
One-Time Verifiably Encrypted Signatures

A.K.A. Adaptor Signatures

Lloyd Fournier∗

October 2019

Abstract

On Bitcoin-like ledgers, smart contract functionality can be realised without using the ledger’s native
smart contract language through the “adaptor signature” technique[1]. An adaptor signature is a kind
of partial signature that, if completed, will reveal valuable information to the signer. In this work, we
conduct the first formal analysis of the adaptor signature as an isolated primitive. We find that it offers
similar functionality to the already well established concept of verifiably encrypted signatures (VES)
with one notable difference: the decryption key can be recovered from the ciphertext and the decrypted
signature. To capture this property, we formally introduce the notion of one-time verifiably encrypted
signatures. To properly define their security in the Bitcoin layer-2 setting we revisit the original VES
definitions and modify them to remove the ingrained assumption of a trusted third party.

After the extending our VES definitions to the one-time VES, we attempt to prove that the existing
Schnorr and ECDSA adaptor signature schemes satisfy them. In the case of Schnorr, we succeed uncon-
ditionally but our definitions expose a (non-fatal) flaw in the ECDSA scheme. Nevertheless, we show
how to use the ECDSA scheme to realise functionality in Bitcoin that was previously thought to be out
of reach without Schnorr signatures or complex two-party ECDSA protocols.

1 Introduction

In 2017, Andrew Poelstra posted a message to the Mimblewimble mailing list[2] demonstrating an interesting
feature of the Schnorr signature scheme. He showed that through a small tweak to the signing algorithm the
core lock construction of the lightning payment channel network[3] could be realised without using Bitcoin’s
smart contract language called script. This was a remarkable discovery as the existing proposal relied heavily
on enforcing the lock logic using script based hash locks. His explanation ended with “I’m very excited about
this” and in retrospect his excitement seems justified. This breakthrough has been used to create “scriptless”
variants of most Bitcoin layer-21 protocols (we give a fairly comprehensive list in Section 1.1).

Scriptless scripts. Achieving smart contract logic without script has been termed scriptless scripts
within the Bitcoin research community. It is a significant challenge to the usual conception of smart contracts.
Instead of being expressed in a programming language, a smart contract becomes a kind of multi-party
computation that outputs transaction signatures according to the desired contract logic. In other words, if
according to a contract Alice is meant to receive funds when event X occurs, instead of expressing event X in
some way using the smart contract language, the contract is set up such that Alice is only able to compute
a signature on a transaction that claims the funds due to her when event X occurs. This is clearly beneficial
to Alice because no passive observer of the blockchain can tell that the transaction depended on event X,
rather it (optimistically) looks just like a normal payment transaction.

Verifiably Encrypted Signatures. In this work we frame the adaptor signature, the key building block
of scriptless protocols, as a kind of signature encryption. In particular, we find it almost fits the definition of
verifiably encrypted signatures[4] (VES) introduced for the BLS signature scheme[5]. A VES scheme enables
a signer to produce an encrypted signature whose validity can be verified non-interactively. The adaptor
signature is a VES where the encryption is one-time in a similar sense to a one-time pad: the decryption key
can easily be recovered from the ciphertext and its plaintext (the signature).

∗lloyd.fourn@gmail.com
1In this work we will use layer-2 to refer to any protocol that requires a direct communication channel between participants

not just ”off-chain” payment channel type protocols

1

Fair Exchange of Signatures Without a Trusted Party. This “one-time” property may seem like a
bug, but in many settings it is actually a powerful feature. Consider the motivating example for the original
VES scheme[4]: two parties, Alice and Bob, wish to fairly exchange signatures with the assistance of a trusted
third party named the adjudicator. First, Alice sends to Bob her signature encrypted under the adjudicator’s
public key. Bob verifies the validity of the signature encryption and then sends his signature to Alice. If
Alice refuses to reciprocate, Bob may ask the adjudicator to intervene by decrypting the encryption of Alice’s
signature he already has. If we assume the adjudicator is able to correctly assess the situation (i.e. will not
be tricked by a malicious Bob) then this a secure optimistic fair signature exchange protocol.

With a one-time VES we can achieve the fair exchange of signatures without a trusted party under the
assumption that the signatures need to be published publicly to be useful. The one-time property gives the
Bitcoin layer-2 protocol designer leverage over malicious parties by forcing them to leak a secret key when
they publish a decrypted signature. This leaked key can then be used by honest parties to carry on the
protocol and claim the funds due to them. A simple one-time VES fair signature exchange protocol can
be described as follows: Alice generates her signature encryption under a public encryption key she herself
generates and sends the key and the ciphertext to Bob. Bob responds by generating a signature encrypted
under the same key. Alice decrypts this signature and publishes it. Due to the one-time property of the
VES, Bob is able to recover the Alice’s decryption key and decrypt the signature from the ciphertext given
to him by Alice.

1.1 Survey of Scriptless Protocols

In order to motivate our formalisation, we first review how one-time VES schemes (i.e. adaptor signatures)
are used in existing scriptless layer-2 protocol proposals. We give a simplified explanation of each protocol
below focusing on the role the VES plays in the construction. Interestingly not every proposal requires the
VES to have the one-time property; the “Discreet Log Contracts” and lottery protocols only need an ordinary
VES. In practice, each protocol requires a VES scheme with a two-party encrypted signing algorithm but we
leave this out to simplify the description (Section 5 focuses on this point). In general, each scriptless protocol
is more efficient in terms of transaction footprint and more confidential than its script based counterpart.

Atomic swaps. In an atomic swap, two parties, Alice and Bob, exchange the ownership of two assets, A
and B, on two different ledgers, α and β. As initially conceived[6], Alice generates a random secret y and
shares the hash of it Y ← H(y) with Bob. Alice then locks A in a smart contract on α that will only release
A if the Bob activates it with y′ such that Y = H(y′). Bob locks B into a similar contract on β. Alice then
claims B, by activating the contract on β with y. Bob then learns y and claims A with it on α.

The scriptless atomic swap protocol[7] is the classic example of how to apply adaptor signatures to create
a practically identical structure without requiring smart contract based hash operations. Rather than a hash
pre-image, Alice generates an encryption key-pair (y, Y). On α Alice gives Bob a one-time VES under Y on
a transaction giving Bob A should he be able to decrypt it. Bob then sends Alice a one-time VES under Y
on a transaction giving Alice B. Alice decrypts he signature with y and broadcasts it claiming B. Bob then
sees the decrypted signature, and due to the one-time property of the VES, he is able to extract y from it
and decrypts his own signature to claim A. Note that unlike the hash based protocol, the secret y is never
placed into any transaction on either ledger making it much harder to link the transactions on α and β with
each other.

Payment channels. Poelstra’s original mailing list post applies the same transformation used in the
scriptless atomic swap to the Lightning Network[3]. Payment channels gain an additional benefit from having
a group element (the encryption key) as the lock, rather than a hash. Using the homomorphic properties of
the group, the lock can be randomised at each hop making it difficult to link a payments traveling through
the network just based on them having the same lock. This was formalised in [8]. Informal discussions on
the lightning network development mailing list also suggest other benefits of using group elements, rather
than hashes as the lock[9].

Discreet Log Contracts. In layer-2 protocols, “oracles” are parties who are trusted to cryptographically
attest to the outcome of real world events. In his work, “Discreet Log Contracts”[10], Dryja proposes a
model where rather than interacting with smart contracts directly, oracles publicly reveal secret information
(usually a signature) depending on the outcome of the real world event. Two parties who wish to engage in

2

a bet can construct a set of jointly signed transactions where only one of them becomes valid determined by
the signature the oracle reveals. Importantly, the oracle remains oblivious to the existence of the bet.

