
On the Provable Security of Two-Round Multi-Signatures
Manu Drijvers

IBM Research – Zurich and ETH

Kasra Edalatnejad

EPFL

Bryan Ford

EPFL

Gregory Neven

IBM Research – Zurich

ABSTRACT
A multisignature scheme allows a group of signers to collabora-

tively sign a message, creating a single signature that convinces

a verifier that every individual signer approved the message. The

increased interest in technologies to decentralize trust has triggered

the proposal of highly efficient two-round Schnorr-based multisig-

nature schemes designed to scale up to thousands of signers, namely

CoSi by Syta et al. (S&P 2016) and MuSig by Maxwell et al. (ePrint

2018). Previous two-round Schnorr-based schemes by Bagherzandi

et al. (CCS 2008) and Ma et al. (DCC 2010) are less efficient in terms

of signature size, signing time, or verification time. In this work,

we prove that none of these schemes can be proved secure without

radically departing from currently known techniques. Namely, we

show that if the one-more discrete-logarithm problem is hard, then

no algebraic reduction exists that proves any of these schemes se-

cure under the discrete-logarithm or one-more discrete-logarithm

problem. We point out subtle flaws in the published security proofs

of each of the above schemes (except CoSi, which was not proved

secure) to explain the contradiction between our result and the

existing proofs.

1 INTRODUCTION
A multisignature scheme allows a group of signers, each having

their own key pair (pki , ski), to collaboratively sign a single mes-

sagem. The result is a single signature σ that can be verified using

the set of public keys {pk
1
, . . . , pkn }, assuring a verifier that every

signer approved messagem. While multisignature schemes have

been studied since decades [2, 7, 9, 14, 17, 18, 20, 24], they have

recently received renewed interest because of the rise of distributed

applications that aim to decentralize trust such as Bitcoin [22]

and more generally blockchain. Such applications typically involve

many users or nodes that need to approve particular actions, which

naturally matches the multisignature setting where many signers

must collaborate in order to create a joint multisignature.

Motivated by such applications, Syta et al. [32] presented the

CoSimultisignature scheme, a highly scalablemultisignature scheme

that allows a tree of 8192 signers to sign in less than two seconds.

Since its recent introduction, CoSi has already led to a large body

of follow-up work, including a distributed protocol to create secure

randomness [31], improving the scalability of Bitcoin [31], and in-

troducing a decentralized software update framework [23]. CoSi is
also considered for standardization by the IETF [13].

More recently, the Bitcoin community is actively looking into in-

tegrating Schnorr signatures as these could support multisignatures

and aggregate signatures, allowing many signatures that go into the

same block to be merged into one, significantly reducing the overall

size of the blockchain [1]. To this end, a team of Bitcoin core devel-

opers published the MuSig scheme [19] that is tailored specifically

to the needs of Bitcoin. TheMuSig scheme was presented with a

security proof under the one-more discrete-logarithm assumption,

while the security of CoSi was never formally analyzed.

One of the main problems when designing provably secure

Schnorr-based multi-signature schemes is that in order to sim-

ulate the honest signer, the reduction cannot simply use the zero-

knowledge property and program the random oracle, because the

random-oracle entry that needs to be programmed depends on

the output of the adversarial signers. Bellare and Neven [7] got

around this issue by introducing a preliminary round in the sign-

ing protocol where signers exchange commitments to their first

rounds. Bagherzandi et al.’s BCJ scheme [2]’s BCJ scheme elimi-

nated the need for this extra round by using homomorphic trapdoor

commitments, while Ma et al.’s MWLD scheme [18] simulates sig-

natures by exploiting the witness-indistinguishability of Okamoto

signatures [25].

Our result. This paper essentially shows that none of the two-

round schemes mentioned above can be proved secure under stan-

dard assumptions. More precisely, we prove that if the one-more

discrete log problem (OMDL) is hard, then there cannot exist an

algebraic black-box reduction that proves the CoSi, MuSig, BCJ,
or MWLD schemes secure under the discrete log (DL) or OMDL

assumption.

This is surprising, because all of these schemes, except CoSi,
were published with a security proof under the DL (BCJ,MWLD) or
OMDL (MuSig) assumption. We explain the obvious contradiction

by pointing out subtle flaws in their proofs. The problem is that

simulating signing queries in combination with a forking argument

is especially delicate, because the forger may be forked at a point

where it has an “open” signing query. If that is the case, the reduction

has to come up with a second response for the same first round of

the signing protocol, which leaks the signing key that it was hoping

to extract from the forger. The actual impossibility proof is a bit

more involved, but it exploits exactly this difficulty in simulating

signing queries.

The class of reductions covered by our result essentially encom-

passes all currently known proof techniques, including those that

rewind the adversary an arbitrary number of times (so-called fork-
ing [27]). Also, given that all of the covered schemes are derived

from Schnorr signatures [29], it would be very surprising if its secu-

rity could be proved under an assumption that is not implied by DL

or OMDL. So while in theory our result does not completely rule

out the existence of a security proof, in practice it does mean that a

security proof under standard assumptions is extremely unlikely

as it would have to use currently unknown techniques. Another

way to circumvent our impossibility result is to assume the much

stronger generic group model [30].

Versions of this paper. An earlier version of this paper [12] con-

tained the impossibility proof for the CoSi andMuSig schemes, and

incorrectly suggested a new scheme called DG-CoSi as a provably
secure alternative. This version adds the BCJ and MWLD schemes

(Sections 3.4 and 3.3) to the list of schemes covered by our meta-

reduction, and it is not hard to see that the meta-reduction applies

to DG-CoSi as well. The proof of DG-CoSi in the earlier version

contained a flawed argument saying that, because each individual

execution of the adversary is independent of the simulator’s choice

for the signing key, then the key computed from the outputs of

the adversary must be independent from the simulator’s choice as

well. This is not correct, because an adversary could base its output

on signing oracle responses to cause the reduction to extract the

key that it already knows. We are very grateful to an anonymous

referee for catching this mistake.

2 PRELIMINARIES
2.1 Discrete Logarithm Problems

Definition 2.1 (Discrete Log Problem). For a group G = ⟨д⟩ of
prime order q, we define AdvdlG of an adversary 𝒜 as

Pr

[
y = дx : y ←$ G,x ←$ 𝒜(y)

]
,

where the probability is taken over the random choices of𝒜 and the

random selection of y. 𝒜 (τ , ϵ)-breaks the discrete log problem if it

runs in time at most τ and has AdvdlG ≥ ϵ . Discrete log is (τ , ϵ)-hard
if no such adversary exists.

Definition 2.2 (n-One-more Discrete Log Problem [6, 8]). For a
groupG = ⟨д⟩ of prime order q, let𝒪dlog(·) be a discrete logarithm

oracle that can be called at most n times. We define Advn−omdl
G of

an adversary 𝒜 as

Pr

[n∧
i=0

yi = д
xi

: (y0, . . . ,yn) ←
$ Gn+1,

(x0, . . . ,xn) ←
$ 𝒜𝒪dlog(·)(y0, . . . ,yn)

]
,

where the probability is taken over the random choices of 𝒜 and

the random selection of y0, . . . ,yn . 𝒜 (τ , ϵ)-breaks the n-one-more

discrete log problem if it runs in time at most τ and hasAdvn−omdl
G ≥

ϵ . n-one-more discrete log is (τ , ϵ)-hard if no such adversary exists.

2.2 Algebraic Algorithms
Boneh and Venkatesan [10] define algebraic algorithms to study the

relation between breaking RSA and factoring. An algorithm work-

ing in some group is algebraic if it only uses the group operations to

construct group elements. More precisely, it can test equality of two

group elements, perform the group operation on two elements to

obtain a new element, and invert a group element. This means that

an algebraic algorithm that receives group elements y1, . . . ,yn as

input can only construct new group elements y for which it knows

α1, . . . ,αn such that y =
∏n

i=1
yαii .

We use the formalization by Paillier and Vergnaud [26]:

Definition 2.3. An algorithm A that on input group elements

(y1, . . . ,yn) is algebraic if it admits a polynomial time algorithm

Extract that given the code of A and its random tape outputs

(α1, . . . ,αn) such that h =
∏n

i=1
yαii for any group element h that

A outputs.

2.3 Generalized Forking Lemma
The original forking lemma was formulated by Pointcheval and

Stern [27] to analyze the security of Schnorr signatures [29]. The

lemma rewinds a forger𝒜 against the Schnorr signature scheme in

the random-oracle model (ROM) to a “crucial” random-oracle query

(typically, the query involved in a forgery) and runs 𝒜 again from

the crucial query with fresh random-oracle responses. The lemma

basically says that if 𝒜 has non-negligible success probability in a

single run, then the forking algorithm will generate two successful

executions with non-negligible probability.

