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ABSTRACT
A multisignature scheme allows a group of signers to collabora-

tively sign a message, creating a single signature that convinces

a verifier that every individual signer approved the message. The

increased interest in technologies to decentralize trust has triggered

the proposal of two highly efficient Schnorr-based multisignature

schemes designed to scale up to thousands of signers, namely CoSi
by Syta et al. (S&P 2016) andMuSig by Maxwell et al. (ePrint 2018).

TheMuSig scheme was presented with a proof under the one-more

discrete-logarithm assumption, while the provable security of CoSi
has so far remained an open question. In this work, we prove that

CoSi and MuSig cannot be proved secure without radically depart-

ing from currently known techniques (and point out a flaw in the

proof of MuSig). We then present DG-CoSi, a double-generator

variant of CoSi based on the Okamoto (multi)signature scheme,

and prove it secure under the discrete-logarithm assumption in

the random-oracle model. Our experiments show that the second

generator in DG-CoSi barely affects scalability compared to CoSi,
allowing 8192 signers to collaboratively sign a message in under

1.5 seconds, making it a highly practical and provably secure alter-

native for large-scale deployments.

1 INTRODUCTION
A multisignature scheme allows a group of signers, each having

their own key pair (pki , ski ), to collaboratively sign a single mes-

sagem. The result is a single signature σ that can be verified using

the set of public keys {pk
1
, . . . , pkn }, assuring a verifier that every

signer approved messagem. While multisignature schemes have

been studied since decades [3, 8, 10, 16, 19, 20, 22, 27], they have

recently received renewed interest because of the rise of distributed

applications that aim to decentralize trust such as Bitcoin [24]

and more generally blockchain. Such applications typically involve

many users or nodes that need to approve particular actions, which

naturally matches the multisignature setting where many signers

must collaborate in order to create a joint multisignature.

Motivated by such applications, Syta et al. [35] presented the

CoSimultisignature scheme, a highly scalablemultisignature scheme

that allows a tree of 8192 signers to sign in less than two seconds.

Since its recent introduction, CoSi has already led to a large body

of follow-up work, including a distributed protocol to create secure

randomness [34], improving the scalability of Bitcoin [34], and in-

troducing a decentralized software update framework [26]. CoSi is
also considered for standardization by the IETF [15].

More recently, the Bitcoin community is actively looking into in-

tegrating Schnorr signatures as these could support multisignatures

and aggregate signatures, allowing many signatures that go into

the same block to be merged into one, significantly reducing the

overall size of the blockchain [1]. To this end, a number of Bitcoin

core developers published theMuSig scheme [21] that is tailored

specifically to the needs of Bitcoin. The MuSig scheme was pre-

sented with a security proof under the one-more discrete-logarithm

assumption, while the security ofCoSiwas never formally analyzed.

This is unfortunate, because the interactive nature of multisigna-

ture schemes tends to make their security proofs considerably more

delicate than for standard signatures, as the results in this paper

confirm.

Negative results. Our first result essentially shows that the CoSi
and MuSig schemes cannot be proved secure. (This obviously con-

tradicts the security proof of MuSig [21], but we point out that

the proof is flawed.) More precisely, we prove that if the OMDL

problem is hard, then there cannot exist an algebraic black-box re-

duction that proves CoSi or MuSig secure under the DL or OMDL

assumption. The class of reductions covered by our result essen-

tially encompasses all currently known proof techniques, including

those that rewind the adversary an arbitrary number of times (so-

called forking [30]). Also, given that CoSi and MuSig are derived
from Schnorr signatures [32], it would be very surprising if its se-

curity could be proved under an assumption that is not implied by

DL or OMDL (and that doesn’t trivially assume the security of the

scheme). So while in theory our result does not completely rule

out the existence of a security proof, in practice it does mean that

a security proof is extremely unlikely, as it would have to depart

radically from any currently known techniques.

Intuitively, the problem of proving CoSi and MuSig secure is

common among Schnorr-based multisignature schemes [3, 8, 22].

Namely, in order to simulate the honest signer, the reduction can-

not simply use the zero-knowledge property and program the ran-

dom oracle, because the random-oracle entry that needs to be pro-

grammed depends on the output of the other, possibly adversarial

signers. Previous schemes [3, 8] therefore make signers commit

to their output, so that the reduction can extract the commitment

and program the random oracle. The CoSi andMuSig schemes do

not have such a commitment step, however. Correctly simulating

signing queries becomes especially difficult when used in combi-

nation with a forking argument, because the forger may be forked

at a point where it has an “open” signing query. In that case, the

reduction has to come up with a second response for the same first

round of the signing protocol, which implies that it must already

know the signing key that it was hoping to extract from the forger.

The actual impossibility proof is a bit more involved, but it exploits

this exact difficulty in simulating signing queries.



Scheme KVf KAg Sign Vf Rounds pk size Signature

size

PK
size

Security proof

BN [8] 1G 1Gn+1
3 G G × Zq Gn

DL, ROM

B-Pop [10, 31] 2P 1G1 2P 1 G1 ×G2 G1 G2 co-CDH, ROM

WM-Pop [19, 31] 2P 1G1 + 1G2 2P 1 G1 ×G2 ×GT G1×G2 GT co-CDH

BCJ1 [3] 1G2
1G + 2G2

3G2
2 G × Z2

q G2×Z4

q G DL, ROM

BCJ2 [3] 1G + 2G2
1Gn+1 + 2G2

2 G G3×Z3

q G DL, ROM

MWLD [20] 1G2
1Gn+2

2 G Z3

q Gn
DL, ROM

CoSi [35] 1G2
1G 1G2

2 G × Z2

q Z2

q G N/A (Thm 3.1)

MuSig [21] 1Gn
1G 1G2

2 G Z2

q G N/A (Thm 3.1)

DG-CoSi (this work) 1G3
1G2

1G3
2 G × Z3

q Z3

q G DL, ROM

Table 1: Efficiency of multisignatures in the key verification model. Columns 2–5 show the computational efficiency of the
individual algorithms by counting the number of (multi)exponentiations and pairings, where “G” denotes an exponentiation
in group G, “Gn” denotes an n-multiexponentiation in group G where n is the number of signers, and “P” denotes a pairing
operation. Column 6 shows the number of communication rounds and columns 7–9 show the size of the individual signer’s
public key, the signature, and the aggregated public key, respectively, where any “proof-of-possession” of the secret key is
considered to be part of the public key. Column 10 shows the assumptions under which the scheme is proved secure, if any,
where “ROM” indicates a proof in the random-oracle model.

Positive results.Themain reason to deviate from existing provably

secure schemes is that they are less efficient thanCoSi andMuSig in
terms of the number of rounds in the signing protocol [8], in terms

of signature size [3], or in terms of signature verification [3, 8, 21].

We therefore present theDG-CoSimultisignature scheme, a double-

generator variant of CoSi that is based on Okamoto signatures [28]

instead of Schnorr signatures. As already observed by Ma et al. [20],

the witness indistinguishability of Okamoto signatures solves the

problem of simulating the honest signer, because the simulator can

use one witness to simulate the signer and hope to extract a second

witness from the forger. We thereby provide a rigorous security

proof of the DG-CoSi scheme under the DL assumption.

Table 1 gives an overview of the efficiency of existing multisig-

nature schemes and DG-CoSi. For large numbers of signers, it is

crucial that a constant-size aggregate public key can be computed

from the set of individual public keys, and that the signature size

and the cost of signature verification is independent of the num-

ber of signers. This will allow a verifier to compute the aggregate

public key once, and have (amortized) constant-time verification of

multisignatures.

Prior to DG-CoSi, only three provably secure schemes offered

these features. The scheme due to Bagherzandi et al. [3] has a

signature size that is roughly double that of DG-CoSi, while the
B-Pop [10, 31] and WM-Pop [19, 31] schemes have more expensive

verification due to the use of pairings.

One may wonder what price one pays for the provable security

of the double-generator DG-CoSi scheme, when compared to the

highly efficient single-generator CoSi scheme. To investigate the

real-world effects of this difference, we performed large-scale ex-

periments on prototype implementations of both schemes. For a

network roundtrip delay of 200 miliseconds, we found that a group

as large as 8192 signers can collaboratively sign a message using

DG-CoSi in less than 1.5 seconds, showing no significant difference

with CoSi. In terms of computational efficiency, DG-CoSi on av-

erage needs 32% more CPU time than CoSi, but still requires far

below 1 millisecond of CPU time per signer when signing with

8192 signers.

Our results show that DG-CoSi is only marginally less efficient

than CoSi, so that any protocol based on the unprovable CoSi
scheme could instead be built on the provably secure DG-CoSi
scheme.

2 PRELIMINARIES
2.1 Discrete Logarithm Problems

Definition 2.1 (Discrete Log Problem). For a group G = ⟨д⟩ of
prime order q, we define AdvdlG of an adversary 𝒜 as

Pr

[
y = дx : y ←$ G,x ←$ 𝒜(y)

]
,

where the probability is taken over the random choices of𝒜 and the

random selection of y. 𝒜 (τ , ϵ)-breaks the discrete log problem if it

runs in time at most τ and has AdvdlG ≥ ϵ . Discrete log is (τ , ϵ)-hard
if no such adversary exists.