The protocol in the original work required three on-chain transactions to settle a bet. We observe that
by using a one-time VES we can construct a more efficient two transaction protocol. The oracle announces
it will reveal the decryption key corresponding to public encryption key A or B depending on the outcome
of some event. Alice and Bob wish to bet 1 BTC on outcomes A and B respectively with even odds. To
securely set up this contract, they both pay their 1 BTC into a single joint 2 BTC output and Alice gives a
VES on a transaction paying Bob the 2 BTC encrypted by B and Bob gives a VES on a transaction paying
Alice the 2 BTC encrypted by A. When the oracle releases the decryption key for one of A or B, the winner
can decrypt their transaction signature and claim the 2 BTC with 1 BTC profit. Note that this protocol
does not require the VES to be one-time.

Tumblers. Inspired by Chaumian eCash[11], the first tumbler protocol, TumbleBit[12] enabled Bitcoin
payments through an untrusted intermediary called the tumbler to be mixed so it is hard (even for the
tumbler) to link the incoming and outgoing payments. TumbleBit requires script in the un-cooperative case
to verify that the tumbler correctly releases blinded RSA decryptions.

Tairi et al. recently proposed a more efficient scriptless tumbler called A2L[13]. The tumbler first locks
coins up and gives a VES on a transaction releasing the coins to the receiver encrypted under A = gαi . The
tumbler also gives the sender a homomorphic encryption of the decryption key αi. The sender then attempts
to pay the tumbler for αi without letting the tumbler know which α she paid for (the tumbler is presumed
to be executing many such protocols at once each with a different α). The sender purchases αi by giving the
tumbler a one-time VES on a payment transaction encrypted under a blinded version of the encryption key
e.g. gαi+β where the sender knows β. When the tumbler takes the payment αi + β is revealed to the sender
allowing them to decrypt receiver’s signature.

In addition, a scriptless tumbler protocol based on blind Schnorr signatures is proposed in [14].

Lotteries. The possibility of Bitcoin lotteries without a trusted party[15] was one of the first ideas academic
Bitcoin researchers formally explored[16][17]. In its simplest form two parties both bet 1 Bitcoin and at the
end of the protocol, the randomly chosen winner has 2 Bitcoin and the loser has 0. Most proposals, including
more recent ones[18][19] are based on hash commitment coin tossing to produce the random outcome. The
protocols use script to check the commitment openings on-chain.

A scriptless lottery was recently proposed[20] which uses the oblivious signatures from [21] rather than
hash commitment coin tossing. The oblivious signature scheme is essentially built on a VES: The receiver
first sends a Pedersen commitment T = gxhc where c ∈ {0, 1}, to the signer. The singer then sends a
VES for each of m0 and m1 encrypted under T and Th−1 respectively. Due to the binding property of the
commitment, the receiver only knows the decryption key x for the signature on mc but the sender never
learns c. The proposed protocol uses the adaptor signature style one-time VES but in principle the idea
works with any VES as long as there is an algorithm that allows the receiver to verifiably produce a set of
public keys for which it only knows one of the private keys (without anyone else knowing which one).

Pay for commitment opening. A script based smart contract to pay for an opening hash commitment is
straightforward to construct. A scriptless alternative for paying for the opening of a Pedersen commitment
has been proposed in [22].

1.2 Our Contribution

In Section 3, we contribute to theory of verifiably encrypted signatures in general. The original security
definitions[4] only required the scheme to be secure if the encryption key-pair was chosen by the trusted
adjudicator. VES schemes secure by these definitions are generally inappropriate for use in layer-2 protocols
where a trusted party is rarely assumed. We propose new security definitions without reference to trusted
parties and show that all existing schemes satisfy our new definitions.

In Section 4 we formally introduce one-time verifiably encrypted signatures. We then frame the existing
Schnorr and ECDSA “adaptor signature” schemes as one-time VES schemes. We prove the Schnorr scheme
secure but find that the ECDSA one-time VES unintentionally leaks a Diffie-Hellman tuple for the singing
key and the encryption key. We incorporate this weakness and prove that this is at least the only problem
with the scheme.

3

Finally in Section 5 we introduce the practical “semi-scriptless” paradigm where protocols can only have
scripts with a single OP CHECKMULTISIG script opcode. We show how to generically transform any scriptless
protocol into a semi-scriptless protocol using the ECDSA one-time VES. This allows any scriptless protocol
to be practically realised on Bitcoin as it is today without a complex two-party ECDSA multi-signature
scheme.

1.3 Previous Work with Adaptor Signatures In Security Proofs

As far as we are aware, this work is the first attempt to formalise the adaptor signature as a primitive
on its own. However, the works of [8] and [13] use the idea of the adaptor signature and formally argue
their security in the Universal Composability (UC) model[23]. Their UC simulation ensures that corrupted
parties may learn nothing but the signature itself from any adaptor signatures they receive. In general, the
UC simulation is achieved through efficient non-interactive zero knowledge proofs of knowledge for discrete
logarithms. This allows the simulator in the ideal world to extract the secret keys of the corrupted party and
use them to synthetically create adaptor signatures to simulate the view of the adversary in the real world.

In our work, we use a weaker game-based model of security. This ensure that the corrupted party learns
nothing useful, rather than nothing at all, from a signature encryption other than the signature itself. In
particular, we will define security for VES and one-time VES schemes such that an adversary cannot learn
anything from a signature encryption that will help them forge a signature on another message. We believe
this is a viable approach in general, but it is especially reasonable in the context of Bitcoin style ledgers. In
layer-2 Bitcoin protocols, the keys that own coins are not re-used between protocol executions so it is easy
to ensure that a key is only used in the particular ways our game-based definitions can ensure is secure.

1.4 Future Work

Multi-party VES. All proposed scriptless protocols require signature encryptions generated through a
two-party encrypted signing protocol. The security of Schnorr two-party one-time VES protocols deserves
attention since it is being put forward as the main primitive for the protocols listed in Section 1.1 above in
the long-term. We limit ourselves to focusing on defining formal security for single singer VES schemes and
leave this analysis for future work.

Schnorr vs BLS. This work suggests a significant trade-off between the choice of Schnorr and BLS as
the main signature scheme for Bitcoin-like systems. BLS admits an efficient VES scheme[4] and extremely
attractive non-interactive signature aggregation [24]. On the other hand, Schnorr admits a less elegant
interactive multi-signature scheme[25] but a very efficient one-time VES scheme. Additionally, it should be
possible to create a Schnorr (not one-time) VES scheme with general zero-knowledge proof techniques where
as a one-time VES for BLS looks much less likely. This trade off deserves further exploration including the
possibility of a signature scheme that admits both an efficient VES and one-time VES scheme.

2 Preliminaries

2.1 Bitcoin

We assume a fair amount of familiarity with the Bitcoin transaction structure in Section 5. A Bitcoin
transaction has the following elements:

• A set of inputs, each of which refer to a previous output.

• For each input, a witness that satisfies the spending constraints specified in the output it references.

• For each input, a relative time-lock which prevents the transaction from being included in the ledger
until enough time has passed since the output it references was included in the ledger.

• A set of new outputs, each with a value and spending constraint.

• An absolute time-lock, which prevents the transaction from being included in the ledger until a specific
time.

4

Whenever a transaction is included in the ledger, its outputs are considered “spent” and their value is
transferred to the new outputs created by the transaction (and a small fee to the miner who included them).

When we refer to a “layer-2” protocol we mean any protocol that is composed of messages sent between
the participants and transactions sent to the ledger. A scriptless protocol means any protocol where the
transactions only use a basic public key spending constraint which can only be satisfied by a signature on
the spending transaction under that public key. It’s important to note that a scriptless protocol can still use
the time-lock constraints (and most do).

