
Multi-Signatures in the Plain Public-Key Model
and a General Forking Lemma

Mihir Bellare
University of California San Diego

Department of Computer Science & Engineering
9500 Gilman Drive

La Jolla, California 92093, USA
mihir@cs.ucsd.edu

Gregory Neven
Katholieke Universiteit Leuven

B-3001 Heverlee, Belgium;
and Ecole Normale Supérieure

75005 Paris, France
Gregory.Neven@esat.kuleuven.be

ABSTRACT
A multi-signature scheme enables a group of signers to pro-
duce a compact, joint signature on a common document, and
has many potential uses. However, existing schemes impose
key setup or PKI requirements that make them impractical,
such as requiring a dedicated, distributed key generation
protocol amongst potential signers, or assuming strong, con-
current zero-knowledge proofs of knowledge of secret keys
done to the CA at key registration. These requirements
limit the use of the schemes. We provide a new scheme that
is proven secure in the plain public-key model, meaning re-
quires nothing more than that each signer has a (certified)
public key. Furthermore, the important simplification in key
management achieved is not at the cost of efficiency or assur-
ance: our scheme matches or surpasses known ones in terms
of signing time, verification time and signature size, and is
proven secure in the random-oracle model under a standard
(not bilinear map related) assumption. The proof is based
on a simplified and general Forking Lemma that may be of
independent interest.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection

General Terms
Security

Keywords
Cryptography, digital signatures, multi-signatures, Forking
Lemma.

1. INTRODUCTION
Consider entities 1, . . . , N , each having a public key and

corresponding secret key. A multi-signature (MS) scheme
allows any subset L ⊆ {1, . . . , N} of them, at any time, to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’06, October 30–November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

engage in an interactive protocol whose output is a joint
signature on a message m of their choice. Verification can
be done by any external party given just L,m, the pur-
ported multi-signature σ, and the public keys of all signers
in L. Such a system could be useful for contract signing,
co-signing, or distribution of a certificate authority.

A trivial way to implement a multi-signature scheme is to
let the multi-signature σ of messagem be the list (σi : i ∈ L)
where σi is i’s signature on m. This multi-signature is how-
ever large, in particular of size proportional to the number
|L| of signers. There are several important practical reasons
for which this is costly and undesirable. For example, on
wireless devices such as PDAs, cell phones, RFID chips and
sensors, battery life is the main limitation. Communicat-
ing even one bit of data uses significantly more power than
executing one 32-bit instruction [4]. Reducing the number
of bits to communicate saves power and is important to in-
crease battery life. Also, in many settings, communication is
not reliable, and so the fewer the number of bits one has to
communicate, the better. For such reasons, we want multi-
signature schemes that are non-trivial, meaning the size of
the multi-signature is about the same as that of a single or-
dinary signature and in particular not proportional to the
number |L| of signers.

Rogue-key attacks. The early literature of MS schemes
[25, 20, 28, 24, 27, 32, 34, 35] features numerous attacks
breaking proposed schemes. In most cases, this was due to
weaknesses related to key setup, in particular the ability to
mount a rogue-key attack. In such an attack, an adversary
who is a group member (insider) chooses its public key as
a function of that of honest users in such a way that it can
then easily forge multi-signatures. Although they might at
first hearing sound far-fetched, rogue-key attacks are in fact
possible to mount in practice and are a real threat. When,
eventually, precise definitions [31] and proven secure schemes
[31, 11, 29] emerged, they obviously paid a lot of attention
to key setup. These schemes were, happily, proven secure
against rogue-key attacks, but, unhappily, at the cost of
complexity and expense in the scheme, or using unrealistic
and burdensome assumptions on the public-key infrastruc-
ture (PKI), as we will now explain in detail.

Drawbacks of previous schemes. The MS-MOR [31]
scheme requires, as a pre-processing step, that the set of
potential signers engages in an interactive key generation
protocol that provides to each a public and secret key. The
purpose of the protocol is to ensure that no dishonest player

can choose its public key as a function of public keys of hon-
est players. This type of dedicated key generation is however
not practical for several reasons. First, it means the group
of potential signers is restricted to being static: it must be
decided and fixed before signing can start, and new signers
cannot be added later. However, in practice the potential
set of signers is dynamic and may not be known ahead of
time, and we would like to be able to add potential sign-
ers at will. Second, the key generation protocol of [31] is
expensive and results in large, complex public keys. In par-
ticular, the public key of each signer has a size that depends
on the number N of potential signers. (However, once keys
are established, multi-signature generation and verification
are actually attractively cheap.)

