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Abstract. We present an algorithm solving the ROS (Random inhomogeneities in a Overdetermined
Solvable system of linear equations) problem in polynomial time for large enough dimensions `. The
algorithm implies polynomial-time attacks against blind signatures such as Schnorr and Okamoto–
Schnorr blind signatures, threshold signatures such as the one from GJKR (when concurrent exe-
cutions are allowed), and multisignatures such as CoSI and the two-round version of MuSig.

1 Introduction

The ROS (Random inhomogeneities in a Overdetermined Solvable system of linear equations)
problem was introduced to prove the security of blind Schnorr signatures [Sch01, FPS20]. Given
a prime number p and given access to a random oracle Hros with range in Zp, the ROS problem
(in dimension `) asks to find (` + 1) affine functions ρi, (` + 1) bit strings auxi ∈ {0, 1}∗ (with
i ∈ [0, `]), and a vector c = (c0, . . . , c`−1) such that:

Hros(ρi, auxi) = ρi(c) for all i ∈ [0, `].

A formal description is provided in Figure 1. Pgen(1λ) is a parameter generation algorithm that
given as input the security parameter λ in unary outputs a prime p of length λ. We abuse notations
and ρi denotes both the vector ρi = (ρi,0, . . . , ρi,`) ∈ Z`+1

p and the corresponding affine function

ρi(x) =
∑`−1
j=0 ρi,j · xj + ρi,` (where x = (x0, . . . , x`)).

Game ROSGrGen,A,`(λ)

p← Pgen(1λ)

Tros := [ ](
(ρi, auxi)i∈[0,`], (cj)j∈[0,`−1]

)
← AHros(p)

return
(
∀i 6= j ∈ [0, `], (ρi, auxi) 6= (ρj , auxj)

∧ ∀i ∈ [0, `],
∑`−1
j=0 cjρi,j + ρi,` = Hros(ρi, auxi)

)

Oracle Hros(ρ, aux)

if Tros[ρ, aux] =⊥ then

Tros[ρ, aux]←$Zp
return Tros[ρ, aux]

Fig. 1. The ROSGrGen,A,`(λ) game.

Actual security of ROS has been often measured with respect to Wagner’s attack [Wag02], which
generalizes the birthday bound and provides an algorithm for computing collisions with sub-
exponential complexity O((` + 1) · 2λ/(1+blg(`+1)c)). In this work, for any ` > log p, we present
an (expected) polynomial-time adversary A that always wins the game ROSGrGen,A,`(λ).

Theorem 1. Let GrGen be a group generator algorithm. If ` > log p, there exists a (probabilistic)
adversary that runs in expected polynomial time such that AdvrosGrGen,A,`(λ) = 1.

Other formulations. Alternative formulations of ROS have been given in the past. Fuchsbauer
et al. [FPS20, Fig. 7] present a variant of ROS the game with linear instead of affine functions ρi
(i.e., where ρi,` = 0). Hauck et al. [HKL19, Fig. 3] allow only for linear functions, and do not
allow for auxiliary information aux within Hros (i.e., where auxi = ⊥).4 These formulations are all
equivalent.

4 Our attacks only apply to the case where the scalar set S is a finite field.



First, any adversary A for an ROS with affine functions as per Figure 1 can be reduced to an
adversary B for ROS with linear functions as per [FPS20]: B runs A and for every query of the form
((ρi,0, . . . , ρi,`), auxi) to the oracle Hros (made by A), it returns Hros((ρi,0, . . . , ρi,`−1), (ρi,`‖auxi))−
ρi,`. Finally, B modifies accordingly the solution output by A by concatenating ρi,` to the corre-
sponding auxi.
Second, any adversary A for an ROS with linear functions can be reduced to an adversary B for ROS
with linear functions and without auxiliary information as per [HKL19]. We assume without loss of
generality that A never makes twice the same query. Then B runs A and for every query of the form
((ρi,0, . . . , ρi,`−1, 0), auxi) to the oracle (made by A), it picks a random scalar r ∈ Z∗p and returns
Hros((r · ρi,0, . . . , r · ρi,`−1),⊥) · r−1 mod p. When A outputs a solution (ρi, auxi)i∈[0,`], (cj)j∈[0,`−1],
B outputs (r · ρi)i∈[0,`], (cj)j∈[0,`−1]. The simulation of the oracle Hros is perfect unless there is a
collision in the scalar r, which happens with negligible probability in λ.