Bellare and Neven [7] generalized the forking lemma to apply

to any algorithm 𝒜 in the random-oracle model using a single

rewinding, while Bagherzandi, Cheon, and Jarecki [2] generalized

the lemma even further to multiple subsequent rewindings on mul-

tiple crucial queries. It is the latter generalization of the forking

lemma that we recall here.

Let 𝒜 be an algorithm that on input in interacts with a random

oracle H : {0, 1}∗ → Zq . Let f = (ρ,h1, . . . ,hqH
) be the random-

ness involved in an execution of 𝒜, where ρ is 𝒜’s random tape,

hi is the response to 𝒜’s i-th query to H, and qH is its maximal

number of random-oracle queries. Let Ω be the space of all such

vectors f and let f |i = (ρ,h1, . . . ,hi−1). We consider an execution

of 𝒜 on input in and randomness f , denoted𝒜(in, f), as successful
if it outputs a pair (J , {out j }j ∈J), where J is a multi-set that is a

non-empty subset of {1, . . . ,qH} and {out j }j ∈J is a multi-set of

side outputs. We say that 𝒜 failed if it outputs J = ∅. Let ϵ be the
probability that𝒜(in, f) is successful for fresh randomness f ←$ Ω
and for an input in←$ IG generated by an input generator IG.

For a given input in, the generalized forking algorithm 𝒢ℱ𝒜 is

defined as follows:

𝒢ℱ𝒜(in):
f = (ρ,h1, . . . ,hqH

) ←$ Ω
(J , {out j }j ∈J) ← 𝒜(in, f)
If J = ∅ then output fail
Let J = {j1, . . . , jn } such that j1 ≤ . . . ≤ jn
For i = 1, . . . ,n do

succi ← 0 ; ki ← 0 ; kmax ← 8nqH/ϵ · ln(8n/ϵ)
Repeat until succi = 1 or ki > kmax

f ′′ ←$ Ω such that f ′′ |ji = f |ji
Let f ′′ = (ρ,h1, . . . ,hji−1,h

′′
ji , . . . ,h

′′
qH

)

(J ′′, {out ′′j }j ∈J ′′) ← 𝒜(in, f ′′)
If h′′ji , hji and J ′′ , ∅ and ji ∈ J ′′ then

out ′ji ← out ′′ji ; succi ← 1

If succi = 1 for all i = 1, . . . ,n
Then output (J , {out j }j ∈J , {out ′j }j ∈J) else output fail

We say that 𝒢ℱ𝒜 succeeds if it doesn’t output fail. Bagherzandi
et al. proved the following lemma for this forking algorithm.

Lemma 2.4 (Generalized Forking Lemma [2]). Let IG be a ran-
domized algorithm and 𝒜 be a randomized algorithm running in
time τ making at most qH random-oracle queries that succeeds with
probability ϵ . If q > 8nqH/ϵ , then 𝒢ℱ𝒜(in) runs in time at most
τ · 8n2qH/ϵ · ln(8n/ϵ) and succeeds with probability at least ϵ/8,

2

where the probability is over the choice of in←$ IG and over the coins
of 𝒢ℱ𝒜.

2.4 Security of Multisignatures
We follow the syntax and security model due to Bagherzandi et

al. [2], which follows the so-called key-verification model, as intro-

duced by Bagherzandi and Jarecki [3], where individual public keys

must be verified by the signature verifier. We adapt the model to

support signers that are organized in a tree structure for more effi-

cient communication. Prior work always assumed a communication

setting where every cosigner communicates directly with the initia-

tor, which our tree-based modeling supports by choosing a tree in

which every cosigner is a direct child of the initiator. Moreover, we

formalize the notion of an “aggregated key” of a group of signers,

by adding an algorithm that computes a single aggregated public

key from a set of public keys, and this aggregated key will be used

by the verification algorithm. The idea of splitting key aggregation

from verification is that if a group of signers will repeatedly sign

together, a verifier will only once compute the aggregate public key

and reuse that for later verifications. If the aggregated key is smaller

than the set of public keys, or even constant size, this will allow

for more efficient schemes. Note that this change does not exclude

multisignature schemes that do not have this feature: indeed, such

schemes can simply use the identity function as key aggregation

algorithm.

A multisignature scheme consists of algorithms Pg, Kg, Sign,
KAg, KVf, and Vf. A trusted party generates the system parameters

par ← Pg. Every signer generates a key pair (pk, sk) ←$ Kg(par),
and signers can collectively sign a messagem by each calling the

interactive algorithm Sign(par, sk,𝒯 ,m), where 𝒯 describes a tree

between the signers that defines the intended communication be-

tween the signers. At the end of the protocol, the root of the tree 𝒯
obtains a signature σ . Algorithm KAg on input a set of public keys

𝒫𝒦 outputs a single aggregate public key PK . A verifier can check

the validity of a signature σ on message m under an aggregate

public key PK by running Vf(par, PK,m,σ) which outputs 0 or 1

indicating that the signatures is invalid or valid, respectively. Any-

body can check the validity of a public key by using key verification

algorithm KVf(par, pk).
First, amultisignature scheme should satisfy completeness, mean-

ing that 1) for any par ← Pg and any (pk, sk) ← Kg(par), we have
KVf(par, pk) = 1, and 2) for any n, if we have (pki , ski) ← Kg(par)
for i = 1, . . . ,n, and any tree 𝒯 containing exactly these n signers,

and for any messagem, if all signers input Sign(par, ski ,𝒯 ,m), then
the root of 𝒯 will output a signature σ such that Vf(par,KAg(par,
{pki }

n
i=1
),m,σ) = 1.

Second, a multisignature scheme should satisfy unforgeability.

Unforgeability of a multisignature scheme MS = (Pg,Kg, Sign,
KAg,Vf,KVf) is defined by a three-stage game.

Setup. The challenger generates the parameters par ← Pg and a

challenge key pair (pk∗, sk∗) ←$ Kg(par). It runs the adversary on

the public key 𝒜(par, pk∗).

Signature queries. 𝒜 is allowed to make signature queries on

a messagem with a tree 𝒯 , meaning that it has access to oracle

𝒪Sign(par,sk∗, ·, ·)
that will simulate the honest signer interacting in

Children 𝒞i Signer Si Parent Pi
m✛ m✛

{(PK j , tj)}j ∈𝒞i✲ r ←$ Zq
ti ← дr

∏
j ∈𝒞i tj

PKi ← yi
∏

j ∈𝒞i PK j
(ti , PKi)✲

(t̄ , PK)✛ c ← H(sig, t̄ , PK,m) (t̄ , PK)✛
{sj }j ∈𝒞i ✲ si ← r + cski

+
∑
j ∈𝒞i sj mod q si ✲

Figure 1: The CoSi signing protocol for signer Si with se-
cret key ski = (xi,1,xi,2) and public key pk = (yi ,πi). If Si
is the leader then, instead of sending (ti , PKi) to its parent, it
sends (t̄ , PK) = (ti , PKi) to its children, and instead of sending
(si,1, si,2) to its parent, it outputs (c, s1, s2) = (c, si,1, si,2) as the
signature.

a signing protocol to sign messagem with intended communica-

tion tree 𝒯 . Note that 𝒜 may make any number of such queries

concurrently.

Output. Finally, the adversary halts by outputting a multisig-

nature forgery σ , a message m and a set of public keys 𝒫𝒦. In

the key-verification setting, the adversary wins if pk∗ ∈ 𝒫𝒦,

KVf(par, pk) = 1 for every pk ∈ 𝒫𝒦 with pk , pk∗, PK ←
KAg(𝒫𝒦), Vf(𝒫𝒦,σ ,m) = 1, and 𝒜 made no signing queries on

m. A special case of the key-verification model is the plain public

key model, where there is no need to verify individual public keys,

i.e., KVf always returns 1.1 In the weaker knowledge-of-secret-key

(KOSK) setting, the adversary is required to additionally output

corresponding secret keys skpk for all pk ∈ 𝒫𝒦, pk , pk∗.

Definition 2.5. We say𝒜 is a (τ ,qS,qC,qH, ϵ)-forger for multisig-

nature scheme MS = (Pg,Kg, Sign,Vf) if it runs in time τ , makes

qS signing queries such that at most qC signing protocols are con-

currently active (i.e., started but not yet finished) at any given

time, makes qH random oracle queries, and wins the above game

with probability at least ϵ . MS is (τ ,qS,qC,qH, ϵ)-unforgeable if no
(τ ,qS,qC,qH, ϵ)-forger exists.

