchanges. This forking point is
chosen based on the queries to the random oracle and the slander. In the end, we solve the DLP in
relation to the forking point.

Proof 2 Consider an adversary A that violates the non-slanderability of the LRS scheme of Monero.
This means that we have

Pr
[
NSlandExpLRS,A(1λ, 1α) = 1

]
> ε(λ)

where ε is some polynomial. We construct a reduction S that simulates the non-slanderability
experiment for A and based on its output solve the DL problem. S answers the oracle queries made
by A that it is given access to in the non-slanderability experiment. Specifically, let us denote the
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total queries made by A to OTKGenO as qK , to SpendO as qS and to TagGenO as qT . Additionally,
A can makes qHP

and qHS
oracle queries to HP and HS respectively. We assume w.l.o.g that the

adversary A does not make redundant queries to any of the oracles. The total number of queries
made by A to all oracles are upper bounded by some polynomial p(λ).

We now describe the reduction procedure. S first receives as input (G, q, G,Ga) as the DL
challenge. It runs the setup for LRS by running Setup(1λ, 1α) and obtains pp. It then invokes A by
giving it pp as input.

Oracle Queries S guesses some i ∈ [qK ] such that in the i-th query to the OTKGenO. It sets
pk = Ga and sk = ⊥. For all other queries, it generates (pk , sk)← OTKGen(pp). It then adds pk
to the list PK and sk to the list SK. It then returns pk to the adversary A.

For oracle queries to HP of the form pk , the reduction samples fresh random coins rj ← Z∗q for
the j-th query and sets the response as Grj . It records the oracle response (pk , Grj , rj) into the list
LHP

.
For the tag generation queries from A of the form (k, f), if k 6= i, the reduction retrieves the

secret key from SK and generates the tag as specified in Figure 8. If additionally, f = 1, the reduction
reveals the tag tag. If k = i, the reduction retrieves (PK[i], Gr, r) from LHP

and adds (Ga)r to
Wallet[k] and return (Ga)r if f = 1.

For the spend oracle queries made by A of the form ({j, k},R,O, µ), where |R| = |R| and
(w.l.o.g.) j = |R|, if k = i, then S does the following:

• Parse R := (pk1, . . . , pk |R|), notice that pk |R| = Ga

• Retrieve (Ga)r from Wallet[k]

• Retrieve (PK[k], Gr, r) from LHP

• Set tx := {R, (Ga)r,O, µ}

• Sample h|R|, s|R| ← Z∗q and set h0 = h|R|, for j ∈ [|R| − 1],

– Check if (pk j , G
ej ) ∈ LHP

, and if not set HP(pk j) := Gej for random ej ← Z∗q
– Sample sj , hj ← Z∗q
– set HS(tx ∗||Gsjpkhj−1

j ||Gejsj (Gchj−1)) = hj

• Set HS(tx ||Gs|R|(Ga)h|R|−1 ||(Gr)s|R|(Gar)h|R|−1) = h|R|

• Set σ := (s|R|, s1, . . . , s|R|−1, h0) and return (tx , σ) to A.

For spend oracle queries where k 6= i, the reduction simulates as described in Figure 8 checking
for query response for other oracles namely, HP and HS. The reduction sets new responses for the
oracles if any query was not made previously.

Finally, A outputs its slander (tx ∗, σ∗). The reduction aborts the execution if it is not a valid
signature, or if the pair was previously obtained through a spend oracle query. Let tx ∗ := {R, tag ,O, µ}
and the reduction also aborts if tag 6= (Ga)r.
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Operations of S Note that HS and HP queries are made by S during the verification process of
the slander. To be more precise, a total of |R| number of ’HS operations’ are needed to verify the
signature (in this case the slander). We therefore have two events. Firstly, the event E where each
of the |R| queries corresponding to the |R| verification queries (to verify the slander) have already
been included in the qHS

number of hash queries (made by A) or in the qS number of spending oracle
queries. Secondly, the event ¬E which denotes the complement of the above event, where S aborts
the execution by outputting abort1.

If E happens, consider the set of |R| queries made by A to HS that match the |R| queries made
in the verification process (|R| queries per slander) by S. We let Xi1 , Xi2 , . . . , Xi|R| denote the first
appearance on the transcript T of each of the queries to HS used by S for verification of the slander
where 1 ≤ i1 ≤ . . . ≤ i|R|. (This is to consider the case of repetition of queries)

Let ` be such that
Xi|R| = HS(tx ∗||Gs`pk `h`−1 ||(Gr`)s`(tag)h`−1)

in the verification process by S. We call this ` as the gap of σ∗.
We annotate a successful slander σ∗ by S as a (w, `)-slander if i1 = w i.e, the first appearance

of all verification related queries is the w-th query to the HS oracle and ` is the gap. Queries made
during the spending oracle simulation to the random oracles are counted. S aborts by outputting
abort2 if tag 6= (Ga)r and continues to perform a rewind simulation otherwise.
S has recorded the transcript T for the (w, `) slander output by A. Given this successful (w, `)

slander, S now rewinds the transcript T to the w-th query and gives it to A as a rewind simulation
to obtain another transcript T ′ which is a successful (w, `) slander again. If T ′ is not a successful
(w, `) slander again then S aborts by outputting abort3, and if not, it continues. New coin flips that
are independent to T are made for all queries subsequent to the w-th query (where w is learnt from
the (w, `) slander from T ). Note that consistency is maintained with the previous queries and also
that both T and T ′ use the same program in A.

Let the w-th query common to T and T ′ be denoted by HS(tx ∗, Gu, Gv).
Here, S knows Gu and Gv but not u and v at the time of rewind. After A returns the output

from the rewind simulation, S proceeds to compute the discrete log a of Ga.
The transcript T and the rewind simulation transcript T ′ contain two (w, `)-slander signatures

such that the following pairs of equalities hold.

Gu = Gs`pk `
h`−1 = Gs`+x`h`−1

Gu = Gs
′
`pk `

h′`−1 = Gs
′
`+x`h

′
`−1

(2)

Gv = Gr`s`(Gar)h` = Gr`sπ+arh`−1

Gv = Gr`s
′
`(Gar)h

′
`−1 = Gr`s

′
`+arh

′
`−1

(3)

Notice that in equation (1) the public key pk ` may be of adversary’s choice. Therefore x` is not
known to the reduction. Therefore the reduction uses the equation (2) to solve the DL problem and
retrieve a. As the reduction knows r`, s`, s′`, r, h`−1, h

′
`−1, it can do the following:

a =
r`s` − r`s′`

rh′`−1 − rh`−1
mod q

Analysis We first analyze the probability of S outputting abort1. We can see that in the case of
event ¬E the conditional probability of h0 in the forged signature σ∗ satisfying the final equation in
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the verification process is at most 1
t−qH−|R|qS (where t denotes all possible hash values for an input)

which is negligible. For the given adversary A we have

ε(λ) < Pr[E ]Pr [A slanders|E] + Pr[¬E]Pr [A slanders|¬E]

≤ Pr[E ]Pr [A slanders|E] + 1

(
1

t− qH − |R|qS

)
The probability of A returning a slander and having already queried for all |R| queries used in
verification is greater than ε(λ) as

(
1

t−qH−|R|qS

)
is negligible.

For analyzing the probabilities Pr[¬abort2 ] and Pr[¬abort3 ], we do the following. We refer to
the run of S resulting in transcript T as the first and T ′ as the second. The probability of a slander
in the first run is

(
1
qK
· ε(λ)

)
. This is because the Pr[¬abort2 ] which is the probability of S correctly

guessing the slander tag is equal to
(

1
qK

)
. We can compute Pr[¬abort3 ] which is the probability of

the second run of S also resulting in a (w, `) slander as
(

ε(λ)
qK(qH+qKqS)

)
.

To bound the success of reduction S we refer to the forking lemma proposed by Bellare et al. [64].
By the forking lemma we have that S solves the DL problem with probability

Pr [S succeeds] ≥ 1

qK
ε(λ) ·

(
ε(λ)

qK(qH + qKqS)
− 1

h

)
.

Here 1
h refers to the probability with which the randomness used in the second run is the same as

that in the first run and this is negligible.
We can see that the complexity of S is no more than qK(qH + qKqS) times that of A and the

probability of success of S against the DL problem is at least 1
qH+qKqS

·
(
ε(λ)
qK

)2
which is non-negligible.

Therefore we arrive at the contradiction, thereby proving non-slanderability.

A.4.3 Linkability

Proof 3 We first argue that the tag generated in the LRS construction is binding to the secret key.
Consider an adversary that outputs (pk , sk1, sk2, tag1, tag2) such that ChkTag(pk , sk i, tag i) = 1 for
i ∈ [2].

The ChkTag procedure for the LRS construction of Monero checks the following:

• pk = Gsk i

• tag i = HP(pk)sk i

We therefore have
pk = Gsk1 = Gsk2

which implies sk1 = sk2. Since HP is modeled as a random oracle, it is deterministic and therefore
we have

HP(pk) = HP(Gsk1) = HP(Gsk2)

tag1 = HP(Gsk1)sk1 = HP(Gsk2)sk1 = HP(Gsk2)sk2 = tag2

We now have (sk1, tag1) = (sk2, tag2). Therefore we conclude that the tag in the LRS construction
of Monero is indeed binding.
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We now proceed to the LinkExpLRS,A,EA(1λ, 1α) experiment. If the adversary A wins the experiment
it has to output a tuple (tx , σ) such that the signature is valid and the tag is not consistent with the
secret key and public key used for generating the signature.

