
Vaults and Covenants

James O’Beirne
vaults@au92.org

January 10, 2023

Abstract
Vaults are a technique for substantially reducing the risk of Bitcoin theft. In this paper,

we examine how they might be implemented using different covenant designs. We survey
the vault implementations that are currently usable, as well as those that would be possible
only with proposed consensus changes.

A new approach, OP_VAULT, is presented which avoids the pitfalls of a general covenant
proposal while still enabling the behavior necessary for a featureful vault implementation.
The design assumes the deployment of package relay and ephemeral anchors for dynamic
fee management, but allows for future fee management approaches, e.g. transaction spon-
sors, should they come. OP_VAULT uniquely allows batching operations, partial unvaultings,
dynamic withdrawal targets, and recursive deposits.

Introduction
Custodying bitcoin is notoriously hazardous. It is roughly equivalent to another task famous
for its difficulty: keeping sensitive data accessible but out of unauthorized reach. Luckily, due
to the programmability of Bitcoin script, custodians do not necessarily have to rely solely on
the failure-prone task of key management.

In Bitcoin, a covenant is a constraint put on how a coin can be spent on the basis of its
spending transaction, above and beyond the traditional requirements of satisfying a one-time
unlocking script. Covenants can be written in such a way that they express recursive constraints
on outputs, so that the effective period of covenant enforcement can span an arbitrary number
of transactions.

Currently there is no way to enforce covenants “on-chain,” or endogenously within Bitcoin’s
validation rules, but there are many pending proposals for how to modify Bitcoin’s validation
rules to allow for this functionality. Covenant proposals can be divided into two kinds:

• precomputed: where the state machine of possible transactions within the lifecycle of
a covenant is predetermined and therefore bound (e.g. OP_CTV [Rub20b], ANYPREVOUT

[Chr18], OP_TX [Rus22]), and

• general: where the state machine is expressed within Bitcoin script, and can reapply itself
indefinitely, making it potentially unbounded (e.g. transaction introspection opcodes and
OP_CHECKSIGFROMSTACK [Kan21]).

Vaults are an especially useful kind of covenant that give Bitcoin users operational simplicity
during expected use, but heightened security in the event of unauthorized access to private keys.
When they were originally presented in [MS16], a vault was defined as a simple covenant that
ensured that the spend of a coin was only allowed after broadcasting an intent to unvault and
waiting some period. During this delay, the funds could be “clawed back” into a prespecified
recovery path in case the proposed spend was unexpected.

1

In order to make use of this covenant, a user would need to spend their coins into a vault,
then configure a watchtower process to monitor the chain. If the watchtower detected an
unexpected unvaulting, it could alert the owner or automatically broadcast a transaction that
sweeps the funds to safety.

User spends UTXO(s)
into vault

After some
delay

An unvault attempt
is triggered

Vault withdrawal is
finalized

Vaulted coins
swept to predetermined

recovery path

Figure 1: The basic lifecycle of a Bitcoin vault.

An idealized vault
The most useful incarnation of a vault design would allow Bitcoin custodians to benefit from a
predetermined contestation period and recovery method with minimal overhead.

Some features that are crucial to this include

• efficient reuse of an existing vault configuration. A single vault scriptPubKey

should be able to “receive” multiple deposits and still facilitate efficient administration of
the vaulted coins. Batched operations for recovery and unvault should be supported in
order to allow managing such a vault efficiently.

• partial unvaultings, which would allow users to withdrawal partial vault balances with-
out having to perform the setup ceremony for a new vault.

• dynamic unvault targets, or allowing the proposed withdrawal target for a vault to be
specified at unvault time rather than when the vault is first created. This would remove
the need for a statically-specified, intermediate live wallet during withdrawal that only
exists to route unvaulted funds to their desired destination.

• dynamic fee management that, like dynamic targets, defers the specification of fee
rates and source of fees to unvault time rather than vault creation time.

As we will see, no existing vault design meets this set of features.

Precomputed vaults
Given Bitcoin’s existing validation rules, the only current, viable means of implementing a vault
that is enforced directly by the validation rules1 is by presigning a limited graph of transactions,
as proposed in [Bis19] and implemented in [Bis20]. A user must generate an ephemeral key,
sign a transaction sending coins to an address controlled by that key, presign a tree of possible
transactions using that key, and then delete the key.