2.5 The CoSiMultisignature Scheme
CoSi is a multisignature scheme introduced by Syta et al. [32]

that follows a long line of work on Schnorr-based multisigna-

tures [2, 7, 18, 20, 28]. It improves the efficiency of prior work:

it is a two round protocol, verification of a signature is as efficient

as verifying a single Schnorr signature, and due to employing a

tree structure to compute the signature, thousands of signers can

create a multisignature in seconds, as demonstrated by their open

source implementation
2
. Since its recent introduction, CoSi has

already led to a large body of follow-up work [11, 15, 16, 23, 31]

and is considered for standardization by the IETF [13]. However,

1
The distinction between the key-verification model and plain public key model is a bit

informal, as they are in fact equivalent: any multisignature scheme that is unforgeable

in the key-verification model is also secure in the plain public key model, where the

key verification is simply considered part of the verification algorithm.

2
The implementation is available at github.com/dedis/cothority.

3

the security of CoSi is not formally analyzed, as Syta et al. [32] do

not formally prove security.

2.5.1 Parameters generation. Pg sets up a group G = ⟨д⟩ of
order q, where q is a κ-bit prime. Output par ← (G,д,q).

2.5.2 Key generation. The key generation algorithm Kg(par)
takes sk ←$ Zq and sets pk ← дsk . To prevent related-key at-

tacks [21], the authors suggest that users prove knowledge of their

secret key. We will omit those proofs here and study CoSi in the

KOSK setting in which such attacks cannot occur.

2.5.3 Signing. Signing is the four-step protocol. A signer Si on
input Sign(par, (xi , pki),m,𝒯) behaves as follows.
Announcement. If Si is the leader (i.e., the root of tree 𝒯), it initiates

the protocol by sending an announcement to its children, which

consists of a unique identifier for this signing session ssid. If Si is
not the leader, it waits to receive an announcement message and

forwards it to its children in 𝒯 . After doing so, Si proceeds with
the commitment phase.

Commitment. Let 𝒞i denote the set of children of Si in tree 𝒯 . Si
waits to receive all values (tj , PK j) for j ∈ 𝒞i . Note that if Si has
no children (i.e., it is a leaf in tree 𝒯), it will proceed immediately.

Si chooses ri ←
$ Zq and computes ti ← дri ·

∏
j ∈𝒞i tj and PKi ←

pki ·
∏

j ∈𝒞i PK j . If Si is not the leader, it sends ti to its parent. If Si
is the leader, Si proceeds with the challenge phase.

Challenge. If Si is the leader, it sets t̄ ← ti and PK ← PKi , computes

c ← H(t̄ ,m), and sends t̄ to its children. If Si is not the leader, it
waits to receive a message t̄ , computes c ← H(t̄ ,m), and sends t̄ to
its children

3
.

Response. Si waits to receive all values sj for j ∈ 𝒞i (note that if
Si is a leaf it will proceed immediately), and then computes si ←
ri + c · ski +

∑
j ∈Ci sj .. It sends si to its parent, unless Si is the root,

then Si sets s ← si and outputs σ ← (c, s).

2.5.4 Key Aggregation. KAg on input a set of public keys 𝒫𝒦
outputs aggregate public key PK ←

∏
pk∈𝒫𝒦 pk.

2.5.5 Verification. Vf on input an aggregate public key PK , a
signature σ = (c, s), and a messagem, checks that

c
?

= H
(
дs · PK−c ,m

)
.

2.6 The BCJMultisignature Schemes
Whereas Bellare and Neven [7] solved the problem of signature

simulation in the security proof by letting all signers commit to

their contribution in a preliminary round of the signing protocol,

the BCJ scheme due to Bagherzandi et al. [2] avoids this extra round

by using a multiplicatively homomorphic equivocable commitment

scheme. Since the only known instantiation of such a commitment

scheme is included in the same paper, we describe the BCJ scheme

for that instantiation here.

2.6.1 Parameters generation. Pg sets up a group G of order q
with generators д1, h1, д2, and h2, where q is a κ-bit prime. Output

par ← (G,д1,h1,д2,h2,q).

3
We make a small variation of the original CoSi scheme [32], in which the cosigners

receive c from the leader instead of t̄ . Without knowing t̄ , cosigners cannot verify that
c = H(t̄,m) and are unable to check that they are signing the message they intend to

sign, and one cannot hope to prove unforgeability in this setting.

2.6.2 Key generation. The key generation algorithm Kg(par)
takes sk ←$ Zq and sets y ← дsk . Compute proof-of-posession

π = (c, s) by taking r ←$ Zq , c ← H1(y,д
r
1
), s ← r + c · sk. Let

pk ← (y,π) and output (pk, sk).

2.6.3 Signing. Signing is the four-step protocol. A signer Si on
input Sign(par, (ski ,yi ,πi),m,𝒯) behaves as follows.
Announcement. If Si is the leader (i.e., the root of tree 𝒯), it initiates

the protocol by sending an announcement to its children, which

consists of a unique identifier for this signing session ssid. If Si is
not the leader, it waits to receive an announcement message and

forwards it to its children in 𝒯 . After doing so, Si proceeds with
the commitment phase.

Commitment. Let 𝒞i denote the set of children of Si in tree 𝒯 .

Si waits to receive all values (tj,1, tj,2, PK j) for j ∈ 𝒞i . Note that
if Si has no children (i.e., it is a leaf in tree 𝒯), it will proceed

immediately. Si chooses (ri ,αi,1,αi,2) ←
$ Z3

q and computes ti,1 ←

д
αi,1
1

h
αi,2
1
·
∏

j ∈𝒞i tj,1 and ti,2 ← д
αi,1
2

h
αi,2
2
· дri

1
·
∏

j ∈𝒞i tj,2, and
PKi ← yi ·

∏
j ∈𝒞i PK j . If Si is not the leader, it sends (ti,1, ti,2, PKi)

to its parent. If Si is the leader, Si proceeds with the challenge phase.
Challenge. If Si is the leader, it sets t̄1 ← ti,1, t̄2 ← ti,2, and PK ←
PKi . It computes c ← H0(t̄1, t̄2, PK,m), and sends (t̄1, t̄2, PK) to
its children. If Si is not the leader, it waits to receive a message

(t̄1, t̄2, PK), computes c ← H0(t̄1, t̄2, PK,m), and sends (t̄1, t̄2, PK)
to its children.

Response. Si waits to receive all values (sj ,γj,1,γj,2) for j ∈ 𝒞i (note
that if Si is a leaf it will proceed immediately), and then computes

si ← ri + c · ski +
∑
j ∈Ci sj , γi,b ← αi,b +

∑
j ∈Ci γj,b for b ∈ {1, 2}.

It sends (si ,γi,1,γi,2) to its parent, unless Si is the root, then Si sets
s ← si , γ1 ← si,1, γ2 ← si,2, and outputs σ ← (t̄1, t̄2, s,γ1,γ2).

2.6.4 Key Aggregation. KAg on input a set of public keys 𝒫𝒦
parses every pki ∈ 𝒫𝒦 as (yi , (ci , si)), and if this public key has

not been validated before, check that ci = H1(yi ,д
si
1
y−cii). Output

aggregate public key PK ←
∏

yi .

2.6.5 Verification. Vf on input aggregate public key PK , a signa-
tureσ = (t̄1, t̄2, s,γ1,γ2), and amessagem, compute c ← H0(t̄1, t̄2, PK,m)

and check that t̄1
?

= д
γ1

1
h
γ2

1
and t̄2

?

= д
γ1

2
h
γ2

2
дs

1
PK−c .

2.7 The MWLD Multisignature Scheme
The MWLD scheme due to Ma et al. [18] addresses the signature

simulation problem by using a witness-indistinguishable proof

based on Okamoto signatures [25], yielding shorter signatures and

more efficient signing than the BCJ scheme.

2.7.1 Parameters generation. Pg sets up a group G of order q
with generators д and h, where q is a κ-bit prime. Output par ←
(G,д,h,q).

2.7.2 Key generation. The key generation algorithm Kg(par)
takes (sk1, sk2) ←

$ Z2

q and sets pk ← дsk1hsk2
.

