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ABSTRACT
Starting with Dining Cryptographers networks (DC-net),
several peer-to-peer (P2P) anonymous communication pro-
tocols have been proposed. Despite their strong anonymity
guarantees none of those has been employed in practice so
far: Most fail to simultaneously handle the crucial problems
of slot collisions and malicious peers, while the remaining
ones handle those with a significant increased latency (com-
munication rounds) linear in the number of participating
peers in the best case, and quadratic in the worst case. In
this work, we conceptualize these P2P anonymous commu-
nication protocols as P2P mixing, and present a novel P2P
mixing protocol, Fast-DC, that only requires constant (i.e.,
four) communication rounds in the best case, and 4 + 2f
rounds in the worst case of f malicious peers. As every
individual malicious peer can halt a protocol run by omitting
its messages, with its worst-case linear-round complexity, we
find Fast-DC to be an optimal P2P mixing solution.

We find Fast-DC to be an ideal privacy-enhancing primi-
tive for Bitcoin and other emerging P2P payments alterna-
tives. Public verifiability of their pseudonymous transactions
through publicly available ledgers (or blockchains) makes
these systems highly vulnerable to a variety of linkability and
deanonymization attacks. Fast-DC can allow pseudonymous
users to make their transactions unlinkable to each other
in a manner fully compatible with the existing systems. As
representative examples, we extend Fast-DC to create unlink-
able Bitcoin and Ripple path-based settlement transactions.
We also demonstrate practicality of Fast-DC with a proof-of-
concept implementation, and find it to require less than 16
seconds even with 50 users in a realistic environment.

Keywords
coin mixing, crypto-currencies, credit networks, anonymity,
dining cryptographers networks

1. INTRODUCTION
Chaum [16] introduced the concept of anonymous digital

communication in the form of mixing networks (or mixnet) in
1981. In the mixnet protocol, a batch of encrypted messages
from users are decrypted, randomly permuted, and relayed
by a sequence of trusted routers to avoid individual mes-
sages from getting traced through the network. Motivated
from this seminal work, Goldschlag, Reed and Syverson [25]

∗This is a draft (revision 2016-06-03); the most recent re-
vision is available at https://crypsys.mmci.uni-saarland.de/
projects/FastDC/.

propose onion routing to achieve low-latency anonymous
communication over the Internet, which culminated into the
original onion routing project [26] and many other low-latency
anonymous communication networks such as AN.ON [7] and
I2P [32]. Among these the second generation onion routing
network Tor [19] has turned out to be a definite success: by
now, it protects privacy of millions of users using more than
seven thousand dedicated proxies all over the world.

Almost simultaneously, we are observing an unprecedented
growth of peer-to-peer (P2P) cryptocurrency systems such as
Bitcoin [46] as well as transaction settlement networks such
as Ripple [51] and Stellar [4]. These payment systems employ
pseudonymity in an attempt to ensure that a user’s accounts
are not associated with her real-world identity. Along with
their decentralized nature, this promise of privacy has been
pivotal to success of these payment systems so far: Bitcoin
market capitalization has been in billions dollars for the last
few years consistently, and several banks are adopting Ripple
as their transaction backbone [31,37,38,52,53,55].

However, this perception of privacy has however turned
out to be incorrect. By applying suitable heuristics to the
Bitcoin public ledger (or the blockchain), Bitcoin transactions
sent and received by a particular user are observed to be
easily linkable [6, 9, 35,41,42,47,56]. A recent work [45] has
demonstrated similar linkability issues with IOweYou (IOU)
settlement networks such as Ripple [51], which also rely on
pseudonymous accounts and a public transaction ledger. As
a result, given the inherent public nature of payments, these
emerging payment system are now considered to provide
lesser privacy than traditional banking.

One line of research proposes entirely new privacy-
preserving payment protocols [10,34,43,44] foregoing compat-
ibility with the existing systems; however, their regulatory
feasibility and real-world success is yet to be determined.

A second line of research aims at improving privacy within
existing systems [1, 9, 11,12,30,40,54,59,62] to ensure back-
wards compatibility. While the deployed anonymous commu-
nication networks such as Tor has been employed in some of
these solutions [39] they are at odds with the emerging P2P
payment systems: Most OR and mixnet systems including
Tor inherently rely on dedicated, altruist parties (or routers)
for privacy, integrity or liveness, whereas the core philosophy
of payments systems is to aim at a P2P network requiring no
external trusted or untrusted node. Some solutions such as
CoinShuffle [54], inspired from a P2P anonymous communi-
cation system Dissent [18,58], instead propose tailored P2P
protocols that do not require any trusted or untrusted party
and are becoming popular in crypto-currencies.

1

https://crypsys.mmci.uni-saarland.de/projects/FastDC/
https://crypsys.mmci.uni-saarland.de/projects/FastDC/


Nevertheless, with communication rounds linear in the
number of participating peers in the best case and quadratic
in the worst case, these current pure P2P solutions [18,54,58]
are not scalable as the number of participating peers grow.
Moreover, none of the existing solutions are compatible with
payment settlement networks such as Ripple.
Our Contributions. Motivated from the privacy re-
quirement of real-world P2P payment systems, as our first
contribution, we introduce the concept of peer-to-peer (P2P)
mixing as a natural generalization of the dining cryptogra-
phers network (DC-net) [15] protocol (Section 2). A P2P
mixing protocol allows a set of peers to publish their mes-
sages anonymously without requiring any external (trusted
or untrusted) party such that the anonymity set equal to the
number of honest peers.

Although some extensions of the DC-net protocol [24,29,36]
as well as some anonymous group messaging systems [18,
54,58] also satisfy the P2P mixing requirements, we found
those to be not efficient enough for a large-scale mixing and
present the new P2P mixing protocol Fast-DC (Section 3).
Fast-DC builds on the original DC-net protocol, and handles
collisions and malicious peers using an interesting privacy-
preserving redundant messaging step. When every peer
behaves honestly, Fast-DC requires only a constant (i.e., four)
number of rounds, and it only increases to 4+2f rounds in the
worst case, even in the presence of f malicious peers. Both of
these communication round complexities are at least a linear
factor better than the existing approaches [18,24,29,36,54].

We provide a proof-of-concept implementation of the Fast-
DC protocol, and evaluate it in a realistic Emulab [61] net-
work scenario. Our results show that even 50 peers can
anonymously broadcast their messages in less than 16 seconds,
demonstrating that the techniques employed in Fast-DC can
be used to improve efficiency of mixing systems.

As our second contribution, we instantiate Fast-DC with
the two most prominent P2P payment systems Bitcoin and
Ripple. In particular, for Bitcoin, building on the CoinJoin
paradigm [40] and Fast-DC, we present CoinShuffle++, a
practical decentralized mixing protocol for the Bitcoin users
(Section 4). CoinShuffle++ not only is considerably simpler
and thus easier to implement than CoinShuffle [54] but also
inherits the efficiency of Fast-DC and thus outperforms its
CoinShuffle significantly. We also find CoinShuffle++ to be
compatible with other currently deployed privacy-preserving
P2P currency systems [3] and provide detailed description
to ease deployment in crypto-currency clients.

For the Ripple IOU settlement network, we propose Cred-
itMix, the first practical decentralized P2P mixing protocol
for the path-based transactions (Section 5). CreditMix uses
Fast-DC and adds only a constant number of rounds for
the peers to successfully carry out their desired settlement
transactions anonymously over the intersecting paths. Cred-
itMix is fully compatible with Ripple as demonstrated by
our proof-of-concept implementation, where we have success-
fully carried out a realistic mixing transaction following the
CreditMix protocol over the real Ripple network.

Finally, with its well-defined generic communication inter-
face, Fast-DC is applicable to P2P communication systems in
general, and we propose it also for non-payment applications
such as Sybil-resistant pseudonymization [22].
Organization. The paper is organized as follows. We start
by defining the problem of P2P mixing (Section 2). We then
detail the Fast-DC protocol and evaluate its performance

(Section 3). We describe the use of Fast-DC to achieve
anonymous transactions in Bitcoin (Section 4) as well as in
Ripple (Section 5), and we conclude our work (Section 7).

2. PROBLEM AND SOLUTION OVERVIEW
A P2P mixing protocol [18, 54, 62] allows n peers, each

peer p having a message mp, to send their set of messages
anonymously (i.e., breaking the linkability between mp and
p) without relying on any third-party router or proxy.
Security Requirements. The key requirement of a P2P
mixing protocol is sender anonymity, i.e, the protocol should
hide the relations between individual messages mp and their
owners p even from colluding malicious peers in the protocol,
and from the network attacker. The anonymity set of an
individual honest peer should be the set of all honest peers.

The second requirement of a P2P mixing protocol is ter-
mination, i.e., the protocol should terminate even in the
presence of malicious peers who send wrong protocol mes-
sages (active disruption) or refuse to send any message (crash
failure). While the protocol cannot force malicious peers to
behave honestly, it should guarantee that eventually all hon-
est peers deliver a set of final messages that contains at least
the messages of honest peers.
Confirmation. A core feature of a P2P mixing protocol is
that it provides each peer with an explicit confirmation on
the final message M obtained from all peers, e.g., in form of
a set of signatures on M , one by each peer. The form of the
confirmation depends on the context and application and
is left to be defined by the user. Again, while the protocol
cannot force malicious peers to confirm M , those malicious
peers should be excluded and the protocol should provide
confirmation that all non-excluded peers agree on the final
set of messages.

If necessary, the protocol is allowed to try again by ob-
taining new messages from peers while discarding the old
messages. In this case, sender anonymity is not guaranteed
for the discarded messages, which seems to put privacy at
risk. However, it turns out that in a variety of applications,
this is not a problem at all and a P2P mixing protocol is
a very useful primitive. Moreover, our permissive way of
defining a P2P mixing protocol allows for a very efficient
construction.

2.1 Communication Setting and Assumptions
Communication Setting. We assume that peers are con-
nected via a bulletin board, e.g., a server receiving messages
from each peer and broadcasting them to all other peers.

Further, we assume the bounded synchronous communica-
tion setting, where time is divided in fixed communication
rounds such that all messages broadcast by a peer in a round
are available to the peers by the end of the same round, and
absence of a message on the bulletin board indicates that the
peer in question failed to send a message during the round.

Such a bulletin board can seamlessly be deployed in prac-
tice, and in fact even already deployed Internet Relay Chat
(IRC) servers suffice. To be able to tolerate faulty or dis-
ruptive bulletin boards, it is possible to add redundancy
by runing the same instance of the P2P mixing protocol
on multiple bulletin boards. Notice that the bulletin board
can alternatively be implemented by a reliable broadcast
protocol [57] if one accepts the performance penalty.