This locks the coins into a predetermined flow, and technically satisfies the definition of a
vault. A robust implementation of this approach is described in detail in [Swa+20], as well as
many related considerations like running a watchtower.

1Note that [Rev] is a method of emulating vaults using large multi-sig quorums, but this comes with significant
operational complexity.

2

Presigning transactions to construct vaults in this way does add the safety of a limited
recovery window, but it has a number of drawbacks:

• Key deletion cannot be proved, so ensuring that the vault isn’t backdoored is more diffi-
cult.

• The custodian must not lose the presigned transactions, since there is no other way of
spending the bitcoin. The sensitive data that is necessary to store indefinitely grows
linearly with the number of vaults created.

• The spend target for the vault is static, and presumably must correspond to some kind
of hot (or “warm”) wallet. Loss of control of that hot wallet necessitates sweeping all
presigned transactions to the likely difficult-to-access recovery wallet.

• Arbitrary vault withdrawal amounts are not possible after the structure of the vault is
locked in by presigning.

• Vault operations, namely recoveries and unvaultings, cannot be batched together. This
is especially unfortunate because in the case of a key leak, it may be critical to sweep
all vaults to the recovery path as soon as possible; otherwise the custodian may end up
racing the attacker to spend out of the vault.

• Once initiated, other deposits cannot (or should not) be sent to after the inital deposit.
This prevents e.g. exchanges from initiating vaults and then letting customers deposit
directly into vaults at-will.

Precomputed vaults with covenants
Having some kind of general on-chain covenant mechanism improves the situation somewhat.
Script functionality like OP_CHECKTEMPLATEVERIFY (CTV) [Rub20b] allows us to use a vault
scheme very similar to presigned transaction vaults, but with the considerable benefit that we
do not need to engineer and operate an ephemeral key signing and deletion ceremony, nor do
we have to persist critical presigned transactions indefinitely.

Similar to the presigned transaction approach, the entire allowable transaction state machine
needs to be generated ahead of time and committed to with an OP_CHECKTEMPLATEVERIFY hash.
This is demonstrated in [OBe22].

This approach has the benefits of not requiring storage of anything aside from the vault
parameters used to generate the CTV transaction graph, which is not particularly sensitive.
It also doesn’t require ephemeral keys due to the nature of CTV, which uses an on-chain
commitment to enforce a precomputed covenant.

Unfortunately, this approach still has major limitations.

• By nature of being precomputed, the number of vault operations is limited and predefined,
ruling out arbitrary partial unvaults and recursive re-vaults.

• The destinations are still fixed to a set of keys. Unvaulting must be done through a single
predetermined path. Fee management keys must be precommitted; if the corresponding
wallet is lost, ability to finalize vault transactions may be impaired (more on fees later).

• Vault operations cannot be batched together; this turns out to be a big limitation when
responding to attackers.

These caveats also apply to other, similar vault implementations using different precomputed-
covenant approaches in which the allowed graph of transactions must be precomputed, e.g.
ANYPREVOUT ([Poi22]) and the (proposed but not implemented) OP_TX ([Rus22]).

3

Recursive vaults with general covenants
If we introduce sufficiently powerful script functionality to allow arbitrary introspection of the
spending transaction, we would have the ability to write any kind of covenant – including a
fully-featured, recursive vault – without having to resort to presigned transactions, covenant
emulation via multi-sig, or CTV/APO-style precomputed transaction graphs.

Such a vault would be free from the limitations of the precomputed approaches described
above, but at the cost of significant script complexity. Writing the necessary script for such
a vault based on primitives described in e.g. [Kan21] would not only be very complex, but it
would be very verbose on-chain. The scriptPubKey sizes would be quite large for what might
be a very common operation.

There is also a significant chance that the Bitcoin community might not reach agreement
on how to proceed towards a general covenant solution. Vaults have considerable utility for a
great many users in the immediate term, since all users are concerned with custody. Gating this
highly practical feature on establishing broad consensus around a general covenant mechanism
(which isn’t even guaranteed to happen) seems suboptimal.

OP_VAULT

Instead of resigning ourselves to the limitations of precomputed vaults, or waiting for a general-
covenant mechanism to be deployed to script (a daunting prospect), we propose to evaluate the
the creation of opcodes OP_VAULT and OP_UNVAULT, which have covenant-like characteristics but
do not attempt to address the general problem of covenants.