We construct the extractor EA similar to the technique used in the non-slanderability proof. Note
that now the adversary A only queries for the random oracles HS and HP (Figure 8). The extractor
picks random coins and sets the oracle responses for both HP and HS. In both cases, the extractor
locally maintains a list of query-response pair. Let the total number of queries made to the oracles be
denoted by qHP

and qHS
respectively.

When A outputs a tuple (tx , σ) where tx :=
{
{pkRi }i∈[|R|], tag ,O, µ

}
and σ := (s0, s1, . . . , s|R|−1, h0),

the extractor verifies if the signature is valid. During this signature verification, the extractor makes
its own queries to the random oracles. Similar to what we saw in the non-slanderability proof, we
have the event E where each of the |R| queries corresponding to the |R| verification queries (to verify
the signature) have already been included in the qHS

number of hash queries (made by A). Secondly,
the event ¬E which denotes the complement of the above event, where EA aborts the execution by
outputting abort1.

If E happens, consider the set of |R| queries made by A to HS that match the |R| queries made in
the verification process by EA. We let Xi1 , Xi2 , . . . , Xi|R| denote the first appearance on the transcript
T of each of the queries to HS used by EA for verification of the signature where 1 ≤ i1 ≤ . . . ≤ i|R|.
(This is to consider the case of repetition of queries)

Let ` be such that
Xi|R| = HS(tx ||Gs`pk `h`−1 ||(Gr`)s`(tag)h`−1)

in the verification process by EA. We call this ` as the gap of σ.
We annotate a successful σ by A as a (w, `)-signature if i1 = w i.e, the first appearance of all

verification related queries is the w-th query to the HS oracle and ` is the gap.
EA has recorded the transcript T for the (w, `)-signature output by A. Given this successful

(w, `)-signature, EA now rewinds the transcript T to the w-th query and gives it to A as a rewind
simulation to obtain another transcript T ′ which is a successful (w, `)-signature again. The second
such successful signature for tx is denoted by σ′ := (s′0, s

′
1, . . . , s

′
|R|−1, h

′
0).

New coin flips that are independent to T are made for all queries subsequent to the w-th query
(where w is learnt from the (w, `)-signature from T ). Note that consistency is maintained with the
previous queries and also that both T and T ′ use the same program in A. If T ′ is not a successful
(w, `)-signature again then EA aborts by outputting abort3, and if not, it continues.

Let the w-th query common to T and T ′ be denoted by HS(tx , Gu, Gv).
Here, EA knows Gu and Gv but not u and v at the time of rewind. The transcript T and the

rewind simulation transcript T ′ contain two (w, `)-signatures such that the following pairs of equalities
hold, where (Gr`)y = tag.

Gu = Gs`pk `
h`−1 = Gs`+x`h`−1

Gu = Gs
′
`pk `

h′`−1 = Gs
′
`+x`h

′
`−1

(4)

Gv = Gr`s`(Gr`)yh` = Gr`sπ+yr`h`−1

Gv = Gr`s
′
`(Gr`)yh

′
`−1 = Gr`s

′
`+r`yh

′
`−1

(5)

Notice that in the first equation the public key pk ` is of adversary’s choice. Since the extractor
knows s`, s′`, h`−1, h

′
`−1, it retrieves the secret key by doing the following:

x` :=
s` − s′`

h′`−1 − h`−1
mod q
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The extractor EA outputs ({pk i}i∈[|R|], (`, x`, tag),O, µ). For the adversary to win the LinkExpLRS,A,EA(1λ, 1α)
experiment it has to be that ChkTag(pk `, x`, tag) = 0. Since we have pk ` := Gx` it must be the case
that tag 6= HP(pk `)

x` .
Notice that using equation (2) we can do the following:

y :=
r`s` − r`s′`

r`h
′
`−1 − r`h`−1

mod q

y :=
s` − s′`

h′`−1 − h`−1
mod q

y := x`

Since tag 6= HP(pk `)
x`, we have (Gr`)y = HP(pk `)

y 6= HP(pk `)
x`. This implies that we have

ChkTag(pk `, y, tag) = 1,
ChkTag(pk `, x`,HP(pk `)

x`) = 1 and (y, tag) 6= (x`,HP(pk `)
x`) which is contradiction to the binding

property of the tag generation in the LRS construction of Monero.
Therefore we have that LinkExpLRS,A,EA(1λ, 1α) ≤ negl(λ).
The analysis of the probability of success of EA is similar to what we saw in the non-slanderability

proof except now there are no spending oracle and key generation oracle queries to account for.
We have thus showed that LRS construction in Monero satisfies the two notions required for

linkability and this concludes the proof.

B Formal Definition of Payment Channel

Definition 10 (Payment Channel [4]) A PC is defined with respect to a blockchain B and is
equipped with three operations (OpChannel,ClChannel,Pay) described below:
{0, 1} ← OpChannel(u1, u2, β, t): On input two users u1, u2, an initial channel capacity β, and a
timeout t, if the operation is authorized by u1, and u1 owns at least β coins, OpChannel creates a
new payment channel (c〈u1,u2〉, β, t), where c〈u1,u2〉 is a fresh channel identifier and adds to a list L.
Then it uploads it to B and returns 1. Otherwise, it returns 0.
{0, 1} ← ClChannel(c〈u1,u2〉, v): On input a channel identifier c〈u1,u2〉 and a balance v (i.e., the
distribution of coins locked in the channel between u1 and u2), if the operation is authorized by both
u1 and u2, ClChannel removes the corresponding channel from L, includes the balance v in B and
returns 1. Otherwise, it returns 0.
{0, 1} ← Pay(c〈u1,u2〉, v): On input a channel identifier c〈u1,u2〉 and a payment value v, and if the
payment channel has at least a current balance γ ≥ v, the pay operation decreases the current balance
of the payment channel by v and returns 1. In any other case, Pay returns 0.

C Security Analysis of VTLRS For Transaction Scheme of Monero

We now give the security analysis of Theorem 5.1.

Proof 4 (Timed Privacy) We show that the protocol (Figure 3) is private against an adversary
A = (A1,A2) where A1 is PPT and A2 is of depth bounded by Tε, for some non-negative ε < 1.
We now gradually change the simulation through a series of hybrids and then we argue about the
proximity of neighbouring experiments. The following hybrids only deal with the if-else portion of
the experiment where if b = 0 we have the honest prover generating C, π, while if b = 1 we have the
simulator generating the same without access to the I or σ.
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Hybrid H0 : This is the original execution corresponding to b = 0.
Hybrid H1 : This is identical to the previous hybrid except that the random oracle H′ is simulated
by lazy sampling. In addition a random set I∗ (where |I∗| = t− 1) is sampled ahead of time, and
the output of the random oracle on the cut-and-choose instance is programmed to I∗. Note that the
changes of this hybrid are only syntactical and therefore the distribution is unchanged.
Hybrid H2 : This is identical to the previous hybrid except that the random oracle HS and HP are
simulated by lazy sampling. As before, the changes of the hybrids are only syntactical and therefore
the distribution is unchanged.
Hybrid H3 : In this hybrid we sample a simulated common reference string crs rng. By the zero-
knowledge property of (SetupNIZK,Lrng ,PNIZK,Lrng ,VNIZK,Lrng) this change is computationally indistin-
guishable.
Hybrid H4 . . .H4+n : In the hybrid H4+i, for all i ∈ [n], the proof πrng,i is computed via the simulator
provided by the underlying NIZK proof. By the zero-knowledge property of (SetupNIZK,Lrng ,PNIZK,Lrng ,
VNIZK,Lrng), the distance between neighboring hybrids is bounded by a negligible function in the security
parameter.
Hybrid H4+n . . .H4+2n−t+1 : In the i-th hybrid H4+i, for all i ∈ [n− (t−1)], the puzzle corresponding
to the i-th element of the set Ī∗ is computed as LHTLP.PGen(p, 0λ; ri), where Ī∗ is the complement
of I∗. Since the distinguisher is depth-bounded, indistinguishability follows from an invocation of the
security of LHTLP.
Hybrid H4+2n−t+2 : In this hybrid the prover behaves as follows.

parse tx :=

({
pkRi

}|R|
i=1

, tag ,
{
pkOi

}|O|
i=1

, µ

)
(s1, . . . , s|R|−1)← Z∗q
(h0, h1, . . . , h|R|−1)← Z∗q
rL, rR ← Z∗q
set L|R| := GrL , R|R| := GrR

for i ∈ [|R| − 1] do

Li := Gsipk
hi−1

i

Ri := HP(pk i)
si taghi−1

set HS(tx ||Li||Ri) := hi

endfor

set HS(tx ||L|R|||R|R|) := h0

set G̃ :=
L|R|

pk
h|R|−1

|R|

set H̃ :=
R|R|

tagh|R|−1

The prover then samples ∀i ∈ I∗ αi ← Z∗q ,Ki := Gαi , Yi := HP(pk |R|)
αi and computes the puzzles

for these indices as described in the protocol. On the other hand, for all i /∈ I∗ it computes

Ki =

 G̃∏
j∈I∗ K

`j(0)
j

`i(0)−1
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Yi =

 H̃∏
j∈I∗ Y

`j(0)
j

`i(0)−1

.

The rest of the committing algorithm is unchanged. Specifically, the commitment C is set as
C := (G̃, H̃, {si}i∈[|R|−1], h0, {Zi}i∈[n],T) and the proof π := ({Ki, Yi, πrng,i}i∈[n], I

∗, {αi, ri}i∈I∗)
Note that for all i /∈ I∗, we have K`j(0)

i ·
∏
j∈I∗

K
`j(0)
j = G̃


Y `j(0)

i ·
∏
j∈I∗

Y
`j(0)
j = H̃

 .