We assume that all peers willing to participate in a P2P
mixing protocol have generated (possibly temporary) key
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pairs of a digital signature scheme, and that they know each
other’s verification keys at the beginning of a protocol run.
Threat Model. For sender anonymity, we assume that
the attacker controls the network (the bulletin board) and
f < n − 1 peers. The anonymity set of each honest peer
will be the set of honest peers, and the bound f < n − 1
implies that at least two honest peers are present to get any
meaningful anonymity guarantee.

For termination (or liveness), we additionally assume that
the attacker does not control the bulletin board as termina-
tion is clearly impossible in presence of an attacker who can
block communication.

To find other peers willing to mix messages, a suitable
bootstrapping mechanism can be used. Note that a malicious
bootstrapping mechanism might hinder sender anonymity by
excluding honest peers and thereby forcing a victim peer to
run the P2P mixing protocol with no or only a few honest
peers. While this is a realistic threat against any AC pro-
tocol in general, we consider protection against a malicious
bootstrapping mechanism orthogonal to our work.
Application Interface. To deploy a P2P mixing protocol
in various applications, our generic definition leaves it up to
the user to specify how new input messages are obtained and
how the confirmation on the output is performed.

A protocol instance consists of one or several runs, each
started by calling the user-defined algorithm MessageGen()
to obtain an input message to be mixed. When the protocol
has obtained a candidate result, i.e., a candiate output set
M of messages, it delivers M by calling the user-defined
subprotocol Confirm(i, P,M), whose task is to obtain con-
firmation for M from the final peer set P of all unexcluded
peers. (And i is an identifier of the run.) Possible confir-
mations range from a signature on M , to a complex task
requiring interaction among the peers.

If confirmation can be obtained from everybody, then
the run and the P2P mixing protocol terminates successfully.
Otherwise, Confirm(i, P,M) by convention fails and reports
peers deviating from the confirmation steps back to the P2P
mixing protocol. In this case, a new run is possible, and the
protocol excludes the malicious peers from this further run.1

Remark. A P2P mixing protocol might omit our applica-
tion interface and instead delegate on an application layer
to handle confirmation, and in case of failure, start a sec-
ond instance of P2P mixing protocol after excluding peers
refusing confirmation. This approach, however, is inherently
sequential: the second instance can be started only after the
confirmation of the first instance, since the set of excluded
peers is not determined earlier. Instead, our treatment en-
ables concurrent runs for improved efficiency (see Section 3):
it is possible to switch to an already started second run when
it turns out that the first run will fail to confirm.

2.2 Security Goals
We are now ready to state the security properties of a

P2P mixing protocol. Recall that the attacker controls up
to f < n− 1 peers.
Sender Anonymity. If the protocol succeeds for honest
peer p in a run with message mp and final peer set P , and

1Instead of dealing with multiple runs explicitly, we could
delegate to responsibility to start a new run in case of failure
to the application layer. However, it turns out that our
treatment will allow for more efficient constructions that
make use of concurrent runs.

p′ ∈ P is another honest peer, then the attacker cannot
distinguish whether message mp belongs to p or to p′.
Termination. If the bulletion board is reliable, the protocol
eventually terminates successfully for honest peer.

2.3 Overview on our Solution
Our core tool to design an efficient P2P mixing protocol

is a Dining Cryptographers Network (DC-net) [15].
We describe an example of a DC-net involving two users.

Suppose that two peers p1 and p2 share a key k and that
one of the peers (e.g., p1) wishes to anonymously publish
a message m such that |m| = |k|. For that, p1 publishes
M1 ··= m ⊕ k and p2 publishes M2 ··= k. An observer can
compute M1 ⊕M2, effectively recovering m. The origin of
this message is hidden: without knowing the secret k, the
observer cannot determine which peer published m. We refer
the reader to [27] for details on how to extend this basic
protocol to multiple users.
DC-net in the Real World. Besides the need for pairwise
symmetric keys, which can be overcome by a key exchange
mechanism, there are three key challenges to deploy a DC-net
in practice with an arbitrary number of peers, namely first,
handling collisions when more than one peer try to publish
her message; second, ensuring agreement on the outcome
of the protocol among honest peers even in the presence of
malicious peers; and third, handling of disruptive peers.
Handling Collisions. Each peer p ∈ P in the mixing
seeks to anonymously publish her own message mp. Naively,
they could run |P | instances of a DC-net, where each peer
randomly selects one instance (or slot) to publish her message.
However, even if all peers are honest, two peers can choose
the same slot with high probability, and their messages are
unrecoverable [27].

One proposed solution consists on performing an anony-
mous slot reservation mechanism so that peers agree in ad-
vance on an ordering for publishing [24,29,36]. However, this
mechanism adds communication rounds among the peers and
these reservation schemes must handle collisions on them-
selves. Alternatively, it is possible to set many more slots
so that probability of collision decreases [17]. However, this
becomes inefficient quickly, and two honest peers could still
collide with some probability.

Instead, we handle collisions by redundancy [13,20]. As-
sume that messages to be mixed are encoded as elements of
a finite field F with characteristic greater than the number
of peers n. Given n slots, each peer i, with message mi,
publishes mj

i in the j-th slot. This results in having a colli-
sion from all peers for each of the slots. Using addition in F
instead of XOR to create DC-net messages, the j-th collision
results on the i-th power sum Si =

∑
im

j
i .

Now, we require a mechanism to extract the messages mi

from the power sums Si. Let f(x) = xn + an−1x
n−1 + . . .+

a1x+a0 be the polynomial with roots m1, . . . ,mn. Newton’s
identities [21, 28] define linear relations between ai and Si.
Since every peer knows {Si}, they can easily calculate the
ai, reconstruct the polynomial f(x), and then factorize it.
The n roots are the messages mi from each peer. Intuitively,
symmetry of the power sums ensures sender anonymity.
Handling Disruptions. Recovering the messages only
works when all peers honestly follow the protocol. However,
a peer could disrupt the DC-net by simply using inconsistent
DC-net messages. In this case, the final set M does not
contain messages from honest peers, and the honest peers
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can deny confirmation.
To detect and exclude the misbehaving peer every peer

is required to reveal the secret key used in the initial key
exchange. Then every peer can replay the steps done by every
other peer and eventually detect and expel the misbehaving
peer from a new run.

Note that the revelation of the secret keys clearly breaks
anonymity for the current run of the protocol. However, the
failed run will be discarded and a new run with fresh cryp-
tographic keys and new messages is will be started without
the misbehaving peer. This is in line with our definition of
sender anonymity, which does not impose a requirement on
failed runs; it will become clear why this is not a problem.
Termination. To ensure that the protocol terminates for
all honest peers, we must ensure that all honest peers agree
on the current state and stage of the protocol, even in the
presence of malicious peers.

It turns out that the crucial point in our approach is after
determining the output set M . At this stage, every honest
peer checks whether its the provided input message is in
M . Depending on the outcome of this check, the peer either
starts the confirmation subprotocol to confirm a good M , or
reveals the secret key used in the key exchange to determine
who is responsible for an incorrect M . For termination, it is
crucial that all honest peers take the same decision at this
stage of the protocol.

To overcome this challenge, every peer must provide a
non-malleable commitment (e.g., using a hash function) to
its DC-net vector before it sees the vectors of other peers.
In this manner, malicious peers are forced to create their
DC-net vectors independently of the DC-net vector (and the
unpredictable input messages) of honest peers. Thus, the
redundant encoding of messages ensures that a malicious
peer is not able to create a malformed DC-net vector that
results in a distortion of only a subset of the honest peers.
Intuitively, to distort some messages but keep some other
message m of a honest peer intact, the malicious peer must
influence the all power sums consistently. This would requires
a DC-net vector that depends on m. This ensures that all
honest peers agree on whether M is correct or not, and take
the same control flow decision.

Another important guarantee provided by Fast-DC is that
if a protocol run fails, the honest peers agree on the set of
malicious peers to be excluded. Although this is critical for
termination, this aspect has not been properly formalized
and addressed on previous P2P mixing protocols [18, 58]
supposed to ensure termination.

3. THE FAST-DC PROTOCOL
In this section we present Fast-DC, a very efficient P2P

mixing protocol, which terminates in only 4 + 2f rounds in
the presence of f malicious peers.

3.1 Building Blocks and Conventions
Digital Signatures. We require a digital signature scheme
(KeyGen, Sign, Verify) unforgeable under chosen-message at-
tacks (UF-CMA). The algorithm KeyGen returns a private
signing key sk and the corresponding public verification key
vk . On input message m, Sign(sk ,m) returns σ, a signature
on message m using signing key sk . The verification algo-
rithm Verify(pk , σ,m) outputs true iff σ is a valid signature
for m under the verification key vk .
Non-interactive Key Exchange. We require a non-in-

Runs Communication rounds

1 KE CM DC SK

2 KE CM
RV
DC

CF

3 KE CM
RV
DC

CF

4 KE CM

Figure 1: A Fast-DC execution. Run 1 fails due to DC-
net disruption. Run 2 fails to confirm. Run 3 finally succeeds
and run 4 is then aborted. Rows represent protocol runs and
columns represent communication rounds. Blue parts are
for concurrency; arrows depict dependencies between rounds.
KE: Key exchange; CM: Commitment; DC: DC-net; RV: Reveal
pads; SK: Reveal secret key; CF: Confirmation.

teractive key exchange (NIKE) mechanism (NIKE.KeyGen,
NIKE.SharedKey) secure in the CKS model [14,23]. The algo-
rithm NIKE.KeyGen(id) outputs a public key npk and a secret
key nsk for given a party identifier id . NIKE.SharedKey(id1,
id2,nsk1,npk2, sid) outputs a shared key for the two par-
ties and session identifier sid . NIKE.SharedKey must
fulfill the standard correctness requirement that for
all session identifiers sid , all parties id1, id2, and all
corresponding key pairs (npk1,nsk1) and (npk2,nsk2),
it holds that NIKE.SharedKey(id1, id2,nsk1,npk2, sid) =
NIKE.SharedKey(id2, id1,nsk2,npk1, sid). Additionally, we
require an algorithm NIKE.ValidatePK(npk), which out-
puts true iff npk is a public key in the output
space of NIKE.KeyGen, and we require an algorithm
NIKE.ValidateKeys(npk ,nsk) which outputs true iff nsk is
a secret key for the public key npk .

Static Diffie-Hellman key exchange satifies these require-
ments [14], given a suitable key derivation algorithm such
as NIKE.SharedKey(id1, id2, x, g

y) ··= K((gxy, {id1, id2}, sid))
for a hash function K modeled as a random oracle.
Hash Functions. We require two hash functions H and G
both modeled as a random oracle.
Pseudocode Conventions. We use arrays written as
arr[i], where i is the index. We denote the full array (all its
elements) as arr[ ].