2.2 Notation

We analyse security asymptotically with our security parameter as k. We assume that the algorithms for
each scheme have been generated by some Setup(1k) algorithm which generates the a concrete instance of
the scheme according to k. By negl(k) we denote any negligible function of k i.e. negl(k) < 1/p(k) for all
positive polynomials p(k) and all sufficiently large values of k. We say a probability is “negligible” if it can
be expressed as negl(k) or overwhelming if it can be expressed as 1− negl(k). A polynomial time adversary
runs in time that can be upper bounded by some polynomial of k. A probabilistic algorithm is also implicitly
given a long string of random bits in addition to its other arguments. We denote invoking a probabilistic
algorithm with ←$. If an algorithm is probabilistic and polynomial time we say it is a PPT algorithm.

2.3 The Discrete Logarithm Problem

The concrete signature schemes we deal with (Schnorr and ECDSA) are based on the discrete logarithm
problem (DL). Written multiplicatively, the DL problem is to find x ∈ Zq given (X, g) such that gx = X, in
a group G of prime order by q. We denote the fixed generator of a DL based scheme by g. In reality (G, q, g)
are fixed by the ledger i.e. the Secp256k1 elliptic curve group for Bitcoin, but we reason about them as if the
they were generated by the Setup(1k) algorithm relative to k. Note that when we describe schemes based on
the DL problem, all scalar operations are implicitly done modulo q.

3 Verifiably Encrypted Signatures Without a Trusted Third Party

Verifiably encrypted signatures (VES) were introduced by Boneh, Gentry, Lynn and Shacham (BGLS) [4] in
2003 for the BLS signature scheme[5]. A VES scheme lets a signer create a signature encryption that can
be non-interactively verified. Just by knowing the message and public signing key, a verifier can tell that a
ciphertext contains a valid signature encrypted by a particular encryption key. This separates it from the
earlier notion of signcryption[26] where the message is also encrypted and the verification is often interactive.

This idea is somewhat unintuitive. If I can verify that the signer has indeed signed the message then
what’s the point of decrypting the ciphertext? A VES is only useful in settings where the signature itself is
what has value rather than the fact that someone has signed it. In layer-2 protocols we have exactly this
situation. Having a verifiably encrypted transaction signature is not enough to make the transaction valid
— it must first be decrypted and attached to the transaction. Skipping ahead a bit, with our new definitions
we do not even require that a valid encrypted signature was created by the signer for it to be a secure VES
scheme.

The original definitions of BGLS were made relative to a trusted third party, the adjudicator. The original
idea was that two parties could optimistically exchange signatures, by first exchanging verifiably encrypted
signatures, then should one of them fail to provide their signature, the other could go to the adjudicator to
have it decrypted. This is not appropriate for our setting. In most of the protocols described in Section 1.1,
one of the possibly malicious parties generates the encryption key-pair. We take our first step towards a
trusted party free definition by removing references to the “adjudicator” from the definition of VES:

Definition 3.1 (Verifiably Encrypted Signature Scheme). A verifiably encrypted signature scheme
(VES) Σ̂ is defined with an ordinary underlying signature scheme Σ := (Gen,Sign,Vrfy) and four additional
algorithms:

• EncGen $→ (skE , pkE): A probabilistic encryption key generation algorithm which outputs an encryp-
tion key pkE and a decryption key skE . There should also exist an efficient predicate valid(skE , pkE)
that returns 1 when (skE , pkE) is a valid key-pair.

5

• EncSign(skS , pkE ,m) $→ σ̂: A possibly probabilistic encrypted signing algorithm, which on input of a
secret singing key skS , a public encryption key pkE and a message m outputs a ciphertext σ̂.

• EncVrfy(pkS , pkE ,m, σ̂)→ {0, 1}: A deterministic encrypted signature verification algorithm which on
input of a public singing key pkS , a public encryption key pkE , a message m and a ciphertext σ̂ outputs
1 only if σ̂ is a valid encryption of a signature on m for pkS under pkE .

• DecSig(skE , σ̂) → σ: A (usually) deterministic signature decryption algorithm which on input of a
decryption key skE and a valid ciphertext σ̂ under that encryption key outputs a valid signature σ.

Any coherent VES should satisfy a basic notion of completeness such that for all messages m, valid
encryption and signing key pairs (skE , pkE) and (skS , pkS) and for all coin tosses of EncSign the following
always holds:

σ̂ = EncSign(skS , pkE ,m) =⇒ EncVrfy(pkS , pkE ,m, σ̂) = 1 ∧ Vrfy(pkS ,m,DecSig(skE , σ̂)) = 1

The original work BGLS proposed three security properties: validity, unforgeability, and opacity. To
meet the requirements of our setting, we will restate validity without reference to a trusted party and replace
unforgeability with a new existential unforgeability under chosen message attack (EUF-CMA[VES]) property.
We keep the original definition of opacity. Therefore our VES requirements are informally as follows:

• Validity: It is infeasible to generate a valid looking ciphertext that does not yield a valid signature
upon decryption.

• EUF-CMA[VES]: A VES ciphertext does not help an adversary forge signatures. In other words, an ad-
versary cannot learn anything useful from a VES ciphertext other than the signature that is encrypted.

• Opacity: The encrypted signature cannot be extracted from the ciphertext without the decryption
key.

We formally present our new definitions for validity and introduce EUF-CMA[VES] after summarizing
previous work on improving VES definitions. We do not formally describe opacity as the original definitions
are not applicable the one-time VES (see Section 4).

3.1 Previous Revisions of the VES Security Definitions

Rückert et al. [27] noticed that key independent schemes (which we call Sign then Encrypt (StE)) whose
underlying signature schemes are EUF-CMA secure can be proved unforgeable generically. This is remarkable
as the original BGLS scheme, which is StE, had AN involved proof for unforgeability that spanned several
pages. We use a similar idea to prove any StE scheme satisfies EUF-CMA[VES] . Hanser et al. [28] also
identified the importance of the EUF-CMA security of the underlying signature scheme. They proved that
the underlying signature scheme is unforgeable if the VES scheme is unforgeable based on a different property.

Calderon et al. [29] discuss the original definitions in detail. They show a pathological VES scheme
which is secure according to the original definitions but can be constructed only using a signature scheme
i.e. without any encryption. They introduce two additional properties to address this. Our definitions allow
for the same pathological constructions as we see no reason to prevent them in our setting.

Shao [30] addresses the assumption of trust in the adjudicator by providing a stronger definition of
unforgeability which prevents forging a VES even if the adjudicator is corrupted. Unfortunately, the original
and highly practical VES scheme of BGLS does not meet this stronger requirement. Our approach to
removing trust in a third party is to simply replace the concept of unforgeability with EUF-CMA[VES] . The
ability of malicious parties to forge signature encryptions is not a concern in our setting as long as they
cannot forge signatures (which is already ensured by the EUF-CMA security of the signature scheme).

3.2 Validity

Validity protects against an adversary who attempts to create a valid looking ciphertext that when decrypted
will not yield a valid signature. The original BGLS definition of validity was inadequate as it only guaranteed
a valid signature upon decryption if the ciphertext was generated by the EncSign algorithm. Rückert et al.

6

[27] noticed this problem and introduced the additional property of extractability which ensured the adversary
could not find a malicious ciphertext against the trusted adjudicator’s encryption key.

This definition of extractability is not appropriate for our setting as we have no trusted party. In layer-
2 protocols, the encryption key and the signing key may be generated by the same malicious party. For
example, imagine an adversary who maliciously generates a VES ciphertext on some transaction signature
and attempts to sell the decryption key to someone who wishes to know the signature. If they are successful
they can get paid for the decryption key but even after obtaining the decryption key the buyer will be unable
to get their desired signature. Thus in our setting the adversary must be free to choose the singing and
encryption keys. We choose to use the original name of validity to capture this idea as it ensures that the
validity of a ciphertext carries through to the validity of the encrypted signature.