Furthermore, observe that the distribution induced by the terms (G̃, H̃{si}i∈[|R|−1], h0) is identical to
that of the previous hybrid. It follows that the changes here are only syntactical and the distribution
induced by this hybrid is identical to that of the previous one.
Simulator S : The simulator is defined to be identical to the last hybrid. Note that no information
about the signing key sk or the signature σ is used to compute the proof. This is identical to the
real execution when b = 1. Therefore we have successfully switched hybrids in an indistinguishable
manner to arrive at the execution where b = 1. This concludes our proof.

We now show that our protocol ( Figure 3) is sound and the proof of Theorem 5.1.

Proof 5 (Soundness) We analyze the protocol in its interactive version and the soundness of non-
interactive protocol follows from the Fiat-Shamir transformation [41] for constant-round protocols.
Let A be an adversary that efficiently breaks the soundness of the protocol. In particular this means
that the adversary produces a commitment (Gs0 ,HP(pk |R|)

s0 , {si}i∈[|R|−], h0, Z1, . . . , Zn,T) such that
for all Zi /∈ I it holds that LHTLP.PSolve(p, Zi) = α̃i such that

∀i /∈ I Ki 6= Gαi

or if,
∀i /∈ I Yi 6= HP(pk |R|)αi

Assume the contrary, then we could recover a valid signature on tx by interpolating α̃i with {σi}i∈I ,
which satisfy the above relation by definition of the verification algorithm. Further observe that all
puzzles (Z1, . . . , Zn) are well-formed, i.e., the solving algorithm always outputs some well-defined
value, except with negligible probability, by the soundness of the range NIZK.

It follows that, given (Z1, . . . , Zn) we can recover some set I ′ in polynomial time by solving the
puzzles and checking which of the α’s satisfy the above relation. In order for the verifier to accept, it
must be the case that I ′ = I which means that the prover correctly guesses a random n-bit string
uniformly chosen from the set of strings with exactly n/2-many 0’s. This happens with probability
exactly (n/2!)2

n! .
Observe that, in the non-interactive variant of the protocol, the above argument holds even in

the presence of an arbitrary (polynomial) number of simulated proofs, as long as the range NIZK is
simulation-sound. Therefore, if we instantiate the range NIZK with a simulation-sound scheme, then
so is the resulting VTLRS-TS.
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Privacy, Non-Slanderability and Linkability. We require that VTLRS inherits privacy, non-
slanderability, and linkability from its LRS transaction scheme. These notions are immediately
satisfied by our modified scheme because the commit algorithm takes no secret information about
the spender. Instead it takes the transaction and the signature and generates a commitment and a
proof. Therefore, these operations can be performed by the LRS adversary itself and thus it gains no
additional information.

D Range Proofs for HTLPs

In this Section we describe a protocol from [30] which allows a prover to convince a verifier in
zero-knowledge that a list of linearly homomorphic time-lock puzzles are well formed. This allows us
to homomorphically pack them into a single time-lock puzzle.

The construction requires a linearly homomorphic time-lock puzzle which is also homomorphic
in the random coins. The construction of [42] satisfies this property.

We assume that plaintexts in a ring Zq are represented via the central representation in [−q/2, q/2].
The protocol ensures that every plaintext is in the interval [−L,L], given that 2L is smaller than

the modulus of the plaintext space. This protocol can be readily used to prove that plaintexts are in
a non-centered interval [a, b] via homomorphically shifting plaintexts by −(a+ b)/2, mapping the
interval [a, b] to [−(b− a)/2, (b− a)/2]. Consequently, for the sake of simplicity we will only discuss
the case of centered intervals. Formal analysis of soundness and zero-knowledge of the protocol can
be found in [30].

Setup: An RSA modulus N , public parameters pp for LHTLP, interval parameters L and B with B < L. In
this protocol we use k as a statistical security parameter.
Common input: time-lock puzzles Z1, . . . , Z`.
Prover: On input wit , where wit := ((α1, r1), . . . , (α`, r`)) and αi ∈ [−B,B] such that for all i it holds
Zi ← LHTLP.PGen(pp, αi; ri), the prover algorithm P does the following.

– Choose y1, . . . , yk ← [−L/4, L/4] and random coins r′1, . . . , r′k from their corresponding ring.

– For i = 1, . . . , k compute Di ← LHTLP.PGen(pp, yi; r
′
i)

– Compute (t1, . . . , tk)← H(Z1, . . . , Z`, D1, . . . , Dk), where the ti ∈ {0, 1}`.

– For i = 1, . . . k compute vi ← yi +
∑`
j=1 ti,j · αj and wi ← r′i +

∑`
j=1 ti,j · rj

– Set π ← (Di, vi, wi)i∈[k] and output π

Verifier: On input π = (Di, vi, wi)i∈[k] then do the following.

– Compute (t1, . . . , tk)← H(Z1, . . . , Z`, D1, . . . , Dk)

– For i = 1, . . . k check if vi ∈ [−L/2, L/2], compute Fi ← Di ·
∏`
j=1 Z

ti,j
j and check if

Fi = LHTLP.PGen(pp, vi;wi).

– If all checks pass output 1, otherwise 0.

Figure 12: NIZK protocol for wellformedness of a vector of homomorphic time-lock puzzles
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Alice (pp) Bob (pp)

xA ← Z∗q xB ← Z∗q

h := H(GxA )

GxB

GxA if h 6= H(GxA ) then abort

pkAB := GxA+xB pkAB := GxA+xB

tagA := HP(pkAB)xA tagB := HP(pkAB)xB

stmtA := {GxA , tagA,HP(pkAB)} stmtB := {GxB , tagB ,HP(pkAB)}
πA ← PNIZK,Leqdl

(stmtA, xA) πB ← PNIZK,Leqdl
(stmtB , xB)

h′ := H(tagB)

tagA, stmtA, πA if VNIZK,Leqdl
(stmtA, πA) 6= 1 then abort

if VNIZK,Leqdl
(stmtB , πB) 6= 1 ∨ h′ 6= HS(tagB) tagB , stmtB , πB

then abort

tagAB := tagA · tagB tagAB := tagA · tagB

Figure 13: Joint Address and tag Generation

E Joint Key Generation And Joint Spending Protocols

In Figure 13 we describe our protocol for a joint generation of a public key and a tag. And in Figure 14
we present our protocol for the joint signature of a transaction. Together they realise the ideal
functionality FJ−LRS.

In the formal description of the interactive protocols, we define the hash function H : {0, 1}∗ →
{0, 1}λ, that is used to commit different values at different stages. We also make use of a NIZK
proof system (PNIZK,VNIZK) for the language Leqdl is defined as follows [62]:

Leqdl :=

stmt = (Y,X,K) : ∃wit = y s.t.

(Y = Gy ∧X = Ky)


Proving the security of Figures 13 and 14 means that we have to show they securely realize the

functionality FJ−LRS. The formal statement is given in Theorem E.1. In the security analysis of
the theorem the hash functions H,HP,HP are modelled as random oracles, where HP and HS are
from Section 4.2.

Theorem E.1 Let (PNIZK,LeqdlVNIZK,Leqdl) be a simulation sound NIZK for the language Leqdl. Then
protocol described in Figure 13 and Figure 14 UC realize FJ−LRS in the random oracle model.

E.1 Security Analysis of FJ−LRS

Below we give the ideal functionalities for joint key generation and joint signing of transactions in
Monero.
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Alice(crs) Bob(crs)

obtain (pkA,1, skA,1) Alice’s account

from B containing µ coins

pkB (pkB , skB)← OTKGen(pp)

R := (pk1, . . . , pk |R|),where pk |R| := pkAB

set tx :=
(
R, tagAB , pkB , µ′

) tx s′0,B , s1, . . . , s|R|−1 ← Z∗q

s′0,A ← Z∗q stmtB := {Gs
′
0,B ,HP(pk |R|)

s′0,B ,HP(pk |R|)}

stmtA := {Gs
′
0,A ,HP(pk |R|)

s′0,A ,HP(pk |R|)} πB ← PNIZK,Leqdl
(stmtB , s

′
0,B)

hA := H(Gs
′
0,A ,HP(pk |R|)

s′0,A ) hA

if VNIZK,Leqdl
(stmtB , πB) 6= 1 then abort stmtB , πB , {si}i∈[|R|−1]