2.7.3 Signing. Signing is the four-step protocol. A signer Si on
input Sign(par, ((sk1, sk2), pki),m,𝒯) behaves as follows.
Announcement. If Si is the leader (i.e., the root of tree 𝒯), it initiates

the protocol by sending an announcement to its children, which

consists of a unique identifier for this signing session ssid. If Si is
not the leader, it waits to receive an announcement message and

4

forwards it to its children in 𝒯 . After doing so, Si proceeds with
the commitment phase.

Commitment. Let 𝒞i denote the set of children of Si in tree 𝒯 . Si
waits to receive all values (tj ,Lj) for j ∈ 𝒞i . Note that if Si has no
children (i.e., it is a leaf in tree 𝒯), it will proceed immediately. Si
chooses (ri,1, ri,2) ←

$ Z2

q and computes ti ← дri,1hri,2 ·
∏

j ∈𝒞i tj
and Li ← pki ∪

⋃
j ∈𝒞i Lj . If Si is not the leader, it sends (ti ,Li) to

its parent. If Si is the leader, Si proceeds with the challenge phase.

Challenge. If Si is the leader, it sets t̄ ← ti and L← Li , computes

c ← H0(t̄ ,L,m), and sends (t̄ ,L) to its children. If Si is not the
leader, it waits to receive a message (t̄ ,L), computes c ← H0(t̄ ,L,m),
and sends (t̄ ,L) to its children. Response. Si waits to receive all

values (sj,1, sj,2) for j ∈ 𝒞i (note that if Si is a leaf it will proceed
immediately), and then computes vi = H1(c, pki) and si,b ← ri,b +
vi · ski,b +

∑
j ∈Ci sj,b for b ∈ {1, 2}. It sends (si,1, si,2) to its parent,

unless Si is the root, then Si sets s1 ← si,1, s2 ← si,2, and outputs

σ ← (c, s1, s2).

2.7.4 Key Aggregation. This scheme does not support a com-

pressed public key, i.e., KAg(𝒫𝒦) = 𝒫𝒦.

2.7.5 Verification. Vf on input a set of public keys 𝒫𝒦, a signa-

ture σ = (c, s1, s2), and a messagem, checks that

c
?

= H0

©«дs ·
∏

pki ∈𝒫𝒦
pk−H1(c,pki)

i ,𝒫𝒦,mª®¬ .
3 THE SECURITY OF TWO-ROUND

MULTISIGNATURES USING REWINDING
In this section, we analyze the security of existing two-round mul-

tisignature schemes that use rewinding in their security proof. We

first look at CoSi and present a metareduction, proving that if the

OMDL assumption is hard, there cannot exist an algebraic black-box

reduction that proves CoSi secure under the OMDL assumption,

making it unlikely that CoSi can be proven secure. Then, we show

that the same metareduction with small modifications can be ap-

plied toMuSig, the MWLD scheme, and the BCJ scheme, showing

that all those schemes cannot be proven secure with an algebraic

black-box reduction to OMDL if OMDL is hard, and indicating that

the presented security proofs for those schemes contain flaws.

3.1 Impossiblity of Proving CoSi Secure
We first provide an intuition behind the impossibility of prov-

ing CoSi secure by sketching why common proof techniques for

Schnorr signatures fail in the case of CoSi. We then formalize this

and use a metareduction to prove that there cannot be a security
proof for CoSi in the ROM under the OMDL assumption.

In the classical security proof of Schnorr signatures under the

DL assumption [27], the reduction feeds its discrete-logarithm chal-

lenge y as public key pk = y to the adversary. It uses the zero-

knowledge property of the Schnorr protocol to simulate signatures

without knowing the secret key. More precisely, the reduction first

picks (c, s) at random, then chooses t such that the verification equa-
tion дs = t ·pkc holds, and programs the random oracleH(t ,m) = c .
The reduction then applies the forking lemma to extract two forg-

eries from the adversary, from which the discrete logarithm of

pk = y can be computed.

The crucial difference between standard Schnorr signatures and

CoSi is that in CoSi, the final t̄-value included in the hash is the

product of individual ti -values, rather than being determined by

a single signer. Therefore, whenever the honest signer is not the

leader in the signing query, the adversary learns the final t̄ value
before the simulator does, and can prevent the simulator from pro-

gramming the random-oracle entry H(t̄ ,m). One way around this

is to prove security under the OMDL assumption [8, 19], so that

the simulator can use its discrete-logarithm oracle to simulate sign-

ing queries. Namely, the simulator would use its first target point

y0 as public key pk = y0 and use target points y1, . . . ,yn as val-

ues t1, . . . , tn when simulating signing queries. Using the forking

lemma, it can extract the discrete logarithm of pk = y0, and, based

on this value and the responses to its previous discrete-logarithm

queries, compute the discrete logarithms of the other target points

t1, . . . , tn . Overall, the reduction computes the discrete logarithms

of n + 1 target points using only n queries to the DL oracle.

Unfortunately, this intuitive argument conveys a subtle flaw.

Namely, the forking lemma may rewind the adversary to a point

where it has an “open” signing query, meaning, a signing query

where the simulator already output its ti value but did not yet

receive the final t̄ value. The problem is that the adversary may

choose a different t̄ value in its second execution than it did in

its first execution, thereby forcing the simulator to make a second

DL query for the same signing query and ruining the simulator’s

chances to solve the OMDL problem. Indeed, Maxwell et al. [19]

overlooked this subtle issue that invalidates their security proof.

Note that the same problem does not occur in the proof of Schnorr

as an identification scheme [8] because the adversary does not have

access to an identification oracle during the challenge phase.

So in order to correctly simulate signing queries in a rewinding

argument, the reduction must be able to provide correct responses

si and s
′
i for the same value ti but for different challenge values c =

H(t̄ ,m) and c ′ = H(t̄ ′,m). This means, however, that the reduction

must already have known the secret key corresponding to pk, as
it could have computed it itself as sk = (si − s ′i)/(c − c ′) mod

q. Stronger even, the adversary can give the reduction a taste of

its own medicine by forcing the reduction to provide two such

responses si and s
′
i , and extract the value of sk from the reduction!

This sudden turning of the tables, surprising as it may be at first,

already hints that the reduction was doomed to fail. Indeed, our

proof below exploits this exact technique to build a successful forger:

in its first execution, the forger uses the DL oracle to compute a

forgery, but in any subsequent rewinding, it will extract the secret

key from the reduction and simply create a forgery using the secret

key. The meta-reduction thereby ensures that it uses at most one

DL oracle query for each of the k “truly different” executions of

the forger. By additionally embedding a OMDL target point in its

forgery, the meta-reduction reaches a break-even of k DL oracle

queries to invert k target points. If the reduction succeeds in solving

the n-OMDL problem given access to this forger, then the meta-

reduction can use its solution to solve the (n + k)-OMDL problem.

While this captures the basic idea of our proof, some extensions

are needed to make it work for any reduction. For example, one

could imagine a reduction using a modified forking technique that

makes sure that the same challenge value c = H(t̄ ,m) is always

5

used across timelines, e.g., by guessing the index of that random-

oracle query. To corner such a reduction, our forger makes several

signing queries in parallel and chooses one of two challenges at

random for each query. When the reduction rewinds the forger,

the reduction will with overwhelming probability be forced to

respond to a different challenge on at least one of the signing

queries, allowing the forger to extract.

Below, we formally prove that if the OMDL assumption holds,

then there cannot exist a reduction (with some constraints, as dis-

cussed later) that proves the security of CoSi under the OMDL

assumption. Our proof roughly follows the techniques of Baldimtsi

and Lysyanskaya [4] for Schnorr-based blind signature schemes, in

the sense that we also present a forger and a meta-reduction that,

given a reduction that solves the OMDL problem when given black-

box access to a forger, solves the OMDL problem by extracting a dis-

crete logarithm from the reduction. Our proof is different, however,

in the sense that we cover a different class of reductions (algebraic

black-box reductions, as opposed to “naive random-oracle replay

reductions”), and because the multisignature scheme requires a

more complicated forger because challenges used by the signing

oracle must be random-oracle outputs, as opposed to arbitrary val-

ues in the case of [4]. The class of reductions that we exclude is

large enough to encompass all currently known proof techniques

for this type of schemes, making it extremely unlikely that CoSi
will ever be proven secure under the DL or OMDL assumption.

Theorem 3.1. If the (n + k)-OMDL problem is (τ + τext +O(n +

kℓ), ϵ − k2/2ℓ)-hard, then there exists no algebraic black-box reduc-
tion ℬ that proves CoSi to be ((2ℓ + 1)τexp + O(ℓ), ℓ, ℓ, 3, 1 − 1/q)-
unforgeable in the KOSK setting in the random-oracle model under the
assumption that the n-OMDL problem is (τ , ϵ)-hard. Here, τext is the
running time of Extract, τexp is the time to perform an exponentiation
in G, and k is the amount of times that ℬ runs 𝒜 through rewinding,
and ℓ is a security parameter.