Message x is broadcast using“broadcast x”. The command
“receive X[p] from all p ∈ P where X(X[p])missing C(Poff)”
attempts to receive a message from all peers p ∈ P . The
first message X[p] from peer p that fulfills predicate X(X[p])
is accepted and stored as X[p]; all further messages from p
are ignored. When a timeout is reached, the command C is
executed, which has access to a set Poff ⊆ P of peers that
did not send a (valid) message.

Regarding concurrency, a thread that runs a procedure
P(args) is started using “t ··= fork P(args)”, where t is a
handle for the thread. A thread t can either be joined
using “r ··= join t”, where r is its return value, or it can be
aborted using “abort t”. A thread can wait for a notification
and receive a value from another thread using “wait”. The
notifying thread uses “notify t of v” to notify thread t of
some value v.

3.2 Contract with the Application
Guarantees Provided to the Application. To ensure
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that noone can refuse confirmation for a legitimate reason,
e.g., an incorrect set M not containing her message, the P2P
mixing protocol ensures that all honest peers deliver the
same and correct message set M . As a result it is safe to
assume that peers refusing to confirm are indeed malicious.

Agreement : Let p and p′ be two honest peers in a protocol
instance. If p calls Confirm(i, P,M)2 in some commu-
nication round r, then p′ calls Confirm(i, P,M) with
the same message set M and final peer set P in the
same communication round r.

Validity : If honest peer p calls Confirm(i, P,M) with mes-
sage set M and final peer set P , then (i) for all honest
peers p′ and their messages mp′ , we have mp′ ∈ M ,
and (ii) we have |M | = |P |.

Requirements on the Application. We require three
natural properties from the confirm subprotocol. The first
property states that a successful call to the subprotocol
indeed confirms that the peers in P agree on M . The second
property states that in an unsuccessful call, no honest peer
is falsely accused as a malicious peer. The third property
states that in an unsuccessful call, the honest peers agree
who refused confirmation maliciously.

Confirmation: Even if the bulletin board is malicious, if a
call to Confirm(i, P,M) succeeds for peer p, then all
honest peers in P have called Confirm(i, P,M).

No Honest Exclusion: If Confirm(i, P,M) returns a set
Pmalicious, then Pmalicious does not contain honest peers.

Agreement after Failure: If Confirm(i, P,M) returns a set
Pmalicous 6= ∅ for peer p, then Confirm(i, P,M) returns
the same set Pmalicious for every honest peer p′.

Encoding of Input Messages. We assume that input
messages generated by MessageGen() are encoded in a
prime field Fq, where q is larger than the number of peers in
the protocol. Also, we assume w.l.o.g. that the message m
returned by MessageGen() has sufficient entropy such that
it can be predicated only with negligible probability. (This
can be ensured by a randomized encoding such as encoding
m as m||r for a sufficiently large string r.) Note that this in
particular that q is at least as large as the security parameter.

3.3 Protocol Description
We describe the Fast-DC protocol in Algorithms 1 and 2.

The black code is the basic part of the protocol; the blue
code is necessary to handle several runs concurrently and to
handle offline peers.
Single Run of the Protocol (Black Pseudocode). The
protocol starts in Start-Fast-DC(), which receives as input
a set of other peers P , our own identity my, an array VK[ ]
of verification keys of the other peers, our own signing key
sk , and a predetermined session identifier sid .

A single run of Fast-DC consists of four rounds. (Run())
The first three rounds are key exchange (KE), publishing of
commitments to the DC-net messages (CM) and publishing
of such DC-net messages (DC). The fourth round consists on
accepting the result in the absence of disruptions (CF) or the

2Confirm(. . .) will actually take more arguments but they
are not relevant for this subsection.

publishing of secret keys to discover the misbehaving peer
(SK).

The first round (KE) just uses the NIKE to establish pair-
wise symmetric keys between all peers (DC-Keys()). Then
each peer can derive the DC-net pads from these symmetric
keys (DC-Pad()).

In the second round (CM), each peer commits to her DC-
net vector using hash function H; adding randomness is
not necessary, because we assume that the input messages
contained in the DC-net vector have sufficient entropy. The
commitments are opened in the third round (DC). They are
non-malleable and their purpose is to prevent a rushing
attacker from letting his DC-net vector depend on messages
by honest peers, which will be crucial for the agreement
property. After opening the commitments, every peer has
enough information to solve the DC-net and extract the list
of messages by solving the power sums (DC-Res()).

Finally, every peer checks whether her input message is in
the result of the DC-net. Agreement will ensure that either
every peer finds her message or no honest peer finds it.

If a peer finds her message, she proceeds to the confirmation
subprotocol. Otherwise, she outputs her secret key. In this
case, every other peer publishes her secret key as well, and all
peers can replay each other protocol messages for the current
run. This will expose the misbehaving peer and honest peers
will exclude him from the next run.
Concurrent Runs of the Protocol (Blue Pseudocode).
To reduce the number of communication rounds to 4 + 2f ,
we deploy concurrent runs as exemplified in Figure 1. We
need to address two main challenges. First, when a peer
disrupts the DC-net phase of run i, it must be possible to
“patch” the already started run i + 1 to discard messages
from misbehaving peers in run i. For that, run i must reach
the last phase (SK or CF) before run i+ 1 reaches DC phase.

Until run i+1 sends the DC message, it can can be patched
as follows. In the DC phase of run i+ 1, honest peers broad-
cast not only their DC-net messages, but also in parallel
they reveal (RV) the symmetric keys shared in run i+ 1 with
malicious peers detected in run i. In this manner, DC-net
messages can be partially unpadded, effectively excluding
misbehaving peers from run i + 1. We note that, a peer
could reveal wrong symmetric keys in the RV step. This,
however, leads to wrong output of the DC-net, which is
then handled by revealing secret keys in round i+ 1. More-
over, publishing partial symmetric keys does not compromise
sender anonymity since messages remain partially padded
with symmetric keys shared between the honest peers.
Handling Offline Peers (Blue Pseudocode). So far
we have only discussed how to ensure termination against
actively disruption peers who send wrong messages. However,
a malicious peer can also just send no message at all. This
case is easy too handle in our protocol. If a peer p has not
provided a (valid) broadcast message to the bulletin board
(in time), all honest peers will agree on that fact, and exclude
the unresponsive peer. In particular, it is easy to see that all
criteria specifying whether a message is valid will evaluate
the same for all honest peers (if the bulletin board is reliable,
which we assume for termination).

Observe that for missing messages from the first two broad-
casts (KE and DC), the current run can be continued. Peers not
sending KE are just ignored in the rest of the run; peers not
sending CM are handled by revealing symmetric keys exactly
as done with concurrent runs. Observe that this crucially
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ensures that even in the presence of passively disrupting
peers, only 4 + 2f communications rounds are necessary.

3.4 Security Analysis
In this section, we discuss why Fast-DC achieves all re-

quired properties.
Sender Anonymity. Consider a protocol execution in
which a honest peer p succeeds with message mp and final
peer set P , and let p′ ∈ P be another honest peer. We have
to argue that the attacker cannot distinguish whether mp

belongs to p or p′.
Since both p and p′ choose fresh messages mp,mp′ , and

fresh NIKE key pairs in each run, it suffices to consider
only the successful run i. Since p succeeds in run i, the call
to Confirm(i, P,M) has succeeded. By the confirmation
property of Confirm(. . .), p′ has started Confirm(i, P,M)
in the same communication round as p. By construction of
the protocol, this implies two properties about p′: (i) p′ will
not reveal her secret key in round SK. (ii) peer p′ assumes
that p is not excluded in run i, and thus has not revealed
the symmetric key shared with p in round RV. (Part (ii) is
only relevant in the concurrent variant of the protocol.)

As the key exchange scheme is secure in the CKS model
and the public keys are authenticated using signatures, the
attacker cannot distinguish the random DC-nets derived from
the symmetric key between p and p′ from random pads.

Thus, after opening the commitments on the pads, p has
formed a proper DC-net with at least p′. The security guar-
antee of original Chaum’s DC-nets [15] implies that the
attacker cannot distinguish mp from mp′ before the call to
Confirm(i, P,M). Now, observe that the execution of sub-
protocol Confirm(i, P,M) does not help in distinguishing,
since all honest peers call it with the same arguments, which
we have already argued.
Termination. We show why the protocol terminates for
every honest peer. On the way, we will further show agree-
ment, and validity. Recall that we assume the bulletin board
to be reliable for termination, so every peer receives the
same broadcast messages. Under this assumption and the
assumption that the signature scheme is unforgeable, a code
inspection shows that after receiving the DC message, the
entire state of a protocol run i is the same for every honest
peer, except for the signing keys, the own identity my, and
the message m generated by MessageGen(). From these
three items, only m influences the further state and control
flow, and it does so only in the check m ∈M .

Consequently, when considering run i, it suffices to show
that the condition m ∈M is either true for all honest peers
or is false for all honest peers. (Note that also M is entirely
determined by broadcast messages and thus the same for all
honest peers.)

Let p and p′ be two honest peers with their input messages
mp and mp′ in run i, and assume for contradiction that
the condition is true for p but not for p′, i.e., mp ∈M but
mp′ /∈ M . This implies that at least one malicious peer a
has committed to an ill-formed DC-net vector in run i, i.e., a
vector which is not of the form (ma,m

2
a, . . . ,m

n
a ) with n ≥ 2.

Since mp ∈ M , this ill-formed vector left the message mp

intact. A straight-forward argument involving the power
sums shows that it is infeasible to create such an ill-formed
vector without information about mp.