2 Attack

We construct an adversary for ROSA,GrGen,`(λ), where ` > log p. Recall that to simplify the de-
scription of the attack, we use a polynomial formulation of ROS, i.e., we represent vectors ρi =
(ρi,0, . . . , ρi,`) as linear multivariate polynomials in Zp[x0, . . . , x`−1]:

ρi(x0, . . . , x`−1) = ρi,0x0 + · · ·+ ρi,`−1x`−1 + ρi,` . (1)

The goal for the adversary A is to output (ρi, auxi)i∈[0,`] and c = (c0, . . . , c`−1) such that:

ρi(c) = Hros(ρi, auxi) for all i ∈ [0, `].

Define:

ρi := xi for i = 0, . . . , `− 1,

and make two queries with aux = 0 and aux = 1 to get two hash values: cauxi = Hros(ρi, aux). Then,
let:

x′i :=
xi − c0i
c1i − c0i

for all i = 0, . . . , ` − 1. If c0i = c1i , redo the above with two different values of aux for this ρi.
5

We remark that, if xi = cbi , then x′i = b (for b = 0, 1). Define ρ` :=
∑`−1
i=0 2ix′i, and query

c` := Hros(ρ`,⊥). Finally, write c` in binary as:

c` =

`−1∑
i=0

2ibi (mod p).

(As 2` > p, it is possible to write c`+1 this way, and this implicitly defines the bi’s.) Define b` :=⊥.

A outputs: (ρ0, b0), . . . , (ρ`, b`) and c := (cb00 , . . . , c
b`−1

`−1 ). We have indeed that, for i ∈ [0, `− 1],

ρi(c) = cbii = Hros(ρi, bi) and therefore:

ρ`(c) =

`−1∑
i=0

2ix′i(c) =

`−1∑
i=0

2ibi = c`.

Remark 2. The attack does not apply to modified ROS [FPS20, Sec. 5].

3 Affected blind signatures

3.1 Schnorr blind signatures

Let G be a cyclic group of prime order p. We use the additive notation for the group law. A Schnorr
blind signature [Sch01, FPS20] for a message m ∈ {0, 1}∗ consists of a pair (R, s) ∈ G × Zp such
that sG− cX = R, where c := H(R,m) and X ∈ G is the verification key. A formal description of
the protocol can be found in [FPS20, Fig. 6]. We use the notation from [FPS20].

5 This step is the reason why the algorithm is expected polynomial time instead of polynomial time. Note that
since aux ∈ {0, 1}∗, there will always be two values aux ∈ {0, 1}∗ so that c0i 6= c1i .
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Attack. We construct a probabilistic (expected) polynomial-time adversary A that is able to
produce ` + 1 signatures after opening ` ≥ dlog pe = λ parallel sessions. A selects a message
m` ∈ {0, 1}∗ for which a signature will be forged. It opens ` parallel sessions, querying Sign0()
and receiving R = (R0, . . . , R`−1) ∈ G`. Let mb

i be a random message and cbi := H(Ri,m
b
i ) for

i ∈ [0, `− 1] and b ∈ {0, 1}. If c0i = c1i , two different messages m0
i and m1

i are chosen until c0i 6= c1i .
Define ρ` :=

∑
i 2ix′i as per Section 2, that is:

ρ`(x0, . . . , x`−1) :=

`−1∑
i=0

2i · xi − c
0
i

c1i − c0i
=

`−1∑
i=0

ρ`,ixi + ρ`,` . (2)

Let R` := ρ`(R) − ρ`,` · X. Define c` := H(R`,m`) =
∑`−1
i=0 2ibi and let c = (cb00 , . . . , c

b`−1

`−1 ).

Complete the ` opened sessions querying Sign1(i, cbii ), for i ∈ [0, `− 1]. The adversary thus obtains
responses s := (s0, . . . , s`−1) ∈ Z`p satisfying:

siG− cbii X = Ri, for i ∈ [0, `− 1].