This approach has a complete set of desirable features for safer custodial operations, none of
the limitations of precomputed vaults, and is more concise and usable than a vault implemented
with more general covenant scripting primitives.

Sign with unvault key

Reveal recovery
scriptPubKey

OP_VAULT
<recovery-spk-hash>

<spend-delay>
<unvault-spk-hash>

[outputs controlled
by recovery keys]

Wait spend-delay blocks &&
outputs match target hash

OP_UNVAULT
<recovery-spk-hash>

<spend-delay>
<target-outputs-hash>

[dynamically
chosen unvault

outputs]

Figure 2: A high-level description of the OP_VAULT state machine.

4

Components of the vault
Each OP_VAULT-style vault makes use of a few pieces of essential data. These include

• a recovery path: the destination that vault funds can be swept to at any point prior to
the finalization of withdrawal to the unvault target.

This recovery address would usually correspond to a spending script that is inconvenient to
exercise but is highly secure, e.g. a key generated offline or a geographically distributed
multisig. It could be a Taproot scriptPubKey that incorporates a number of different
spending conditions.

Vaults which share the same recovery path can be swept in batch operations, which is an
important practical aspect of managing large numbers of vaults.

• an unvault key: used to authorize beginning an unvault process, i.e. the spending of an
OP_VAULT into a suitable OP_UNVAULT, which “announces” the intent to unvault and begins
the withdrawal lock-in period. If an attacker obtains access to this key, the outcome is not
catastrophic because any unvault can be interrupted and swept to the recovery address.
This can be an arbitrary scriptPubKey so long as it is a valid witness program.

Vaults which have this in common can be unvaulted in batch.

• an unvault target: an arbitrary target or destination that is specified as a parameter
to OP_UNVAULT, and dictates where unvaulted funds go. This target consists of a list of
destination outputs (including amounts) which the vault will be spent into after the delay
period. These destinations can of course include recursive OP_VAULT outputs to facilitate
partial-amount unvaults.

Initial vaulting
To create a vault, a user would spend to an output with the following scriptPubKey (or equiv-
alent taproot structure):

OP_VAULT <recovery-spk-hash> <delay-period> <unvault-spk-hash>

where

• <recovery-spk-hash> is the tagged SHA256 hash of the recovery scriptPubKey. This
could e.g. correspond to a P2TR address with many spending conditions.

• <delay-period> indicates the delay between when the OP_UNVAULT confirms and when the
funds can be spent to the unvault target outputs. It is specified in the same way that
the lower 24 bits of nSequence timelocks are, allowing a relative lock in terms of time or
block height.

• <unvault-spk-hash> is the tagged SHA256 hash of the scriptPubKey whose witness is
required to start the unvault process.

An output encumbered by an OP_VAULT scriptPubKey can only be spent one of two ways:

1. it can be swept to the recovery address at any point with no witness data, or

2. it can be sent to an OP_UNVAULT output matching the specification described below.

5

Triggering an unvault
To withdraw bitcoin from an OP_VAULT-encumbered output to some arbitrary destination, it
must first be spent into an OP_UNVAULT output.

Witness requirements

A witness must be provided for the OP_VAULT input being spent which contains

1. a witness program scriptPubKey that, when hashed, yields the <unvault-spk-hash>, and

2. a witness stack satisfying that witness program.

This witness is crucial for preventing unauthorized unvault attempts.

Spending output requirements (covenant)

The OP_UNVAULT scriptPubKey must have the form

OP_UNVAULT <recovery-spk-hash> <delay-period> <unvault-target-hash>

where the first two parameters are carried over from the input OP_VAULT (described above), and
unvault-target-hash is defined as

sha256d(serialized(d.scriptPubKey) || serialized(d.nValue)

for d in target_outputs)

In other words, the target hash commits to the set of outputs that are proposing to be
withdrawn to.

Withdrawal to the unvault target
The unvaulting party must now wait for the timelock specified by the [Fri+15]-compatible delay-
period to mature before being able to broadcast a transaction spending the OP_UNVAULT output
into a set of outputs satisfying unvault-target-hash. No witness is needed for this finalizing
“withdrawal” transaction, which represents the completion of the vault lifecycle for all amounts
which are not revaulted.