Definition 3.2 (Validity). A VES scheme is valid if, for all PPT algorithms A, the VES-Validity experiment
outputs 1 except with negligible probability over coin tosses of A and Setup:

VES-ValidityASetup

Σ̂←$Setup(1k)

(pkS , (skE , pkE),m, σ̂)←$A(Σ̂)

σ ← Σ̂.DecSig(skE , σ̂)

return Σ̂.valid(skE , pkE) =⇒ Σ̂.EncVrfy(pkS , pkE ,m, σ̂) = Σ̂.Vrfy(pkS ,m, σ)

3.3 EUF-CMA[VES]

Our goal in this section is to formally capture the requirement that from a VES ciphertext nothing can be
learned except the signature encrypted within. We start with the typical EUF-CMA security definition for
signature schemes which ensures that from a signature, nothing can be learned about a signature on any
other message under the same signing key. The experiment tests this by giving the forger a signature oracle
S from which it can query signatures under the signing key on messages of its choosing. For a secure scheme,
no algorithm should exist that is able to forge signatures even with access to S. By implication, the forger
learns nothing useful from the signatures other than the signatures themselves.

To show that a ciphertext equally offers no extra information to the forger, we modify the experiment so
the forger also has access to a signature encryption oracle E. The forger is allowed to query this oracle under
any encryption key and message it wants. This allows, for example, the forger to request a ciphertext where
the encryption key is the signing key they are trying to forge against in the hope that will leak something
about the signing key. We call denote this modified experiment EUF-CMA[VES] and define it as follows.

Definition 3.3 (EUF-CMA[VES]). A VES scheme Σ̂ is existentially unforgeable under a chosen message
attack (EUF-CMA[VES]) if its underlying EUF-CMA signature scheme remains unforgeable in a modified
experiment where in addition to the signature oracle S the forger has access to a signature encryption oracle
E.

EUF-CMA[VES]F
Σ̂

Q := ∅
(skS , pkS)←$Gen

(m∗, σ)←$FE,S(pkS)

return Vrfy(pkS ,m
∗, σ) ∧m∗ /∈ Q

Oracle E(pkE ,m)

Q := Q ∪ {m}
return EncSign(skS , pkE ,m)

Oracle S(m)

Q := Q ∪ {m}
return Sign(skS ,m)

EUF-CMA[VES] effectively replaces the original definition of unforgeability so we now discuss and prove
the relationship between the two. The original unforgeability property referred to signature encryptions
being unforgeable under the trusted adjudicator’s encryption key. EUF-CMA[VES] says nothing about the
unforgeability of signature encryptions. In fact, an adversary who can produce valid VES ciphertexts without
the secret signing key is perfectly compatible. Of course, they will never be able to forge a VES ciphertext
under a particular encryption key. If they could do that, then they could trivially forge an encrypted
signature under a key for which they know the decryption key and decrypt it. The original definitions seem
to have missed this intuition: it is not the security of the VES scheme that prevents there being a successful

7

forger of signature encryptions under a particular key, the EUF-CMA security of the underlying signature
scheme already ensures that no such algorithm can exist. After recalling the original BGLS definition of
unforgeability, we use this intuition to prove that any EUF-CMA[VES] scheme is also unforgeable.

Definition 3.4 (VES Unforgeability [4]). A VES scheme Σ̂ is unforgeable if for every PPT algorithm F ,
with access to an encryption oracle Ẽ and a decryption oracle D̃ the VES-Forge experiment outputs 1 with
at most negligible probability over the coin tosses of EncGen, Gen, EncSign and F .

VES-ForgeF
Σ̂

Q← ∅
(skS , pkS)←$Gen

(skE , pkE)←$EncGen

(m∗, σ̂∗)←$F Ẽ,D̃(pkS , pkE)

return EncVrfy(pkS , pkE ,m
∗, σ̂∗) ∧m∗ /∈ Q

Oracle Ẽ(m)

Q := Q ∪ {m}
σ̂←$EncSign(skS , pkE ,m)

return σ̂

Oracle D̃(σ̂)

EncVrfy(pkS , pkE , σ̂)
?
= 1

return DecSig(skE , σ̂)

Note that the oracles in VES-Forge only provide encryptions and decryption on a particular key, representing
the trusted adjudicator’s key-pair.

Theorem 3.1 (EUF-CMA[VES] =⇒ Unforgeability). If a VES scheme is EUF-CMA[VES] secure and
has the validity property then it also has the original BGLS unforgeability property of Definition 3.4.

Proof. Let Σ̂ be a VES scheme and let F be PPT a forger with non-negligible advantage ε in forging
signature encryptions in the original VES-ForgeF

Σ̂
experiment. We can construct a reduction R with non-

negligible advantage ε′ in forging signatures in the EUF-CMA[VES]R
Σ̂

experiment just given black-box access
to F as follows.

RS,EEUF-CMA[VES](pkS)

(skE , pkE)←$EncGen

(m∗, σ̂∗)←$F Ẽ,D̃
VES-Forge(pkS , pkE)

σ∗ ← DecSig(skE , σ̂
∗)

return (m∗, σ∗)

Simulate Ẽ(m)

return E(pkE ,m)

Simulate D̃(σ̂)

EncVrfy(pkS , pkE , σ̂)
?
= 1

return DecSig(skE , σ̂)

Clearly R perfectly simulates Ẽ and D̃ and runs in polynomial time. Denote EncVrfy(pkS , pkE ,m, σ̂) by EV ,
Vrfy(pkS ,m, σ) by V and start with the following inequality:

Pr[V] ≥ Pr[V | EV] Pr[EV]

Since validity ensures that Pr[V | EV] = 1− negl(k), we have

Pr[V] ≥ (1− negl(k)) Pr[EV] = Pr[EV]− negl(k)

By definition, ε = Pr[EV] and ε′ = Pr[V]

ε′ ≥ ε− negl(k)

Which shows ε′ is non-negligible if ε is non-negligible, completing the proof.

As we have already argued, EUF-CMA[VES] captures our requirement that the scheme be secure without
reference to a trusted party. We now propose using EUF-CMA[VES] as the standard VES security definition
even in the trusted party setting since it implies BGLS unforgeability and it is much easier to prove for the
schemes that have been developed so far. We can prove all existing schemes we are aware of [4, 27, 31, 30, 28]
EUF-CMA[VES] secure just by the Sign then Encrypt (StE) structure they all share. That is, internally the
EncSign algorithm first generates a normal signature using Sign and then encrypts the result. Formally:

8

Definition 3.5 (Sign then Encrypt VES). A Sign then Encrypt (StE) VES scheme is defined with
an ordinary underlying signature scheme Σ := (Gen,Sign,Vrfy) an associated public key encryption scheme
Π = (EncGen,Enc,Dec) and a VES verification algorithm EncVrfy such that if we define DecSig := Dec
and EncSign(skS , pkE ,m) := Enc(pkE ,Sign(pkS ,m)) then Σ̂ := (EncGen,EncSign,EncVrfy,DecSig) is a VES
scheme according to Definition 3.1.

It is easy to see that any valid StE scheme must be EUF-CMA[VES] secure. The extra encryption oracle
E the forger has access to in the EUF-CMA[VES] experiment can be simulated just by encrypting the result
of a query to the signature oracle S that the EUF-CMA experiment provides.

Theorem 3.2 (StE =⇒ EUF-CMA[VES]). Let Σ̂ be a StE VES scheme, Σ be its underlying signature
scheme and Π = (EncGen,Enc,Dec) be its associated public key encryption scheme. If there is reduction
R from some hard problem H to the EUF-CMA security of Σ, then there is a reduction R̂ from H to the
EUF-CMA[VES] security of Σ̂.

Proof. The only difference between the EUF-CMA and EUF-CMA[VES] experiments is that the forger is
provided an extra signature encryption oracle E. Since Σ̂ is StE, we can easily construct R̂ by having it run
R and forwarding queries to E to the singing oracle S of R and encrypting the result. Specifically, when R̂
receives an E oracle query (m, pkE) it makes a query (m) to S and receives σ. It then sets σ̂ ← Enc(pkE ,m)
and returns σ̂ to the forger. This does not interfere with R at all so R̂ is also a reduction from H.