As the message H(dc,DC[ ]) implements a hiding, binding

Algorithm 1 Fast-DC: Main Protocol Run

procedure Start-Fast-DC(P,my,VK[ ], sk, sid)
sid ′ ··= (sid , P,VK[ ])
if my ∈ P then

fail ”cannot run protocol with myself”
Run(P,my,VK[ ], sk, sid ′, 0)

procedure Run(P,my,VK[ ], sk, sid , run)
if P = ∅ then

fail ”no honest peers ”

. Exchange pairwise keys
(NPK[my],NSK[my]) ··= NIKE.KeyGen(my)
sidH ··= H((sid, sid , P ∪ {my},NPK[ ], run))
broadcast (KE,NPK[my], Sign(sk , (NPK[my], sidH)))
receive (KE,NPK[p], σ[p]) from all p ∈ P

where NIKE.ValidatePK(NPK[p])
∧ Verify(VK[p], σ[p], (NPK[p], sidH))

missing Poff do
P ··= P \ Poff . Exclude offline peers

. Create fresh message to mix and prepare DC-net
m ··= MessageGen()
K[] ··= DC-Keys(P,NPK[ ],my,NSK[my], sidH)
DC[my][ ] ··= DC-Vector(P,K[ ],m)

. Set of malicious (and offline) peers for later exclusion
Pexcl = ∅
. Commit to DC-net vector
Com[my] ··= H((dc,DC[my]))
broadcast (CM,Com[my], Sign(sk , (Com[my], sidH)))
receive (CM,Com[p], σ[p]) from all p ∈ P

where Verify(VK[p], σ[p], (Com[p], sidH))
missing Poff do . Store offline peers for exclusion

Pexcl ··= Pexcl ∪ Poff

if run > 0 then
. Wait for prev. run to notify us of malicious peers
PexclPrev ··= wait
Pexcl ··= Pexcl ∪ PexclPrev

. Collect shared keys with excluded peers
for all p ∈ Pexcl do

Kexcl[my][p] ··= K[p]
. Start next run (in case this one fails)
P ··= P \ Pexcl

next ··= fork Run(P,my,VK[], sk , sid ′, run + 1)

. Open commitments and keys with excluded peers
broadcast (DC,DC[my][ ],Kexcl[my][ ], Sign(sk ,Kexcl[my][ ]))
receive (DC,DC[p][ ],Kexcl[p][ ], σ[p]) from all p ∈ P

where H((dc,DC[p][ ])) = Com[p]
∧ {p′ : Kexcl[p][p

′] 6= ⊥} = Pexcl[p]
∧ Verify(VK[p],Kexcl[p][ ], σ[p])

missing Poff do . Abort and rely on next run
return Result-Of-Next-Run(Poff,next)

. Check if our output is contained in the result
M ··= DC-Res(P ∪ {my},DC[ ][ ], Pexcl,Kexcl[ ][ ])
if m ∈M then

Pmalicious ··= Confirm(i, P,M,my,VK[ ], sk, sid)
if Pmalicious = ∅ then . Success?

abort next
return m

else
broadcast (SK,NSK[my]) . Reveal secret key
receive (SK,NSK[p]) from all p ∈ P

where NIKE.ValidateKeys(NPK[p],NSK[p])
missing Poff do . Abort and rely on next run

return Result-Of-Next-Run(Poff,next)
. Determine malicious peers using the secret keys
Pmal ··= Blame(NPK[ ],NSK[ ],DC[ ][ ], sidH, Pexcl,Kexcl[ ][ ])

return Result-Of-Next-Run(Pmal,next)
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Algorithm 2 Fast-DC: Sub-procedures

procedure DC-Vector(P,K[ ],m)
. DC-net
for s ··= 1, . . . , |P |+ 1 do

DCmy[s] ··= (m)s + DC-Pad(P,K[ ], s)
return DCmy[ ]

procedure DC-Keys(P,NPK[ ],my,nsk, sidH)
for all p ∈ P do

K[p] ··= NIKE.SharedKey(my, p,nsk,NPK[p], sidH)
return K[ ]

procedure DC-Pad(P,K[ ], s)
return

∑
p∈P sgn(my− p) · G((K[p], s)) . in F

procedure DC-Res(Pall,DC[ ][ ], Pexcl,Kexcl[ ][ ])
for s ··= 1, . . . , |P |+ 1 do

. Pads cancel out for honest peers
S[s] ··=

∑
p∈Pall

DC[p][s]

. Also remove pads for excluded peers
S[s] ··= S[s]−

∑
p∈Pall

DC-Pad(Pexcl,Kexcl[p], s)

M[ ] ··= Solve(∀s ∈ {1, . . . , |P |+ 1}. S[s] =
∑|P |+1

i=1 M[i]s)
return Set(M[ ]) . Convert M[ ] to an (unordered) set

procedure Blame(NPK[ ],NSK[ ],DC[ ][ ], sidH, Pexcl,Kexcl[ ][ ])
Pmal ··= ∅
for all p ∈ P do

K′[ ] ··= DC-Keys(P,NPK[ ], p,NSK[p], sidH)

. Purported m of p
m′ ··= DC[p][1]−DC-Pads(K[ ], 1)

. Replay DC-net message of p
DC′[ ] ··= DC-Vector(K′[ ],m′)
if DC′[ ] 6= DC[p][ ] then

Pmal ··= Pmal ∪ {p} . Exclude inconsistent p

. Check if p published correct symmetric keys
for all pexcl ∈ Pexcl do

if Kexcl[p][pexcl] 6= K′[pexcl] then
Pmal ··= Pmal ∪ {p}

return Pmal

procedure Result-Of-Next-Run(PexclNext,next)
. Hand over to next run and notify of peers to exclude
notify next of PexclNext

. Return result of next run
result ··= join next
return result

and non-malleable commitment on DC[ ] (recall that adding
randomness is not necessary because there is sufficient en-
tropy in DC[ ]), it is even for a rushing malicious peer a
infeasible to have committed to an ill-formed vector that
leaves mp intact. This is a contradiction, and thus the con-
dition m ∈ M evaluates equivalently for all honest peers.
As this is exactly the condition that determines whether
Confirm(. . .) is called, this shows validity for run i.

Consequently, if all honest peers started run i in the same
communication round, they also call Confirm(. . .) in the
same communication round, and they do so with the same
arguments i, P,M . This shows agreement (just for run i).

Furthermore, all honest peers start run i+ 1 in the same
communication round, and with the same set of peers P
(which is the only state passed from run i to run i+ 1): If
in run i, the subprotocol Confirm(. . .) is called, this holds
by the assumption that the return value of Confirm(. . .)
only depends on the arguments i, P , and M . If in run i, the
subprotocol is not called, it holds by a straight-forward code
inspection of the code responsible for determining the P for
run i+ 1.
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Figure 2: Running Time. Network setting: all peers in
the same LAN with a bandwith of 20 Mbit/s. The bulletin
board has a bandwidth of 100 Mbit/s.

As the first run starts in the first communication round
for all honest peers, agreement and validity for the whole
protocol follow by an inductive argument.

Finally, observe that at least one malicious peer is ex-
cluded in each run that does not succeed. In particular, if
Confirm(. . .) is called in a run, then it either succeeds or it
is assumed to return a non-empty set of malicious peers. If
Confirm(. . .) is not called in a run, then there must be a
malicious peer, and replaying all protocol messages of this
run clearly identifies him. This shows termination.

3.5 Performance Analysis
Communication. Using concurrent runs, the protocol
needs (c+3)+(c+1)f communication rounds, where f is the
number of peers actually disrupting the protocol execution,
and c is the number of rounds of the confirmtion subprotocol.
In the case c = 1 such as in our Bitcoin mixing protocol
(Section 4), Fast-DC needs just 4 + 2f rounds. In particular
it succeeds in 4 rounds if everybody behaves honestly.

The communication costs per run and per user are domi-
nated by the broadcast of the DC-net array DC[my][ ] of size
n · |m| bits, where n is the number of peers and |m| is the
length of a mixed message. All three other broadcasts have
constant size at any given security level.
Implementation. We have developed a proof-of-concept
implementation of Fast-DC based on an existing implemen-
tation of the Dissent protocol [18]. This unoptimzed imple-
mentation encompasses the complete functionality to enable
testing a successful run of Fast-DC without disruptions.

The implementation is written in Python and uses
OpenSSL for ECDSA signatures on the secp256k1 elliptic
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Figure 3: Computation Time. Purple line shows the
total computation time. Green line shows the computation
time without solving the power sums.
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curve (as used in Bitcoin and Ripple) at a security level of 128
bits. We use a Python wrapper for the Pari-gp library [33]
to find the roots of the power sum polynomial.
Testbed. We have tested our Fast-DC implementation in
Emulab [61]. Emulab is a testbed for distributed systems that
enables a controlled environment with easily configurable
parameters such as network topology or bandwidth of the
communication links. We simulate a network setting in which
all peers (20 Mbit/s) have TCP connections to a bulletin
board (100 Mbit/s). Note that the our bandwith assumption
for the bulletin board is very conservative (think of an IRC
server).
Results. We have run the protocol varying the number
of peers, ranging from 5 to 50. Each peer has as input for
the mixing a 160-bit message (e.g., a Bitcoin address). First,
we have measured the overall running time of Fast-DC. As
shown in Figure 2, we observe that even when 50 participants,
Fast-DC takes less than 16 seconds. Second, we have studied
how much time out of the total running time is spent by the
peers in computation. We show our results in Figure 3. We
have considered two computation times. First, the time spent
by peers in creating the blinded version of their messages
(i.e., green line); and second, the time required to find the
polynomial’s roots from the power sums (i.e., purple line).
We observe that although the second time is considerably
higher than the first, both are much smaller than the time
spent in the communication.

These results show that even our unoptimized implemen-
tation of Fast-DC scales to a large number of peers and
outperforms state-of-the-art P2P mixing solutions such as
CoinShuffle [54] and Dissent [18].

4. EFFICIENT COIN MIXING IN BITCOIN
Several works [6,9,35,42,47,56] propose different heuristics

to link Bitcoin payments sent or received by a particular
user. Ultimately, crypto-currencies such as Bitcoin using a
public Blockchain may in fact provide less anonymity than
traditional banking. Coin mixing has emerged as a technique
to overcome this problem while maintaining full compatibility
with current Bitcoin protocol.

A promising solution in this direction is CoinShuffle [54],
a P2P mixing protocol based on a mixnet run by the peers
to ensure the unlinkability of input and output accounts in a
jointly created mixing transaction (a so-called CoinJoin trans-
action [40]). However, a run with a decent anonymity set
of n = 50 peers takes about three minutes to complete [54],
assuming that every peer is honest. In the presence of f
disruptive peers aiming at impeding the protocol, O(nf)
communications rounds are required, and most of them in-
evitably taking longer due to the disruptive peers delaying
their messages intentionally. For say f = 10 disrupting peers,
the protocol needs more than 30 minutes to succeed, which
arguably prohibits a practical deployment of CoinShuffle. As
a consequence, we lack a coin mixing protocol for crypto-
currencies that is efficient enough for practical deployment.

We propose CoinShuffle++, an highly efficient coin mixing
protocol resulting from the application of Fast-DC to the
Bitcoin setting. In the following, we first give some back-
ground on Bitcoin. Then, we describe additional design goals
when using P2P mixing protocol in payment systems, and
then describe in detail our protocol. Finally, we show the

experimental results from our evaluation and finally com-
pare Fast-DC with other available proposals to overcome the
anonymity problem in Bitcoin.

4.1 The Bitcoin system
Bitcoin [46] is a crypto-currency run by a P2P network.

An accounts in the Bitcoin system is associated with ECDSA
signing keys. The accounts are then publicly identified by
a 160-bit hash of the verification key, called address. Every
peer can create an arbitrary number of accounts by creating
fresh key pairs.

A peer can spend coins stored at her account by creating
and signing Bitcoin transactions. In its simplest form, a
Bitcoin transaction is composed by an input account, an
output account and the amount of coins to be transferred
from the input to the output account. For the transaction
to be successful, it must be signed with the signing key
associated to the input account.

Bitcoin transactions can include multiple input and output
accounts to spend coins simultaneously. In this case, the
transaction must be signed with the signing keys associated
to each of the input accounts.