Definition 2.2 (n-One-more Discrete Log Problem [7, 9]). For a
groupG = ⟨д⟩ of prime order q, let𝒪dlog(·) be a discrete logarithm

oracle that can be called at most n times. We define Advn−omdl
G of

an adversary 𝒜 as

Pr

[ n∧
i=0

yi = д
xi

: (y0, . . . ,yn ) ←
$ Gn+1,

(x0, . . . ,xn ) ←
$ 𝒜𝒪dlog(·)(y0, . . . ,yn )

]
,

where the probability is taken over the random choices of 𝒜 and

the random selection of y0, . . . ,yn . 𝒜 (τ , ϵ)-breaks the n-one-more

discrete log problem if it runs in time at most τ and hasAdvn−omdl
G ≥

ϵ . n-one-more discrete log is (τ , ϵ)-hard if no such adversary exists.

2



2.2 Algebraic Algorithms
Boneh and Venkatesan [11] define algebraic algorithms to study the

relation between breaking RSA and factoring. An algorithm work-

ing in some group is algebraic if it only uses the group operations to

construct group elements. More precisely, it can test equality of two

group elements, perform the group operation on two elements to

obtain a new element, and invert a group element. This means that

an algebraic algorithm that receives group elements y1, . . . ,yn as

input can only construct new group elements y for which it knows

α1, . . . ,αn such that y =
∏n

i=1
yαii .

We use the formalization by Paillier and Vergnaud [29]:

Definition 2.3. An algorithm A that on input group elements

(y1, . . . ,yn ) is algebraic if it admits a polynomial time algorithm

Extract that given the code of A and its random tape outputs

(α1, . . . ,αn ) such that h =
∏n

i=1
yαii for any group element h that

A outputs.

2.3 Generalized Forking Lemma
The original forking lemma was formulated by Pointcheval and

Stern [30] to analyze the security of Schnorr signatures [32]. The

lemma rewinds a forger 𝒜 against the Schnorr signature scheme

in the random-oracle model to a “crucial” random-oracle query

(typically, the query involved in a forgery) and runs 𝒜 again from

the crucial query with fresh random-oracle responses. The lemma

basically says that if 𝒜 has non-negligible success probability in a

single run, then the forking algorithm will generate two successful

executions with non-negligible probability.

Bellare and Neven [8] generalized the forking lemma to apply

to any algorithm 𝒜 in the random-oracle model using a single

rewinding, while Bagherzandi, Cheon, and Jarecki [3] generalized

the lemma even further to multiple subsequent rewindings on mul-

tiple crucial queries. It is the latter generalization of the forking

lemma that we recall here.

Let 𝒜 be an algorithm that on input in interacts with a random

oracle H : {0, 1}∗ → Zq . Let f = (ρ,h1, . . . ,hqH
) be the random-

ness involved in an execution of 𝒜, where ρ is 𝒜’s random tape,

hi is the response to 𝒜’s i-th query to H, and qH is its maximal

number of random-oracle queries. Let Ω be the space of all such

vectors f and let f |i = (ρ,h1, . . . ,hi−1). We consider an execution

of 𝒜 on input in and randomness f , denoted𝒜(in, f ), as successful
if it outputs a pair (J , {out j }j ∈J ), where J is a multi-set that is a

non-empty subset of {1, . . . ,qH} and {out j }j ∈J is a multi-set of

side outputs. We say that 𝒜 failed if it outputs J = ∅. Let ϵ be the
probability that𝒜(in, f ) is successful for fresh randomness f ←$ Ω
and for an input in←$ IG generated by an input generator IG.

For a given input in, the generalized forking algorithm 𝒢ℱ𝒜 is

defined as follows:

𝒢ℱ𝒜(in):
f = (ρ,h1, . . . ,hqH

) ←$ Ω
(J , {out j }j ∈J ) ← 𝒜(in, f )
If J = ∅ then output fail
Let J = {j1, . . . , jn } such that j1 ≤ . . . ≤ jn
For i = 1, . . . ,n do

succi ← 0 ; ki ← 0 ; kmax ← 8nqH/ϵ · ln(8n/ϵ)
Repeat until succi = 1 or ki > kmax

f ′′ ←$ Ω such that f ′ |ji = f |ji

Let f ′′ = (ρ,h1, . . . ,hji−1,h
′′
ji , . . . ,h

′′
qH

)

(J ′′, {out ′′j }j ∈J ′′) ← 𝒜(in, f ′′)
If h′′ji , hji and J ′′ , ∅ and ji ∈ J ′′ then

out ′ji ← out ′′ji ; succi ← 1

If succi = 1 for all i = 1, . . . ,n
Then output (J , {out j }j ∈J , {out ′j }j ∈J ) else output fail

We say that 𝒢ℱ𝒜 succeeds if it doesn’t output fail. Bagherzandi
et al. proved the following lemma for this forking algorithm.

Lemma 2.4 (Generalized Forking Lemma [3]). Let IG be a ran-
domized algorithm and 𝒜 be a randomized algorithm running in
time τ making at most qH random-oracle queries that succeeds with
probability ϵ . If q > 8nqH/ϵ , then 𝒢ℱ𝒜(in) runs in time at most
τ · 8n2qH/ϵ · ln(8n/ϵ) and succeeds with probability at least ϵ/8,
where the probability is over the choice of in←$ IG and over the coins
of 𝒢ℱ𝒜.

2.4 Security of Multisignatures
We follow the syntax and security model due to Bagherzandi et

al. [3], which follows the so-called key-verification model, as intro-

duced by Bagherzandi and Jarecki [4], where individual public keys

must be verified by the signature verifier. We adapt the model to

support signers that are organized in a tree structure for more effi-

cient communication. Prior work always assumed a communication

setting where every cosigner communicates directly with the initia-

tor, which our tree-based modeling supports by choosing a tree in

which every cosigner is a direct child of the initiator. Moreover, we

formalize the notion of an “aggregated key” of a group of signers,

by adding an algorithm that computes a single aggregated public

key from a set of public keys, and this aggregated key will be used

by the verification algorithm. The idea of splitting key aggregation

from verification is that if a group of signers will repeatedly sign

together, a verifier will only once compute the aggregate public key

and reuse that for later verifications. If the aggregated key is smaller

than the set of public keys, or even constant size, this will allow

for more efficient schemes. Note that this change does not exclude

multisignature schemes that do not have this feature: indeed, such

schemes can simply use the identity function as key aggregation

algorithm.

A multisignature scheme consists of algorithms Pg, Kg, Sign,
KAg, KVf, and Vf. A trusted party generates the system parameters

par ← Pg. Every signer generates a key pair (pk, sk) ←$ Kg(par),
and signers can collectively sign a messagem by each calling the

interactive algorithm Sign(par, sk,𝒯 ,m), where 𝒯 describes a tree

between the signers that defines the intended communication be-

tween the signers. At the end of the protocol, the root of the tree 𝒯
obtains a signature σ . Algorithm KAg on input a set of public keys

𝒫𝒦 outputs a single aggregate public key PK . A verifier can check

the validity of a signature σ on message m under an aggregate

public key PK by running Vf(par, PK,m,σ ) which outputs 0 or 1

indicating that the signatures is invalid or valid, respectively. Any-

body can check the validity of a public key by using key verification

algorithm KVf(par, pk).
First, amultisignature scheme should satisfy completeness, mean-

ing that 1) for any par ← Pg and any (pk, sk) ← Kg(par), we have
KVf(par, pk) = 1, and 2) for any n, if we have (pki , ski ) ← Kg(par)
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for i = 1, . . . ,n, and any tree 𝒯 containing exactly these n signers,

and for any messagem, if all signers input Sign(par, ski ,𝒯 ,m), then
the root of 𝒯 will output a signature σ such that Vf(par,KAg(par,
{pki }

n
i=1
),m,σ ) = 1.

Second, a multisignature scheme should satisfy unforgeability.

Unforgeability of a multisignature scheme MS = (Pg,Kg, Sign,
KAg,Vf,KVf) is defined by a three-stage game.

Setup. The challenger generates the parameters par ← Pg and a

challenge key pair (pk∗, sk∗) ←$ Kg(par). It runs the adversary on

the public key 𝒜(par, pk∗).

Signature queries. 𝒜 is allowed to make signature queries on

a messagem with a tree 𝒯 , meaning that it has access to oracle

𝒪Sign(par,sk∗, ·, ·)
that will simulate the honest signer interacting in

a signing protocol to sign messagem with intended communica-

tion tree 𝒯 . Note that 𝒜 may make any number of such queries

concurrently.

Output. Finally, the adversary halts by outputting a multisig-

nature forgery σ , a message m and a set of public keys 𝒫𝒦. In

the key-verification setting, the adversary wins if pk∗ ∈ 𝒫𝒦,

KVf(par, pk) = 1 for every pk ∈ 𝒫𝒦 with pk , pk∗, PK ←
KAg(𝒫𝒦), Vf(𝒫𝒦,σ ,m) = 1, and 𝒜 made no signing queries on

m. A special case of the key-verification model is the plain public

key model, where there is no need to verify individual public keys,

i.e., KVf always returns 1.1 In the weaker knowledge-of-secret-key

(KOSK) setting, the adversary is required to additionally output

corresponding secret keys skpk for all pk ∈ 𝒫𝒦, pk , pk∗.