If the owner of the vault does not recognize this proposed withdrawal, he can sweep the
vault into the recovery path before the delay period ends.

Sweeping to recovery
In order to sweep an OP_VAULT or OP_UNVAULT output to the recovery address, a transaction
is broadcast spending that output into a new output corresponding to the recovery address,
consuming the full amount of the output(s) being swept. This can happen at any point before
withdrawal to the unvault target is finalized.

The witness for the swept output is empty, since the only authorization necessary is simply
that the scriptPubKey being spent to matches the <recovery-spk-hash> committed to in the
parent OP_VAULT output.

6

Denial-of-service protection

During the creation of OP_VAULT and OP_UNVAULT outputs, the recovery address remains hidden
behind a hash. This avoids denial-of-service (DoS) attacks that involve a third party attempting
to blindly sweep vault transactions to their recovery path, which could result in a temporary
halt in liquidity while the vault owner goes through the potentially lengthy process of activating
the recovery keys for funds retrieval.

If it becomes necessary to make use of the recovery path, the recovery scriptPubKey will
be revealed, which means that any other vaults with that recovery path may be swept there by
an unauthenticated party.

This seems like a reasonable trade-off, since presumably if the vault’s owner had to make
use of the recovery path for one vault, any other vault sharing the recovery path may be at risk
due to a compromise in the owner’s infrastructure.

Batching

If multiple vaults share a common recovery-spk-hash, they can be swept in batch. This is an
especially important feature for users that maintain many vaults, since a key compromise might
necessitate rapidly sweeping many vaults at once before a delay period has elapsed. Batching
the sweep reduces the chainspace required significantly, because we’re able to sweep to a total
of two outputs instead of creating 2v 2 outputs for v vaults.

Note that this batching option is not possible in vault schemes that rely on precomputed
covenant techniques.

Ephemeral
anchor

scriptPubKey
OP_VAULT
 recov-hash-1 ...

amount
a3

scriptPubKey
OP_VAULT
 recov-hash-1 ...

amount
a1

witness
[unvault-key
 signature]

[empty witness]

Script-path
reveal

scriptPubKey
OP_VAULT
 recov-hash-1 ...

amount
a2

scriptPubKey
OP_UNVAULT
 recov-hash-1 ...
amount
a1

scriptPubKey
[recovery-spk]
amount
a1 + a2 + a3

Ephemeral
anchor

Swept to interrupt unvault

Swept while still vaulted

Batch sweep

output

optional output

input

Script-path
reveal

Figure 3: Demonstration of multiple vaults being batch-swept simultaneously. Two of the
vaults (bottom) are still vaulted while one (top) is interrupting an attempted unvault. This

pattern is demonstrated with functional tests in test_batch_sweep() of [OBe23a].

Managing fees safely
One difficulty when designing this scheme was determining how to adjust the fee rate of transac-
tions that happen sometime after vault creation. The fee environment may differ considerably
from when the vault was initially created to when it will be accessed; fees may be much higher.

2An anchor output for fee control is needed for each sweep transaction

7

The most common method of increasing fee rate is to lower output amounts, which leaves
more bitcoin available to miners, adding to the incentive to include a given transaction. During
an OP_VAULT lifecycle, allowing variable amounts would unfortunately present some problems.

If an attacker discovers the recovery preimage, they may trigger undesired recovery sweeps.
If the OP_VAULT validation rules allowed output amounts to vary for the recovery transaction,
an attacker could simply set that value to 0 and burn the vaulted coins. A similar consideration
must be applied to OP_UNVAULT transactions.

In order to avoid such a failure, there are two options:

1. script validation rules could require some allowable “range” of amount discounts during
unvault/recovery to facilitate fee payment, or

2. script validation rules could require that the unvault/recovery outputs preserve the full
value of any vaults being acted on.

1. seems like a bad design. 2. seems like the preferable approach, but it introduces a complica-
tion: how are we to pay fees for sweep and unvault transactions if the full value of the vaulted
coins must be preserved?

Using package relay and ephemeral anchors

Fee management is a thorny part of designing any contracting protocol built atop Bitcoin script.
Transactions which are presigned (or covenant structures that fix amounts) cannot vary their
amounts to adjust fees dynamically. A common workaround is to attach an “anchor output”
[Vara], which is an output that is intended to be spent by some child transaction. Spending the
child can raise the effective feerate of its parent, the precommitted contract transaction. This
is referred to as child-pays-for-parent (CPFP).