πA ← PNIZK,Leqdl
(stmtA, s

′
0,A) stmtA, πA if VNIZK,Leqdl

(stmtA, πA) 6= 1 then abort

stmtA := {Gs
′
0,A ,HP(pk |R|)

s′0,A ,HP(pk |R|)}

if hA 6= H(Gs
′
0,A ,HP(pk |R|)

s′0,A ) then abort

L0 := Gs
′
0,AGs

′
0,B L0 := Gs

′
0,AGs

′
0,B

R0 := HP(pk |R|)
s′0,AHP(pk |R|)

s′0,B R0 := HP(pk |R|)
s′0,AHP(pk |R|)

s′0,B

h0 := HS(tx ||L0||R0) h0 := HS(tx ||L0||R0)

for j ∈ [|R| − 1] do for j ∈ [|R| − 1] do

Lj := Gsjpkhj−1 , Lj := Gsjpkhj−1 ,

Rj := HP(pkj)
sj (tagAB)hj−1 Rj := HP(pkj)

sj (tagAB)hj−1

hj := HS(tx ||Lj ||Rj) hj := HS(tx ||Lj ||Rj)

s0,A := s′0,A − h|R|−1xA
s0,A if Gs

′
0,A 6= Gs0,A (pkA)h|R|−1∨

HP(pk |R|)
s′0,A 6= HP(pk |R|)

s0,A (tagA)h|R|−1

then abort

s0 := s′0,B − h|R|−1xB + s0,A

set σ := (s0, s1, . . . , s|R|−1, h0)

return σ

Figure 14: Joint Spending of Alice and Bob in Monero
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Proof 6 We consider the case where either parties are corrupted. We denote U0 and U1 by Alice
and Bob, respectively.
Alice is corrupt: We describe a sequence of hybrid executions and argue that they are indistin-
guishable from each other.
Hybrid H0: is identical to the real protocol execution with an honest Bob.
Hybrid H1: is the same as the previous hybrid except now the simulator answers the adversary’s
random oracle H queries with random responses and stores the query response pair locally. This is
otherwise referred to as lazy sampling. This change is purely syntactical and therefore this hybrid is
identical to the previous one.
Hybrid H2: is identical to the previous hybrid except that all NIZK proofs produced by Bob are
computed using the simulator and all proofs output by Alice are extracted using the extractor algorithm
of the NIZK system. If the extraction fails, then Bob aborts. By the simulation extractability of the
NIZK system, this event happens only with negligible probability and therefore the difference with
respect to the previous hybrid is bounded by a negligible function.
Hybrid H3: is the same as the previous hybrid except that when the adversary sends h, the simulator
checks if h was previously queried to some H oracle query. If not, the simulator aborts. If yes, it
retrieves (G1, h) where G1 was the query. The simulator generates G2 := pk

G1
, where pk is sampled

by the ideal functionality. It responds to the adversary with G2. If the adversary responds with G′1
such that G1 6= G′1 and H(G1) = H(G′1), then the simulator aborts. The rest of the execution is the
same as the previous hybrid. The only difference from the previous hybrid is when the simulator
aborts when the adversary finds a collision on H. This happens with at most negligible probability
and therefore the hybrids are indistinguishable.
Hybrid H4: is the same as the previous hybrid except now the simulator sends h′ chosen randomly
as the random oracle H’s evaluation at some point to be determined later. It sets HP(pk) := Gr for
some random r and hands it over to the adversary when it queries the random oracle on pk . The
rest of the execution is unchanged. Note that the change here is only syntactical and therefore the
view of the adversary is unchanged.
Hybrid H5: the simulator sets tagB := tag

tagA
and sets (tagB, h

′) as the query response pair for H.
Notice that when the adversary checks if h′ = H(tagB), the check is successful. Again this hybrid is
identical to the previous one.

The simulator is defined as the previous hybrid. Notice that the simulator resembles (up to a
negligible factor) the honest Bob for the adversary and succeeds in setting the joint key as pk and the
joint tag as tag for the adversary.
Bob is corrupt: What is left is to analyse the case of corrupt Bob. We begin by describing a series
of hybrid executions where we argue that each neighbouring hybrid executions are indistinguishable.
The hybrids are given in the following.
Hybrid H0: the execution is the same as the real protocol.
Hybrid H1: is the same as for the case of a corrupted Alice.
Hybrid H2: is the same as for the case of a corrupted Alice.
Hybrid H3: is the same as the previous hybrid except that the simulator sends a random value h.
When the adversary responds with G1, the simulator samples sets G2 := pk

G1
, where pk is sampled by

the ideal functionality. It then sets (G2, h) as the random oracle query response for H. It sends G2

to the adversary. The rest of the execution is the same as the previous hybrid. The distribution is
identical to that of the previous hybrid.
Hybrid H4: is the same as the previous hybrid, except now when the adversary sends h′, the simulator
checks for previous queries from the adversary of the form (T, h′) to H. If no such query exists, the
simulator aborts. Else, it sets tagA := tag

T . The rest of the execution is unchanged. Note that this
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hybrid differs from the previous one only if the adversary finds a collision in the random oracle,
which happens only with negligible probability.
Hybrid H5: the simulator as before checks if VNIZK,Leqdl(stmtB, πB) = 1 where stmtB := (G1, tagB, G

r).
If the check is successful, the simulator extracts a witness xB such that it holds that G1 = GxB and
tagB = GrxB . Rest of the execution is as before. Notice that the only difference between the hybrids
is that the simulator extracts a witness if the proof verifies successfully. This directly reduces to the
simulation extractability of the NIZK proof and therefore the hybrids are indistinguishable.
Hybrid H6: the execution proceeds as above except now the simulators sends a random hash value
hA to the adversary. It additionally invokes JSpend(U1, (s1, . . . , s|R|−1), pkU0U1

, tx ) of FJ−LRS. The
interface returns a signature σ := (s0, s1, . . . , h0). The simulator completes the rest of the simulation
by first computing

for i ∈ [|R| − 1] do

Li := Gsipk
hi−1

i

Ri := HP(pk i)
sitaghi−1

hi := HS(tx ||Li||Ri)

and s0,B := s′0,B − h|R|−1xB and s0,A := s0 − s0,B, where s′0,B and xB are extracted from the

NIZKs produced by the adversary. It then computes Gs
′
0,A = Gs0,Apk

h|R|−1

A and HP(pk |R|)
s′0,A =

HP(pk |R|)
s0,Atag

h|R|−1

A and sets the pre-image of hA appropriately. Note that this change is only
syntactical and does not change the view of the adversary.

The final simulator for the case of corrupted Bob is defined as execution in the previous hybrid.
Notice that the simulator succeeds in setting the joint key as pk and the joint tag as tag for the
adversary and the joint signature as σ that was returned by FJ−LRS. This concludes the proof.

In the following we prove a useful fact about our ideal functionality, i.e., that the resulting
signature is non-slanderable for all (possibly adversarial) choices of (s1, . . . , s|R|−1).

Lemma 1 If DL problem is hard, then FJ−LRS is non-slanderable.

Proof 7 Consider an adversary A that violates the non-slanderability of FJ−LRS. This means that
we can construct a reduction S that simulates the interfaces of FJ−LRS for A and based on its output
solve the DL problem. Specifically, let us denote the total interactions of A with JointSpend as qS.
The total number of queries made by A to all oracles are upper bounded by some polynomial p(λ).

We now describe the reduction procedure. S first receives as input (G, q, G,Ga) as the DL challenge.
S gives the adversary (G, q, G) as input. When the adversary calls the interface KeyTagGen as
user U0 along with another user id U1, it samples x0, r ← Z∗q. It sets pk := Ga and HP(pk) := Gr.
The reduction then returns (x0, pk , (G

a)r,HS,HP) to the adversary. A makes qHP
and qHS

oracle
queries to HP and HS respectively. We assume w.l.o.g that the adversary A does not make redundant
queries to any of the oracles. It runs the setup for LRS by running Setup(1λ, 1α) and obtains pp. It
then invokes A by giving it pp as input.

For oracle queries to HP of the form pk ′, the reduction samples fresh random coins rj ← Z∗q for
the j-th query and sets the response as Grj . It records the oracle response (pk ′, Grj , rj) into the list
LHP

.
When the adversary queries the JointSpend interface with inputs (U0, (s1, . . . , s|R|−1), pk , tx )

then S does the following:
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• Parse tx := {R, tag , pkO, µ}

• Parse R := (pk1, . . . , pk |R|), notice that pk |R| = Ga and tag = Gar

• Sample h|R|, s|R| ← Z∗q and set h0 = h|R|, for j ∈ [|R| − 1],

– Check if (pk j , G
ej ) ∈ LHP

, and if not set HP(pk j) := Gej for random ej ← Z∗q
– Set HS(tx ∗||Gsjpkhj−1

j ||Gejsj (Gchj−1)) = hj

• Set HS(tx ||Gs|R|(Ga)h|R|−1 ||(Gr)s|R|(Gar)h|R|−1) = h|R|

• Set σ := (s|R|, s1, . . . , s|R|−1, h0) and return σ to A.

Finally, A outputs its slander (tx ∗, σ∗). The reduction aborts the execution if it is not a
valid signature, or if the pair was previously obtained through the JointSpend interface. Let
tx ∗ := {R, tag ,O, µ} and the reduction also aborts if tag 6= (Ga)r.

Operations of S Note that HS and HP queries are made by S during the verification process of
the slander. To be more precise, a total of |R| number of ’HS operations’ are needed to verify the
signature (in this case the slander). We therefore have two events. Firstly, the event E where each
of the |R| queries corresponding to the |R| verification queries (to verify the slander) have already
been included in the qHS

number of hash queries (made by A) or in the qS number of JointSpend
interactions. Secondly, the event ¬E which denotes the complement of the above event, where S
aborts the execution by outputting abort1.