Before proving the theorem, we provide some guidance on how

to interpret its result. In a nutshell, the theorem says that if the

OMDL problem is hard, then there’s hardly any hope to prove CoSi
secure under the DL or OMDL assumption, even in the KOSK setting

and in the random-oracle model. It thereby also excludes, a fortiori,
any security proofs in the key-verification and plain public-key

settings or in the standard model.

For concreteness, let’s set ℓ = 250, and let’s say that we have a

forger that breaks CoSi with overwhelming probability using just

500 exponentiations, 250 signature queries, and 3 random-oracle

queries. That would indeed be a pretty serious security breach,

certainly serious enough to rule out any further use of CoSi in
practice. Nevertheless, even for such a strong forger, Theorem 3.1

says that there cannot exist a reduction ℬ that uses this forger to

obtain just an ϵ advantage in breaking the n-OMDL problem for

any n ≥ 0. More specifically, it says that if such a reduction would

exist, then that reduction would immediately give rise to a solution

for the (n+k)-OMDL problem without needing access to any forger,
meaning that the OMDL assumption was false to begin with.

The only room left by Theorem 3.1 are for a number of alterna-

tive proof approaches, but none of them look particularly hopeful.

First, the theorem becomes moot when the OMDL problem turns

ℬ

ℳ

ℱ

pki

y0, . . . ,yn

y0, . . . ,yn+k

m

ti, j
for j = 0, ...,n − 1

{
(t∗i ,m

∗)

c∗i

(1G,m)

ci,0

(д,m)

ci,1
If ci,0 = ci,1 abort.

for j = 0, ...,n − 1

{
дbi, j

si, j

s∗i ← dlog(t∗i · pk
c∗i
i)

((c∗i , s
∗
i),m

∗)

(x0, . . . ,xn)

(x0, . . . ,xn+k)

𝒪dlog

дx

x

Figure 2: Our metareductionℳ in the proof of Theorem 3.1,
which simulates forger ℱ towards any reduction ℬ that
would prove the security of CoSi under the OMDL assump-
tion, and uses ℬ to break the OMDL problem.

out to be easy but the DL problem remains hard, or when the (n+k)-
OMDL problem is easy but the n-OMDL problem is still hard. At

present, however, there is no evidence suggesting that any of these

problems may be easier than any of the other ones. Second, it does

not rule out the existence of non-algebraic or non-black-box reduc-

tions. The former type of reduction would imply strange properties

of the underlying group. The latter would have to obtain a spe-

cial advantage from inspecting the code of the forger, rather than

just being able to execute it. While some cryptographic uses of

non-black-box techniques exist [5], to the best of our knowledge

they have never been used in practical constructions such as CoSi.
Finally, our theorem does not rule out security proofs under as-

sumptions that are not implied by n-OMDL or proving security in

the generic group model [30]. However, this would mean that much

stronger assumptions are required than one would expect from a

Schnorr-based protocol.

Proof of Theorem 3.1. We prove the theorem by constructing

a forger ℱ and a meta-reduction ℳ such that, if there exists a

reduction ℬ that uses ℱ to break the n-OMDL problem, then ℳ
can use ℬ to break the (n + k)-OMDL problem. Figure 2 depicts the

execution setting of all three algorithms.

6

Let y0, . . . ,yn+k denote the n + k + 1 OMDL challenge points

that ℳ receives as input. It will provide ℬ with an environment

that simulates the n-OMDL game by handing y0, . . . ,yn as input

to ℬ and responding to ℬ’s 𝒪dlog
queries using its own 𝒪dlog

oracle. We have to provide reduction ℬ with a successful forger ℱ
against CoSi, where ℬ is free to run and rewind ℱ. To simplify the

arguments about rewinding, we will describe a deterministic forger

ℱ, so that the behavior of ℱ only depends on the inputs and oracle

responses provided by ℬ, not on its random coins.

We describe a forger ℱ in terms of three subroutines target,
rand, and forge that ℱ can call out to but that will be implemented

by the meta-reduction ℳ. Subroutine target takes ℓ + 1 group

elements (pk, t1, . . . , tℓ) as input and on the i-th invocation with a

combination of inputs that it hasn’t been called with before, returns

ℳ’s target point yn+i . Any invocations of target on previously

used inputs consistently return the same output. The subroutine

rand implements a truly random function Gℓ+1 × Z3

q → {0, 1}
ℓ
,

which is simulated byℳ through lazy sampling. The subroutine

forge, finally, creates a forgery by returning an s-value, given a t̄
value, a public key, and a c-value; we will specify later how ℳ
implements this routine.

Let pki be the public key thatℬ provides toℱ in its i-th execution
of ℱ. The forger ℱ then proceeds as follows:

• On input pki , ℱ initiates ℓ signing queries on the same mes-

sagem and for the same tree 𝒯 consisting of two signers: a

leader with public key pk = д and a child that is the target

signer with public key pki .
• After receiving the results of the first round ti,1, . . . , ti, ℓ , ℱ
sets t̄∗i ← target(pki , ti,1, . . . , ti, ℓ).
• ℱ makes a random-oracle query H(t̄∗i ,m

∗) for a fixed mes-

sagem∗ ,m, yielding a response c∗i .
• ℱ makes two additional random-oracle queries on H(1G,m)
and H(д,m), yielding responses ci,0 and ci,1, respectively.
• If ci,0 = ci,1, then ℱ aborts. Otherwise, it continues the ℓ

open signing sessions by generating randombitsbi,1∥ . . . ∥bi, ℓ ←
rand((pki , ti,1, . . . , ti, ℓ), (c

∗
i , ci,0, ci,1)) and sending the final

t̄-value for the j-th signing session as t̄i, j ← дbi, j for j =
1, . . . , ℓ.

• When ℱ receives the values si,1, . . . , si, ℓ in the ℓ signing

protocols, it verifies that дsi, j = ti, j · pk
ci,bi, j
i , aborting if an

invalid signature is detected.

• ℱ outputs a forgery (c∗i , s
∗
i) on messagem∗ with public keys

𝒫𝒦 = {pki } by computing s∗i ← forge(t̄∗i , pki , c
∗
i).

Observe that ℱ makes ℓ signing queries, three random-oracle

queries, and performs at most (2ℓ + 1) exponentiations so that ℱ
runs in time (2ℓ + 1)τexp + O(ℓ). It outputs a successful forgery

unless ci,0 = ci,1, which happens with probability 1/q. Therefore,
ℱ is a ((2ℓ + 1)τexp +O(ℓ), ℓ, 3, 1 − 1/q)-forger for CoSi. Note that
ℱ works in the KOSK setting because the forgery doesn’t include

any signer other than the target signer.

Suppose that there exists an algebraic reduction ℬ that, when

given black-box access to the above forger ℱ, (τ , ϵ)-breaks the
n-OMDL problem. We now describe a meta-reduction ℳ that

breaks the (n + k)-OMDL problem, where k is the number of times

that ℬ runs ℱ. As mentioned earlier, ℳ, on input target points

y0, . . . ,yn+k , runs ℬ on input y0, . . . ,yn and forwards ℬ’s 𝒪dlog

queries to its own 𝒪dlog
oracle. It implements the subroutines

target and rand as explained above, and implements the forge sub-
routine as follows:

• If the i-th execution ofℱ invokes the subroutine forge(t̄∗i , pki ,
c∗i) and there exists a previous execution i ′ , i that already
computed the secret key ski corresponding to pki , then the

subroutine computes and return the requested s-value as

s∗i ← s∗i′ + (c
∗
i − c

∗
i′) · ski mod q .

• If the i-th execution of ℱ invokes the subroutine forge(t̄∗i ,
pki , c

∗
i) and there exists a previous execution i ′ , i with

(pki′ , ti′,1, . . . , ti′, ℓ) = (pki , ti,1, . . . , ti, ℓ), then it checkswhether
(ci′,bi′,1 , . . . , ci′,bi′, ℓ) = (ci,bi,1 , . . . , ci,bi, ℓ). If so, then ℳ
halts and outputs failure. If not, then there exists at least one

index j such that ci′,bi′, j , ci,bi, j , so thatℳ can compute the

secret key ski corresponding to pki as ski ←
si, j−si′, j

ci,bi, j −ci′,bi′, j
mod q . It can then compute and return the requested s-value
as s∗i ← s∗i′ + (c

∗
i − c

∗
i′) · ski mod q .