This technique alone is insufficient for reliable fee control. If fees have risen considerably
since the initial contract negotiation and the feerate of a precommitted transaction is beneath
the minimum mempool feerate, it may be unable to broadcast in the first place and CPFP
cannot take place.

Luckily, it is looking increasingly likely that package relay policies ([Varb]) that remedy this
will become part of bitcoin. The OP_VAULT proposal detailed here not only assumes the presence
of package relay, but also makes use of ephemeral anchors ([San22]), zero-value outputs which
must be spent within the package they’re relayed with, in order to avoid unnecessarily wasting
vaulted value for fee control.

Our rationale for the permissibility of this hard dependency is that many – perhaps all –
contracting schemes built on Bitcoin become unworkable without a robust solution for dynamic
fee management, which itself appears to depend on package relay. We fully expect that if
OP_VAULT were found to be a desirable soft-fork, its deployment would naturally come after the
deployment of package relay and some kind of fee control mechanism like ephemeral anchors.

Given the deploy of these mempool policies, the OP_VAULT strategy is able to both provide
efficient fee management and rule out coin-burning DoS attacks.

Future-proofing fee control
To avoid wasting value and to allow dynamic fee control, each OP_UNVAULT transaction, recovery
sweep transaction, and unvault target transaction may have an ephemeral anchor output that
facilitates robust fee management with CPFP and package relay.

But there are other possible designs for dynamic fee management. One is transaction
sponsors [Rub20a]. Sponsors allow fee rate improvement of any unconfirmed transaction by
any party, and they do not require any structural “awareness” from the transaction whose fee

8

is being bumped. In the proposed design, sponsors would be required by consensus to be mined
alongside other transactions which they are sponsoring. This allows CPFP-like adjustment of
fee rate, but without a wasted output or specific planning.

In order to allow for the possible adoption of such a proposal, any ephemeral anchor outputs
in the OP_VAULT scheme are strictly optional. To avoid pinning by an adversary who discovers
the recovery path, any transaction for which the ephemeral anchor is optional must be marked
for replacement by fee (RBF) (by policy, as a part of this proposal). This ensures that the
vault owner can override spurious sweep transactions that exclude the anchor with higher-fee
packages making use of the anchor.

The importance of dynamic unvault targets
In vault schemes which are usable today, the unvault target is always fixed at vault cre-
ation time. Even in schemes that assume the use of a precomputed covenant mechanism like
CHECKTEMPLATEVERIFY or ANYPREVOUT, the set of withdrawal targets is similarly fixed.

The design presented here allows for the withdrawal target to be decided at unvault time,
before the delay period, rather than needing to be specified during the creation of the vault.
This presents a significant benefit, because if the withdrawal target is fixed, an intermediary hot
or warm wallet must be used to unvault and then send the coins to their ultimate destination.

If a withdrawal target can be set at unvault time, no such intermediary wallet is needed.
This saves on operational complexity, avoids a potential avenue of compromise, and also removes
the need for an additional transaction – which may be onerous when considering possible future
demand for chainspace.

Batching
Dynamic unvault targets also allow multiple vaults to be unvaulted (or recovered) to a single
set of output targets instead of requiring separate transactions for each vault deposit. In the
case of a withdrawal, unvaulted funds can skip the “warm” wallet step that precomputed vault
funds must pass through on their way to destinations only known at unvault time.

This isn’t only important as blockspace becomes scarcer; the ability to batch may prevent
a situation in which, given a large number of vaults and a low timeout period, a custodian
otherwise may not be able to get all the confirmations needed to thwart an attacker.

Presigned
vault

Unvault "Warm"
wallet

Precomputed vaults

OP_VAULT OP_UNVAULT

OP_VAULT

Targets Targets

Figure 4: Comparison of the “expected” withdrawal flow for precomputed vaults vs. an
OP_VAULT usage. Note that due to (i) the ability to consolidate the unvault and (ii) skip the
warm wallet, the OP_VAULT design uses something on the order of 2v fewer outputs (for v

vaults) than the precomputed vault does.