4.2 Security Goals
Apart from the general security goals for a P2P mixing

protocol (see Section 2.2), the protocol must guarantee correct
balance, a security property of interest when the P2P mixing
protocol is leveraged to mix output accounts that enable
privacy preserving transactions in payment systems.
Correct Balance. If the P2P mixing protocol succeeds
for peer p, then balance of p’s output account is at least β
(ignoring transaction fees), where β is mixing amount in the
P2P mixing protocol. In no case, the total balance of p’s
accounts is not reduced (ignoring transaction fees).

4.3 Our Protocol
CoinShuffle++ leverages Fast-DC to perform a Bitcoin

transaction where the input and output accounts for any
given (honest) peer cannot be linked. In particular, Coin-
Shuffle++ creates a fresh pair of signing-verification Bit-
coin keys and returns the verification key to implement
MessageGen().

Then, for the confirmation subprotocol Confirm(. . .),
CoinShuffle++ uses CoinJoin [40, 41] to perform the ac-
tual mixing. A CoinJoin transaction allows a set of peers to
mix their coins without the help of a third party. In such
a transactions, peers set their current Bitcoin accounts as
input and a mixed list of fresh Bitcoin accounts as output.
Crucially, peers can verify whether the thereby constructed
transaction transfers the correct amount of coins to their
fresh output account and only if all peers agree and sign the
transaction, it becomes valid. So in the case of CoinShuf-
fle++, the explicit confirmation provided by Fast-DC is a
list of valid signatures, one from each peer, on the CoinJoin
transaction.

Note that Fast-DC guarantees that everybody receives
the correct list of outputs account when the confirmation
subprotocol is entered. So a peer refusing to sign the CoinJoin
transaction can safely be considered malicious and removed.3

This is a crucial property for an anonymous CoinJoin-based

3This is omitted in the pseudocode.
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approach, otherwise a single malicious peer can refuse to sign
the transaction and thus mount a DoS service on all other
peers who cannot exclude the malicious peer if not convinced
of his guilt.

We define CoinShuffle++ in Algorithm 3. There, we de-
note by CoinJoinTx(VK in[],VK out[], β) a CoinJoin transac-
tion that transfers β bitcoins from every input to every output
account (where β is a pre-arranged parameter). Moreover,
we denote by Submit(tx, σ[ ]) the submission of tx including
all signatures to the Bitcoin network.
Security Analysis. Observe that CoinShuffle++ adheres
to the requirements specified in Section 3.2. Thus, sender
anonymity and termination in CoinShuffle++ are immedi-
ate. (We refer to [41] for a detailed taint-based analyses on
the privacy implications of CoinJoin-based protocol provid-
ing sender anonymity.) Correct balance is enforced by the
CoinJoin paradigm: by construction, a peer signs only trans-
actions that will transfer his funds from her input address to
her output address.
Performance Analysis. In our performance analysis of
Fast-DC (Section 3.5), MessageGen() creates a new ECDSA
key pair and Confirm(. . .) obtains ECDSA signatures from
all peers (using their initial ECDSA key pairs) on a bitstring
of 160 bits. This is almost exactly CoinShuffle++, so the
performance analyses of Fast-DC carries over to CoinShuf-
fle++.
Practical Considerations. There are several consider-
ations when deploying CoinShuffle++ in practice. First,
Bitcoin charges transactions with a small fee to prevent DoS
attacks. Second, the mixing amount β must be the same for
all peers but peers typically do not hold the exact mixing
amount in their input Bitcoin account. Finally, after honestly
performing the CoinShuffle++ protocol, a peer could spend
her bitcoins in the input account before the CoinJoin trans-
action is confirmed, in an attempt of double-spending. All
these challenges are easy to overcome. We refer the reader
to the literature on CoinJoin based mixing, e.g., [40,41,54],
for details on these practical considerations.
Compatibility. Since CoinJoin transactions work in the
current Bitcoin network, CoinShuffle++ is immediately de-
ployable.

4.4 Related Work
Privacy-preserving Currencies. Zerocoin [43] and its
follow-up work Zerocash [10], whose implementation Zcash is
currently in an alpha stage [2], are crypto-currencies protocols
that provide anonymity by design. Although these solutions

Algorithm 3 CoinShuffle++

procedure MessageGen( )
(vk , sk) ··= AccountGen() . Stores sk in the wallet
return vk

procedure Confirm(i, P,my,VKin[ ], sk in,VKout[ ], sid)
tx ··= CoinJoinTx(VK in[],VK out[], β)
σ[my] ··= Sign(sk in, tx)
broadcast σ[my]
receive σ[ ] from all p ∈ P

where Verify(VKin[p], σ[p], tx)
missing Poff do . Peers refusing to sign are malicious

return Poff

Submit(tx, σ[ ])
return ∅ . Success!

provide strong privacy guarantees, it is not clear whether
Zcash will see widespread adoption, in particular given its
reliance on a trusted setup due to use of zkSNARKS.

CoinShuffle++ builds on top of Bitcoin, and thus can be
deployed immediately and seamlessly without requiring any
changes to the Bitcoin protocol. Bitcoin is by far the most
widespread crypto-currency and will most probably retain
this status in the foreseeable future, so users are in need of
solutions enhancing privacy in Bitcoin.

The CryptoNote design [60] relies on ring signatures to
provide anonymity for the sender of a transaction. The ad-
vantage over CoinShuffle++ is that an online mixing protocol
is not necessary; a sufficient anomyity set can be created
using funds of user currently not online. However, this ad-
vantage comes with an important scaling drawback, because
old transactions cannot be pruned from the blockchain (since
anonymity ensures that it is not clear whether they have
been spent or not). CoinShuffle++ does not suffer from this
problem and is compatible with pruning spend transactions.
Centralized Mixing Services. Centralized mixing ser-
vices [1] can be used to unlink a bitcoin from the bitcoin’s
owner: several owners transfer their coins to the mixing
service who returns it to the owners at fresh addresses. The
main advantage of a centralized approach it scales well to
a large anonymity sets. However, by using these services, a
user must fully trust the mix: First, anonymity is restricted
towards external observers, i.e., the mixing service itself can
still determine the owner of a bitcoin. Second and even
more important, the users have to transfer their funds to the
mixing service who could just steal them by refusing to give
them back.

Mixcoin [12] mitigates the first problem by holding the
mix accountable in case it steals the coins (but theft is still
possible). Blindcoin [59] solves the second problem by the
use of blind tokens.

Blindly Signed Contracts [30] proposes a centralized mech-
anism based on the combination of blind signatures and
smart contract to solve both mentioned problems. However,
the adoption of this approach requires a protocol change,
which can be implemented as a soft-fork in the current Bit-
coin blockchain. Moreover, this mechanism requires four
Bitcoin transactions per peer, three of them to be confirmed
sequentially. Even when using potentially risky one-block
confirmations, this implies that mixing takes 30 minutes on
average and transaction fees for four transactions per peer.

CoinShuffle++ uses a single transaction for all peers and
thus requires much less time and fees from the peers in the
mixing.
Other P2P Approaches. CoinParty [62] is a protocol
where a set of mixing peers is used to mix coins from the
users. In this approach, they assume that 1/3 of the mixing
parties are honest. However, this trust assumption is not
in line with the Bitcoin philosophy, and much worse, it is
unclear how to realize it in a P2P setting without strong
identities, where sybil attacks are easily possible. CoinShuf-
fle++, instead, does not make any trust assumption on the
mixing participants, except that there must be two honest
peers, which is fundamental requirement for any protocol
providing anonymity.
Sybil-Resistant Approaches. Xim [11] improves on its
related previous work [9] in that it uses a fee-based advertise-
ment mechanism to pair partners for mixing, and provides
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evidence of the agreement that can be leveraged if a party
aborts. Even in the simple case of a mixing between two
peers, Xim requires to publish several Bitcoin transactions
in the Bitcoin blockchain, what takes on average at least 10
minutes for each transaction.

CoinShuffle++ instead requires to submit a single transac-
tion to the Bitcoin blockchain independently on the number
of peers. Moreover, although CoinShuffle++ does not pre-
vent malicious peers from disrupting the protocol, it provides
a mechanism to identify the misbehaving peer so that it can
be excluded and termination is ensured.

5. CREDIT MIXING IN RIPPLE
Almost all efforts to overcome the anonymity problem

focus on crypto-currencies but ignore general settlement
networks such as Ripple [8]. Nevertheless, a recent work [45]
has shown that the lack of anonymity is a serious problem
also in this scenario. The only available solution to this
problem is a novel privacy-preserving protocol for credit
networks [44]. This approach leverages the use of trusted
hardware to enforce strong privacy guarantees by accessing
the credit network by means of novel oblivious algorithms
that hide the access pattern. This approach, however, is not
fully compatible with the currently deployed Ripple network.
Thus, we lack a protocol for privacy preserving settlement
transactions that is fully compatible with Ripple.

In this section we first give the background on Ripple.
Since Ripple is a generalization of a payment system, we aim
at the same design goals as described for Bitcoin (Section 4.2).
Then, we describe CreditMix, the first decentralized P2P
mixing protocol for settlement networks. Finally, we dis-
cuss our experimental results from carrying out a CreditMix
transaction in the real Ripple network.

5.1 The Ripple network
The Ripple network is a weighted, directed graph G :=

(V,E), where V denotes the set of accounts and E represents
the I Owe You (IOU) credit links between accounts. A
weighted, directed edge (u1, u2) ∈ E is labeled with a dynamic
scalar value αu1,u2 denoting the amount of unconsumed credit
that u1 has extended to u2 (i.e., u1 owes αu1,u2 to u2).
The available credit on an edge is lower-bounded by 0 and
upper-bounded by ∞, although a tighter upper bound can
optionally be adopted by the account owner. Additionally,
every account has associated with it a non-negative amount of
XRP (i.e., the native Ripple currency). For ease of explanation,
we assume that there is only one IOU currency (i.e., USD)
over the credit links in the Ripple network. We later discuss
how CreditMix can handle several currencies.

As in Bitcoin, a Ripple account is created as a pair of
signing and verification keys (vk , sk). The account is then
labeled with an encoding of the hashed public key. A Rip-
ple transaction contains a single sender and receiver. A
transaction is valid when signed by the sender’s private key.

Ripple defines two types of transactions: direct XRP pay-
ments and path-based settlement transactions. Intuitively,
a direct payment involves the transfer of XRP between two
accounts which may not have a credit path between them.
Path-based settlement transactions settle credit between two
accounts having a set of credit paths between them with
enough capacity. In the following, we focus on settlement
transactions and discuss direct XRP payments in Appendix B.