• Else,ℳ uses 𝒪dlog
and returns s∗i ← 𝒪dlog(t̄∗i · pk

c∗i
i) .

If ℬ is successful, then ℬ will output x0, . . . ,xn such that yi =
дxi for i = 0, . . . ,n after having made at most n queries to its

𝒪dlog
oracle. Nowℳ proceeds to compute the discrete logarithms

xn+1, . . . ,xn+k of yn+1, . . . ,yn+k as follows.

Let P be the partition of {1, . . . ,k} where i and i ′ are considered
equivalent (and are therefore in the same component C ∈ P) if
the i-th and i ′-th executions are such that (pki , ti,1, . . . , ti, ℓ) =
(pki′ , ti′,1, . . . , ti′, ℓ). Because of the wayℳ instantiated the target
subroutine, we know thatℳ used the same target point yjC as the

value t̄∗i for all executions i that are in the same component C ∈ P ,
meaning that during the full simulation of ℬ,ℳ used target points

yn+1, . . . ,yn+ |P | . Let P0 be the set of components C ∈ P such that

ℱ never invoked the forge subroutine in any execution i ∈ C , let
P1 contain C ∈ P such that ℱ invoked the forge exactly once over

all executions i ∈ C , and let P2+ contain the components C ∈ P
such that ℱ invoked forge at least twice in total over all executions

i ∈ C . It is clear that |P | = |P0 | + |P1 | + |P2+ |.

Wewill now show thatℳ, using a total of |P | queries to its𝒪dlog

oracle, can derive a system of |P | independent linear equations in the
|P | unknowns xn+1, . . . ,xn+ |P | . Namely, for every component C ∈

P0,ℳ simply makes a discrete-logarithm query αC ← 𝒪dlog(yjC),
which adds an equation of the form

x jC = αC . (1)

For every component C ∈ P1, there exists exactly one execution

i ∈ C that causedℳ to make a query s∗i ← 𝒪dlog(yjC ·pk
c∗i
i). Since

ℬ is algebraic and only obtains group elements д,y0, . . . ,yn+k as

input, for all pki output by ℬ, ℳ can use Extract to obtain coef-

ficients βi , βi,0, . . . , βi,n+k ∈ Zq such that ski = logд(pki) =

βi +
∑n+k
j=0

βi, jx j mod q. For every C ∈ P1 it therefore has an equa-

tion of the form

s∗i = x jC + c
∗
i (βi +

n+k∑
j=0

βi, jx j) mod q . (2)

Note thatx0, . . . ,xn are known values above, as theywere output by

ℬ. For every component C ∈ P2+, ℳ made one discrete-logarithm

7

query s∗i ← 𝒪dlog(yjC · pk
c∗i
i) during the first invocation of forge,

and extracted the value of ski during the second invocation of forge.
It can therefore add an equation of the form

s∗i = x jC + c
∗
i ski mod q . (3)

Finally, for the unused target points yj , j ∈ {n + |P | + 1, . . . ,n + k},

ℳ can make an additional query α j ← 𝒪dlog(yj) to obtain an

equation

x j = α j . (4)

The metareduction ℳ created a system of |P0 | equations of the

form (1), |P1 | equations of the form (2), |P2+ | equations of the

form (3), and k − |P | equations of the form (4), so that overall

it has a system of k linear equations in k unknowns. The equations

of the form (1), (3), and (4) are clearly linearly independent, as

each of these equations affects a single and different unknown x j .
Equations of the form (2) are independent as well, because at the

time that ℬ produces pki , its view is independent of yji′ for i
′ > i .

One can therefore order the equations of the form (2) such that

each contains one unknown x jC that does not occur in any of the

preceding equations.

Solving this linearly independent system of k equations in k
unknowns yields all the values for xn+1, . . . ,xk . ℳ can therefore

output (x0, . . . ,xn+k) after having made exactly one 𝒪dlog
query

for each of the k equations and at most n 𝒪dlog
queries to respond

to ℬ’s 𝒪dlog
queries, meaning at most n + k queries in total.

The metareduction ℳ runs in time τ + τext + O(n + kℓ) and
wins the (n +k)-OMDL game whenever ℬ wins the n-OMDL game,

unless ℳ outputs failure. The latter happens when in the i-th
execution of ℱ, there exists a previous execution i ′ < i with
(pki′ , ti′,1, . . . , ti′, ℓ) = (pki , ti,1, . . . , ti, ℓ) and (ci′,bi′,1 , . . . , ci′,bi′, ℓ) =
(ci,bi,1 , . . . , ci,bi, ℓ). We know that ci,0 , ci,1, because otherwise ℱ
would have aborted earlier, meaning that at most one choice for

bi, j will cause ci′,bi′, j = ci,bi, j . Therefore, at the moment that

bi,1∥ . . . ∥bi, ℓ is chosen at random from {0, 1}ℓ in a call to the rand
subroutine, for each execution i ′ , i there is at most one bad choice

for bi,1∥ . . . ∥bi, ℓ that causes ℳ to output failure, meaning that

there are at most k bad choices overall. (Note that the output of

rand is fresh because it takes the full transcript of the protocol so far
as an argument. If the arguments of rand are equal in the i-th and

i ′-th execution, then the executions are simply identical. Also note

that ℬ learns ℱ’s choice for bi,1∥ . . . ∥bi, ℓ before ℱ calls the forge
subroutine, so that it could keep many candidate executions i ′ open
at the same time.) The probability that the choice of bi,1∥ . . . ∥bi, ℓ
hits any of these k bad choices causing ℳ to output failure in any

of the k executions is at most k2/2ℓ . The success probability in

solving the (n + k)-OMDL game is therefore ϵ − k2/2ℓ . �

3.2 Applicability to MuSig
While our metareduction is written for CoSi, the same technique

can be applied to the similar multisignature schemeMuSig as re-
cently introduced by Maxwell et al. [19]. The main difference be-

tween CoSi and MuSig is in how they avoid rogue-key attacks.

While CoSi uses the key-verification model to avoid these attacks,

MuSig works in the plain public key model by using a more in-

volved key aggregation procedure. Rather than simply multiplying

the individual keys together, they raise the individual keys to a hash

function output, and present a security proof under the OMDL as-

sumption. However, the problem in proving CoSi secure is not

related to rogue-key attacks, as demonstracted by the fact that our

metareduction holds in the KOSK setting, but due to the fact that

many signing queries can be made in parallel, and rewinding may

force the reduction to know the signer’s secret key. Indeed, the

same metareduction (with some minor changes in bookkeeping

and including the more involved key aggregation) is applicable

to MuSig, proving that their security proof overlooked this case

and that it is very unlikely that MuSig can be proven secure under

standard assumptions.

3.3 Applicability toMWLD
Our metareduction can be applied to the MWLD scheme with small

modifications. This means that the security proof under the DL

assumption [18] is flawed.
4
While the metareduction is mostly

unchanged, the forger and the forge-routine slightly change to

account for the double generator and the double hashing. The

modified forger ℱ works as follows:

• On input pki , ℱ initiates ℓ signing queries on the same mes-

sagem and for the same tree 𝒯 consisting of two signers: a

leader with public key pk = 1G and a child that is the target

signer with public key pki .
• After receiving the results of the first round ti,1, . . . , ti, ℓ , ℱ
sets t̄∗i ← target(pki , ti,1, . . . , ti, ℓ).
• ℱ makes random-oracle query H0(t̄

∗
i , {pki },m

∗) for a fixed

messagem∗ ,m, yielding a response c∗i and random-oracle

query H1(c
∗
i , pki) yielding v

∗
i .

• ℱmakes four additional random-oracle queries onH1(H0(1G,
{pk, pki },m), pki) and H1(H0(д, {pk, pki },m), pki), yielding
responses vi,0 and vi,1, respectively.
• If vi,0 = vi,1, then ℱ aborts. Otherwise, it continues the ℓ

open signing sessions by generating randombitsbi,1∥ . . . ∥bi, ℓ ←
rand((pki , ti,1, . . . , ti, ℓ), (v

∗
i ,vi,0,vi,1)) and sending the fi-

nal t̄-value for the j-th signing session as t̄i, j ← дbi, j for
j = 1, . . . , ℓ.

• When ℱ receives the values (si,1,1, si,1,2), . . . , (si, ℓ,1, si, ℓ,2)
in the ℓ signing protocols, it verifies that дsi, j,1hsi, j,2 = ti, j ·

pk
vi,bi, j
i , aborting if an invalid signature is detected.