9

Presigned
vault Unvault To recovery

Precomputed vaults

OP_VAULT OP_UNVAULT To recovery

OP_VAULT

Presigned
vault To recovery

Precomputed vaults

OP_VAULT To recovery

OP_VAULT

Figure 5: Comparison of the recovery process. The top row shows an interrupted unvault,
the bottom shows recovery prior to an attempted unvault. In each case, OP_VAULT reduces

output creation on the order of v.

Attacks on batching

Possible DoS attacks on batching have been hypothesized. One possible attack can happen
if a custodian of a large number of vaults is attempting to batch sweep; an attacker who has
mapped the mempool may “unbundle” the batch, choose a single vault output to sweep, and
attempt to front-run and pin the batch sweep with a single conflicting transaction at mempools
near miners. This would have the effect of preventing the propagation of a batch sweep.

A way around this might be for the custodian to monitor the confirmation of the sweep; if
a batch sweep isn’t confirmed despite having an appropriate feerate, the batch could be split in
two and rebroadcast. If a confirmation doesn’t happen in a subsequent block, the batch could
be split into four, and so on and so forth until the attacker is forced to permit the confirmation
of the sweeps.

This attack may not be specific to vaults per se; more robust anti-pinning techniques are
necessary for many applications in Bitcoin. This discussion does however point to the necessity
for any vault user to take caution that the number of vaults which share recovery-spk-hash
and unvault-spk-hash parameters can be swept in the number of blocks that their spend-delay
provides.

Recursive deposits (revaults)
Another benefit of supporting dynamic unvault targets is that an arbitrary number of partial
unvaults can happen by withdrawing to some output outside the vault, but then redepositing
the remaining balance back into the same OP_VAULT [...] construction.

This could enable, for example, an exchange to offer a vault address to a customer, allow
them to make multiple deposits, and support partial withdrawals without having to redo a
vault initialization.

10

Downsides relative to other designs
We have already written about the important benefits that this scheme provides relative to
alternatives. While we think the set of trade-offs for OP_VAULT are appealing, it is important to
acknowledge downsides.

A scheme that does not codify vault semantics at the script interpreter layer, e.g. one that
uses only a general covenant primitive like transaction introspection within script, allows for
more flexibility in the particular control flow of the vault, since the rules of the vault are specified
by the end-user instead of the consensus engine. It more easily facilitates user experimentation.

For example, perhaps a user prefers to safeguard their recovery path with a signature rather
than revealing the preimage to a witness (program) hash, so that discovery of the recovery path
doesn’t allow an unauthenticated user to sweep open vaults to recovery.

The downside, of course, is that this results in very large on-chain script sizes. In order to
make vault constructions concise, they ultimately must be codified in validation rules, barring
some breakthrough in a zero-knowledge proof system that could be supported on-chain.

Implementation
A draft implementation is provided at [OBe23b]. The draft lacks a proposed activation mech-
anism and some minor policy and wallet changes, but the major functionality described above
is implemented and comprehensively tested in [OBe23a].

If there is sufficient interest, an accompanying BIP will be written.

Conclusion
We have presented a new set of opcodes, OP_VAULT and OP_UNVAULT, which enable featureful
vaults in Bitcoin. These opcodes allow encumbering a set of coins in such a way that their
spending requires passing through a delay period, during which the coins can be recovered to a
set address. Enabling on-chain enforcement of such a control flow presents significant benefits to
custodians of bitcoin, whether large or small, because this scheme in essence offers multisig-like
security for an expected operational burden roughly on par with single sig use.

Thanks to use of package relay and ephemeral anchors, the OP_VAULT proposal is unique
in enabling robust dynamic fee management, previously a major challenge for vaults. It also
enables batch management, a critical feature when considering future scarcity of chainspace
and the need to respond to key-compromise efficiently. Dynamic unvault-target specification
removes the need for intermediate routing wallets, making the use of vaults simpler and safer.

Acknowledgements
Thanks to BL, Jeremy Rubin for review and discussion. Thanks to Antoine Riard for finding
attacks. Thanks to Greg Sanders for lots of discussion and ideas on script execution.

References
[Bis19] Bryan Bishop. Bitcoin vaults with anti-theft recovery/clawback mechanisms. 2019.

url: https : / / lists . linuxfoundation . org / pipermail / bitcoin - dev / 2019 -

August/017229.html.

[Bis20] Bryan Bishop. python-vaults. 2020. url: https://github.com/kanzure/python-
vaults.