Definition 2.5. We say 𝒜 is a (τ ,qS,qH, ϵ)-forger for multisig-

nature scheme MS = (Pg,Kg, Sign,Vf) if it runs in time τ , makes

qS signing queries, makes qH random oracle queries, and wins

the above game with probability at least ϵ . MS is (τ ,qS,qH, ϵ)-
unforgeable if no (τ ,qS,qH, ϵ)-forger exists.

3 SECURITY OF THE CoSi MULTISIGNATURE
SCHEME

CoSi is a multisignature scheme introduced by Syta et al. [35]

that follows a long line of work on Schnorr-based multisigna-

tures [3, 8, 20, 22, 31]. It improves the efficiency of prior work:

it is a two round protocol, verification of a signature is as efficient

as verifying a single Schnorr signature, and due to employing a

tree structure to compute the signature, thousands of signers can

create a multisignature in seconds, as demonstrated by their open

source implementation
2
. Since its recent introduction, CoSi has

already led to a large body of follow-up work [12, 17, 18, 26, 34] and

is considered for standardization by the IETF [15]. However, the

security of CoSi is not formally analyzed, as Syta et al. [35] do not

formally prove security, leaving the open question: isCoSi provably
secure? In this section, we will show that it is very unlikely that

CoSi can be proven secure, by proving that it is impossible to prove

security even under the strong OMDL assumption.

1
The distinction between the key-verification model and plain public key model is a bit

informal, as they are in fact equivalent: any multisignature scheme that is unforgeable

in the key-verification model is also secure in the plain public key model, where the

key verification is simply considered part of the verification algorithm.

2
The implementation is available at github.com/dedis/cothority.

3.1 Description of CoSi
3.1.1 Parameters generation. Pg sets up a group G = ⟨д⟩ of

order q, where q is a κ-bit prime. Output par ← (G,д,q).

3.1.2 Key generation. The key generation algorithm Kg(par)
takes sk ←$ Zq and sets pk ← дsk . To prevent related-key at-

tacks [23], the authors suggest that users prove knowledge of their

secret key. We will omit those proofs here and study CoSi in the

KOSK setting in which such attacks cannot occur.

3.1.3 Signing. Signing is the four-step protocol. A signer Si on
input Sign(par, (xi , pki ),m,𝒯 ) behaves as follows.

Announcement. If Si is the leader (i.e., the root of tree 𝒯 ), it

initiates the protocol by sending an announcement to its children,

which consists of a unique identifier for this signing session ssid. If
Si is not the leader, it waits to receive an announcement message

and forwards it to its children in 𝒯 . After doing so, Si proceeds
with the commitment phase.

Commitment. Let 𝒞i denote the set of children of Si in tree 𝒯 .

Si waits to receive all values (tj , PK j ) for j ∈ 𝒞i . Note that if Si has
no children (i.e., it is a leaf in tree 𝒯 ), it will proceed immediately.

Si chooses ri ←
$ Zq and computes ti ← дri ·

∏
j ∈𝒞i tj and PKi ←

pki ·
∏

j ∈𝒞i PK j . If Si is not the leader, it sends ti to its parent. If Si
is the leader, Si proceeds with the challenge phase.

Challenge. If Si is the leader, it sets t̄ ← ti and PK ← PKi ,

computes c ← H(t̄ ,m), and sends t̄ to its children. If Si is not the
leader, it waits to receive a message t̄ , computes c ← H(t̄ ,m), and
sends t̄ to its children

3
.

Response. Si waits to receive all values sj for j ∈ 𝒞i (note that if
Si is a leaf it will proceed immediately), and then computes si ←
ri + c · ski +

∑
j ∈Ci sj .. It sends si to its parent, unless Si is the root,

then Si sets s ← si and outputs σ ← (c, s).

3.1.4 Key Aggregation. KAg on input a set of public keys 𝒫𝒦
outputs aggregate public key PK ←

∏
pk∈𝒫𝒦 pk.

3.1.5 Verification. Vf on input an aggregate public key PK , a
signature σ = (c, s), and a messagem, checks that

c
?

= H
(
дs · PK−c ,m

)
.

3.2 Impossiblity of Proving CoSi Secure
We first provide an intuition behind the impossibility of prov-

ing CoSi secure by sketching why common proof techniques for

Schnorr signatures fail in the case of CoSi. We then formalize this

and use a metareduction to prove that there cannot be a security
proof for CoSi in the random-oracle model under the OMDL as-

sumption.

In the classical security proof of Schnorr signatures under the

DL assumption [30], the reduction feeds its discrete-logarithm chal-

lenge y as public key pk = y to the adversary. It uses the zero-

knowledge property of the Schnorr protocol to simulate signatures

without knowing the secret key. More precisely, the reduction first

3
We make a small variation of the original CoSi scheme [35], in which the cosigners

receive c from the leader instead of t̄ . Without knowing t̄ , cosigners cannot verify that
c = H(t̄,m) and are unable to check that they are signing the message they intend to

sign, and one cannot hope to prove unforgeability in this setting.
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picks (c, s) at random, then chooses t such that the verification equa-
tion дs = t ·pkc holds, and programs the random oracleH(t ,m) = c .
The reduction then applies the forking lemma to extract two forg-

eries from the adversary, from which the discrete logarithm of

pk = y can be computed.

The crucial difference between standard Schnorr signatures and

CoSi is that in CoSi, the final t̄-value included in the hash is the

product of individual ti -values, rather than being determined by

a single signer. Therefore, whenever the honest signer is not the

leader in the signing query, the adversary learns the final t̄ value
before the simulator does, and can prevent the simulator from pro-

gramming the random-oracle entry H(t̄ ,m). One way around this

is to prove security under the OMDL assumption [9, 21], so that

the simulator can use its discrete-logarithm oracle to simulate sign-

ing queries. Namely, the simulator would use its first target point

y0 as public key pk = y0 and use target points y1, . . . ,yn as val-

ues t1, . . . , tn when simulating signing queries. Using the forking

lemma, it can extract the discrete logarithm of pk = y0, and, based

on this value and the responses to its previous discrete-logarithm

queries, compute the discrete logarithms of the other target points

t1, . . . , tn . Overall, the reduction computes the discrete logarithms

of n + 1 target points using only n queries to the DL oracle.

Unfortunately, this intuitive argument conveys a subtle flaw.

Namely, the forking lemma may rewind the adversary to a point

where it has an “open” signing query, meaning, a signing query

where the simulator already output its ti value but did not yet

receive the final t̄ value. The problem is that the adversary may

choose a different t̄ value in its second execution than it did in

its first execution, thereby forcing the simulator to make a second

DL query for the same signing query and ruining the simulator’s

chances to solve the OMDL problem. Indeed, Maxwell et al. [21]

overlooked this subtle issue that invalidates their security proof.

Note that the same problem does not occur in the proof of Schnorr

as an identification scheme [9] because the adversary does not have

access to an identification oracle during the challenge phase.

So in order to correctly simulate signing queries in a rewinding

argument, the reduction must be able to provide correct responses

si and s
′
i for the same value ti but for different challenge values c =

H(t̄ ,m) and c ′ = H(t̄ ′,m). This means, however, that the reduction

must already have known the secret key corresponding to pk, as
it could have computed it itself as sk = (si − s ′i )/(c − c ′) mod

q. Stronger even, the adversary can give the reduction a taste of

its own medicine by forcing the reduction to provide two such

responses si and s
′
i , and extract the value of sk from the reduction!

This sudden turning of the tables, surprising as it may be at first,

already hints that the reduction was doomed to fail. Indeed, our

proof below exploits this exact technique to build a successful forger:

in its first execution, the forger uses the DL oracle to compute a

forgery, but in any subsequent rewinding, it will extract the secret

key from the reduction and simply create a forgery using the secret

key. The meta-reduction thereby ensures that it uses at most one

DL oracle query for each of the k “truly different” executions of

the forger. By additionally embedding a OMDL target point in its

forgery, the meta-reduction reaches a break-even of k DL oracle

queries to invert k target points. If the reduction succeeds in solving

the n-OMDL problem given access to this forger, then the meta-

reduction can use its solution to solve the (n + k)-OMDL problem.

While this captures the basic idea of our proof, some extensions

are needed to make it work for any reduction. For example, one

could imagine a reduction using a modified forking technique that

makes sure that the same challenge value c = H(t̄ ,m) is always
used across timelines, e.g., by guessing the index of that random-

oracle query. To corner such a reduction, our forger makes several

signing queries in parallel and chooses one of two challenges at

random for each query. When the reduction rewinds the forger,

the reduction will with overwhelming probability be forced to

respond to a different challenge on at least one of the signing

queries, allowing the forger to extract.

Below, we formally prove that if the OMDL assumption holds,

then there cannot exist a reduction (with some constraints, as dis-

cussed later) that proves the security of CoSi under the OMDL

assumption. Our proof roughly follows the techniques of Baldimtsi

and Lysyanskaya [5] for Schnorr-based blind signature schemes, in

the sense that we also present a forger and a meta-reduction that,

given a reduction that solves the OMDL problem when given black-

box access to a forger, solves the OMDL problem by extracting a dis-

crete logarithm from the reduction. Our proof is different, however,

in the sense that we cover a different class of reductions (algebraic

black-box reductions, as opposed to “naive random-oracle replay

reductions”), and because the multisignature scheme requires a

more complicated forger because challenges used by the signing

oracle must be random-oracle outputs, as opposed to arbitrary val-

ues in the case of [5]. The class of reductions that we exclude is

large enough to encompass all currently known proof techniques

for this type of schemes, making it extremely unlikely that CoSi
will ever be proven secure under the DL or OMDL assumption.