4 One-Time Verifiably Encrypted Signatures

We introduce the one-time verifiably encrypted signature scheme to abstract the functionality of the “adaptor
signature”[1]. A one-time VES is a VES with an additional property: given the ciphertext and the decrypted
signature, the decryption key is easily recoverable. Obviously, this property makes it useless for the opti-
mistic fair exchange of signatures with a trusted party envisioned for ordinary VES schemes, as the trusted
adjudicator would leak their decryption key after its first use. Despite this, the property turns out to be
incredibly useful to layer-2 protocol designers as it allows them to force the release of a secret key whenever
a party broadcasts a decrypted transaction signature. We define by extending the original VES definition:

Definition 4.1 (One-Time Verifiably Encrypted Signatures). A One-Time Verifiably Encrypted Sig-
nature scheme (one-time VES) is a Verifiably Encrypted Signature scheme (Gen, Sign, Vrfy, EncGen, EncSign,
EncVrfy, DecSig) with the following additional algorithms:

• RecKey(pkE , σ̂)→ δ: A deterministic recovery key extraction algorithm which extracts a recovery key
δ from the ciphertext σ̂ and the public encryption key pkE .

• Rec(σ, δ) → skE : A deterministic decryption key recovery algorithm which when given a decrypted
signature σ and the recovery key δ associated with the original ciphertext, returns the secret decryption
key skE .

Technically, Rec takes a “recovery key” δ rather than the ciphertext σ̂ but they should usually be thought
of as equivalent. The distinction only really becomes necessary in Section 5 when we construct a simple two
party encrypted signing protocol where one party is not able to output the whole ciphertext but is able to
output the recovery key.

To be considered secure, we require a one-time VES scheme to have the completeness, validity and EUF-
CMA[VES] properties of an ordinary VES along with recoverability which we define as follows.

Definition 4.2 (Recoverability). A one-time VES scheme is recoverable if for all PPT algorithms A the
VES-Recover experiment outputs 1 except with negligible probability over the coin tosses of A and Setup:

VES-RecoverASetup

Σ̂←$Setup(1k)

(pkS , (skE , pkE),m, σ̂)←$A(Σ̂)

δ ← Σ̂.RecKey(pkE , σ̂);σ ← Σ̂.DecSig(skE , σ̂)

return (Σ̂.valid(skE , pkE) ∧ Σ̂.EncVrfy(pkS , pkE ,m, σ̂) ∧ Σ̂.Vrfy(pkS ,m, σ)) =⇒ Σ̂.Rec(σ, δ) = skE

9

Note that we no longer have need of the opacity property as defined for an ordinary VES scheme. Recall
that the informal purpose of opacity is to ensure that an encrypted signature cannot be accessed without
the decryption key. Recoverability makes this is trivial because if you are able to access the signature you
can recover the decryption key anyway. In other words, obtaining a signature from a ciphertext without the
decryption key is no easier than obtaining the decryption key just given the public encryption key (which
is hopefully hard). Crucially, this also means that even the signer themselves cannot produce the signature
from the ciphertext without the decryption key. This necessarily implies that one-time VES schemes only
exist for probabilistic signature schemes where there is an exponential number of possible signatures under
a public key for any message.

4.1 Schnorr One-Time VES Scheme

What we call the Schnorr one-time VES was introduced by Poelstra [32] which he termed an “adaptor
signature”[1] with the encryption key being termed an “auxiliary point”[14] or sometimes just “T”. A
major benefit of our one-time VES concept is to be able to explain this useful idea with intuitive encryp-
tion/decryption semantics. It is typically described with a two-party signing protocol as this is where it is
most useful. We describe the single singer scheme in Figure 1 including its underlying Schnorr signature
scheme. The Schnorr signature scheme was introduced by its namesake in [33] and our description resem-
bles the key-prefixed scheme described in the Schnorr Bitcoin Improvement Proposal[34] currently under
consideration.

Gen/EncGen

x←$Zq;X ← gx

sk := (x,X); pk := X

return (sk, pk)

Sign(skS ,m)

(x,X) := skS ;

r←$Zq;R← gr

c := H(R||X||m)

s← r + cx

return σ := (R, s)

Vrfy(pkS ,m, σ)

X := pkS ; (R, s) := σ

c := H(R||X||m)

return R = gsX−c

EncSign(skS , pkE ,m)

(x,X) := skS ;Y := pkE

r←$Zq; R̂← gr

R← R̂Y

c := H(R||X||m)

ŝ← r + cx

return σ̂ := (R̂, ŝ)

EncVrfy(pkS , pkE ,m, σ̂)

X := pkS ;Y := pkE

(R̂, ŝ) := σ̂

R← R̂Y

c := H(R||X||m)

return R̂ = gŝX−c

DecSig(skE , σ̂)

(R̂, ŝ) := σ̂

(y, Y) := skE

R← R̂Y

s← ŝ+ y

return σ := (R, s)

RecKey(pkE , σ̂)

(R̂, ŝ) := σ̂

return δ := ŝ

Rec(σ, δ)

(R, s) := σ

ŝ := δ

y ← s− ŝ
return y

Fig. 1. The algorithms of the Schnorr one-time VES scheme with a hash algorithm H

Since the EncSign algorithm is a simple tweak of the sign algorithm it is easy to get an intuition for the
security of the scheme. Unsurprisingly, we find that the scheme is unconditionally valid and recoverable and
is EUF-CMA[VES] secure. We now formally prove these properties.

Lemma 4.1. The Schnorr one-time VES is unconditionally valid and recoverable.

Proof. Since EncVrfy(X,Y,m, (R̂, ŝ)) = 1 implies R̂ = gŝX−c where c := H(R̂Y ||X||m), by the one-way
homomorphism between Zq and G we know that σ̂ encrypts some valid signature (R, s) := (R̂Y, ŝ+ y) where
gy = Y and is therefore valid because:

R̂Y = Y gŝX−c = gŝ+yX−c

10

By the same token, the scheme is recoverable because Rec((R̂Y, ŝ+ y)), ŝ) always returns the decryption key
y = s− ŝ.

Theorem 4.1. The Schnorr one-time VES is EUF-CMA[VES] secure.

Proof. We transform the standard Schnorr reduction from the DL problem to the EUF-CMA security of
Schnorr signatures in the random oracle model by Pointcheval and Stern[35] into a EUF-CMA[VES] reduction
by simulating the additional signature encryption oracle E. Note the original reduction was not did not
key-prefixed but the same reduction can be applied to key-prefixed Schnorr. Our reduction RDL simulates E
by programming the random oracle H in a similar way to how it usually simulates the signing oracle S as
shown below:

RDL(X)

// Run the reduction from [35]

...← FE,S
EUF-CMA[VES](X)

Simulate S(m)

s, c←$Zq

R← gsX−c

if H(R||X||m) = ⊥ then

H(R||X||m) := c

return (R, s)

else abort

Simulate E(pkE ,m)

Y := pkE

ŝ, c←$Zq

R̂← gŝX−c;R← R̂Y

if H(R||X||m) = ⊥ then

H(R||X||m) := c

return (R̂, ŝ)

else abort

The fact that we can efficiently simulate E without changing the internals of RDL completes the proof.

4.2 ECDSA One-Time VES Scheme

In order circumvent the need for Schnorr signatures, which are not included in the Bitcoin protocol today,
Moreno-Sanchez et al. developed an adaptor signature construction for the standard ECDSA signature scheme
already used in Bitcoin[36]. It was later applied to achieve a payment channel construction with better privacy
in [8] and an efficient tumbler in [13]. The scheme is built upon the two-party ECDSA protocol from [37].
We translate it into a single signer scheme in Figure 2.