11

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017229.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017229.html
https://github.com/kanzure/python-vaults
https://github.com/kanzure/python-vaults

[Chr18] Anthony Towns Christian Decker. BIP-118: SIGHASHANYPREVOUT for Taproot
Scripts. 2018. url: https://github.com/bitcoin/bips/blob/master/bip-0118.
mediawiki.

[Fri+15] Friedenbach et al. BIP-68: Relative time-lock. 2015. url: https://github.com/

bitcoin/bips/blob/master/bip-0068.mediawiki.

[Kan21] Sanket Kanjalkar. Elements Taproot Introspection Opcodes. 2021. url: https://

github.com/ElementsProject/elements/blob/master/doc/tapscript_opcodes.

md.

[MS16] Ittay Eyal Malte Möser and Emin Gün Sirer. Bitcoin Covenants. 2016.

[OBe22] James O’Beirne. simple-ctv-vault. 2022. url: https : / / github . com / jamesob /

simple-ctv-vault.

[OBe23a] James O’Beirne. OP_VAULT draft functional tests. 2023. url: https://github.
com/jamesob/bitcoin/blob/2023-01-opvault/test/functional/feature_vaults.

py.

[OBe23b] James O’Beirne. OP_VAULT draft implementation. 2023. url: https://github.
com/jamesob/bitcoin/tree/2023-01-opvault.

[Poi22] Antoine Poinsot. simple-anyprevout-vault. 2022. url: https://github.com/darosior/
simple-anyprevout-vault.

[Rev] Revault. Revault. url: https://revault.dev.

[Rub20a] Jeremy Rubin. A Replacement for RBF and CPFP: Non-Destructive TXID De-
pendencies for Fee Sponsoring. 2020. url: https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2020-September/018168.html.

[Rub20b] Jeremy Rubin. BIP 119: CHECKTEMPLATEVERIFY. 2020. url: https://github.
com/bitcoin/bips/blob/master/bip-0119.mediawiki.

[Rus22] Rusty Russell. OP_TX: generalized covenants reduced to OPCHECKTEMPLAT-
EVERIFY. 2022. url: https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2022-May/020450.html.

[San22] Gregory Sanders. Ephemeral Anchors: Fixing V3 Package RBF against package
limit pinning. 2022. url: https : / / lists . linuxfoundation . org / pipermail /

bitcoin-dev/2022-October/021036.html.

[Swa+20] Jacob Swambo et al. Custody Protocols Using Bitcoin Vaults. 2020. url: https:

//arxiv.org/pdf/2005.11776.

[Vara] Various. Bitcoin Optech: Anchor Outputs. url: https : / / bitcoinops . org / en /

topics/anchor-outputs/.

[Varb] Various. Bitcoin Optech: Package Relay. url: https://bitcoinops.org/en/topics/
package-relay/.

12

https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/ElementsProject/elements/blob/master/doc/tapscript_opcodes.md
https://github.com/ElementsProject/elements/blob/master/doc/tapscript_opcodes.md
https://github.com/ElementsProject/elements/blob/master/doc/tapscript_opcodes.md
https://github.com/jamesob/simple-ctv-vault
https://github.com/jamesob/simple-ctv-vault
https://github.com/jamesob/bitcoin/blob/2023-01-opvault/test/functional/feature_vaults.py
https://github.com/jamesob/bitcoin/blob/2023-01-opvault/test/functional/feature_vaults.py
https://github.com/jamesob/bitcoin/blob/2023-01-opvault/test/functional/feature_vaults.py
https://github.com/jamesob/bitcoin/tree/2023-01-opvault
https://github.com/jamesob/bitcoin/tree/2023-01-opvault
https://github.com/darosior/simple-anyprevout-vault
https://github.com/darosior/simple-anyprevout-vault
https://revault.dev
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2020-September/018168.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2020-September/018168.html
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-May/020450.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-May/020450.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-October/021036.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-October/021036.html
https://arxiv.org/pdf/2005.11776
https://arxiv.org/pdf/2005.11776
https://bitcoinops.org/en/topics/anchor-outputs/
https://bitcoinops.org/en/topics/anchor-outputs/
https://bitcoinops.org/en/topics/package-relay/
https://bitcoinops.org/en/topics/package-relay/