Theorem 3.1. If the (n + k)-OMDL problem is (τ + τext +O(n +

kℓ), ϵ−k2/2ℓ)-hard, then there exists no algebraic black-box reduction
ℬ that provesCoSi to be ((2ℓ+1)τexp+O(ℓ), ℓ, 3, 1−1/q)-unforgeable
in the KOSK setting in the random-oracle model under the assumption
that the n-OMDL problem is (τ , ϵ)-hard. Here, τext is the running time
of Extract, τexp is the time to perform an exponentiation in G, and k
is the amount of times that ℬ runs 𝒜 through rewinding, and ℓ is a
security parameter.

Before proving the theorem, we provide some guidance on how

to interpret its result. In a nutshell, the theorem says that if the

OMDL problem is hard, then there’s hardly any hope to prove CoSi
secure under the DL or OMDL assumption, even in the KOSK setting

and in the random-oracle model. It thereby also excludes, a fortiori,
any security proofs in the key-verification and plain public-key

settings or in the standard model.

For concreteness, let’s set ℓ = 250, and let’s say that we have a

forger that breaks CoSi with overwhelming probability using just

500 exponentiations, 250 signature queries, and 3 random-oracle

queries. That would indeed be a pretty serious security breach,

certainly serious enough to rule out any further use of CoSi in
practice. Nevertheless, even for such a strong forger, Theorem 3.1

says that there cannot exist a reduction ℬ that uses this forger to

obtain just an ϵ advantage in breaking the n-OMDL problem for

any n ≥ 0. More specifically, it says that if such a reduction would

exist, then that reduction would immediately give rise to a solution

for the (n+k)-OMDL problem without needing access to any forger,
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ℬ

ℳ
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y0, . . . ,yn

y0, . . . ,yn+k

m

ti, j
for j = 0, ...,n − 1

{
(t∗i ,m

∗)

c∗i

(1G,m)

ci,0

(д,m)

ci,1
If ci,0 = ci,1 abort.

for j = 0, ...,n − 1

{
дbi, j

si, j

s∗i ← dlog(t∗i · pk
c∗i
i )

((c∗i , s
∗
i ),m

∗)

(x0, . . . ,xn )

(x0, . . . ,xn+k )

𝒪dlog

дx

x

Figure 1: Our metareductionℳ in the proof of Theorem 3.1,
which simulates forger ℱ towards any reduction ℬ that
would prove the security of CoSi under the OMDL assump-
tion, and uses ℬ to break the OMDL problem.

essentially meaning that the OMDL assumption was false to begin

with.

The only room left by Theorem 3.1 are for a number of alterna-

tive proof approaches, but none of them look particularly hopeful.

First, the theorem becomes moot when the OMDL problem turns

out to be easy but the DL problem remains hard, or when the (n+k)-
OMDL problem is easy but the n-OMDL problem is still hard. At

present, however, there is no evidence suggesting that any of these

problems may be easier than any of the other ones. Second, it does

not rule out the existence of non-algebraic or non-black-box reduc-

tions. The former type of reduction would imply strange properties

of the underlying group. The latter would have to obtain a spe-

cial advantage from inspecting the code of the forger, rather than

just being able to execute it. While some cryptographic uses of

non-black-box techniques exist [6], to the best of our knowledge

they have never been used in practical constructions such as CoSi.
Finally, our theorem does not rule out security proofs under as-

sumptions that are not implied by n-OMDL or proving security in

the generic group model [33]. However, this would mean that much

stronger assumptions are required than one would expect from a

Schnorr-based protocol.

Proof of Theorem 3.1. We prove the theorem by constructing

a forger ℱ and a meta-reduction ℳ such that, if there exists a

reduction ℬ that uses ℱ to break the n-OMDL problem, then ℳ
can use ℬ to break the (n + k)-OMDL problem. Figure 1 depicts the

execution setting of all three algorithms.

Let y0, . . . ,yn+k denote the n + k + 1 OMDL challenge points

that ℳ receives as input. It will provide ℬ with an environment

that simulates the n-OMDL game by handing y0, . . . ,yn as input

to ℬ and responding to ℬ’s 𝒪dlog
queries using its own 𝒪dlog

oracle. We have to provide reduction ℬ with a successful forger ℱ
against CoSi, where ℬ is free to run and rewind ℱ. To simplify the

arguments about rewinding, we will describe a deterministic forger

ℱ, so that the behavior of ℱ only depends on the inputs and oracle

responses provided by ℬ, not on its random coins.

We describe a forger ℱ in terms of three subroutines target,
rand, and dlog that ℱ can call out to but that will be implemented

by the meta-reduction ℳ. Subroutine target takes ℓ + 1 group

elements (pk, t1, . . . , tℓ) as input and on the i-th invocation with a

combination of inputs that it hasn’t been called with before, returns

ℳ’s target point yn+i . Any invocations of target on previously

used inputs consistently return the same output. The subroutine

rand implements a truly random function Gℓ+1 × Z3

q → {0, 1}
ℓ
,

which is simulated byℳ through lazy sampling. The subroutine

dlog, finally, returns the discrete logarithm of its argument; we will

specify later howℳ implements this routine.

Let pki be the public key thatℬ provides toℱ in its i-th execution
of ℱ. The forger ℱ then proceeds as follows:

• On input pki , ℱ initiates ℓ signing queries on the same mes-

sagem and for the same tree 𝒯 consisting of two signers: a

leader with public key pk = д and a child that is the target

signer with public key pki .
• After receiving the results of the first round ti,1, . . . , ti, ℓ , ℱ
sets t̄∗i ← target(pki , ti,1, . . . , ti, ℓ).
• ℱ makes a random-oracle query H(t̄∗i ,m

∗) for a fixed mes-

sagem∗ ,m, yielding a response c∗i .
• ℱ makes two additional random-oracle queries on H(1G,m)
and H(д,m), yielding responses ci,0 and ci,1, respectively.
• If ci,0 = ci,1, then ℱ aborts. Otherwise, it continues the ℓ

open signing sessions by generating randombitsbi,1∥ . . . ∥bi, ℓ ←
rand((pki , ti,1, . . . , ti, ℓ), (c

∗
i , ci,0, ci,1)) and sending the final

t̄-value for the j-th signing session as t̄i, j ← дbi, j for j =
1, . . . , ℓ.

• When ℱ receives the values si,1, . . . , si, ℓ in the ℓ signing

protocols, it verifies that дsi, j = ti, j · pk
ci,bi, j
i , aborting if an

invalid signature is detected.

• ℱ outputs a forgery (c∗i , s
∗
i ) on messagem∗ with public keys

𝒫𝒦 = {pki } by computing s∗i ← dlog(t̄∗i · pk
c∗i
i ).

Observe that ℱ makes ℓ signing queries, three random-oracle

queries, and performs at most (2ℓ + 1) exponentiations so that ℱ
runs in time (2ℓ + 1)τexp + O(ℓ). It outputs a successful forgery

unless ci,0 = ci,1, which happens with probability 1/q. Therefore,
ℱ is a ((2ℓ + 1)τexp +O(ℓ), ℓ, 3, 1 − 1/q)-forger for CoSi. Note that
ℱ works in the KOSK setting because the forgery doesn’t include

any signer other than the target signer.
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Suppose that there exists an algebraic reduction ℬ that, when

given black-box access to the above forger ℱ, (τ , ϵ)-breaks the
n-OMDL problem. We now describe a meta-reduction ℳ that

breaks the (n + k)-OMDL problem, where k is the number of times

that ℬ runs ℱ. As mentioned earlier, ℳ, on input target points

y0, . . . ,yn+k , runs ℬ on input y0, . . . ,yn and forwards ℬ’s 𝒪dlog

queries to its own 𝒪dlog
oracle. It implements the subroutines

target and rand as explained above, and implements the dlog sub-
routine as follows:

• If the i-th execution of ℱ invokes the subroutine dlog(t̄∗i ·

pk
c∗i
i ) and there exists a previous execution i ′ , i that al-

ready computed the secret key ski corresponding to pki , then
the subroutine computes and return the requested discrete

logarithm as s∗i ← s∗i′ + (c
∗
i − c

∗
i′) · ski mod q .

• If the i-th execution of ℱ invokes the subroutine dlog(t̄∗i ·

pk
c∗i
i ) and there exists a previous execution i ′ , i with
(pki′ , ti′,1, . . . , ti′, ℓ) = (pki , ti,1, . . . , ti, ℓ), then it checkswhether
(ci′,bi′,1 , . . . , ci′,bi′, ℓ ) = (ci,bi,1 , . . . , ci,bi, ℓ ). If so, then ℳ
halts and outputs failure. If not, then there exists at least one

index j such that ci′,bi′, j , ci,bi, j , so thatℳ can compute the

secret key ski corresponding to pki as ski ←
si, j−si′, j

ci,bi, j −ci′,bi′, j
mod q . It can then compute and return the requested dis-

crete logarithm as s∗i ← s∗i′ + (c
∗
i − c

∗
i′) · ski mod q .

• Else,ℳ uses 𝒪dlog
and returns s∗i ← 𝒪dlog(t̄∗i · pk

c∗i
i ) .