As the protocol is single signer it avoids all the complexities that come with two-party ECDSA protocols.
It only requires requires a simple non-interactive zero knowledge proof of discrete logarithm equality, whose
proving and verification algorithms we denote as (PDLEQ,VDLEQ). When invoked as PDLEQ((g,A), (h,B), w),
it generates a proof of membership of the language:

LDLEQ = {(g, h,A,B) ∈ G4 | ∃w ∈ Zq : A = gw ∧B = hw}
We instantiate this proof with the Fiat-Shamir transform applied to the Sigma protocol for the relation

originally from [38].
We now attempt to prove the scheme secure.

Lemma 4.2. The ECDSA one-time VES is valid and unconditionally recoverable.

Proof. If EncVrfy(X,Y,m, (R, R̂, ŝ, π)) = 1 then R̂ = (gH(m)XRx)ŝ
−1

and R̂y = R if π is sound. Which

means R̂y = R = (gH(m)XRx)ŝ
−1y. Therefore DecSig produces a valid signature σ := (R, ŝy−1) whenever σ̂

is valid except with the negligible probability that π is unsound. If σ is valid then Rec will always recover
ỹ ← s−1ŝ = (ŝy−1)−1ŝ, which is either equal to y or −y (due to Vrfy only checking the x-coordinate of
R).

Unfortunately, while trying to prove the scheme EUF-CMA[VES] secure we found a problem: the ciphertext
surreptitiously leaks the Diffie-Hellman key for the signing and encryption key. Y x = Xy can be computed
as (RŝY −H(m))R

−1
x . This clearly violates the premise of EUF-CMA[VES] which is that nothing useful should

be learned from the ciphertext, other than the signature (if it can be decrypted). Furthermore, it is not
difficult to imagine a composability attack where an adversary, with an ElGamal encryption (gr, Xrm) of
some message m ∈ G is able to decrypt it by requesting a signature encryption under gr from the signer,
learning Xr and thereby illegally learning m. We discuss the impact of this further after proving that the
scheme cannot be EUF-CMA[VES] secure.

11

Gen/EncGen

x←$Zq;X ← gx

sk := (x,X); pk := X

return (sk, pk)

Sign(skS ,m)

(x,X) := skS ;

r←$Zq;R← gr

Rx ← f(R)

s← r−1(H(m) +Rxx)

return σ := (Rx, s)

Vrfy(pkS ,m, σ)

X := pkS ; (Rx, s) := σ

R′ ← (gH(m)XRx)s
−1

return f(R′) = Rx

EncSign(skS , pkE ,m)

(x,X) := skS ;Y := pkE

r←$Zq; R̂← gr;R← Y r

π←$PDLEQ((g, R̂), (Y,R), r)

Rx ← f(R)

ŝ← r−1(H(m) +Rxx)

return σ̂ := (R, R̂, ŝ, π)

EncVrfy(pkS , pkE ,m, σ̂)

X := pkS ;Y := pkE

(R, R̂, ŝ, π) := σ̂

VDLEQ((g, R̂), (Y,R)), π)
?
= 1

Rx ← f(R)

return R̂ = (gH(m)XRx)ŝ
−1

DecSig(skE , σ̂)

(R, R̂, ŝ, π) := σ̂

(y, Y) := skE

s← ŝy−1

return σ := (f(R), s)

RecKey(pkE , σ̂)

(R, R̂, ŝ, π) := σ̂

Y := pkE

return δ := (Y, ŝ)

Rec(σ, δ)

(Rx, s) := σ; (Y, ŝ) := δ

ỹ ← s−1ŝ

y :=

ỹ if gỹ = Y
−ỹ if gỹ = Y −1

⊥ otherwise

return y

Fig. 2. The algorithms of the ECDSA one-time VES scheme. f : G→ Zq converts a an elliptic curve point
to its x-coordinate mod q.

Lemma 4.3. There exists no key-preserving EUF-CMA[VES] reduction for the ECDSA one-time VES scheme
if the Computational Diffie-Hellman Problem (CDH) is hard.

Proof. Let CDH(X,Y) for (X,Y)←$G2 denote an instance of the CDH problem with respect to the generator
g of the ECDSA one-time VES. We will prove our statement by solving CDH(X,Y) with only black-box access
to a simulator S for the encryption oracle E that must be provided to the forger in a key-preserving EUF-
CMA[VES] reduction. This contradicts the existence of S and therefore no key-preserving EUF-CMA[VES]
reduction scheme can exist if the CDH problem is hard. To solve CDH(X,Y) we run the simulator for S
with X as the signing key and then query it with an arbitrary message m: (R, R̂, ŝ, π)←$S(m,Y).

First, note that (R̂, Y,R) must be a valid Diffie-Hellman tuple if S properly simulates the an encrypted
signing oracle. Even though S can simulate DLEQ proofs (by their zero knowledge property) for invalid
tuples, this is not enough to simulate the view of a real forger. Regardless of validity of π, a forger can make
a query to E(Y ′,m′) with an encryption key-pair it has generated itself (y′, Y ′) and check that R̂y

′
= R in

the response. If the check fails with non-negligible probability then S can be distinguished from the real
oracle E in the EUF-CMA[VES] experiment.

Given (R̂, Y,R) is a valid Diffie-Hellman tuple and ŝ = r−1(H(m) + Rxx), R = Y r and X = gx are true

since (R, R̂, ŝ, π) must be a valid signature encryption, we can compute CDH(X,Y) as (RŝY −H(m))R
−1
x since:

Rŝ = Y H(m)+Rxx

RŝY −H(m) = Y Rxx

(RŝY −H(m))R
−1
x = Y x

The fact that this scheme leaks a Diffie-Hellman key does not necessarily mean it is useless. None of
the schemes presented in Section 1.1 rely on the CDH problem being hard. Furthermore, on a Bitcoin like
ledger, signing keys for transactions are usually generated randomly within the protocol and are not shared
between executions, so learning a CDH tuple in one execution cannot help an adversary break the security of

12

another. Thus, as long as the protocol designer does not rely on the CDH problem being hard within their
protocol the ECDSA one-time VES is practically secure.

It remains to be shown that a CDH solution is the only extra information the adversary learns from the
ciphertext. To prove this we make the CDH problem easy by giving the reduction access to a CDH oracle
and show the scheme secure under this condition. We choose the EUF-CMA reduction to the DL problem
for ECDSA by Fersch et al.[39] in the bijective random oracle model as our starting point. In this model,
the conversation function f which converts an elliptic curve point R to its x-coordinate Rx is modelled as a
bijective random oracle and signatures are simulated by programming it. We prove the following theorem in
Appendix A.

Theorem 4.2. The reduction from the discrete logarithm problem to the EUFCMA security of ECDSA in the
bijective random oracle model from [39] can be transformed into a EUF-CMA[VES] reduction for the ECDSA
one-time VES if the CDH problem is easy.

5 Semi-Scriptless Protocols

The essential function of a smart contract on a Bitcoin-like ledger is to lock coins in an output such that they
can only be spent to certain parties under certain conditions. With a smart contract language like Bitcoin
script, the conditions can be expressed in the language and enforced by the ledger’s transaction validation
rules. In the scriptless model, we can only constrain spending through time-locks and by setting a public
key, for which the spender must provide a signature. Clearly in order to stop one party from arbitrarily
spending the coins the corresponding private key cannot be exclusively known to one party. Thus we require
the parties have a joint ownership of the public key and cooperatively use a multi-signature protocol to sign
transactions spending from the joint output. Multi-signature protocols exist for ECDSA[37, 40], Schnorr[25],
BLS[24] and most prominent signature schemes.