If E happens, consider the set of |R| queries made by A to HS that match the |R| queries made
in the verification process (|R| queries per slander) by S. We let Xi1 , Xi2 , . . . , Xi|R| denote the first
appearance on the transcript T of each of the queries to HS used by S for verification of the slander
where 1 ≤ i1 ≤ . . . ≤ i|R|. (This is to consider the case of repetition of queries)

Let ` be such that
Xi|R| = HS(tx ∗||Gs`pk `h`−1 ||(Gr`)s`(tag)h`−1)

in the verification process by S. We call this ` as the gap of σ∗.
We annotate a successful slander σ∗ by S as a (w, `)-slander if i1 = w i.e, the first appearance

of all verification related queries is the w-th query to the HS oracle and ` is the gap. S aborts by
outputting abort2 if tag 6= (Ga)r and continues to perform a rewind simulation otherwise.
S has recorded the transcript T for the (w, `) slander output by A. Given this successful (w, `)

slander, S now rewinds the transcript T to the w-th query and gives it to A as a rewind simulation
to obtain another transcript T ′ which is a successful (w, `) slander again. If T ′ is not a successful
(w, `) slander again then S aborts by outputting abort3, and if not, it continues. New coin flips that
are independent to T are made for all queries subsequent to the w-th query (where w is learnt from
the (w, `) slander from T ). Note that consistency is maintained with the previous queries and also
that both T and T ′ use the same program in A.

Let the w-th query common to T and T ′ be denoted by HS(tx ∗, Gu, Gv).
Here, S knows Gu and Gv but not u and v at the time of rewind. After A returns the output

from the rewind simulation, S proceeds to compute the discrete log a of Ga.
The transcript T and the rewind simulation transcript T ′ contain two (w, `)-slander signatures

such that the following pairs of equalities hold.
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Gu = Gs`pk `
h`−1 = Gs`+x`h`−1

Gu = Gs
′
`pk `

h′`−1 = Gs
′
`+x`h

′
`−1

(6)

Gv = Gr`s`(Gar)h` = Gr`sπ+arh`−1

Gv = Gr`s
′
`(Gar)h

′
`−1 = Gr`s

′
`+arh

′
`−1

(7)

Notice that in equation (1) the public key pk ` may be of adversary’s choice. Therefore x` is not
known to the reduction. Therefore the reduction uses the equation (2) to solve the DL problem and
retrieve a. As the reduction knows r`, s`, s′`, r, h`−1, h

′
`−1, it can do the following:

a =
r`s` − r`s′`

rh′`−1 − rh`−1
mod q

Analysis We first analyze the probability of S outputting abort1. We can see that in the case of
event ¬E the conditional probability of h0 in the forged signature σ∗ satisfying the final equation in
the verification process is at most 1

t−qH−|R|qS (where t denotes all possible hash values for an input)
which is negligible. For the given adversary A we have

ε(λ) < Pr[E ]Pr [A slanders|E] + Pr[¬E]Pr [A slanders|¬E]

≤ Pr[E ]Pr [A slanders|E] + 1

(
1

t− qH − |R|qS

)
The probability of A returning a slander and having already queried for all |R| queries used in
verification is greater than ε(λ) as

(
1

t−qH−|R|qS

)
is negligible.

For analyzing the probabilities Pr[¬abort2 ] and Pr[¬abort3 ], we do the following. We refer to
the run of S resulting in transcript T as the first and T ′ as the second. The probability of a slander
in the first run is (ε(λ)). We can compute Pr[¬abort3 ] which is the probability of the second run of
S also resulting in a (w, `) slander as

(
ε(λ)

(qH+qS)

)
.

To bound the success of reduction S we refer to the forking lemma proposed by Bellare et al. [64].
By the forking lemma we have that S solves the DL problem with probability

Pr [S succeeds] ≥ ε(λ) ·
(

ε(λ)

(qH + qS)
− 1

h

)
.

Here 1
h refers to the probability with which the randomness used in the second run is the same as

that in the first run and this is negligible.
We can see that the complexity of S is no more than (qH + qS) times that of A and the probability

of success of S against the DL problem is at least 1
qH+qS

· (ε(λ))2 which is non-negligible. Therefore
we arrive at the contradiction, thereby proving non-slanderability.

F Security Analysis of Payment Channels in Monero Using VTLRS

Following is the proof for Theorem 6.1.
Intuition. A in the security analysis is that the privacy property of our VTLRS is against PRAM

adversaries, meaning that such an adversary cannot violate the privacy of the VTLRS commitments
before the hiding time T. To prove security, we want to switch from a hybrid execution where the
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VTLRS commitments are commitments to valid signatures to a hybrid where the commitments are
to a zero string. To model this in the analysis (UC setting), we cannot simply switch between the
hybrids as we do for standard commitment or encryption schemes. This is because the environment
E is a polynomial time machine that will force open the VTLRS commitment eventually and thereby
can distinguish the two hybrids. We deal with this by still having the second hybrid having a
commitment to the valid signature but letting the simulator abort the simulation with abortpriv if
the adversary sends the valid signature committed to in the VTLRS commitment before hiding time
T. We can then argue that two hybrid executions are indistinguishable provided the probability of
abortpriv is negligible, which is guaranteed by the privacy of VTLRS. Below is the detailed proof.

Proof 8 In order to prove that payment channel protocol is secure, we need to describe a simulator S
that simulates the PC operations to an adversary. Below we describe the simulation for the channel
opening, channel closing and payment operation of FPC. Let VTLRS-TS (Setup,Com,Vfy,Op,FOp)
constitute the LRS transaction scheme of monero (LRS.Setup, LRS.OTKGen, LRS.TagGen, LRS.Spend, LRS.Vf).
Let SVTLRS-TS be the simulator guaranteed for the privacy property that simulates a proof without
the knowledge of the signature.
OpChannel(c〈u1,u2〉, µ, u1, t): Let u1 be Alice and u2 be Bob. Let Alice be the user who wants to open
a channel. We have two cases to analyze: (1) Alice is corrupt by adversary A, and (2) Bob is corrupt
by adversary A.
Alice is corrupt: We begin by describing a series of hybrid executions where we argue that each
neighbouring hybrid executions are indistinguishable. If at some point, the adversary responds with a
abort, the simulator reports a failure message to the ideal functionality FPC thereby not allowing
the channel creation.
Hybrid H0: is the the same as the real protocol execution.
Hybrid H1: The simulator receives the adversary’s messages that are calls to FJ−LRS and simulates the
execution by running the simulator for FJ−LRS for a corrupt user U0. The hybrids are indistinguishable
given the security of FJ−LRS.

We define our final simulator as following the same execution as the final hybrid. Additionally,
when the adversary sends (tx′, σ′), the simulator checks if it is well formed and the signature is valid.
If so, the simulator forwards the message (open, c〈u,u′〉, µ, u

′,T) to the ideal functionality FPC, where
µ is the initial channel capacity. When the functionality responds with (c〈u,u′〉, µ,T), the simulator
authorises the operation. If everything is successful, then the simulator receives a h from FPC, the
simulator stores it locally.

Bob is corrupt: The simulator initiates the channel opening with FPC by sending (open, c〈u,u′〉, µ, u
′,T)

on behalf of a honest Alice. When the ideal functionality responds with (c〈u,u′〉, µ,T) to Bob, the
simulator intercepts the message performs an execution as detailed below.

We begin by describing a series of hybrid executions where we argue that each neighbouring hybrid
executions are indistinguishable. Finally we arrive at the simulator’s execution that simulates the
ideal world.
Hybrid H0: the execution is the same as the real protocol where a honest Alice’s operations are
performed. If at point, the adversary responds with abort, the simulator reports a failure message to
the ideal functionality FPC thereby not allowing the channel creation.
Hybrid H1: is the same as the previous hybrid except that the simulator receives the adversary’s
messages that are calls to FJ−LRS and simulates the execution by running the simulator for FJ−LRS
for a corrupt user U1. The hybrids are indistinguishable given the security of FJ−LRS.
Hybrid H2: is the same as the previous execution except, the simulator receives (C, π) from the
adversary, it obtains σ ← FOp(C). It then checks if Vfy(tx rdm, C, π) = 1 and LRS.Vf(tx rdm, σ) = 0.
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If both checks are successful, the simulator aborts by outputting abortsound. Notice that the only
difference between the hybrids is the case where the simulator aborts by outputting abortsound. We
argue that the probability of the simulator aborting is negligible which is implied by the simulation
soundness of VTLRS.

We define the final simulator as the last hybrid execution. When the adversary responds with
(C, π), the simulator checks if

Vfy(tx rdm, C, π) = 1

and other checks as in Alice’s execution. If the checks are successful, it completes the execution on
behalf Alice (posting to blockchain, etc.) and sends a message authorising the channel opening to
FPC on behalf of the corrupt Bob. If the check above fails, then the simulator sends a failure message
to the ideal functionality FPC thereby not authorising the channel creation. If everything is successful,
then the simulator receives a h from FPC, the simulator stores it locally.
ClChannel(c〈u1,u2〉, h): We have two cases where either Alice (u1) or Bob (u2) requests for channel.
Alice is corrupt and requests closing: we have the following hybrids,
Hybrid H0: S receives a closing request from the adversary on behalf of Alice, in the form of (tx rdm, σ).
The simulator sends (close, c〈u1,u2〉, h) where the simulator obtains h from when it stored during the
opening of the channel. If the functionality aborts, then the simulator ignores the request from Alice
and does not forward the transaction and signature to the blockchain. Otherwise, the functionality
responds with c〈u1,u2〉,⊥, h, the simulator then forwards the transaction and the signature to the
blockchain.
Hybrid H1: the execution is the same as before except now, the simulator aborts by outputting
abortpriv if the adversary outputs (tx rdm, σ) such that LRS.Vf(tx rdm, σ) = 1 before time T. We
argue that the probability with which the simulator aborts by outputting abortpriv is negligible. To
see this, consider an adversary who succeeds in outputting a valid transaction, signature pair given
only the VTLRS on tx rdm with non-negligible probability (the simulator aborts with abortpriv with
non-negligible probability). We can then construct a reduction that uses the adversary to break the
timed privacy of the VTLRS. This is a contradiction and therefore the hybrids are indistinguishable.