If ℬ is successful, then ℬ will output x0, . . . ,xn such that yi =
дxi for i = 0, . . . ,n after having made at most n queries to its

𝒪dlog
oracle. Nowℳ proceeds to compute the discrete logarithms

xn+1, . . . ,xn+k of yn+1, . . . ,yn+k as follows.

Let P be the partition of {1, . . . ,k} where i and i ′ are considered
equivalent (and are therefore in the same component C ∈ P ) if
the i-th and i ′-th executions are such that (pki , ti,1, . . . , ti, ℓ) =
(pki′ , ti′,1, . . . , ti′, ℓ). Because of the wayℳ instantiated the target
subroutine, we know thatℳ used the same target point yjC as the

value t̄∗i for all executions i that are in the same component C ∈ P ,
meaning that during the full simulation of ℬ,ℳ used target points

yn+1, . . . ,yn+ |P | . Let P0 be the set of components C ∈ P such that

ℱ never invoked the dlog subroutine in any execution i ∈ C , let P1

contain C ∈ P such that ℱ invoked the dlog exactly once over all

executions i ∈ C , and let P2+ contain the components C ∈ P such

that ℱ invoked dlog at least twice in total over all executions i ∈ C .
It is clear that |P | = |P0 | + |P1 | + |P2+ |.

Wewill now show thatℳ, using a total of |P | queries to its𝒪dlog

oracle, can derive a system of |P | independent linear equations in the
|P | unknowns xn+1, . . . ,xn+ |P | . Namely, for every component C ∈

P0,ℳ simply makes a discrete-logarithm query αC ← 𝒪dlog(yjC ),
which adds an equation of the form

x jC = αC . (1)

For every component C ∈ P1, there exists exactly one execution

i ∈ C that causedℳ to make a query s∗i ← 𝒪dlog(yjC ·pk
c∗i
i ). Since

ℬ is algebraic and only obtains group elements д,y0, . . . ,yn+k as

input, for all pki output by ℬ, ℳ can use Extract to obtain coef-

ficients βi , βi,0, . . . , βi,n+k ∈ Zq such that ski = logд(pki ) =

βi +
∑n+k
j=0

βi, jx j mod q. For every C ∈ P1 it therefore has an equa-

tion of the form

s∗i = x jC + c
∗
i (βi +

n+k∑
j=0

βi, jx j ) mod q . (2)

Note thatx0, . . . ,xn are known values above, as theywere output by

ℬ. For every component C ∈ P2+, ℳ made one discrete-logarithm

query s∗i ← 𝒪dlog(yjC · pk
c∗i
i ) during the first invocation of dlog,

and extracted the value of ski during the second invocation of dlog.
It can therefore add an equation of the form

s∗i = x jC + c
∗
i ski mod q . (3)

Finally, for the unused target points yj , j ∈ {n + |P | + 1, . . . ,n + k},

ℳ can make an additional query α j ← 𝒪dlog(yj ) to obtain an

equation

x j = α j . (4)

The metareduction ℳ created a system of |P0 | equations of the

form (1), |P1 | equations of the form (2), |P2+ | equations of the

form (3), and k − |P | equations of the form (4), so that overall

it has a system of k linear equations in k unknowns. The equations

of the form (1), (3), and (4) are clearly linearly independent, as

each of these equations affects a single and different unknown x j .
Equations of the form (2) are independent as well, because at the

time that ℬ produces pki , its view is independent of yji′ for i
′ > i .

One can therefore order the equations of the form (2) such that

each contains one unknown x jC that does not occur in any of the

preceding equations.

Solving this linearly independent system of k equations in k
unknowns yields all the values for xn+1, . . . ,xk . ℳ can therefore

output (x0, . . . ,xn+k ) after having made exactly one 𝒪dlog
query

for each of the k equations and at most n 𝒪dlog
queries to respond

to ℬ’s 𝒪dlog
queries, meaning at most n + k queries in total.

The metareduction ℳ runs in time τ + τext + O(n + kℓ) and
wins the (n +k)-OMDL game whenever ℬ wins the n-OMDL game,

unless ℳ outputs failure. The latter happens when in the i-th
execution of ℱ, there exists a previous execution i ′ < i with
(pki′ , ti′,1, . . . , ti′, ℓ) = (pki , ti,1, . . . , ti, ℓ) and (ci′,bi′,1 , . . . , ci′,bi′, ℓ ) =
(ci,bi,1 , . . . , ci,bi, ℓ ). We know that ci,0 , ci,1, because otherwise ℱ
would have aborted earlier, meaning that at most one choice for

bi, j will cause ci′,bi′, j = ci,bi, j . Therefore, at the moment that

bi,1∥ . . . ∥bi, ℓ is chosen at random from {0, 1}ℓ in a call to the rand
subroutine, for each execution i ′ , i there is at most one bad choice

for bi,1∥ . . . ∥bi, ℓ that causes ℳ to output failure, meaning that

there are at most k bad choices overall. (Note that the output of

rand is fresh because it takes the full transcript of the protocol so far
as an argument. If the arguments of rand are equal in the i-th and

i ′-th execution, then the executions are simply identical. Also note

that ℬ learns ℱ’s choice for bi,1∥ . . . ∥bi, ℓ before ℱ calls the dlog
subroutine, so that it could keep many candidate executions i ′ open
at the same time.) The probability that the choice of bi,1∥ . . . ∥bi, ℓ
hits any of these k bad choices causing ℳ to output failure in any

of the k executions is at most k2/2ℓ . The success probability in

solving the (n + k)-OMDL game is therefore ϵ − k2/2ℓ . �
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3.3 Applicability of metareduction toMuSig
While our metareduction is written for CoSi, the same technique

can be applied to the similar multisignature schemeMuSig as re-
cently introduced by Maxwell et al. [21]. The main difference be-

tween CoSi and MuSig is in how they avoid rogue-key attacks.

While CoSi uses the key-verification model to avoid these attacks,

MuSig works in the plain public key model by using a more in-

volved key aggregation procedure. Rather than simply multiplying

the individual keys together, they raise the individual keys to a hash

function output, and present a security proof under the OMDL as-

sumption. However, the problem in proving CoSi secure is not

related to rogue-key attacks, as demonstracted by the fact that our

metareduction holds in the KOSK setting, but due to the fact that

many signing queries can be made in paralel, and rewinding may

force the reduction to know the signer’s secret key. Indeed, the

same metareduction (with some minor changes in bookkeeping

and including the more involved key aggregation) is applicable

to MuSig, proving that their security proof overlooked this case

and that it is very unlikely that MuSig can be proven secure under

standard assumptions.

4 EFFICIENT MULTISIGNATURES IN THE
KEY VERIFICATION MODEL

There are two main problems when designing provably secure

Schnorr-type multisignatures. First, in the security proof, signing

queries are usually simulated by using the zero-knowledge prop-

erty to generate a valid transcript for a chosen challenge, and by

programming the relevant random-oracle entry to return exactly

that challenge. This approach works fine for standard signatures,

because one argument of the random-oracle query (the so-called

t-value) is generated fresh by the simulator, so that the probability

that the relevant entry had already been queried by the adversary is

negligible. For many efficient multisignature schemes, however, the

final t̄-value is known first to the leader of or to the last contributor,

which may not be the honest signer. The Bellare-Neven scheme [8]

gets around this by letting signers first commit to their contribution,

and only then open those commitments, thereby adding another

round to the protocol. The Bagherzandi et al. scheme [3] uses ho-

momorphic trapdoor commitments to eliminate the extra round,

but at the cost of efficiency in terms of signature size and computa-

tional efficiency. The Ma et al. scheme [20] uses a double-generator

technique due to Okamoto [28] that simulates signatures using a

real signing key, rather than by programming the random oracle.

The other main problem to overcome is that, in the reduction,

the signatures of co-signers typically need to be “divided out” of

the forgery to obtain a solution to the underlying problem. This is

usually easy in the KOSKmodel, where the adversary has to give up

the secret keys of all cosigners involved in the forgery, but is more

difficult in the plain public-key and key-verification models, where

the adversary is allowed to use arbitrary keys, including rogue

keys to which he doesn’t know the secret key. Previous schemes

in these models either required all signers to generate their keys

jointly in a distributed protocol [22], which may not be particularly

practical, or modified the verification equation to use different

exponents for different public keys for each signature [3, 8, 20] or

for each new group of signers [21], which may not be particularly

efficient, e.g., for large or dynamic groups of signers, or when multi-

exponentiations cannot be used.

Our DG-CoSi scheme is a double-generator variant of the CoSi
scheme that overcomes both of the above problems. The protocol

is largely due to Okamoto [28], who described a standard signature

scheme that is a variant of Schnorr signatures where the secret key,

rather than being the discrete logarithm of the public keyy, is a rep-
resentation (x1,x2) of y with respect to (д,h) such that y = дx1hx2

.

The extension to multisignatures was mentioned by Okamoto [28],

but without details or proofs, and the same technique was used

in Ma et al.’s multisignature scheme [20]. Rather than using the

zero-knowledge property and programming the random oracle to

simulate signatures, it relies on the witness indistinguishability

property by simulating signatures using a real signing key (x1,x2).