Assume that ui wants to transfer β IOU to uk and that ui
and uk are connected through a path of the form ui – . . . – uj
– . . . – uk. In the path finding algorithm, links are considered
as undirected. However, the transaction is performed by
updating the credit on each link depending on its direction
as follows: links in the direction from ui to uk are increased
by β, while reverse links are decreased by β. A transaction
is successful if no link is reduced to a value less than 0 and
no link exceeds the pre-defined upper bound on the link (if
other than ∞). A transaction can be split among several
paths such that the sum of credit available on all paths is
at least β. Such a transaction contains one sender and one
receiver but several paths from sender to receiver.

A new account in the Ripple network needs to receive IOU
on a credit link to interact with other accounts. The Ripple
network solves this bootstrapping problem by introducing
gateways. A gateway is a well-known reputed account that
several accounts can trust to create and maintain a credit link
in a correct and consistent manner. As gateways accounts are
highly connected nodes in the Ripple network, the thereby
created credit link will allow the new account to interact
with the rest of the Ripple network. We briefly describe here
the Ripple network. We refer to [8, 45] for more details.

5.2 Key Ideas
The main idea of our CreditMix protocol consists on lever-

age Fast-DC to mix n Ripple settlement transactions such
that input and output accounts belonging to the same (hon-
est) peer cannot be linked together. The problem of mixing
n Ripple settlement transactions can be defined as follows:

Notation:
(VKin[i], sk in) Input account for user i

(VKout[i], skout) Output account for user i
β Amount of IOU to be mixed

Contract terms:
1. Every peer i has at least β IOU on her VKin[i]’s link.
2. Every peer i has an account VKout[i] without IOU.
3. If no peer misbehaves, credit on each VKin[i] is decreased

by β. Moreover, each user can send β credit from VKout[i].
4. If at least one peer misbehaves, credit on all accounts is

maintained as defined on steps 1 and 2.

A Straw-man Direct Approach. A technical challenge is
to ensure correct balance: no peer loses her IOU in the mixing
process. A first trivial solution would be to let the peers
shuffle their output accounts to obtain sender anonymity,
agree in an ordering and perform n settlement transactions
as follows: peer i transfers the mixing value to the output
account in the position i within the shuffled list of output
accounts. It is easy to see, however, that this approach
fails to ensure the correct balance property: a peer that has
already received her IOU in her output account can simply
refuse to pay to the account assigned to her.
Adding a Shared Account. It is possible to create an
account shared among the peers such that only when all
peers agree, a transaction involving the shared account is
performed. This effectively allows to add one synchronization
round: each peer is forced to transfer β IOU to a shared
account and only when n · β IOU are collected, they are
sent to the output accounts. This, however, does not solve
the correct balance problem either. Once all the IOU are
collected in the shared account, a (malicious) peer could
collaborate with the rest to create and sign the transaction
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to her output account and then disconnect. In this manner,
IOU from the rest of peers are locked in the shared account.
Our Solution: Two Shared Accounts. The idea under-
lying our approach is to use two synchronization rounds via
two shared accounts (e.g., vk∗in and vk∗out). In the first round,
peers jointly create a credit link from each input account to
vk∗in with β IOU on them. Moreover, peers jointly create a
credit link from each of the output accounts to vk∗out with no
IOU on them but an upper limit of β. At this point, credit
at each VKout[i] cannot be issued as part of a settlement
transaction because vk∗out does not have incoming credit yet
(see Figure 4a). The second synchronization round can be
then used to overcome that. All peers jointly create a trans-
action from vk∗in to vk∗out for a value of n ·β IOU. Then, vk∗out

gets enough credit that can be used by each of the VKout[i]
(see Figure 4b).

5.3 Building Blocks
Ripple Network Operations. We utilize the following
operations available in the current Ripple network.

(vk , sk) ··= AccountGen() Generate account keys
tx ··= CreateTx(vk1, vk2, v) Create settlement transaction

tx ··= CreateLink(vk1, vk2, v) Create link vk1 → vk2 (limit v)
tx ··= ChangeLink(vk1, vk2, v) Modify link vk1 → vk2 by v
{v,⊥} ··= TestLink(vk1, vk2) Query link vk1 → vk2

{0, 1} ··= Submit(tx, σ) Apply signed tx to network

A transaction tx becomes valid when is signed by the
appropriate account’s secret key. A tx from CreateTx and
ChangeLink must be signed by sk1, whereas a tx from Cre-
ateLink must be signed by sk2.

In the following we assume for clarity of explanation that
a tx is instantaneously applied to the Ripple network after in-
voking Submit(tx, σ) with the correct signature. In practice,
a tx is applied in a matter of seconds.
Digital Signature Scheme. Formally, we require the
same digital signatures as described in Fast-DC (see Sec-
tion 3.1).
Shared Account. For consistency with other protocols in
the paper, we describe the handling of a shared account via
multi-sign mechanism, even though it is not fully deployed
in Ripple yet [48]. We discuss in Appendix A how to manage
a shared account using distributed signatures in order to
preserve full compatibility with the current Ripple.

A shared account is created as vk∗ ··= SAccountGen(VK[ ]),
where VK[ ] represents the vector of public keys for all
peers jointly managing the shared account. The function
{0, 1} ··= SAccountVer(vk∗,VK[ ]) allows peers to verify that
the shared account has been correctly created. Then, each
peer i can locally sign a tx involving the shared account as
σi ··= Sign(sk i, tx). A signature for a given tx is then verified
as Verify(VK[i], σi, tx). Finally, the tx is successfully submit-
ted to the Ripple network by adding the correct signature
from all peers as Submit(tx, (σ1, . . . , σn)).

5.4 Our Protocol
CreditMix leverages Fast-DC and thus inherits all assump-

tions from it. Additionally, we assume that there is a leader
peer (e.g., the first in the lexicographical order of their
VKin[ ]), who is in charge of creating the shared accounts
and broadcast them to the rest of peers. Finally, for ease of
explanation we assume that every peer submits to the Ripple
network a correctly signed transaction for shared accounts.

This assumption does not have negative security implications:
the transaction is only applied once since a Ripple transaction
contains a sequence number to avoid replay attacks.

As in CoinShuffle++, for CreditMix we need to imple-
ment both MessageGen() and Confirm(). The former is
implemented by invoking (vk , sk) ··= AccountGen(). The
sk is stored for subsequent usage and vk is returned. The
details for the latter are described in Appendix C. In the
following, we give an overview of the operations through an
example depicted in Figure 4. Assume that there are five
peers with input accounts A∗in, B∗in, C∗in, D∗in, E∗in, willing to
shuffle β = 10 IOU. Further assume that all input accounts
have at least β IOU available in the credit network. For the
ease of explanation, we assume that all input accounts have
a credit link with a common account (i.e., vk∗gw). We discuss
later in Appendix D how to relax this assumption. Given
this setting, the protocol works as follows:
Phase 1: Create and Connect Input Shared Account.
The leader uses the list of input verification keys VKin to
create the input shared account vk∗in and broadcasts it to the
rest of peers. To avoid the forgery of such message, the leader
includes a signature on vk∗in with the current round id i and
session id sid . We require that only transactions starting at
vk∗in can be performed. For that, the rippling option must be
disabled at each credit link for vk∗in account. This rippling
option is available in the current Ripple protocol and we
refer the reader to [5] for details.

Then, peers jointly create a credit link from each input
account VKin[i] to vk∗in. For that, each peer locally creates
a signature of the corresponding tx for each credit link and
broadcasts the list of signatures to other peers. After veri-
fying the correctness of all signatures, they are submitted
to the Ripple network. In case some a peer creates a wrong
signature, the protocol returns and consider him as misbe-
having. Otherwise, each peer locally creates and signs a
transaction that issues β credit to the recently created link
VK[i]→ vk∗in. If some peer refuses to fund such a credit link,
returns him as a malicious peer.
Phase 2: Create Credit Links for Output Accounts.
As in the previous phase, the leader creates an output shared
account (vk∗out) and broadcasts it to the rest of peers. The
account vk∗out must enable transactions starting at it as well
as transactions using vk∗out as intermediate account. For that,
rippling option must be enabled in this case. Then, peers
jointly create a credit link from each VKout[i] to vk∗out with
an upper limit of β. These links allow them to anonymously
perform a settlement transaction for up to β IOU.

The details of creating the links and verifying the corre-
sponding signatures are similar to the previous case involving
the input shared account. As before, peers ensure that only
links to known output accounts are created. If during this
phase some peer creates an invalid signature, the protocol
is restarted without the misbehaving peer. Otherwise, the
credit network at the end of this step is set up as depicted
in Figure 4a.
Phase 3: Final Settlement Transaction. At this point,
the vk∗out account does not have any incoming credit and thus
no transaction from an output account through vk∗out can be
performed. To solve this situation, the peers jointly create
a settlement transaction transferring n · β IOU from vk∗in
to vk∗out. This settlement transaction is possible using the
n available paths through each of the peers’ input accounts.
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(a) Credit network after the set up of the shared
accounts and output credit has been issued.
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(b) Credit network after carrying out CreditMix
without any disruptive peer.

Figure 4: An illustrative example of CreditMix protocol to mix 10 IOU among five peers. Solid arrows depict credit links
between two accounts. Values a/b on the links denote: a current balance and b upper limit other than ∞. After a successful
run of CreditMix, a user (e.g., Alice) can perform a settlement transaction for up to 10 IOU using A∗out, vk∗out, vkgw as first hops
in the payment path.

If some peer does not sign such transaction, the protocol is
restarted without such peer.

Interestingly, this settlement transaction makes credit to
flow from vk∗in to vk∗out so that the credit link between vk∗gw

and vk∗out has now n · β IOU, as depicted in Figure 4b. This
fact enables now settlement transactions from each output
account to the rest of the credit network.

5.5 Security Analysis
Since CreditMix fulfills the application requirements de-

fined in Section 3.2, sender anonymity in CreditMix is im-
mediate from Fast-DC. In the following, we discuss how
CreditMix enforces correct balance and termination.
Correct Balance. CreditMix ensures correct balance as
follows. First, the creation and set up of the shared accounts
do not involve the credit to be protected. Second, the deac-
tivation of rippling option on vk∗in credit links ensures that
only settlement transactions starting at vk∗in are accepted.
This prevents a malicious peer from stealing honest peer’s
credit using vk∗in as intermediate account (e.g., by means of
a settlement transaction with path: (VK[malicious]) – vk∗in –
(VK[honest]) – vk∗gw – (VK[malicious]).

Third, settlement transaction from vk∗in to vk∗out sends all
the credit at once. Thus, either all peers contribute credit
for the mixing process or none of them do. Moreover, this
transaction is created and submitted to the Ripple network
only if each peer has already an issuing transaction from
vk∗out. In this manner, it is ensured that credit in the output
accounts can be used later to perform a transanction to any
other account in the credit network.