The simulator is defined as the execution of the final hybrid.
Bob is corrupt and request closing: we have the following hybrids,
Hybrid H0: S receives a closing request from the adversary on behalf of Bob, in the form of a valid
pair (tx rdm,k, σk). The simulator sends (close, c〈u1,u2〉, h) where it obtains h corresponding to tx rdm,k

from the local list. If the functionality aborts, then the simulator ignores the request from Alice
and does not forward the transaction and signature to the blockchain. Otherwise, the functionality
responds with c〈u1,u2〉,⊥, h, the simulator then forwards the transaction and the signature to the
blockchain.
Hybrid H1: the execution is the same as before except now the simulator aborts in case Bob returns
a signature σ′k that was not previously generated by Alice and Bob for payment tx rdm,k. That is,
if Lpay 6= (tx rdm,k, σ

′
k), the simulator aborts by outputting abortslander. From Lemma 1 we see

that this event occurs only with negligible probability and therefore we have that the hybrids are
indistinguishable.

The simulator is defined as the execution of the final hybrid.
Pay(c〈u0,u1〉, v): is invoked by Alice (u0) who wishes to make a payment of v coins through the channel
to Bob (u1). We have two possible cases of either Alice being corrupt or bob being corrupt.
Alice is Corrupt: We begin by describing a series of hybrid executions where we argue that each
neighbouring hybrid executions are indistinguishable. If at point, the adversary responds with abort,
the simulator reports a failure message to the ideal functionality FPC thereby not allowing the channel
creation.
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Hybrid H0: is the the same as the real protocol execution with a honest Bob.
Hybrid H1: The simulator receives the adversary’s messages that are calls to FJ−LRS and simulates the
execution by running the simulator for FJ−LRS for a corrupt user U0. The hybrids are indistinguishable
given the security of FJ−LRS.

The final simulator is the same execution as the previous hybrid. If the adversary did not abort at
any stage, the simulator forwards the message (pay, v, c〈u0,u1〉,T) to the ideal functionality FPC. The
ideal functionality responds with (h, c〈u0,u1〉, v) which the simulator locally stores as (h, tx rdm,i, σrdm,i)
denoting the i-th successful payment. If the adversary aborts at any stage, the simulator simply
ignores the pay request from the adversary. If the ideal functionality aborts, the simulator does
nothing.
Bob is corrupt: We begin by describing a series of hybrid executions where we argue that each
neighbouring hybrid executions are indistinguishable. If at point, the adversary responds with a return
0, the simulator reports a failure message to the ideal functionality FPC thereby not allowing the
channel creation.
Hybrid H0: is the same as the real world execution with a honest Alice.
Hybrid H1: is the same as the previous hybrid except that the simulator receives the adversary’s
messages that are calls to FJ−LRS and simulates the execution by running the simulator for FJ−LRS
for a corrupt user U1. The hybrids are indistinguishable given the security of FJ−LRS.

The simulator is the execution according to the last hybrid. If the adversary at no stage aborted,
the simulator sends (pay, v, c〈u0,u1〉,T) to FPC. The ideal functionality responds with (h, c〈u0,u1〉, v)
which the simulator locally stores as (h, tx rdm,i, σrdm,i) denoting the i-th successful payment. If the
ideal functionality aborts, the simulator does nothing.

Thus we have described simulators for corruptions of Alice and Bob for various operations
pertaining to FPC. This concludes the proof.

G More Details on Integration in Monero

We present here in more detail the VTDLog approach of doing payment channels in Monero, which
circumvents the problems of key_offset in current code of Monero.
Verifiable Timed DLog. We briefly recall the definitions and construction of VTDLog [30]. For
completeness, the formal construction is given in Figure 15.

Definition 11 (Verifiable Timed Dlog) A VTDL for the group G with generator G and order q
is a tuple of four algorithms (Com,Vfy,Op,FOp) where:
(C, π)← Com(x,T): the commit algorithm (randomized) takes as input a discrete log value x ∈ Zq
(generated using KGen(1λ)) and a hiding time T and outputs a commitment C and a proof π.
0/1← Vfy(H,C, π): the verify algorithm takes as input a group element H, a commitment C of
hardness T and a proof π and accepts the proof by outputting 1 if and only if, the value x embedded
in C satisfies H = Gx. Otherwise it outputs 0.
(x, r)← Op(C): the open algorithm (run by committer) takes as input a commitment C and outputs
the committed value x and the randomness r used in generating C.
x← FOp(C): the force open algorithm takes as input the commitment C and outputs a discrete log
value x.

Definition 12 (Soundness) A VTDLog scheme ΠVTDL = (Com,Vfy,Op,FOp) for a group G with
generator G and order q is sound if there is a negligible function negl(λ) such that for all probabilistic
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polynomial time adversaries A and all λ ∈ N, we have:

Pr

b1 = 1 ∧ b2 = 0 :

(H,C, π,T)← A(1λ)

x← FOp(C)

b1 := Vfy(H,C, π)

b2 := (H = Gx)

 ≤ negl(λ)

We say that a VTDLog is simulation-sound if it is sound even when the prover has access to simulated
proofs for (possibly false) statements of his choice; i.e., the prover must not be able to compute
a valid proof for a fresh false statement of his choice. In the following definition we present the
definition of privacy.

Definition 13 (Timed Privacy) A VTDLog scheme ΠVTDL = (Com,Vfy,Op,FOp) for a group G
with generator G and order q is private if there exists a PPT simulator S, a negligible function
negl(λ), and a polynomial T̃ such that for all polynomials T > T̃, all PRAM algorithms A whose
running time is at most t < T, all messages m ∈ {0, 1}∗, and all λ ∈ N it holds that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

A(H,C, π) = 1 :

x← {0, 1}λ

H := Gx

(C, π)← Com(x,T)



−Pr

A(H,C, π) = 1 :

x← {0, 1}λ

H := Gx

(C, π)← S(H,T)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(λ)

Payment Channels Via VTDLog. We sketch the main ideas to construct payment channels
using VTDLog commitments. Using VTDLog, a user can generate a timed commitment to a
discrete logarithm value x for a group element H such that H := Gx, where (G, G, q) are the public
parameters. As for any timed commitment, the verifier/solver is guaranteed that after force opening
the commitment for time T, he learns the correct discrete logarithm value x such that H = Gx.

Since Monero keys are of similar structure, where the secret key is sk := x← Zq and a public
key is of the form pk := Gx, the secret key holder can generate a timed commitment to the secret
key sk using a VTDLog commitment. To use this in a payment channel setting, recall that the
payment channel key is set as pkAB := GxA ·GxB where GxA and GxB are the partial public keys
of Alice and Bob, respectively. Before posting the funding transaction tx fund that sends coins from
some key of Alice to the payment channel key pkAB, Bob gives a VTDLog commitment of xB with
the timing hardness T, to Alice. Alice can verify that the commitment is well-formed with respect
to the partial public key pk ′ := GxB , using the verification of VTDLog.

The payment phase proceeds as described for PayMo, and during the channel closing phase,
i.e., after time T, Alice manages to force open the commitment to learn xB. This allows Alice to
learn the joint secret key skAB := xA + xB, using which she can spend from pkAB. To do this, she
generates a tx rdm as in PayMo, and a signature σrdm using skAB. Alice can now close the channel
after time T.
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Setup: On input 1λ the setup algorithm does the following.

• Run ZK.Setup(1λ) to generate crs rng

• Generate the public parameters pp ← PSetup(1λ,T)

• Output crs := (crs rng, pp)

Commit and Prove: On input (crs,wit) the Com algorithm does the following.

• Parse wit := x, crs := (crs rng, pp), H := Gx

• For all i ∈ [t− 1] sample a uniform xi ← Zq and set Hi := Gxi

• For all i ∈ {t, . . . , n} compute

xi =

x−∑
j∈[t]

xj · `j(0)

 · `i(0)−1Hi =

 H∏
j∈[t]H

`j(0)
j

`i(0)−1

where `i(·) is the i-th Lagrange polynomial basis.

• For i ∈ [n], generate puzzles with corresponding range proofs as shown below

ri ← {0, 1}λ, Zi ← PGen(pp, xi; ri)

πrng,i ← PNIZK,Lrng(crs rng, (Zi, a, b,T), (xi, ri))

• Compute I ← H ′ (H, (H1, Z1, πrng,1), . . . , (Hn, Zn, πrng,n))

• The Com algorithm outputs C := (Z1, . . . , Zn,T) and π := ({Hi, πrng,i}i∈[n], I, {xi, ri}i∈I)

• Finally output (H,C, π)

Verification: On input (crs, H,C, π) the Vfy algorithm does the following.

• Parse C := (Z1, . . . , Zn,T), π := ({Hi, πrng,i}i∈[n], I, {xi, ri}i∈I) and crs := (crs rng, pp)

• If any of the following conditions is satisfied output 0, else return 1:

1. There exists some j /∈ I such that
∏
i∈I H

`i(0)
i ·H`j(0)

j 6= H

2. There exists some i ∈ [n] such that VNIZK,Lrng(crs rng, (Zi, a, b,T), πrng,i) 6= 1

3. There exists some i ∈ I such that Zi 6= PGen(pp, xi; ri) or Hi = Gxi

4. I 6= H ′ (H, (H1, Z1, πrng,1), . . . , (Hn, Zn, πrng,n))

Open: The Op algorithm outputs (x, {ri}i∈[n]).
Force Open: The FOp algorithm take as input C := (Z1, . . . , Zn,T) and works as follows:

• Runs xi ← PSolve(pp, Zi) for i ∈ [n] to obtain all shares. FOp has to solve only (n− t+ 1)
puzzles, as t− 1 puzzles are already opened.