The simulator can therefore simply follow the honest signing proto-

col, avoiding the problem of having to program the random oracle

on a free entry. The reduction then uses the forking lemma to ex-

tract a second representation (x ′
1
,x ′

2
) from the forger, from which

with high probability it can derive the discrete logarithm of h with

respect to д.
We solve the other problem of extracting the cosigners’ secret

keys by showing that the simple proofs of possession that Risten-

part and Yilek [31] proved for Boldyreva’s [10] and Lu et al.’s [19]

multisignature schemes also work for our scheme. Signers in our

scheme merely have to include a self-signed certificate in their

public keys, i.e., a simple signature on a dedicated certificate re-

quest. Verifiers have to check the certificates of new public keys,

but can mark verified public keys as trusted and skip this check in

subsequent verifications. Our scheme thereby supports true key

aggregation, meaning that the resulting multisignature can be veri-

fied in the same time as a single signature under a public key that

is simply the product of all cosigners’ public keys.

We prove the security of our approach by using Bagherzandi et

al.’s generalized forking lemma [3] to extract from the self-signed

certificates the secret keys of all cosigners involved in the first
forgery produced by the adversary. By including the aggregated

public key in the signature hash, we know that the second forgery

will use the same aggregated public key (even if possibly for a differ-

ent set of cosigners), and this suffices to “divide out” the cosigners’

contributions to the forgeries.

4.1 Description of DG-CoSi
4.1.1 Parameters generation. Pg(κ) sets up a group G = ⟨д⟩

of order q, where q is a κ-bit prime. Take h ←$ G and output

par ← (G,д,h,q).

4.1.2 Key generation. The key generation algorithm Kg(par)
chooses x1,x2 ←

$ Zq and computesy ← дx1hx2
. It then computes a

standard Okamoto signature [28] π = (d,w1,w2) using by choosing

u1,u2 ←
$ Zq and computingv ← дu1hu2

, d ← H(cert,y,v),w1 ←

u1 + dx1 mod q and w2 ← u2 + dx2 mod q. Here, cert is a string
literal to perform domain separation onH, such that these individual
“self-signed credentials” cannot be confused with multisignatures.

It sets sk ← (x1,x2,y) and pk ← (y,π ), and outputs (pk, sk).

4.1.3 Signing. On input Sign(par, (xi,1,xi,2,yi ),m,𝒯 ), a signer
Si behaves as follows.
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Children 𝒞i Signer Si Parent Pi
m✛ m✛

{(PK j , tj )}j ∈𝒞i✲ r1, r2 ←
$ Zq

ti ← дr1hr2

∏
j ∈𝒞i tj

PKi ← yi
∏

j ∈𝒞i PK j
(ti , PKi )✲

(t̄ , PK)✛ c ← H(sig, t̄ , PK,m) (t̄ , PK)✛
{(sj,1, sj,2)}j ∈𝒞i✲ si,1 ← r1 + cxi,1

+
∑
j ∈𝒞i sj,1 mod q

si,2 ← r2 + cxi,2

+
∑
j ∈𝒞i sj,2 mod q (si,1, si,2)✲

Figure 2: The DG-CoSi signing protocol for signer Si with se-
cret key ski = (xi,1,xi,2) and public key pk = (yi ,πi ). If Si is
the leader then, instead of sending (ti , PKi ) to its parent, it
sends (t̄ , PK) = (ti , PKi ) to its children, and instead of send-
ing (si,1, si,2) to its parent, it outputs (c, s1, s2) = (c, si,1, si,2) as
the signature.

Announcement. If Si is the leader (i.e., the root of tree 𝒯 ), it initiates

the protocol by sending an announcement to its children, which

consists of a unique identifier for this signing session ssid. If Si is
not the leader, it waits to receive an announcement message and

forwards it to its children in 𝒯 . After doing so, Si proceeds with
the commitment phase.

Commitment. Let 𝒞i denote the set of children of Si in tree 𝒯 . Si
waits to receive all values (tj , PK j ) for j ∈ 𝒞i . Note that if Si has
no children (i.e., it is a leaf in tree 𝒯 ), it will proceed immediately.

Si chooses ri,1, ri,2 ←
$ Zq and computes ti ← дri,1hri,2 ·

∏
j ∈𝒞i tj

and PKi ← yi ·
∏

j ∈𝒞i PK j . If Si is not the leader, it sends ti to its

parent. If Si is the leader, Si proceeds with the challenge phase.

Challenge. If Si is the leader, it sets t̄ ← ti and PK ← PKi , computes

c ← H(sig, t̄ , PK,m), and sends (t̄ , PK) to its children. If Si is not
the leader, it waits to receive a message (t̄ , PK), computes c ←
H(sig, t̄ , PK ,m), and sends (t̄ , PK) to its children. Here, sig denotes
the string literal.

Response. Si waits to receive all values sj,b for j ∈ 𝒞i and b ∈ {1, 2}
(note that if Si is a leaf it will proceed immediately), and then

computes si,b ← ri,b + c · xi,b +
∑
j ∈Ci sj,b for b ∈ {1, 2}. It sends

(si,1, si,2) to its parent, unless Si is the root, then Si sets s1 ← si,1
and s2 ← si,2 and outputs σ ← (c, s1, s2).

4.1.4 Key Aggregation. KAg on input a set of public keys 𝒫𝒦
checks the validity of the self-signed certificates included in the

public keys by checking for all pk = (y, (d,w1,w2)) ∈ 𝒫𝒦 that

d
?

= H(cert,y,дw1hw2y−d ). If they are all valid, it outputs PK ←∏
(y,π )∈𝒫𝒦 y.

4.1.5 Verification. Vf on input an aggregate public key PK , a
signature σ = (c, s1, s2), and a messagem, checks that

c
?

= H
(
sig , дs1hs2 · PK−c , PK , m

)
.

It is worth noting that the messagem is actually not required

during the first round of the signing protocol, so it could alterna-

tively be passed only later, together with the second-round message

𝒢ℱ𝒜

𝒪sig

𝒪RO

ℱ

𝒜

(д,h), (x1,x2), ⟨hi ⟩
qH
i=1

sk = (x1,x2)

⟨hi ⟩
qH
i=1

pk = дx1hx2

σ ,m,𝒫𝒦
(J , {out j }j ∈J )

(J , {out j }j ∈J , {out ′j }j ∈J )

Extract (x1,x2) , (x1,x2) with

pk = дx1hx2
. Let logд(h) =

x1−x1

x2−x2

.

ℬ

д,h

logд(h)

д,h, (x1,x2 ←
$ Zq )

Figure 3: The construction of our reduction ℬ breaking the
DL problem given a DG-CoSi-forger ℱ.

(t̄ , PK). This allows some degree of pre-computation, as the compu-

tationally most intensive part of the protocol, the computation of

ti , can be performed before the message is known.

Also, signers do not necessarily need to know the full tree struc-

ture 𝒯 : it suffices that they know how to reach their parent and

their children. The tree may even be built dynamically by letting

each node discover its responsive children during the first round of

the signing protocol. All signers that participated in the first round

by contributing a value ti must also participate in the second round

by contributing (si,1, si,2), however.
When verifying many signatures by (subsets of) the same group

of signers, it is clear that the self-signed certificates πi in the public

keys pki = (yi ,πi ) only need to be verified once, and that also

the aggregate public key PK can be precomputed. Amortized over

many signatures for the same or similar groups of signers, verifi-

cation of a DG-CoSi signature therefore only takes a single multi-

exponentiation in G.

4.2 Security
Theorem 4.1. DG-CoSi is a secure multisignature scheme in the

key-verification setting under the discrete-logarithm assumption in
the random-oracle model. More precisely, DG-CoSi is (τ ,qS,qH, ϵ)-
unforgeable in the random-oracle model if q > 8NqH/ϵ and if the
discrete-logarithm problem is ((τ + (qS + N + 1)τexp) · 8N

2qH/ϵ ·
ln(8N /ϵ), ϵ/8 − 1/q)-hard, where N is the maximum number of
signers involved in a single multi-signature and τexp is the time of a
multi-exponentiation in G.

Proof. To prove this theorem, we assume for contradiction a

DG-CoSi-forgerℱ exists. Our reduction will simulate the DG-CoSi
9



unforgeability game towardsℱ, andwhenℱ successfully forges, we

apply the forking lemma to extract the solution to the DL problem

instance. To this end, we define algorithm 𝒜 that simulates the

DG-CoSi unforgeability game towards ℱ and is “compatible” with

the forking lemma. That is, it outputs the signature and certificates

from which our reduction needs to extract. Having defined 𝒜, we

can define reduction ℬ, which will apply the forking lemma on

𝒜 (meaning it will execute 𝒢ℱ𝒜) to solve the DL problem. The

structure of this proof is depicted in Fig. 3.

Suppose we have a (τ ,qS,qH, ϵ) forger ℱ against the DG-CoSi
multisignature scheme. Then consider an input generator IG that

generates random tuples (h,x1,x2) ←
$ G × Zq × Zq and an algo-

rithm𝒜 that on inputh,x1,x2 and randomness f = (ρ,h1, . . . ,hqS
)

proceeds as follows.