The settlement transaction from vk∗in to vk∗out is the last
step of the protocol. Thus, whenever the protocol is restarted
due to a misbehaving peer, the credit on the links between
the input accounts and vk∗gw is not used and can be reused
in another run of CreditMix. Finally, credit on the links be-
tween input accounts and vk∗in can be locked after restarting.
However, this credit is created only for the mixing purpose
and it does not have any value outside the mixing protocol.
Termination. CreditMix achieves termination as follows.
First, given the input to the protocol, every peer can generate

the transactions to be signed. Second, the (possibly) random-
ized signatures of such transactions can be verified since the
verification keys are available as input to the protocol. Thus,
every peer can verify the correct behavior of each other peer
and correctly detect a possible misbehavior.

5.6 Implementation
We have implemented the functionality for Confirm(. . .)

defined in CreditMix. In order to maintain full compatibility
with current Ripple and be able to test our approach in
the currently deployed network, we have implemented the
shared account management using a distributed signature
scheme instead of multi-sign approach. In particular, we
have implemented SAccountGen, SSign and Verify algorithms
(see Appendix A) in JavaScript, based on the current Ripple
code [50]. We have employed the EdDSA signatures based
on Ed25519 curves.
Implementation-level Optimizations. First, both
shared accounts vk∗in and vk∗out can be created in parallel.
Second, links between vk∗in and input accounts from peers
can be created in parallel. Moreover, credit links from peers
output accounts to vk∗out can be created in parallel.
Testbed. In this test we measure the computation time
required by each peer. We perform this test in a computer
with Intel i7, 3.1 GHz processor and 16 GB RAM memory.
Since peers needs to broadcast messages of size similar to
those exchanged in Fast-DC, the communication time is
similar to our results in Fast-DC.
Results. Given the aforementioned optimizations, we have
studied the running time for a single run of SAccountGen
and SSign algorithms. This thus simulates the creation of
a single shared account and the signature of a transaction
involving a shared account. We have observed that even
with 50 participants, SAccountGen takes 1.215 seconds and
SSign takes 0.306 seconds. It is important to note that it
takes approximately 5 seconds for a transaction to be applied
into the current Ripple network. Thus, the overall running
time of CreditMix is mandated by the time necessary for the
Submit operations.
A Real World Example. We have simulated a run of
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CreditMix without disruption in the currently deployed Rip-
ple network. As a proof of concept, we have successfully
recreated the scenario depicted in Figure 4. Detailed in-
formation about the Ripple nodes4 and the transactions5

involved in the test can be found using the Ripple charts
and RPC tools6. This demonstrates the compatibility of
CreditMix with the Ripple network.
Other Practical Considerations. Our protocol Credit-
Mix can perform privacy-preserving settlement transactions
taken into account the rich functionality available in Rip-
ple. For instance, CreditMix can handle transactions mixing
different IOU currencies, fees associated to settlement trans-
actions and allow mixing peers to have a credit link with
different gateways. We discuss in detail these practical con-
siderations in Appendix D.

6. OTHER APPLICATIONS OF FAST-DC
In this work we utilize Fast-DC to build anonymous transac-

tions in currently deployed payment systems such as Bitcoin
and Ripple. However, the techniques used in Fast-DC can
be applied to improve upon currently available anonymous
broadcast protocols.

Dissent [18] describes a shuffle protocol to perform a slot
reservation that defines then a DC-net transmission schedule.
In this manner, several peers can use their assigned slots to
publish a message avoiding collisions. This shuffle protocol
uses a number of communication rounds linear in the number
of participants and requires that every peer sends a message
of size quadratic in the number of participants. Fast-DC
instead does not require a slot reservation protocol, uses only
a constant number of communication rounds and messages
are only of size linear in the number of participants.

Florian et al. [22] define a protocol to allow a set of peers
to create new pseudonyms unlinkable to the old ones. Addi-
tionally, it is possible to verify that new pseudonyms belong
to registered peers without revealing their identities. In or-
der to achieve that, they use the shuffle protocol defined
in CoinShuffle. This shuffle protocol requires a number of
communication rounds linear in the number of participants.
Replacing it with Fast-DC would improve the efficiency of
the overall protocol since only constant number of rounds
are then required.

7. CONCLUSIONS
In this work we present Fast-DC, a P2P mixing protocol

based on DC-nets that enable participants to anonymously
publish a set of messages ensuring sender anonymity and
termination. Fast-DC avoids slot reservation and still ensures
that no collisions occur, not even with a small probability.
This results in Fast-DC requiring only 4 rounds independently
on the number of peers, and 4 + 2f rounds in the presence
of f misbehaving peers. We have implemented Fast-DC
and showed its practicality to enable privacy preserving
operations in several scenarios.

For instance, we use Fast-DC to implement CoinShuffle++,
a practical decentralized coin mixing for Bitcoin. Our evalua-
tion results show that CoinShuffle++ is a promising approach
to ensure sender anonymity in Bitcoin requiring no change
in the current Bitcoin protocol.
4http://tinyurl.com/zc3yu8l
5http://tinyurl.com/hb9722d
6https://ripple.com/build/ripple-info-tool/

Finally, we present CreditMix, the first mixing protocol
for credit networks such as Ripple. CreditMix uses Fast-DC
and requires only two extra synchronization rounds to mix
credit network transactions independently of the number of
mixing participants. CreditMix does not require any change
to current credit networks and we show it by carrying out a
proof of concept mixing payment in the currently deployed
Ripple network.
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APPENDIX
A. HANDLING SHARED ACCOUNTS US-

ING DISTRIBUTED SIGNATURES
A shared account can be managed through three algo-

rithms: SAccountGen, SSign and Verify. Currently Ripple
supports two digital signature algorithms: ECDSA using the
curve SECP256k1 and EdDSA signatures using the elliptic
curve Ed25519. For compatibility with the current Ripple
network and for efficiency, we use the distributed signature
scheme based on the EdDSA signature scheme. In the fol-
lowing, we describe SAccountGen and SSign algorithms in
more detail. Verify works as defined in EdDSA.

procedure SAccountGen(VK in[ ],my, P )
for all participant p ∈ P ∪ {my} do

VK∗ ··= VK∗ + VKin[p]
return VK∗

procedure SSign(P,my,VK in[ ], sk in,m)
(vkr, skr) ··= AccountGen()
broadcast vkr

receive vkr[p] from all participant p ∈ P
for all participant p ∈ P ∪ {my} do

vk∗r ··= vk∗r + vkr[p]
c ··= H(vk∗r , vk∗r ,m)
s ··= skr + c · sk in

broadcast s
receive s[p] from participant p ∈ P
for all participant p ∈ P ∪ {my} do

s∗ ··= s∗ + s[p]
return (vk∗r , s

∗)

B. CreditMix: MIXING XRP
The XRP currency is defined in Ripple to protect the network

from abuse and DoS attacks. A Ripple account needs to hold
XRP for two reasons: the account is considered active only if
it has a certain amount of XRP; moreover, the issuer of any
transaction must pay a transaction fee in XRP.

The direct XRP payments allow the exchange of XRP between
two accounts. Assume that u wants to pay β XRP to v and
that u has at least β XRP in her XRP balance. Then β XRP are
removed from u’s XRP balance and added to v’s XRP balance.
Notice that this type of transaction does not require the
existence of any (direct or indirect) credit line between the
sender and the receiver of the transaction. Therefore, the
Path field of the transaction is not used.

B.1 Key Ideas
The problem of mixing n XRP payment can be defined as

a contract, analogously to mixing n settlement transactions
(see Section 5). The contract can be defined as follows:

Notation:
(VKin[i], sk in) Input account for user i

(VKout[i], skout) Output account for user i
β Amount of XRP to be mixed

Contract terms:
1. Every peer i has at least β XRP on her VKin[i]’s link.

2. If no peer misbehaves, XRP on each VKin[i] is decreased by
β. Moreover, XRP on each VKout[i] is increased by β.

3. If at least one peer misbehaves, XRP on all accounts is main-
tained as defined on steps 1.

Given the similarity between XRP payments and bitcoin
payments, we could ensure such contract by using a hypo-
thetical CoinJoin transaction in Ripple, as we did for Bitcoin.
However, at the time of writing, such transaction type is not
available in Ripple. Thus, we devise a protocol that can be
deployed in the current Ripple protocol without requiring
any non-existing functionality.
Naively using two shared accounts. A first naive solu-
tion would consist in using two shared accounts to perform
the mixing of n XRP payments in a similar manner to what
we defined for shuffling n settlement transactions (see Sec-
tion 5). There is however an important subtlety that appears
when using XRP payments: making a payment from an input
account to the vk∗in implies actual sending of XRP. However,
if when XRP are sent to vk∗in, then a peer disconnects, the XRP

in vk∗in are stucked, disallowing the possibility of finishing
the shuffling and other peers lose their XRP. Thus, ensuring
correct balance is a challenge in this scenario.
Use of recover payments. It is possible to create in
advance a payment from vk∗in to a peer’s input account.
Then, the peer knows she can get her XRP back from vk∗in if
the mixing is not completed. Given that, she can safely send
XRP from her input account’s to vk∗in. However, this does not
completely solve the correct balance problem. When, the
recover payment is created for the second peer, he can use it
to steal the XRP from vk∗in previously sent by the first peer.
Chaining and tagging recover payments. In Ripple,
every transaction has a sequence number associated to it.
For a given account, a transaction using this transaction as
sender is only valid if its sequence number is one bigger than
the last valid transaction. Given that, it is possible to ensure
that recover payments are executed in order. The first peer
gets a recover payment with sequence 1 and the second peer
gets recover payment with sequence 2. This, however, does
not totally solve the correct balance problem yet: the second
peer can only recover his XRP if the first one submits here
recover payment. Otherwise, all XRP are locked at vk∗in.

We can fully solve the correct balance problem as follows.
The first peer gets a recover payment with sequence 1 and
tagged with her identifier (e.g., Alice). The second user gets
two recover payments: one with sequence 1, tagged with
his identifier (e.g., Bob) that returns Alice’s XRP to Alice’s
account. A second one with sequence 2, tagged with Bob’s
identifier that returns his XRP. This mechanism ensures that
Bob recovers his XRP even if Alice is going offline. Moreover,
this mechanism ensures termination: given that transactions
are tagged, a misbehaving peer maliciously recovering his
XRP can be easily detected.

B.2 Building Blocks
Chaining of Ripple transactions. A Ripple transaction
is only valid if the Sequence number field is set to a value
1 unit greater than the last-validated transaction from the
same account. We use this to make sure that transactions
issued from a certain account are in the expected order7.

7https://ripple.com/build/transactions/#identifying-
transactions
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Figure 5: An illustrative example of CreditMix pro-
tocol to mix 5 XRP among 4 participants. Arrows de-
picts XRP transactions. The information above the arrows
shows how many XRP are sent in every transaction and the
number in () shows the sequence of the transactions. The
last four transactions have the same sequence number since
they can be performed in parallel after transaction 5. Num-
bers in {} represent the XRP balance at each account before
performing the CreditMix protocol

In this protocol, similar to the CreditMix definition to
mix IOU, we make use of anonymous broadcast and shared
accounts as building blocks (see Section 5.3).