• ℱ outputs a forgery (c∗i , s
∗
i,1, s

∗
i,2) on messagem∗ with public

keys 𝒫𝒦 = {pki } by taking (s∗i,1, s
∗
i,1) ← forge(t̄∗i , pki ,v

∗
i).

The metareductionℳ implements forge as follows:

• If the i-th execution of ℱ invokes the subroutine forge(t̄∗i ,
pki ,v

∗
i) and there exists a previous execution i ′ , i that

already computed the secret key (ski,1, ski,2) correspond-
ing to pki , then the subroutine computes and return the

requested s-values as s∗i,b ← s∗i′,b + (v
∗
i −v

∗
i′) · ski,b mod q .

for b ∈ {1, 2}.
• If the i-th execution of ℱ invokes the subroutine forge(t̄∗i ,
pki ,v

∗
i) and there exists a previous execution i ′ , i with

(pki′ , ti′,1, . . . , ti′, ℓ) = (pki , ti,1, . . . , ti, ℓ), then it checkswhether

4
To be precise, Claim 4 of the work is incorrect: while the view of the forger is

independent of (sk1, sk2), rewinding can cause the reduction to leak information, and

event E1 may therefore occur with a non-negligible probability. Our metareduction

will cause E1 to occur with probability 1.

8

(vi′,bi′,1 , . . . ,vi′,bi′, ℓ) = (vi,bi,1 , . . . ,vi,bi, ℓ). If so, then ℳ
halts and outputs failure. If not, then there exists at least one

index j such that vi′,bi′, j , vi,bi, j , so that ℳ can compute

a secret key (ski,1, ski,2) corresponding to pki as ski,b ←
si, j,b−si′, j,b

vi,bi, j −vi′,bi′, j
mod q for b ∈ {0, 1}. It can then compute and

return the requested s-value as s∗i,b ← s∗i′,b + (v
∗
i − v

∗
i′) ·

ski,b mod q for b ∈ {0, 1}.

• Else, ℳ picks s∗i,2 ←
$ Zq uses 𝒪dlog

to compute s∗i,1 ←

𝒪dlog(t̄∗i · pk
v∗i
i · h

−s∗i,2) and outputs (s∗i,1, s
∗
i,2).

3.4 Applicability to BCJ
Our metareduction can be applied to the BCJ key-verification model

schemewith small modifications. This means that the security proof

under the DL assumption [2] is flawed.
5

• On input pki = (yi ,πi), ℱ initiates ℓ signing queries on the

same messagem and for the same tree 𝒯 consisting of two

signers: a leader with public key pk = (1G,π) (where proof-
of-possession π can be honestly constructed for sk = 0) and

a child that is the target signer with public key pki .
• After receiving the results of the first round (ti,1,1, ti,1,2), . . . ,
(ti, ℓ,1, ti, ℓ,2), ℱ takes (αi,1,αi,2) ←

$ Z2

q and sets t̄∗i,1 ←

д
αi,1
1

h
αi,2
2

. It sets t̄∗i,2 ← target(yi , (ti,1,1, ti,1,2), . . . , (ti, ℓ,1,
ti, ℓ,2)).
• ℱ makes random-oracle query H0(yi , (t̄

∗
i,1, t̄

∗
i,2),m

∗) for a

fixed messagem∗ ,m, yielding a response c∗i .
• ℱmakes two additional random-oracle queries onH0(y1, 1G,

1G,m) and H0(y1,д1,д1,m), yielding responses ci,0 and ci,1,
respectively.

• If ci,0 = ci,1, then ℱ aborts. Otherwise, it continues the ℓ

open signing sessions by generating randombitsbi,1∥ . . . ∥bi, ℓ ←
rand((yi , ti,1, . . . , ti, ℓ), (c∗i , ci,0, ci,1)) and sending the (t̄1, t̄2, PK)-

values for the j-th signing session as t̄i, j,1 ← д
bi, j
1

and

t̄i, j,2 ← д
bi, j
1

for j = 1, . . . , ℓ.

• Whenℱ receives the values (si,1,γi,1,1,γi,1,2), . . . , (si, ℓ ,γi, ℓ,1,
γi, ℓ,2) in the ℓ signing protocols, it verifies that ti, j,1 =

д
γi, j,1
1

h
γi, j,2
1

and that ti, j,2 = д
γi, j,1
2

h
γi, j,2
2

д
si, j
1

y
−ci,bi, j
1

, abort-

ing if an invalid signature is detected.

• ℱ outputs a forgery (t̄∗i,1, t̄
∗
i,2, s

∗
i ,γ
∗
i,1,γ

∗
i,2) on message m∗

with public keys 𝒫𝒦 = {pki } by taking (γ ∗i,1,γ
∗
i,2, s

∗
i) ←

forge(t̄∗i,1, t̄
∗
i,2,αi,1,αi,2,yi , c

∗
i).

The metareduction ℳ implements forge as follows:

• If the i-th execution of ℱ invokes the subroutine forge(t̄∗i,1,
t̄∗i,2,αi,1,αi,2,yi , c

∗
i) and there exists a previous execution

5
The security proof distinguishes two forgery events: In E1, the forger broke the

binding property of the commitment scheme, and in E2, the reduction can extract

the secret key of the honest signer. It considers two different reductions, ℬ0 which

embeds the DL challenge in the commitment parameters and simulates signing queries

by knowing the honest signer secret key, and ℬ1 which embeds the DL challenge as

the honest signer public key and simulates signing queries by knowing the backdoor

to the commitment scheme. The DL challenge is solved if E1 occurs with ℬ1 or E2

occurs with ℬ0 . The proof argues that the forger cannot distinguish ℬ0 and ℬ1 , and

therefore, each event is equally likely to occur with either of the reduction. However,

the reductions are distinguishable, as rewinding causes the reduction to leak either

the commitment key backdoor or the honest signer secret key. Our metareduction will

always forge through E1 with ℬ0 and through E2 with ℬ1 .

i ′ , i that already computed representation (δγ1
,δγ2
,δs) for

yi , then the subroutine computes the requested forgery as

γ ∗i, 1 ← γ ∗i′,1 + (c
∗
i − c

∗
i′)δγ1

, γ ∗i, 2 ← γ ∗i′,2 + (c
∗
i − c

∗
i′)δγ2

,

s∗i ← s∗i′ + (c
∗
i − c

∗
i′)δs .

• If the i-th execution of ℱ invokes the subroutine forge(t̄∗i,1,
t̄∗i,2,αi,1,αi,2,yi , c

∗
i) and there exists a previous execution

i ′ , i with (yi , (ti,1,1, ti,1,2), . . . , (ti, ℓ,1, ti, ℓ,2)) = (yi , (ti,1,1,
ti,1,2), . . . , (ti, ℓ,1, ti, ℓ,2)), then it checks whether (ci′,bi′,1 ,

. . . , ci′,bi′, ℓ) = (ci,bi,1 , . . . , ci,bi, ℓ). If so, then ℳ halts and

outputs failure. If not, then there exists at least one index j
such that ci′,bi′, j , ci,bi, j , so thatℳ extracts a representa-

tion of yi by setting

δγ1
←

γi, j,1 − γi′, j,2

ci,bi, j − ci′,bi′, j
mod q

δγ2
←

γi, j,2 − γi′, j,2

ci,bi, j − ci′,bi′, j
mod q

δs ←
si, j − si′, j

ci,bi, j − ci′,bi′, j
mod q

for which we have

yi = д
δγ

1

2
h
δγ

2

2
дδs

1
(5)

and

д
δγ

1

1
h
δγ

2

1
= 1G. (6)

It can then compute and return the requested forgery as

γ ∗i,1 ← γ ∗i′,1 + (c
∗
i − c

∗
i′)δγ1

, γ ∗i,2 ← γ ∗i′,2 + (c
∗
i − c

∗
i′)δγ2

, s∗i ←

s∗i′ + (c
∗
i − c

∗
i′)δs .

• Else, ℳ sets γi,1 ← αi,1, γi,2 ← αi,2, and uses 𝒪dlog

to compute s∗i ← 𝒪dlog(t̄∗i,2д
−α i,1
2

hα i,2
2

y
c∗i
i) and returns

(γi,1,γi,2, si).

4 CONCLUSION
Our work provides substantial evidence that none of the currently

known two-round Schnorr-based multi-signature schemes (BCJ,
MWLD, CoSi, and MuSig) can be proven secure under standard

assumptions. as any such proof would have to be non-algebraic, non-

black-box, or under an assumption that is not implied by the one-

more discrete logarithm assumption (unless the one-more discrete

logarithm assumption turns out to be false).