Algorithm 𝒜 computes y∗ ← дx1hx2
and simulates the corre-

sponding self-signed certificate π∗ by picking (d∗,w∗
1
,w∗

2
) ←$ Z3

q

and computing v∗ ← дw
∗
1hw

∗
2y∗−d

∗

. It then runs the forger ℱ
on input pk∗ = (y∗,π∗) with random tape ρ. It reponds to ℱ’s

i-th random-oracle query with hi , except when ℱ makes a query

H(cert,y∗,v∗) it responds with d∗. (We assume without loss of

generality that ℱ does not make any duplicate queries.) It responds

to ℱ’s signing queries by running the honest signing algorithm

using sk = (x1,x2).

When ℱ fails to output a successful forgery, then 𝒜 outputs

fail. Otherwise, if ℱ’s forgery is σ = (c, s1, s2) on messagem for

a set of public keys 𝒫𝒦, then let j
f
be the index of 𝒜’s random-

oracle query H(sig, t̄ , PK ,m) = c = hj where t̄ = д
s1hs2PK−c and

PK =
∏

y∈𝒫𝒦 y, and let out j
f
= (sig, t̄ , c, s1, s2,𝒫𝒦). (Also without

loss of generality, we assume thatℱ makes all hash queries involved

in verifying the forgery.) For each pk = (y, (d,w1,w2)) ∈ 𝒫𝒦∗,
where 𝒫𝒦∗ = 𝒫𝒦 \ {pk∗}, let jy be the index of 𝒜’s random-

oracle query H(cert,y,v) where v = дw1,hw2y−d , and let out jy =
(cert,y,v,d,w1,w2). Algorithm𝒜 then outputs (J = {jy }(y,π )∈𝒫𝒦∗∪
{j

f
}, {out j }j ∈J ). It runs in time less than τ + (qS + N + 1)τexp and

succeeds with probability ϵ .
We prove the theorem by constructing an algorithm ℬ that, on

input a group element h and given a forger ℱ, solves the discrete

logarithm problem in G. Namely, ℬ chooses (x1,x2) ←
$ Z2

q and

runs the generalized forking algorithm 𝒢ℱ𝒜 from Lemma 2.4 on

input (h,x1,x2) with the algorithm𝒜 described above. If 𝒢ℱ𝒜 out-

puts fail, then ℬ also outputs fail. If 𝒢ℱ𝒜 outputs (J , {out j }j ∈J ,
{out ′j }j ∈J ), then ℬ proceeds as follows.

Algorithm ℬ then uses the output of 𝒢ℱ𝒜 to extract a second

pair (x ′
1
,x ′

2
) such that дx

′
1hx

′
1 = y∗, as well as the secret keys of

all signers involved in the first forgery out j
f
. It does not extract

the secret keys of the signers involved in the second forgery out ′j
f

,

however, which may be a different set of signers. Those keys cannot

be extracted with Lemma 2.4, as doing so would require rewinding

ℱ a number of times that is exponential in the number of signers

involved in the forgery. We will see that we don’t need to extract

those keys, as long as the aggregated public keys PK and PK ′ are
the same in both runs.

Let out j
f
= (sig, t̄ , c, s1, s2,𝒫𝒦) and out ′j

f

= (sig, t̄ ′, c ′, s ′
1
, s ′

2
,𝒫𝒦′)

be the two outputs of 𝒜 related to the forgery. For every (y,π ) ∈
𝒫𝒦∗ = 𝒫𝒦\{pk∗}, there are two outputs out jy = (cert,y,v,d,w1,w2)

and out ′jy = (cert,y
′,v ′,d ′,w ′

1
,w ′

2
) such that дw1hw2 = vyd and

дw
′
1hw

′
2 = v ′y′d

′

. From the construction of 𝒢ℱ𝒜, we know that

out jy and out ′jy were obtained from two executions of 𝒜 with

randomness f and f ′ such that f |jy = f ′ |jy , meaning that these

executions are identical up to the jy -th random-oracle query. In par-

ticular, this means that the arguments of the jy -th random-oracle

query H(cert,y,v) are equal in both runs, meaning that y = y′

and v = v ′. Dividing the two verification equations yields

дw1−w ′
1hw2−w ′

2 = yd−d
′

,

and since the construction of 𝒢ℱ𝒜 guarantees that d , d ′, we
can extract a secret key sky = (xy,1,xy,2) for y as xy,1 ← (w1 −

w ′
1
)/(d − d ′) mod q and xy,2 ← (w2 −w

′
2
)/(d − d ′) mod q.

Algorithmℬ then extracts a second pair (x ′
1
,x ′

2
) such thatдx

′
1hx

′
2 =

y∗ from the forgeries (sig, t̄ , c, s1, s2,𝒫𝒦) and (sig, t̄ ′, c ′, s ′
1
, s ′

2
,𝒫𝒦′)

as follows. Since they are valid forgeries, they satisfy the verifica-

tion equations дs1hs2 = t̄ · PKc
and дs

′
1hs

′
2 = t̄ ′ · PK ′c

′

, where

PK =
∏
(y,π )∈𝒫𝒦 y and PK ′ =

∏
(y,π )∈𝒫𝒦′ y. We know that the

two executions of 𝒜 leading to those forgeries are identical up

to the j
f
-th random-oracle query, meaning that the arguments of

these hash queries H(sig, t̄ , PK,m) and H(sig, t̄ ′, PK ′,m′)must be

identical. We therefore have that t̄ = t̄ ′ and that, even though the

set of signers 𝒫𝒦 and 𝒫𝒦′ may be different, their aggregated pub-

lic keys PK = PK ′ must be the same. Dividing the two signature

verification equations therefore yields

дs1−s ′
1hs2−s ′

2 = PKc−c ′ = y∗c−c
′

·
( ∏
y∈𝒫𝒦∗

дxy,1hxy,2
)c−c ′

.

Let SK∗
1
=

∑
(y,π )∈𝒫𝒦∗ xy,1 and SK∗

2
=

∑
(y,π )∈𝒫𝒦∗ xy,2. By the

construction of the forking algorithm 𝒢ℱ𝒜, we also know that

c , c ′, so that ℬ can compute

x ′
1
← (s1 − s

′
1
)/(c − c ′) − SK∗

1
mod q

x ′
2
← (s2 − s

′
2
)/(c − c ′) − SK∗

2
mod q

so that дx
′
1hx

′
2 = y∗ = дx1hx2

. If (x ′
1
,x ′

2
) = (x1,x2), then we say

that event bad occurred and ℬ outputs fail. Otherwise, ℬ outputs

logд h =
x1−x ′

1

x ′
2
−x2

mod q.

Using the bounds of Lemma 2.4, we know that if q > 8nqH/ϵ ,
where n = |𝒫𝒦|, then ℬ runs in time at most τ · 8n2qH/ϵ · ln(8n/ϵ)
and succeeds with probability

ϵ ′ ≥ ϵ/8 − Pr[bad] .

We have left to bound the probability Pr[bad]. We will do so by

arguing that in each individual run of 𝒜, its view is information-

theoretically independent of ℬ’s choice for (x1,x2). Namely, let

𝒫 = {(x ′
1
,x ′

2
) : y∗ = дx

′
1hx

′
2 } be the set of q possible secret

keys underlying pk∗ = (y∗,π∗). Based on just y∗, each of the

q elements of 𝒫 is equally likely to be (x1,x2), and since π∗ is
computed without using (x1,x2), this remains true for the entire

pk∗. We now show that the signing oracle does not leak any fur-

ther information about (x1,x2). Let the transcript of an interac-

tion with the signing oracle in the role of signer Si be given by(
(𝒯 ,m, {(tj , PK j )}j ∈𝒞i ), (ti , PKi ), (t̄ , PK, {sj }j ∈𝒞i ), (si,1, si,2)

)
, where

(ti , PKi ) and (si,1, si,2) are outputs of the signing oracle and the

other values are provided by 𝒜. In an honest signing protocol, the

oracle’s outputs follow a distribution such that si,1 and si,2 are
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uniformly distributed over Zq (due to the random choice of r1 and

r2), while ti is the unique value such that

дsi,1−
∑
j∈𝒞i sj,1hsi,2−

∑
j∈𝒞i sj,2 =

ti∏
j ∈𝒞i tj

· y∗c ,

where c = H(sig, t̄ , PK,m). We argue that for any (x ′
1
,x ′

2
) ∈ 𝒫 ,

there exists exactly one choice for (r ′
1
, r ′

2
) ∈ Z2

q such that the honest

signerwould have produced the exact same outputs (ti , PKi ), (si,1, si,2)
if it would have used (x ′

1
,x ′

2
) as the secret key, namely,

r ′
1
= si,1 −

∑
j ∈C

sj,1 − cx
′
1

mod q

r ′
2
= si,2 −

∑
j ∈C

sj,2 − cx
′
2

mod q .

The signing oracle therefore doesn’t leak any further information

about the secret key (x1,x2).

As (x ′
1
,x ′

2
) is computed from𝒜’s output after two executions that

are information-theoretically independent of (x1,x2), the extracted

pair (x ′
1
,x ′

2
) must also be independent of (x1,x2), so we have that

Pr[bad] = 1/q .

from which the bounds in the theorem follow. �

4.3 Variants and Caveats
Obtaining security in the plain public-key model. The DG-CoSi

scheme as described in Section 4.1 thwarts rogue-key attacks in the

key-verification model by letting signers add self-signed certificates

to their public keys. Alternatively, one could prevent such attacks

in the plain public-key model (i.e., without requiring certificates)

by using a different hash value as exponents for each public key in

the verification equation [8], or by using a product of hash values

as exponents [20, 21]. However, these schemes would be less effi-

cient in terms of verification or key aggregation time, respectively,

because they would require a number of exponentiations that is

linear in the group size for large or frequently changing groups.