• Output x :=
∑

j∈[t](xj) · `j(0) where wlog., the first t are valid shares.

Figure 15: Verifiable Timed Dlog for a group G with generator G and order q, where H = Gx,
and x is the discrete log value committed to 55



KeyGen(sid, Uj , {L,R})

upon invocation by Ui
sends (sid, Ui, {L,R}) to Uj
if b = ⊥ send ⊥ to Ui and abort
if L insert (Ui, Uj) into U and sends (sid, Ui, Uj) to Ui
if R insert (Uj , Ui) into U and sends (sid, Uj , Ui) to Ui

Lock(sid, lid)

upon invocation by Ui
if getStatus(lid) 6= init ∨ getLeft(lid) 6= Ui then abort
sends (sid, lid , Lock) to getRight(lid)

receives (sid, b) from getRight(lid)

if b = ⊥ send ⊥to Ui and abort
updateStatus(lid , Lock)

sends (sid, lid , Lock) to Ui

GetStatus(sid, lid)

upon invocation by Ui
return (sid, lid , getStatus(lid)) to Ui

Setup(sid, U0, . . . , Un)

upon invocation by Ui
if ∀i ∈ [0, n− 1] : (Ui, Ui+1) /∈ U then abort
∀i ∈ [0, n− 1] : lidi ← {0, 1}λ
insert (lid0, U0, U1, init, lid1), (lidn−1, Un−1, Un, init,⊥) into L
sendan (sid,⊥, lid0,⊥, U1, init) to U0

sendan (sid, lidn−1,⊥, Un−1,⊥, init) to Un
∀i ∈ [1, n− 1] : insert (lidi, Ui, Ui+1, init, lidi+1) into L

sendan (sid, lidi−1, lidi, Ui−1, Ui+1, init) to Ui

Release(sid, lid)

upon invocation by Ui
if getRight(lid) 6= Ui or getStatus(lid) 6= Lock or

getStatus(getNextLock(lid)) 6= Rel

and getNextLock(lid) 6= ⊥ then abort
updateStatus(lid ,Rel)

sends(sid, lid ,Rel) to getLeft(lid)

Figure 16: Ideal functionality FAMHL for cryptographic locks (AMHL) [5]

H Security Analysis of Atomic Multi-Hop Locks In Monero

Below we analyse ??.

Proof 9 We define the following sequence of hybrids, where we gradually modify the initial experiment.
Unlike before, here we first describe the hybrids and later argue their indistinguishability.
Hybrid H0: is identical to the protocol described in ????.
Hybrid H1: all calls to the hash function H are simulated via lazy sampling. The simulator picks
a random λ bit string and responds to any query and ensures that repeated queries have consistent
responses.
Hybrid H2: is the same as the previous hybrid except that all calls to the NIZK scheme are simulated
using the simulator for the NIZK proof. And for any NIZK proof output by the adversary, the
execution extracts the corresponding witness from the proof.
Hybrid H3: Consider the following ensemble of variables in the interaction with A: A honest user
Uj, a key pair (sk j , pk), a state sI , a tuple (`j , `j+1, s

L, sR) such that

{·, (`j , sL)} ← 〈·, Lockamhl
Uj (sIj , sk j , pk)〉

{(`j+1, s
R), ·} ← 〈Lockamhl

Uj (sIj , sk j , pk), ·〉

If for any set of these variables, the adversary returns some k such that Vfamhl(`j+1, k) = 1 and
Vfamhl(`j ,Rel

amhl(k, (sI , sL, sR))) 6= 1, then the experiment aborts.
Hybrid H4: Consider the following ensemble of variables in the interaction with A: a pair of honest
users (U0, U1) a set of (possibly corrupted) users (U1, . . . , Un), a key pair (sk j , pk), a set of initial
states
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(sI0, . . . , s
I
n)←

〈Setupamhl
U0

(1λ, U1, . . . , Un),

. . . ,

Setupamhl
Un (1λ)

〉

and a pair of locks (`j−1, `j) such that

{·, (`j−1, ·)} ← 〈·, Lockamhl
Uj (sIj , sk j , pk)〉

{(`j , ·), ·} ← 〈Lockamhl
Uj (sIj , sk j , pk), ·〉

If for any set of these variables, the adversary returns some kj−1 such that Vfamhl(`j−1, kj−1) = 1
before the user Uj outputs a key kj, such that Vfamhl(`j , kj) = 1, then the experiment aborts.
Hybrid H5: Let S = (U0, . . . , Un) be an ordered set of (possibly corrupted) users. We say that
an ordered subset A = (U1, . . . , Uj) is adversarial if Ui is honest and (Ui+1, . . . , Uj) are corrupted.
Note that every set of users can be expressed as a concatenation of adversarial subsets, that is
S = (A1|| . . . ||Am′), for some m′ ≤ m. Whenever a honest user is requested to set up a lock for a
certain set S = (A1|| . . . ||Am′), it initialises an independent lock for each subset (Ai, A

0
i+1), where

A0
i+1 is the first element of the (i+ 1)-th set, if present. Whenever some A0

i+1 is requested to release
the key for the corresponding lock (recall that all A0

i+1 are honest nodes) it releases the key for the
fresh lock (Ai, A

0
i+1) instead.

H0 ≈ H1: The indistinguishability of H0 and H1 follows because the distributions are identical given
that H is modelled as a random oracle.
H1 ≈ H2: The indistinguishability of H1 and H2 follows directly from the security of the NIZK
scheme.
H2 ≈ H3: To see the indistinguishability of H2 and H3 we introduce an intermediate hybrid H′2.

Hybrid H′2: The locking algorithms are substituted with the following ideal functionality. Such an
interface is called by both users on input tx and y =

∑j
k=0 yk, where j is the position of the lock in

the chains and the yk are defined as in the original protocol. Note that the key pkU0,U1
, skU0,U1 and

tagU0U1
refers to the previously established keys and tag in the call to FJ−LRS.

We defer the proof of indistinguishability of H2 and H′2 to Lemma 2.
We now argue the indistinguishability of H′2 and H3.
Let cheat be the event that triggers the abort of the execution of H3. This happens when the

adversary returns k such that Vfamhl(`j+1, k) = 1 and that Vfamhl(`j ,Rel
amhl(k, (sI , sL, sR))) 6= 1.

Assume towards contradiction that Pr [cheat|H3] ≥ 1
p(λ) for some polynomial p(). Then we can

construct the following reduction against the non-slanderability of FJ−LRS (Lemma 1). The reduction
gets (x, pk , tag ,HS,HP) as input. All calls to the spending algorithm are redirected to JointSpend
interface of FJ−LRS. If the event cheat happens, the reduction obtains (`∗, k∗) = (tx ∗, pk , σ∗) where
σ∗ := (s∗0, . . . , s

∗
|R|−1, h

∗
0). The reduction returns tx ∗, σ∗ as its slander for the tag tag corresponding

to pk that is included in the transaction tx ∗.
The reduction is clearly efficient. Assume for the moment that t ∈ [q] where q ∈ p(λ) is the

interaction where cheat happens. Let j+ 1 be the index that identifies the lock `∗ in the corresponding
payment path. Since cheat happens we have that LRS.Vf(tx ∗, k∗) = 1 and the release fails, i.e.,
Vfamhl(`j ,Rel

amhl(k, (sIj , s
L
i , s

R
j ))) 6= 1 (where `j is the lock in the previous position of `∗). Recall that
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Spend(Ub, (s1, . . . , s|R|−1), pkU0U1
, tx , y)

Upon invocation by both users U0 and U1:
where Ub (b ∈ {0, 1}) gives inputs (s1, . . . , s|R|−1)

parse tx := (R, tagU0,U1
, pkO, µ)

parse R := (pk1, . . . , pk |R|), s.t . pk |R| := pkU0U1

choose s′0 ← Z∗q
Compute

L0 := Gs
′
0 , R0 := HP(pk |R|)

s′0

h0 := HS(tx ||L0||R0)

for i ∈ [|R| − 1] do

Li := Gsipk
hi−1

i ,

Ri := HP(pk i)
si taghi−1

hi := HS(tx ||Li||Ri)
endfor

set s0 := s′0 − h|R|−1skU0U1

σ := (s0, s1, . . . , s|R|−1, h0)

σ′ := (s0 − y, s1, . . . , s|R|−1, h0)

return σ′ to Ub

the release algorithm parses sLj := (s′, s′1, . . . , s
′
|R′|−1, h

′
0) and σ∗ := (s∗0, . . . , s

∗
|R|−1, h

∗
0) and returns

((s′ + s∗0 − sRj − y), s′1, . . . , s
′
|R′|−1, h

′
0). We see that

(s′ + s∗0 − sRj − y)

=

((
sj,0 −

j−1∑
i=0

yi

)
+ s∗0 −

(
st,0 −

j∑
i=0

yi

)
− y

)
= (sj,0 + s∗0 − st,0)

where st,0 is part of the answer of the JointSpend interface in the t-th session. This implies that
s∗ 6= st,0, otherwise we have that (sj,0, s