Let s` := ρ`(s). Then (m`, (R`, s`)) is a valid forgery. In fact, by perfect correctness of Schnorr
blind signatures, we have:

R` = ρ`(R)− ρ`,`X =

`−1∑
i=0

ρ`,i ·Ri + ρ`,` · (G−X)

=

`−1∑
i=0

ρ`,i · (siG− cbii X) + ρ`,` · (G−X)

= ρ`(s) ·G− ρ`(c) ·X
= s`G− c`X,

where c` = H(R`,m`) = ρ`(c) by Equation (2). Let mi := mbi
i for i ∈ [0, `− 1]. The adversary

outputs (mi, (Ri, si)) for i ∈ [0, `].

Remark 3. The attack does not apply to the Clause Blind Schnorr signature scheme [FPS20, Sec. 5],
proved secure under the hardness of the modified ROS problem.

3.2 Okamoto–Schnorr blind signatures

An Okamoto–Schnorr blind signature [PS00, Sch01] for a message m consists of a tuple (R, s, t) ∈
G × Z2

p such that sG + tH − cX = R, where c := H(R,m). The attack of the previous section
directly extends to Okamoto–Schnorr signatures: A operates exactly as before until Equation (2).
Then, the forgery is constructed as:(

R` := ρ`(R) + ρ`,`H − ρ`,`X, s` := ρ`(s), t` := ρ`(t)
)
.

We note that this does not contradict the analysis of Stern and Pointcheval [PS00], whose security
was reduced to DLOGGrGen,A(λ) for a polylog(λ) number of queries.

4 Affected multisignatures

4.1 CoSi

A multi-signature scheme allows a group of signers S1, . . . , Sn, each having their own key pair
(pkj , skj), to collaboratively sign a single message m. CoSi is a multi-signature scheme introduced

by Syta et al. [STV+16] with a two-round signing protocol, the signers are organized in a tree and
where S1 is the root of the tree. A signature for a message m ∈ {0, 1}∗ consists of a pair (c, s) ∈ Z2

p

such that c = H(sG− c ·pk,m) and pk =
∑n
j=1 pkj ∈ G is the aggregated verification key. A formal

description of the protocol can be found in [DEFN18, Sec. 2.5]. We use the same notation as in
[DEFN18], except that we use the additive notation xG instead of gx.
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Attack. We present an attack for a two-node tree where the attacker controls the root S1. The
attack can be extended to other settings, as in the attacks described in [DEFN18, Sec. 4.2]. The
attack allows the signer S1 to forge one signature for an arbitrary message m` ∈ {0, 1}∗ after
performing ` ≥ dlog pe = λ interactions with the honest signer S2. Recall that sk = sk1 + sk2 and
pk = pk1 + pk2.

S1 opens ` parallel sessions with ` arbitrary distinct messages m0, . . . ,m`−1 ∈ {0, 1}. For each
session, S1 gets the commitments ti = riG from S2 at the end of the first round of signing, samples
two random values ri,0, ri,1 for each i ∈ [0, `− 1], defines t̄0i = ri,0G + ti and t̄1i = ri,1G + ti, and
computes cbi = H(t̄bi ,mi). As usual, if c0i = c1i , S1 sample again ri,0 and ri,1 until c0i 6= c1i . S1 then
defines the polynomial ρ :=

∑`−1
i=0 2ixi/(c

1
i −c0i ), computes t` := ρ(t0, . . . , t`−1) and c` := H(t`,m`).

S1 computes d` = c` − ρ(c00, . . . , c
0
`−1) and writes this value in binary as d` =

∑`−1
i=0 2ibi. It then

closes the ` sessions by using t̄i = t̄bii and ci = cbii . At the last step of the signing sessions, S1

obtains values si = ri + ci · sk2 from S2, and closes the sessions honestly using ri,bi . Next, S1

concludes its forgery by defining s` := ρ(s) + c` · sk1: the pair (c`, s`) is a valid signature for m`. In
fact:

s`G− c` · pk = (ρ(s) + c` · sk1)G− c` · pk =

`−1∑
i=0

2isi
c1i − c0i

G− c` · pk2

=

`−1∑
i=0

2i(ri + cbii · sk2)

c1i − c0i
G− c` · pk2

=

`−1∑
i=0

2iri
c1i − c0i

G+

(
`−1∑
i=0

2icbii
c1i − c0i

− c`

)
· pk2

=

`−1∑
i=0

2iti
c1i − c0i

+

(
`−1∑
i=0

2ibi +

`−1∑
i=0

2ic0i
c1i − c0i

− c`

)
· pk2

=

`−1∑
i=0

2iti
c1i − c0i

+

(
`−1∑
i=0

2ibi + ρ(c00, . . . , c
0
`−1)− c`

)
︸ ︷︷ ︸

=d`−d`=0

·pk2

= ρ(t0, . . . , t`−1) = t` ,

and c` = H(t`,m`) by definition.