To realise most of the scriptless protocols from Section 1.1, the multi-signature scheme also needs to
admit a two-party one-time VES encrypted signing protocol to emulate EncSign on a joint signing key. It is
relatively simple to build this on top of a Schnorr multi-signature scheme, but since Schnorr signatures have
not been included in the Bitcoin protocol yet, this tool is out of reach for now. Both the two-party ECDSA
schemes in [37, 40] admit a two-party EncSign protocol as described in [36]. Unfortunately, these schemes
are complex and rely additional exotic computational hardness assumptions. As a result, the consensus that
came out of the 2018 Lightning Developer Summit was to postpone updating the lightning specification to
include “payment points” until Schnorr becomes viable.[41]

We present a workaround that allows protocol designers to realise many of the benefits of scriptless
protocols in Bitcoin as it is today. To do so, we relax the scriptless model slightly to what we call the “semi-
scriptless” model where protocols are allowed to use a single OP CHECKMULTISIG script opcode but no others.
OP CHECKMULTISIG acts as a naive ECDSA multi-signature scheme, where the public key for the scheme is
the concatenation of each party’s public keys and a valid signature is the concatenation of valid signatures
under each public key. When locking coins with OP CHECKMULTISIG, a set of public keys is specified along
with how many of those keys must authorize any transaction spending from it. We will only use “2-of-2”
outputs which require two signatures on two out of two of the specified public keys.

We can transform any existing scriptless protocol into a semi-scriptless protocol by locking funds to an
OP CHECKMULTISIG 2-of-2 on two distinct public keys and using the single signer ECDSA one-time VES from
Section 4.2. The simple two-party signing and encrypted signing protocols are presented in Figure 3.

The downsides of semi-scriptless protocols are readily apparent. First, the transactions are larger because
they require two public keys and two signatures to spend them (in addition the overhead that comes from using
script). Secondly, it is easy to distinguish OP CHECKMULTISIG outputs from a regular payment transactions
(but not from other uses of OP CHECKMULTISIG 2-of-2).

Having said this, semi-scriptless protocols are a practical alternative to two-party ECDSA to developers
who wish to attempt to realise many of the benefits of scriptless protocols prior to the Schnorr upgrade. In
general, semi-scriptless enjoy better confidentiality than their script based counterparts. Although script is
used, OP CHECKMULTISIG is not particular to any protocol making it at more confidential than protocols with
a unique script structure. For the following protocols we note the following particular benefits:

• Payment Channels [3]: The typical hash lock can be replaced with a discrete logarithm based lock
which enables the privacy benefits from [8] other conjectured improvements[9].

13

2p-Sign(pk := (pk1, pk2),m)

P1(sk1) P2(sk2)

σ1 ←$Sign(sk1,m)

σ1

Vrfy(pk1,m, σ1)
?
= 1

σ2 ←$Sign(sk2,m)

return σ := (σ1, σ2)

2p-EncSign(pk := (pk1, pk2), pkE ,m)

P1(sk1) P2(sk2)

σ̂1 ←$EncSign(sk1, pkE ,m)

δ ← RecKey(pkE , σ̂1)

σ̂1

EncVrfy(pk1, pkE ,m, σ̂1)
?
= 1

σ2 ←$ Sign(sk2,m)

σ̂ := (σ̂1, σ2)

return δ return σ̂

Fig. 3. The two-party signing and encrypted signing algorithms for an 2-of-2 OP CHECKMULTISIG output.

• Atomic swaps [7]: The secret that releases funds from the escrow transactions never appears on the
ledger, unlike the existing hash constructions which make it easy to associate assets changing hands as
the contracts on the ledgers share the same hash.

• Discreet Log Contracts [10]: The protocol can be completed in two transactions rather than three.

References

[1] Andrew Poelstra. Scriptless scripts. https://download.wpsoftware.net/bitcoin/wizardry/

mw-slides/2017-05-milan-meetup/slides.pdf, 2017.

[2] Andrew Poelstra. Lightning in scriptless scripts. https://lists.launchpad.net/mimblewimble/

msg00086.html, 2017.

[3] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant payments.
https://lightning.network/lightning-network-paper.pdf, 2016.

[4] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In Proceedings of the 22Nd International Conference on Theory and Applications of
Cryptographic Techniques, EUROCRYPT’03, pages 416–432, Berlin, Heidelberg, 2003. Springer-Verlag.

[5] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In Proceedings of
the 7th International Conference on the Theory and Application of Cryptology and Information Security:
Advances in Cryptology, ASIACRYPT ’01, pages 514–532, Berlin, Heidelberg, 2001. Springer-Verlag.

[6] Tier Nolan. Alt chains and atomic transfers. https://bitcointalk.org/index.php?topic=193281.

msg2224949#msg2224949.

[7] Andrew Poelstra. Adaptor signatures and atomic swaps from scriptless scripts. https://github.com/

ElementsProject/scriptless-scripts/blob/master/md/atomic-swap.md, 2017.

[8] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and Matteo Maffei. Anony-
mous multi-hop locks for blockchain scalability and interoperability. Cryptology ePrint Archive, Report
2018/472, 2018. https://eprint.iacr.org/2018/472.

[9] Rusty Russel. Bolt11 in the world of scriptless scripts. https://lists.linuxfoundation.org/

pipermail/lightning-dev/2018-November/001489.html, 2018.

[10] Thaddeus Dryja. Discreet log contracts. https://adiabat.github.io/dlc.pdf, 2017.

[11] David Chaum. Blind signatures for untraceable payments. In Advances in cryptology, pages 199–203.
Springer, 1983.

14

https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://lists.launchpad.net/mimblewimble/msg00086.html
https://lists.launchpad.net/mimblewimble/msg00086.html
https://lightning.network/lightning-network-paper.pdf
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://github.com/ElementsProject/scriptless-scripts/blob/master/md/atomic-swap.md
https://github.com/ElementsProject/scriptless-scripts/blob/master/md/atomic-swap.md
https://eprint.iacr.org/2018/472
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-November/001489.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-November/001489.html
https://adiabat.github.io/dlc.pdf

[12] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon Goldberg. Tum-
blebit: An untrusted bitcoin-compatible anonymous payment hub. Cryptology ePrint Archive, Report
2016/575, 2016. https://eprint.iacr.org/2016/575.

[13] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2l: Anonymous atomic locks for scalability
and interoperability in payment channel hubs. Cryptology ePrint Archive, Report 2019/589, 2019.
https://eprint.iacr.org/2019/589.

[14] Jonas Nick. Partially blind atomic swap using adaptor signatures. https://github.com/

ElementsProject/scriptless-scripts/blob/master/md/partially-blind-swap.md, 2017.

[15] fair coin toss with no extortion and no need to trust a third party. https://bitcointalk.org/index.
php?topic=277048.0, 2013.

[16] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. Cryptology ePrint
Archive, Report 2014/129, 2014. https://eprint.iacr.org/2014/129.

[17] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure multiparty
computations on bitcoin. Cryptology ePrint Archive, Report 2013/784, 2013. https://eprint.iacr.

org/2013/784.

[18] Massimo Bartoletti and Roberto Zunino. Constant-deposit multiparty lotteries on bitcoin. Cryptology
ePrint Archive, Report 2016/955, 2016. https://eprint.iacr.org/2016/955.

[19] Andrew Miller and Iddo Bentov. Zero-collateral lotteries in bitcoin and ethereum. CoRR,
abs/1612.05390, 2016.

[20] Lloyd Fournier. Scriptless bitcoin lotteries from oblivious transfer. https://telaviv2019.

scalingbitcoin.org/files/scriptless-lotteries-on-bitcoin-from-oblivious-transfer.pdf,
2016.

[21] Raylin Tso, Takeshi Okamoto, and Eiji Okamoto. 1outtoffnn oblivious signatures. In Proceedings of the
4th International Conference on Information Security Practice and Experience, ISPEC’08, pages 45–55,
Berlin, Heidelberg, 2008. Springer-Verlag.