REFERENCES
[1] 2017. Technology roadmap - Schnorr signatures and signature aggregation.

https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation. (2017).

[2] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. 2008. Multisignatures

secure under the discrete logarithm assumption and a generalized forking lemma.

In ACM CCS 08, Peng Ning, Paul F. Syverson, and Somesh Jha (Eds.). ACM Press,

449–458.

[3] Ali Bagherzandi and Stanislaw Jarecki. 2008. Multisignatures Using Proofs of

Secret Key Possession, as Secure as the Diffie-Hellman Problem. In SCN 08 (LNCS),
Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti (Eds.), Vol. 5229. Springer,

Heidelberg, 218–235.

[4] Foteini Baldimtsi and Anna Lysyanskaya. 2013. On the Security of One-Witness

Blind Signature Schemes. In ASIACRYPT 2013, Part II (LNCS), Kazue Sako and

Palash Sarkar (Eds.), Vol. 8270. Springer, Heidelberg, 82–99. https://doi.org/10.

1007/978-3-642-42045-0_5

[5] Boaz Barak. 2004. Non-Black-Box Techniques in Cryptography. Ph.D. Dissertation.
[6] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.

2003. The One-More-RSA-Inversion Problems and the Security of Chaum’s Blind

Signature Scheme. Journal of Cryptology 16, 3 (June 2003), 185–215.

9

https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-42045-0_5

[7] Mihir Bellare and Gregory Neven. 2006. Multi-signatures in the plain public-Key

model and a general forking lemma. In ACM CCS 06, Ari Juels, Rebecca N. Wright,

and Sabrina De Capitani di Vimercati (Eds.). ACM Press, 390–399.

[8] Mihir Bellare and Adriana Palacio. 2002. GQ and Schnorr Identification Schemes:

Proofs of Security against Impersonation under Active and Concurrent Attacks. In

CRYPTO 2002 (LNCS), Moti Yung (Ed.), Vol. 2442. Springer, Heidelberg, 162–177.

[9] Alexandra Boldyreva. 2003. Threshold Signatures, Multisignatures and Blind Sig-

natures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In PKC 2003
(LNCS), Yvo Desmedt (Ed.), Vol. 2567. Springer, Heidelberg, 31–46.

[10] Dan Boneh and Ramarathnam Venkatesan. 1998. Breaking RSA May Not Be

Equivalent to Factoring. In EUROCRYPT’98 (LNCS), Kaisa Nyberg (Ed.), Vol. 1403.

Springer, Heidelberg, 59–71.

[11] Maria Borge, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas

Gailly, and Bryan Ford. 2017. Proof-of-Personhood: Redemocratizing Permission-

less Cryptocurrencies. In 2017 IEEE European Symposium on Security and Privacy
Workshops, EuroS&P Workshops 2017, Paris, France, April 26-28, 2017. IEEE, 23–26.
https://doi.org/10.1109/EuroSPW.2017.46

[12] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, and Gregory Neven. 2018.

Okamoto Beats Schnorr: On the Provable Security of Multi-Signatures. Cryptol-

ogy ePrint Archive, Report 2018/417, Version 20180510:204458. (2018). Earlier

version of this work.

[13] Bryan Ford, Nicolas Gailly, Linus Gasser, and Phillipp Jovanovic. 2017. Collective
Edwards-Curve Digital Signature Algorithm. Internet-Draft draft-ford-cfrg-cosi-

00.txt. IETF Secretariat.

[14] K. Itakura and K. Nakamura. 1983. A Public-Key Cryptosystem suitable for

Digital Multisignatures. NEC Research & Development 71 (1983), 1–8.
[15] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus

Gasser, and Bryan Ford. 2016. Enhancing Bitcoin Security and Performance with

Strong Consistency via Collective Signing. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016., Thorsten Holz and

Stefan Savage (Eds.). USENIX Association, 279–296. https://www.usenix.org/

conference/usenixsecurity16/technical-sessions/presentation/kogias

[16] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, and

Bryan Ford. 2017. OmniLedger: A Secure, Scale-Out, Decentralized Ledger.

Cryptology ePrint Archive, Report 2017/406. (2017). http://eprint.iacr.org/2017/

406.

[17] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. 2006.

Sequential Aggregate Signatures and Multisignatures Without Random Oracles.

In EUROCRYPT 2006 (LNCS), Serge Vaudenay (Ed.), Vol. 4004. Springer, Heidelberg,
465–485.

[18] Changshe Ma, Jian Weng, Yingjiu Li, and Robert H. Deng. 2010. Efficient discrete

logarithm based multi-signature scheme in the plain public key model. Des. Codes
Cryptography 54, 2 (2010), 121–133.

[19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. 2018.

Simple Schnorr Multi-Signatures with Applications to Bitcoin. Cryptology ePrint

Archive, Report 2018/068, Version 20180118:124757. (2018).

[20] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. 2001. Accountable-Subgroup

Multisignatures: Extended Abstract. In ACM CCS 01. ACM Press, 245–254.

[21] Markus Michels and Patrick Horster. 1996. On the Risk of Disruption in Several

Multiparty Signature Schemes. In ASIACRYPT’96 (LNCS), Kwangjo Kim and

Tsutomu Matsumoto (Eds.), Vol. 1163. Springer, Heidelberg, 334–345.

[22] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[23] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. 2017. CHAINIAC: Proactive

Software-Update Transparency via Collectively Signed Skipchains and Verified

Builds. In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017., Engin Kirda and Thomas Ristenpart (Eds.). USENIX

Association, 1271–1287. https://www.usenix.org/conference/usenixsecurity17/

technical-sessions/presentation/nikitin

[24] Kazuo Ohta and Tatsuaki Okamoto. 1993. A Digital Multisignature Scheme Based

on the Fiat-Shamir Scheme. In ASIACRYPT’91 (LNCS), Hideki Imai, Ronald L.

Rivest, and Tsutomu Matsumoto (Eds.), Vol. 739. Springer, Heidelberg, 139–148.

[25] Tatsuaki Okamoto. 1993. Provably Secure and Practical Identification Schemes

and Corresponding Signature Schemes. In CRYPTO’92 (LNCS), Ernest F. Brickell
(Ed.), Vol. 740. Springer, Heidelberg, 31–53.

[26] Pascal Paillier and Damien Vergnaud. 2005. Discrete-Log-Based Signatures May

Not Be Equivalent to Discrete Log. In ASIACRYPT 2005 (LNCS), Bimal K. Roy

(Ed.), Vol. 3788. Springer, Heidelberg, 1–20.

[27] David Pointcheval and Jacques Stern. 2000. Security Arguments for Digital

Signatures and Blind Signatures. Journal of Cryptology 13, 3 (2000), 361–396.

[28] Thomas Ristenpart and Scott Yilek. 2007. The Power of Proofs-of-Possession:

Securing Multiparty Signatures against Rogue-Key Attacks. In EUROCRYPT 2007
(LNCS), Moni Naor (Ed.), Vol. 4515. Springer, Heidelberg, 228–245.

[29] Claus-Peter Schnorr. 1991. Efficient Signature Generation by Smart Cards. Journal
of Cryptology 4, 3 (1991), 161–174.

[30] Victor Shoup. 1997. Lower Bounds for Discrete Logarithms and Related Problems.

In EUROCRYPT’97 (LNCS), Walter Fumy (Ed.), Vol. 1233. Springer, Heidelberg,

256–266.

[31] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. 2017. Scalable Bias-

Resistant Distributed Randomness. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society,

444–460. https://doi.org/10.1109/SP.2017.45

[32] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,

Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. 2016. Keeping

Authorities“Honest or Bust” with Decentralized Witness Cosigning. In 2016
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 526–545.

https://doi.org/10.1109/SP.2016.38

10

https://doi.org/10.1109/EuroSPW.2017.46
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
http://eprint.iacr.org/2017/406
http://eprint.iacr.org/2017/406
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1109/SP.2016.38

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Discrete Logarithm Problems
	2.2 Algebraic Algorithms
	2.3 Generalized Forking Lemma
	2.4 Security of Multisignatures
	2.5 The CoSi Multisignature Scheme
	2.6 The BCJ Multisignature Schemes
	2.7 The MWLD Multisignature Scheme

	3 The Security of Two-Round Multisignatures using Rewinding
	3.1 Impossiblity of Proving CoSi Secure
	3.2 Applicability to MuSig
	3.3 Applicability to MWLD
	3.4 Applicability to BCJ

	4 Conclusion
	References