In the following, we describe the protocol steps by means
of an example. For simplicity, assume that there are 4
participants with Ripple accounts A∗in, B∗in, C∗in, D∗in, willing
to mix 5 XRP. Moreover, every participant knows her own
output Ripple account. For example, Alice’s output Ripple
account is A∗out. Given that setting, the protocol works as
depicted in Figure 5. In detail:

1. Create output list. Participants gather together and
perform the anonymous broadcast protocol to get a
shuffled list of A∗out, B

∗
out, C

∗
out, D

∗
out.

2. Create shared accounts. The peers jointly generate
two shared accounts vk∗in and vk∗out.

3. Create transactions for (almost) the entire work-
flow. The peers jointly create a transaction transferring
20 XRP from vk∗in to vk∗out. Moreover, they create a trans-
action sending 5 XRP from vk∗out to every participant’s
out account. These transactions are all signed by all
participants using the distributed signing algorithm. As
vk∗in and vk∗out do not have any fund at this point in
the protocol, transactions cannot be accepted to the
ledger. Moreover, the sequence number of the transac-
tions created at this step are known because the set of
transactions to be performed are fixed.
At this moment, as soon as every peer transfers her
5 XRP to vk∗in, this account gets enough funds so that
all the previous transactions are valid and they can be
submitted by any peer to the Ripple network.

4. Transfer input XRP to vk∗in in a safe manner. The
main idea of this step is that every peer first creates
a transaction to recover her coins from the vk∗in. Once
the transaction is correctly signed by every other peer,
she sends her coins to vk∗in. In detail:
(a) Alice publishes a transaction sending 5 XRP from vk∗in

to A∗in, tagged with “for Alice” and with sequence
number 1. Bob, Carol and Dave send their share of
the signature of the transaction to Alice.

(b) Alice creates transaction sending 5 XRP from A∗in to
vk∗in to the Ripple network. As the sender of this
transaction is Alice, she can sign it on her own and
send it. Moreover, note that Alice could submit
the transaction created in previous step. However,
other peers will see the tag and blame Alice of
misbehaviour.

(c) Bob creates two transactions. One transaction send-
ing 5 XRP from vk∗in to A∗in, tagged as “for Bob” with
sequence number 1. The second transaction sends
5 XRP from vk∗in to B∗in and is tagged as “for Bob”
and has sequence number 2. Alice, Carol and Dave
send their signature of the transactions to Bob.

(d) Bob creates a transaction sending 5 XRP from B∗in
to vk∗in to the Ripple network.

(e) Carol publishes three transactions:
• sender: vk∗in, receiver:A∗in, tag:“for Carol”, seq#

1
• sender: vk∗in, receiver:B∗in, tag:“for Carol”, seq#

2
• sender: vk∗in, receiver:C∗in, tag:“for Carol”, seq#

3
Alice, Bob and Dave send their signature of the
transactions to Carol.

(f) Carol sends the transaction sending 5 XRP from C∗in
to vk∗in to the Ripple network.

(g) Dave publishes four transactions:
• sender: vk∗in, receiver:A∗in, tag:“for Dave”, seq#

1
• sender: vk∗in, receiver:B∗in, tag:“for Dave”, seq#

2
• sender: vk∗in, receiver:C∗in, tag:“for Dave”, seq#

3
• sender: vk∗in, receiver:D∗in, tag:“for Dave”, seq#

4
Alice, Bob and Carol send their signature of the
transactions to Dave.

(h) Dave sends the transaction transferring 5 XRP from
D∗in to vk∗in to the Ripple network.

5. Finish protocol if step 4 successful vk∗in will have
the needed 20 XRP. Then, one of the peers can send the
peers created and signed in step 3 and every output
account receives the corresponding 5 XRP.

6. Finish protocol if step 4 unsuccessful If one of the
peers refuses to send her XRP to vk∗in, peers which al-
ready sent their coins can recover them with the recover
payments created in step 4. For example, assume that
Carol refuses to send her XRP to vk∗in. Then, Bob can
send his two recover payments. If Alice has sent already
her recover payment, Bob can send only his second
recover payment.
The other case is that one of the peers sends his recover
payments before the protocol is finished. Because ev-
ery peer’s recover payments are tagged with the peer’s
identifier itself, it is possible to detect him and blame
him of misbehavior.

C. CreditMix PROTOCOL
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We show the full pseudocode for CreditMix in Algorithm 4.

Algorithm 4 CreditMix

procedure Confirm(i, P,my,VKin[ ], sk in,VKout[ ], sid)
Pall ··= P ∪ {my}
. Leader: create shared accounts
vk∗in ··= SAccountGen(VKin[ ])
vk∗out

··= SAccountGen(VKin[ ])
broadcast (vk∗in, vk

∗
out, Sign(sk leader, (vk

∗
in, vk

∗
out, i, sid)))

. Other peers receive and verify the shared accounts
receive (vk∗in, vk

∗
out, σ) from leader

where SAccountVer(vk∗in,VKin[ ])
∧ SAccountVer(vk∗out,VKin[ ])
∧ Verify(vk leader, σ, (vk

∗
in, vk

∗
out, i, sid))

missing Poff do
return Poff

. Create credit links VKin[p]→ vk∗in
for all p ∈ Pall do

LINKin[p] ··= CreateLink(VKin[p], vk∗in,∞)
σin[my][p] ··= Sign(sk in,LINKin[p])

broadcast (σin[my][ ])
receive (σin[p][ ]) from all p ∈ P

where ∀i∈Pall
Verify(VKin[p], σin[p][i],LINKin[i])

missing Poff do
return Poff

. Submit credit links VKin[p]→ vk∗in
for all p ∈ Pall do

Submit(LINKin[p], (σin[ ][p]))
. Fund credit links VKin[p]→ vk∗in
link′in ··= ChangeLink(VKin[my], vk∗in, β)
σ′in ··= Sign(sk in, link

′
in)

Submit(link′in, σ
′
in)

. Verify VKin[p]→ vk∗in link for every participant
Pinconsistent = ∅
for all p ∈ P do

v ··= TestLink(VKin[p], vk∗in)
if v = ⊥ ∨ v < β then

Pinconsistent = Pinconsistent ∪ {p}
if Pinconsistent 6= ∅ then

return Pinconsistent

. Create credit links VKout[p]→ vk∗out
for all p ∈ Pall do

LINKout[p] ··= CreateLink(VKout[p], vk
∗
out, β)

σout[my][p] ··= Sign(sk in,LINKout[p])
broadcast (σout[my][ ])
receive (σout[p][ ]) from all p ∈ P

where ∀i∈Pall
Verify(VKin[p], σout[p][i],LINKout[i])

missing Poff do
return Poff

. Submit credit links VKout[p]→ vk∗out
for all p ∈ Pall do

Submit(LINKout[p], (σout[ ][p]))
. Create link vk∗gw → vk∗out
linkgw ··= CreateLink(vk∗gw, vk

∗
out)

σgw[my] ··= Sign(sk in, linkgw)
broadcast (σgw[my])
receive (σgw[p]) from all p ∈ P

where Verify(VKin[p], σgw[p], linkgw)
missing Poff do

return Poff

. Submit link vk∗gw → vk∗out
Submit(linkgw, (σgw[ ]))
. Final settlement transaction
tx ··= CreateTx(vk∗in, vk

∗
out, (|Pall|) · β)

σtx[my] ··= Sign(sk in, tx)
broadcast (σtx[my])
receive (σtx[p]) from all p ∈ P

where Verify(VKin[p], σtx[p], tx)
missing Poff do

return Poff

Submit(tx, (σtx[ ]))

D. PRACTICAL CONSIDERATIONS FOR
MIXING IN RIPPLE

In this section we discuss how CreditMix handles the dif-
ferent practical considerations to perform mixing settlement
transactions in Ripple.
Handling different currencies. CreditMix supports the
mixing of several currencies using features inherent to Ripple.
In particular, it is possible to use existing market makers8

to perform the necessary currency exchanges so that the
payment from vk∗in to vk∗out is successfully carried out.
Handling fees. Every account in a path might charge some
fee as a reward for allowing a settlement transaction. Thus,
the amount of IOU received by the receiver might be lower
than the amount sent by the sender. However, CreditMix
requires that in the settlement transaction from vk∗in to vk∗out

at least n · β IOU are received by vk∗out.
Nevertheless, this is not a burden to deploy CreditMix in

Ripple. Ripple allows to check in real time the fees associated
to a given payment path. Therefore, it is possible to set the
necessary IOU between every input account and vk∗in so that
at least n ·β IOU are received by vk∗out in the final settlement
transaction performed in CreditMix.
Using several gateways. For easy of explanation, we
have assumed that all input accounts have a credit link to a
common gateway (i.e., vk∗gw). However, input accounts might
have only credit links available to different gateways (e.g.,
vk∗gw1

and vk∗gw2
). In such case, mixing is still possible in

CreditMix. The peers can jointly create a credit link between
vk∗out and one of the gateways (e.g., vk∗gw1

). The settlement
transaction from vk∗in to vk∗out it is possible provided that
the Ripple network has enough liquidity between vk∗gw2

and
vk∗gw1

and paths of the form vk∗in – VKin[i] – vk∗gw2
– vk∗gw1

–
vk∗out are available.

We observe that although technically is possible to handle
this scenario, in practice it demands a little more effort from
the peers. Each peer needs to check in advance the fees
charged in the (possibly longer) paths and accordingly set
the credit links VK[i]in → vk∗in so that in the end of the
CreditMix protocol, enough credit is received by vk∗out.
Funding of new accounts. Ripple applies reserve re-
quirements to each new account in order to prevent spam or
malicious usage [49]. At the time of writing, Ripple applies
a base reserve of 20 XRP and an additional reserve of 5 XRP

for each of the credit links associated to the account. The
creation of this reserve can also be handled in CreditMix.

Shared accounts can be funded using any account belonging
to the peers: each peer can send its corresponding share of
XRP reserve to each of the shared accounts. However, fresh
output account from a peer cannot be activated directly
from the peer input account, as this would break the sender
anonymity property we are after with CreditMix.

Instead, since XRP payments are similar to Bitcoin pay-
ments, we envision that it is possible to create a CoinJoin
transaction to anonymously send necessary XRP from input
to output accounts. Alternatively, we propose a more elab-
orated XRP mixing protocol (see Appendix B) which is less
efficient but totally compatible with current Ripple protocol.

8In Ripple, a market maker is an account that accepts IOU
in a certain currency in one of its credit links and exchange
them into IOU in another currency available in another link.
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