Simplifications for the KOSKmodel. As security in the key-verification
setting implies security in the KOSK setting,DG-CoSi can readily be
used in the KOSK model, and we can even simplify the scheme a bit.

Most importantly, the self-signed credentials preventing rogue-key

attacks are no longer neccessary, as these are avoided by the KOSK

setting. Consequently, the domain separation on the hash function

can be ommitted. More interestingly, the aggregate public key PK
no longer needs to be included in the hash and setting c ← H(t̄ ,m)
is sufficient. In the key-verification setting we needed PK to be

included in the hash to be able to “divide out” the signatures of

cosigners and extract a solution to the DL problem. In the KOSK

setting this is much simpler, as we know the secret key of every

corrupt signer, and PK can be ommitted. This saves some bandwith

as PK no longer has to be propagated down the tree of signers. We

stress that this simplified scheme should only be used in a setting

where one is assured that every key is honestly generated.

Extension to multi-sets. It is also easy to extend the DG-CoSi
scheme to multi-sets of signers, where each signer can participate

multiple times in the same signing protocol. In a highly distributed

setting, this could offer the advantage that signers do not have to

keep track in which signing protocol they already participated. The

key aggregation algorithm would simply have to be modified to

compute PK ←
∏

pk∈𝒫𝒦 yny as the aggregate public key, where

ny is the multiplicity of public key y in the multi-set 𝒫𝒦.

Note that this extension is only secure because DG-CoSi in-
cludes the aggregate public key PK in the hash H(sig, t̄ , PK,m).
Without including PK , as was done for example in the CoSi scheme,

the extension to multisets becomes insecure, because a signature

(c, s1, s2) on messagem and public key y is easily transformed into

a valid signature on a different messagem′ for public key y with

multiplicity c/c ′ mod q, where c ′ = H(t̄ ,m′).

Collision attacks. Bagherzandi et al.’s forking lemma [3] imposes

that the random oracle H maps into the full exponent set of Zq ,
where q is typically a 256-bit prime, rather than a subset Z

2
ℓ for

ℓ < |q |. Standard Schnorr signatures are well known to remain

secure for much shorter hash outputs, around 128 bits [25, 32]

because their security does not rely on the collision resistance of

the hash function. It is worth noting that the same is not true for
the case of multi-signatures, because unlike standard signatures,

collisions in the hash function actually do lead to forgeries on the

multi-signature scheme.

Namely, consider a forger ℱ that performs a signing query for a

messagem and a tree of signers where ℱ is the leader with an hon-

estly generated public key y = дx1hx2
and the honest signer with

public keyy∗ the only child. On inputm, the honest signer returns t1.
The forger then repetitively generates random values r1, r2 ←

$ Zq
and computes t̄ ← дr1hr2 · t1 and hash values H(sig, t̄ , PK,m) and
H(sig, t̄ , PK,m′) for PK = y ·y∗ andm′ ,m until it finds two values

t̄ , t̄ ′ such that H(sig, t̄ , PK,m) = H(sig, t̄ ′, PK,m′), which for an

ℓ-bit hash function is expected to happen afterO(2ℓ/2) tries. It then
sends (t̄ , PK) to the honest signer, who responds with s1,1, s1,2 such

that дs1,1hs1,2 = t1y
∗c

for c = H(sig, t̄ , PK,m) = H(sig, t̄ ′, PK,m′).
If r ′

1
, r ′

2
are the random values that ℱ used to generate t̄ ′ = дr

′
1hr

′
2 ,

then ℱ outputs (c, s1 = r ′
1
+ cx1 + s1,1 mod q, s2 = r ′

2
+ cx2 +

s1,2 mod q) as a valid forgery onm′.

5 EVALUATION
We presented DG-CoSi as an alternative to CoSi, where the prov-
able security comes at the price of an increased signature size and

a slightly increased computational cost. In this section, we evaluate

the performance of DG-CoSi and show that the burden of using a

double generator will not have a significant impact on the efficiency

of the system.

5.1 Experiment Setup
Prototype. We implemented DG-CoSi in the Go programming

language as an extension to the Collective Authority project (Cothor-

ity). We used the Cothority [14] and Onet [13] libraries to provide

support for the tree-based collective signing as used in CoSi and
DG-CoSi. This experiment compares the latest version of CoSi to
an implementation of DG-CoSi. Note that CoSi has been further

developed since its original publication [35], which explains the

small differences in performance measurements between their work

and our results.

Physical configuration. A DeterLab [2] testbed was used to eval-

uate our system. The testbed consists of 32 physical machines, each
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Figure 4: Comparing end-to-end latency ofCoSi andDG-CoSi
signing with varying amounts of signers.

containing an Intel Xeon E3-1260L processor and 16GB of RAM.

Every physical machine simulated up to 256 signers for a total of

8192 signers. A round-trip delay of 200 miliseconds between the

machines is enforced to simulate an international connection, and

all the signers that communicate with each other are deployed to

different physical machines to correctly simulate the network delay.

Tree Configuration. DG-CoSi requires a tree structure between
the different signers. For a given amount of signers, we can choose

either a tree with a lower depth but a higher branching factor, or

accept a higher depth but a lower branching factor. The overall

network delay is linear in the depth of the tree, and the computation

cost and network usage in each node scale linearly in the branching

factor. Experimenting showed that a low tree depths (and high

branching factors) provide good results, We find that a depth of

3 (excluding the root of the tree) yields low network delays while

keeping the computation cost and network usage managable, and

therefore use this setting for our following experiments, choosing

a branching factor according to the number of signers.

Experiment. We simulate the signing process ofCoSi andDG-CoSi
to evaluate the system. In each experiment, the leader initiates the

signing protocol for an arbitrary message, and the resulting signa-

ture is verified against the aggregate public key. Every experiment

is repeated 10 times, taking the average of the indiviual runs.

5.2 Results
Signing Latency. To evaluate the scalability of DG-CoSi, we mea-

sured the end-to-end latency of the signing process, meaning the

time between the moment that the root initiates the signing proto-

col and that it outputs the signature, from 128 up to 8192 signers.

Fig. 4 depicts the results, showing that DG-CoSi can easily scale

to 8192 signers, yielding a signature in less than 1.5 seconds. It

can readily be seen that the network delay dominates the overall

latency, as the 1.2 seconds is exactly two rounds of three round trips

over the depth of the tree. The results confirm our prediction that

DG-CoSi scales as well as CoSi does, only marginally increasing

the overall latency compared to CoSi.
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Figure 5: Bandwidth consumption (sent and received com-
bined) ofCoSi andDG-CoSiwith varying amounts of signers.

Bandwidth. Our second experiment measures the amount of data

that every signer sends and receives. While leaf-signers (signers

without children in the tree) send and receive less data, we here

look at the data sent and received by the root signer, who always

has the maximum amount of children.

Fig. 5 shows the bandwidth consumption of CoSi and DG-CoSi.
We observe a fixed increase of 11% in the bandwidth cost, indepen-

dent of the number of signers. The main differences concerning

network usage between CoSi and DG-CoSi are that the latter com-

putes the aggregate public key PKi in the tree, and that DG-CoSi
has two s-values in the response rather than a single s-value for
CoSi. Onemay expect that these changes result in amore significant

difference in bandwidth usage, but the overhead of the connection

and communicating the tree structure reduced the gap between

the two schemes. We believe an 11% increase in the bandwidth is

a very acceptable overhead to gain provable security and will not

hinder the system’s scalability.

We observed a tenfold improvement in the bandwidth of the

current version of CoSi over the original one. After further in-

vestigation, we found out that the original CoSi aggregated the

bandwidth cost over the ten rounds instead of the averaging.

Computation Cost. Our final experiment compares the computa-

tional cost betweenCoSi andDG-CoSi, by measuring the total CPU

time used to run all the signers (that is, the total time should be

divided by the number of signers to obtain the average time spent

per signer). We gathered both user time and system time of running

processes to compute the CPU time, Fig. 6 shows the results. We

observe an 32% average increase from CoSi to DG-CoSi, which we

expect is due to the multi-exponentiation required to compute ti .
Overall, DG-CoSi is still extremely efficient, as a total CPU time of

1.47 seconds for 8192 signers means every individual signer spends

0.18 milliseconds on average.

6 CONCLUSION
Our work provides substantial evidence that the CoSi andMuSig
multisignature schemes cannot be proven secure under standard
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Figure 6: CPU time (User + System) ofCoSi andDG-CoSiwith
varying amounts of signers.

assumptions, as any such proof would have to be non-algebraic,

non-black-box, or under an assumption that is not implied by the

one-more discrete logarithm assumption (unless the one-more dis-

crete logarithm assumption turns out to be false). Given the status

of provable security as a sine qua non in modern cryptographic

protocol design and given its importance in the selection of in-

dustry standards, we surface the DG-CoSi scheme as a provably

secure yet highly efficient alternative. Compared to the original

CoSi scheme, our experiments yield a 32% increase in CPU time and

no noticeable difference in signing latency, showing that DG-CoSi
is essentially just as scalable as CoSi and is a viable alternative for

use in large-scale decentralized systems.
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