′
1, . . . , s

′
|R′|−1, h

′
0) as a valid signature since it is an output of

the JointSpend interface. Since no transaction is queried twice in the same session to the interface
(Spend), we have that (tx ∗, σ∗) as a valid slander. By assumption this happened with probability
at least 1

q·p(λ) which is a contradiction to the non-slanderability property of FJ−LRS. Therefore we
have Pr [cheat|H′2] ≤ negl(λ). Since H2 and H3 differ only when cheat happens and H3 aborts, we
from Lemma 2 that H2 and H3 are indistinguishable.
H3 ≈ H4: Let q ∈ p(λ) where p() is some polynomial be a bound on the number of interactions. Let
cheat be the event that triggers an abort in H4 but not in H3. We show that Pr [cheat|H4] ≤ negl(λ)
which shows the indistinguishability between the hybrids. Assume towards contradiction, then we
construct the following reduction against the discrete logarithm problem. The reduction takes as input
some Y ∗ ∈ G and it guesses a session j ∈ [q] and some index i ∈ [n]. The setup algorithm of the
j-th session is modified as follows: it receives HP(pk i−1,i),HP(pk i,i+1). It sets HP(pk i,i+1) := Gαi

where αi ← Z∗q. It then sets Yi := Y ∗ and Xi := (Y ∗)αi . Set Yi−1 := Yi
Gyi for some randomly chosen

yi ← Z∗q.
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Then for all u ∈ {i− 1, . . . , 0}, the setup samples some yu, αu, αu−1 ∈ Z∗q, sets HP(pku,u+1) :=

Gαu ,HP(pku−1,u) := Gαu−1 and returns (Yu−1, Yu, Xu−1, Xu, yu, πu) where Yu−1 := Yu
Gyu , Xu :=

Y αu
u , Xu−1 := (Yu−1)αu−1 and πu := (π0,u, π1,u) are both simulated proofs for statements stmt0,u :=
{Yu−1, Xu−1, G

αu−1} and stmt1,u := {Yu, Xu, G
αu} respectively.

Then for all u ∈ [i+ 1, n− 1], the setup gets HP(pku−1,u),HP(pku,u+1). It samples yu, αu ∈ Z∗q
and returns (Yu−1, Yu, Xu−1, Xu, yu, πu) where Yu := Yu−1 ·Gyu , Xu := Y αu

u and πu := (π0,u, π1,u) are
both simulated proofs for statements stmt0,u := {Yu−1, Xu−1, G

αu−1} and stmt1,u := {Yu, Xu, G
αu}

respectively.
The outputs are given to the parties where specifically to Un the setup gives (Yn−1, Xn−1, xn :=

Σn−1
j=i yj), where Xn−1 := HP(pkn−1,n)xn . If the node Ui is requested to release the lock, the reduction

aborts. At some point the adversary A outputs k∗ = (s∗0, s
∗
1, . . . , s

∗
|R|−1, h

∗
0). The reduction parses sR

of user Ui−1 and returns (s∗0 + yi − sR).
The reduction does not abort whenever j and i are guessed correctly. Since Ui is honest, the

distribution induced by the modified setup algorithm is identical to the original to the eyes of the
adversary. The even cheat happens only when k∗ is a valid opening for `i−1 and the release algorithm
is successful. Therefore, we have sR which is of the form s′0,0 + s′0,1 − h|R|−1 · (sk i−1 + sk i) = s∗0 − y
for some y ∈ Z∗q. We have

G(s∗0+yi−sR) = G(sR+y+yi−sR)

= G(y+yi)

= GyiGy

= GyiYi−1

= Gyi
Y ∗

Gyi

= Y ∗

Notice that if we have sR = s′ − y where s′ 6= s∗0, then this is a valid slander as we saw previously in
the case of H′2 ≈ H3. Therefore the reduction is able to solve the DL problem with probability at least

1
qnp(λ) . This is a contradiction and therefore we have that hybrids are indistinguishable.
H4 ≈ H5: Adversarial sets are always interleaved by a hones node. Therefore in H4 for each
adversarial set starting at index i there exists a y such that Yi := Yi−1G

y and A is not given y.
Since y is chosen randomly we have that Y ′ = Yi−1G

y for some uniformly sampled Y ′ from G which
corresponds to the view of A in H5. Notice that for corresponding Xi’s and πi’s we have simulated
proofs and therefore the simulator in the execution need know the secret exponent of Y ′.

The simulator therefore is defined as the last hybrid except that the actions of S are determined
by the interaction with the ideal functionality FAMHL. The simulator intercepts the communications
of the adversary and receives queries from FAMHL:

• (·, ·, ·, ·, Init): the simulator reconstructs the adversarial set from the id’s and sets up a fresh
lock chain.

• (·, lock): the simulator initiates the locking procedure with the adversary and replies with ⊥ if
the execution is not successful.

• (·,Rel): the simulator releases the lock and publishes the key.

If A interacts with a honest user the simulator queries the corresponding interface of FAMHL.
Note that the simulator is efficient and interacts as the adversary with the ideal world. Furthermore,

the simulator is always consistent with the ideal world regarding invalid messages and aborts.
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Lemma 2 For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH′2,A,E

Proof 10 The proof consists of the description of the simulator for the interactive lock algorithm.
We describe two simulators depending on whether the adversary is playing the role of the left or right
user. For each proof, both the simulators implicitly check that the given witness is valid and abort if
not.

Left user U0 is corrupt: Prior to the interaction the simulator is sent (Y ′, Y,X ′, X, y, π) where
π := (π0, π1), such that π0 := (prove, stmt0, y

∗
0), π1 := (prove, stmt1, y

∗
1), stmt0 := {Y ′, X ′, h′} and

stmt1 := {Y,X, h} for language Leqdl. All these constitute the state corresponding to the execution
of the lock. After agreeing on tx (which contains ring R and tag tag), the simulator chooses random
(s1, . . . , s|R|−1, h

1) and sends h1 to the adversary. The simulator queries the interface Spend on
input (U0, (s1, . . . , s|R|−1), pkU0U1

, tx , y∗0) and receives a signature σ := (s0, s1, . . . , s|R|−1, h0). At
some point the adversary sends (L′0,0, R

′
0,0, π) where π := (prove, stmt , s′0,0), stmt := (L′0,0, R

′
0,0, h).

The simulator does the following:

for i ∈ [|R| − 1] do

Li := Gsipk
hi−1

i

Ri := HP(pk i)
sitaghi−1

hi := HS(tx ||Li||Ri)

L|R| := Gs0pk
h|R|−1

|R|

R|R| := HP(pk |R|)
s0tagh|R|−1

The simulator then sets
L′0,1 :=

L|R|

L′0,0 · Y

and
R′0,1 :=

R|R|

R′0,0 ·X

π′ := (proof, sid , stmt ′)

where stmt ′ := (L′0,1, R
′
0,1, h). It sets

σ′ := ((s0 − s′0,0 − h|R|−1 · x0), s1, . . . , s|R|−1)

Here x0 is the extracted by the simulator during the joint key and tag generation functionality from
A. The simulator sends (L′0,1, R

′
0,1, π

′, s1, . . . , s|R|−1, (s0 − s′0,0 − h|R|−1 · x0)).

Right user U1 is corrupt: Prior to the interaction the simulator is sent (Y ′, Y,X ′, X, y, π)
where π := (π0, π1), such that π0 := (prove, stmt0, y

∗
0), π1 := (prove, stmt1, y

∗
1), stmt0 := {Y ′, X ′, h′}

and stmt1 := {Y,X, h} for language Leqdl. All these constitute the state corresponding to the
execution of the lock. After agreeing on tx (which contains ring R and tag tag) the simulator

60



receives ((L′0,1, R
′
0,1, π

′, s1, . . . , s|R|−1)) as a hash oracle query where π′ := (prove, stmt ′, s′0,1) such
that stmt ′ := (L′0,1, R

′
0,1, h

′). Here h′ := HP(pk |R|) where pk |R| is the shared key. The simulator
then queries the interface Spend with (U1, (s1, . . . , s|R|−1), pkU0U1

, tx , y∗1) as input and receives a
signature σ := (s0, s1, . . . , s|R|−1, h0). The simulator does the following:

for i ∈ [|R| − 1] do

Li := Gsipk
hi−1

i

Ri := HP(pk i)
sitaghi−1

hi := HS(tx ||Li||Ri)

L|R| := Gs0pk
h|R|−1

|R|

R|R| := HP(pk |R|)
s0tagh|R|−1

In the above computation, the simulator sets random oracle values HS and HP on the fly (if not set
already). The simulator then sets

L′0,0 :=
L|R|

L′0,1 · Y ′

and
R′0,1 :=

R|R|

R′0,0 ·X ′

π′ := (proof, sid , stmt ′)

where stmt ′ := (L′0,0, R
′
0,0, h). The simulator specifically sets

HS(tx ||L|R|||R|R|) := h0 that it obtained from the interface Spend. It receives (L0,1′ , R
′
0,1, π

′, s′1, . . . , s
′
|R|−1, s0,1)

from the adversary and checks as in the protocol. The simulator computes the following:

for i ∈ [|R| − 1] do

L′i := Gs
′
ipk

h′i−1

i

R′i := HP(pk i)
s′itagh

′
i−1

h′i := HS(tx ||L′i||R′i)

The simulator then checks if s0,1 = s′0,1− h′|R|−1 · x1. Here x1 denotes the right user’s secret that was
extracted by the simulator of the joint key and tag generation functionality for A. If the above checks
are successful, the simulator responds with s0 (obtained from the interface Spend) to the adversary.

Both simulators are efficient and the distributions induced by the simulated views are negligibly
close to the real execution. This concludes the proof of Lemma 2.
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