[22] Jonas Nick. Atomic pedersen swap using adaptor signatures. https://github.com/ElementsProject/
scriptless-scripts/blob/master/md/pedersen-swap.md, 2017.

[23] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067, 2000. https://eprint.iacr.org/2000/067.

[24] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller blockchains.
Cryptology ePrint Archive, Report 2018/483, 2018. https://eprint.iacr.org/2018/483.

[25] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr multi-signatures
with applications to bitcoin. Cryptology ePrint Archive, Report 2018/068, 2018. https://eprint.

iacr.org/2018/068.

[26] Laila El Aimani. Verifiable Composition of Signature and Encryption. 12 2017.

[27] Markus Rückert and Dominique Schröder. Security of verifiably encrypted signatures and a construction
without random oracles. In Proceedings of the 3rd International Conference Palo Alto on Pairing-Based
Cryptography, Pairing ’09, pages 17–34, Berlin, Heidelberg, 2009. Springer-Verlag.

[28] Christian Hanser, Max Rabkin, and Dominique Schröder. Verifiably encrypted signatures: Security
revisited and a new construction. In Proceedings, Part I, of the 20th European Symposium on Computer
Security – ESORICS 2015 - Volume 9326, pages 146–164, Berlin, Heidelberg, 2015. Springer-Verlag.

[29] Theresa Calderon, Sarah Meiklejohn, Hovav Shacham, and Brent Waters. Rethinking verifiably en-
crypted signatures: a gap in functionality and potential solutions. In Cryptographers’ Track at the RSA
Conference, pages 349–366. Springer, 2014.

15

https://eprint.iacr.org/2016/575
https://eprint.iacr.org/2019/589
https://github.com/ElementsProject/scriptless-scripts/blob/master/md/partially-blind-swap.md
https://github.com/ElementsProject/scriptless-scripts/blob/master/md/partially-blind-swap.md
https://bitcointalk.org/index.php?topic=277048.0
https://bitcointalk.org/index.php?topic=277048.0
https://eprint.iacr.org/2014/129
https://eprint.iacr.org/2013/784
https://eprint.iacr.org/2013/784
https://eprint.iacr.org/2016/955
https://telaviv2019.scalingbitcoin.org/files/scriptless-lotteries-on-bitcoin-from-oblivious-transfer.pdf
https://telaviv2019.scalingbitcoin.org/files/scriptless-lotteries-on-bitcoin-from-oblivious-transfer.pdf
https://github.com/ElementsProject/scriptless-scripts/blob/master/md/pedersen-swap.md
https://github.com/ElementsProject/scriptless-scripts/blob/master/md/pedersen-swap.md
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2018/483
https://eprint.iacr.org/2018/068
https://eprint.iacr.org/2018/068

[30] Zuhua Shao. Fair exchange protocol of signatures based on aggregate signatures. Computer Communi-
cations, 31(10):1961 – 1969, 2008.

[31] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate
signatures and multisignatures without random oracles. Cryptology ePrint Archive, Report 2006/096,
2006. https://eprint.iacr.org/2006/096.

[32] Andrew Poelstra. Scriptless scripts. https://download.wpsoftware.net/bitcoin/wizardry/

mw-slides/2017-03-mit-bitcoin-expo/slides.pdf, 2017.

[33] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Proceedings of the 9th
Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’89, pages 239–252,
Berlin, Heidelberg, 1990. Springer-Verlag.

[34] Pieter Wuille. Taproot: Segwit version 1 output spending rules. https://github.com/sipa/bips/

blob/bip-schnorr/bip-schnorr.mediawiki. Accessed 2019-06-09.

[35] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, 2000.

[36] Aniket Kate Pedro Moreno-Sanchez. Scriptless scripts with ecdsa.
https://lists.linuxfoundation.org/pipermail/lightning-dev/attachments/20180426/fe978423/attachment-
0001.pdf, 2018.

[37] Yehuda Lindell. Fast secure two-party ecdsa signing. Cryptology ePrint Archive, Report 2017/552, 2017.
https://eprint.iacr.org/2017/552.

[38] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Proceedings of the 12th
Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’92, pages 89–105,
London, UK, UK, 1993. Springer-Verlag.

[39] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the provable security of (ec)dsa signatures. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS
’16, pages 1651–1662, New York, NY, USA, 2016. ACM.

[40] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker. Two-party
ecdsa from hash proof systems and efficient instantiations. Cryptology ePrint Archive, Report 2019/503,
2019. https://eprint.iacr.org/2019/503.

[41] ZmnSCPxj. Payment point+scalar. https://lists.linuxfoundation.org/pipermail/

lightning-dev/2019-October/002211.html, 2019.

A Proof for Theorem 4.2

As we have proved, the ECDSA one-time VES is not EUF-CMA[VES] secure if the CDH problem is hard.
We now wish to show that if the CDH problem were easy then it would satisfy EUF-CMA[VES] i.e. leak no
useful information to a forger. Thus we give our reduction access to an OCDH oracle which when queried
with OCDH(X,Y) returns Z such that (X,Y,Z) is a Diffie-Hellman tuple with respect to g. Additionally, in
the reduction we simulate the NIZK DLEQ proof π with SDLEQ.

As our starting point, we take the EUF-CMA reduction for ECDSA by Fersch et al.[39] to the discrete
logarithm problem. In this work, the conversion function f : G → Zq that maps a group element to its
x-coordinate mod q is decomposed and idealised as an oracle. The forger must query this oracle to produce
a valid forgery. During the reduction, this oracle is programmable. In more detail, f is decomposed as
f = ψ ◦Π ◦ ϕ where:

1. ϕ is an invertible 2-to-1 function mapping curve points to the domain of Π reflecting the fact that every
x-coordinate belongs to two possible group elements.

2. Π is the bijective random oracle that the reduction is able to program.

3. ψ is an invertible function that maps the range of Π (denoted as B) to Zq.

16

https://eprint.iacr.org/2006/096
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki
https://eprint.iacr.org/2017/552
https://eprint.iacr.org/2019/503
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-October/002211.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-October/002211.html

We sketch the simulation of the signature encryption oracle E in this model below. Note that we leave
out and simplify some important details for the sake of clarity and encourage the reader to review the original
proof in [39] to get a full understanding of the reduction.

RDL(X)

Q← ∅; Π← ∅
// Run the reduction from [39]

...← FE,S
EUF-CMA[VES](X)

Simulate S(m)

β←$B
if (·, β) ∈ Π : abort

Rx ← ψ(β)

s←$Zq

R← (gH(m)XRx)s
−1

α← ϕ(R)

if (α, ·) ∈ Π : abort

Π← Π ∪ {(α, β)}
Q← Q ∪ {m}
return (s,Rx)

Simulate E(Y,m)

β←$B
if (·, β) ∈ Π : abort

Rx ← ψ(β)

ŝ←$Zq

R̂← (gH(m)XRx)ŝ
−1

R← OCDH(R̂, Y)

π ← SDLEQ((g, R̂), (Y,R))

α← ϕ(R)

if (α, ·) ∈ Π : abort

Π← Π ∪ {(α, β)}
Q← Q ∪ {m}
return (R, R̂, ŝ, π)

The fact that we can simulate E with access to OCDH without modifying the internals of RDL completes
the proof.

17

	Introduction
	Survey of Scriptless Protocols
	Our Contribution
	Previous Work with Adaptor Signatures In Security Proofs
	Future Work

	Preliminaries
	Bitcoin
	Notation
	The Discrete Logarithm Problem

	Verifiably Encrypted Signatures Without a Trusted Third Party
	Previous Revisions of the VES Security Definitions
	Validity
	EUF-CMA[VES]

	One-Time Verifiably Encrypted Signatures
	Schnorr One-Time VES Scheme
	ECDSA One-Time VES Scheme

	Semi-Scriptless Protocols
	 Proof for Theorem 4.2