4.2 Two-round MuSig

The same technique (with some minor changes) can be applied to the two-round MuSig as initially
proposed by Maxwell et al. [MPSW18a], as the main difference between CoSi and two-round MuSig
is in how they avoid rogue-key attacks (how the public key is aggregated). Our attack does not
apply to the updated MuSig that uses a 3-round signing algorithm [MPSW18b].

5 Affected threshold signatures

5.1 Gennaro et al.’s threshold signature

Gennaro, Jarecki, Krawczyk, Rabin proposed a threshold signature scheme based on Pedersen’s dis-
tributed key generation (DKG) protocol in [GJKR07, Section 5.2]. At a very high level, Pedersen’s
DKG protocol allows to generate a random group element X = χG so that its discrete logarithm
χ is shared both additively and according to Feldman secret sharing [Fel87] scheme, between a set
of “qualified” parties. For the attack we present below, all parties P1, . . . ,Pn (included the ones
that are controlled by the adversary) will remain qualified.6 We denote by χj the additive share of
party Pj . We have χ =

∑n
j=1 χj . Importantly for the attack, the adversary controlling for example

P1 can see all the group elements χ2G, . . . , χnG and then can choose its value χ1. This is due to
the way the Feldman secret sharing is performed.

In the threshold signature scheme of Gennaro et al., the parties start the above key generation
procedure to produce a verification key pk := sk · G ∈ G, where the secret key sk is additively

6 We do not use the fact that only a threshold t+ 1 of the parties are required to sign in our attack. We assume
that all the parties come to sign, to simplify the description of the attack.
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shared between the parties: each party Pj has an additive share skj , so that sk =
∑n
j=1 skj . A

signature (R, s) for a message m ∈ {0, 1}∗ is generated as follows. The participants run once again
the distributed key generation protocol to produce a commitment t = rG ∈ G, where r is additively
shared between the parties: each party Pj has a share rj , so that r =

∑n
j=1 rj . Then, each party

computes a share of the response:

sj = rj + c · skj , where c := H(t,m). (3)

Let s :=
∑n
j=1 sj . Then (c, s) is a valid signature on m. In fact:

sG =

n∑
j=1

rjG+ c ·
n∑
j=1

skj ·G = t+ c · pk, (4)

where c = H(t,m).

Attack. Gennaro et al. proved the scheme to be secure in a standalone non-concurrent setting,
where no two instances of the protocol can be run in parallel.
However, if the adversary is allowed to start ` ≥ dlog pe sessions in parallel, we remark that the
attack against CoSi in Section 4.1 can be directly adapted to attack Gennaro et al.’s threshold
signature scheme for n = 2. Both use the fact that the adversary P1 (or signer S1 in CoSi) can see
the commitment t2 = r2G of the honest party P2 (or honest signed S2) and only then choose r1
that defines the commitment t = r1G+ t2. The generalization to any n ≥ 2 is straightforward.

Scope of the attack. The attack is not an attack against Perdersen’s DKG (i.e., JF-DKG
from [GJKR07, Fig. 1]), but an attack against the proposed threshold signature scheme when
instantiated with Pedersen’s DKG. Furthermore, the attack does not work when Perdersen’s DKG
is replaced by the new DKG protocol from [GJKR07, Fig. 2].

5.2 Original version of FROST

Komlo and Goldberg FROST [KG20] proposed an extension of the above threshold signature
scheme that was similarly affected by the above concurrent attack. On 19 July 2020, they updated
the signing algorithm in a way that is no more susceptible to the above issue: each party now shares
(Dj , Ej) and the commitment is computed as R =

∑
j Dj + hjEj , where hj := H((Dj , Ej , j)j∈[t]).

We direct the reader to [KG20, Fig. 3] for a more detailed illustration of the problem and the fix.

6 Further impact

The following articles present reductions of their schemes to the ROS problem, and may not provide
the expected security guarantee: blind anonymous group signatures [CFLW04]; blind identity-based
signcryption [YW05]; blind signature schemes from bilinear pairings [CHYC05].
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