The drawback of the MS-Bo [11] and MS-LOSSW [29] MS
schemes is that the security model makes the knowledge of
secret key (KOSK) assumption. There is no dedicated key
generation, but, when the adversary, mounting a rogue-key
attack, provides a public key of its choice for a group mem-
ber, it is required, in the model, to provide also a matching
secret key. Of course “real” adversaries would not do any
such thing, so what does this mean? It is explained by the
authors as modeling the assumption that a user provides
the certification authority (CA) with a proof of knowledge
of its secret key before the CA certifies the corresponding
public key. However, it is not that simple. The current
implementation of these proofs is represented by standards
PKCS#10 [38] —used by VeriSign— and RFC 4210/11 [3,
41]. Here the proof is implemented by having the user send
the CA a signature, under the public key it is attempting to
get certified, of some message that includes the public key
and the user identity. While such methods might intuitively
seem to prove knowledge of the secret key, they do not suf-
fice to realize the abstract model of [11, 29] in which the
attacker actually hands the challenger the secret keys. In
particular, not only does this type of proof of possession not
suffice to prove secure the MS-Bo and MS-LOSSW schemes,
but there are actually attacks against these schemes if such
proofs of possession are used [9]. (That is, if we attempt to
drop the KOSK assumption and substitute these proofs of
possession instead.) To obtain proofs of possession sufficient
to implement the KOSK assumption, it appears one should
use zero-knowledge (ZK) proofs of knowledge (POKs) that
meet strong, formal extractability requirements [5]. How-
ever, that is not all. Since in practice we would expect
that the users may register keys at any time, concurrently
with other users or with executions of the multi-signature
protocol, one would require ZK POKs extractable under
such concurrent conditions. This eliminates many standard
protocols, including standard POKs of discrete logarithms.
Still, it is true that protocols with the desired properties do
seem to exist. For example, in the random-oracle model one
could use [17] or, in the standard model, non-interactive ZK
POKs [14]. But the first is not cheap and the second is pro-
hibitive, and even if one were willing, adding them to the
PKI requires modifying the client and CA functioning and
software, which is difficult, costly and preferably avoided.
Also, one is still left with the task of actually formally justi-
fying a claim that this would implement the abstract KOSK
model of [11, 29]. (We are not making such a claim here.)
However, the main reason this route is impractical is simply
that CAs do not right now implement such POKs. If, to-
day, some corporation or person wishes to implement a MS

scheme, it seems unlikely that VeriSign is going to oblige
them by suddenly changing their offerings to include appro-
priate POKs of secret keys at registration.

Our MS scheme. In summary, the most significant practi-
cal obstacle to multi-signatures at present is the key-setup
requirements or assumptions of previous works. Our con-
tribution is to remove this obstacle by presenting a multi-
signature scheme in the plain public-key model. This means
that, with regard to key setup, nothing more is required
than in any usage of public-key cryptography, namely that
any potential signer has a public key. There is no dedicated
key generation protocol. A signer is not assumed to have
proved knowledge of its secret key to the CA, but only to
have a standard certificate. Yet, security against rogue-key
attacks is proved without the KOSK assumption.

To elaborate, in our setting, the group of potential sign-
ers is dynamic: anyone possessing a (certified) public key
can join at any time. In our security model, the adversary
can corrupt a signer and choose its public key as a func-
tion of those of other (honest) signers. It is not required to
supply the challenger with a matching secret key, meaning
we prove security even when the adversary does not know
the secret key underlying a public key it makes for itself.
The fact that we do not need to assume any kind of proof-
of-knowledge of the secret key performed to the CA at the
time a public key is registered and a certificate is obtained
reduces the demands on the PKI and allows our protocols to
be implemented within the current PKI. CAs need not take
any special actions or change their functioning or software.
Indeed, a CA does not need to even know that a key is to
be used in our multi-signature scheme; it can be treated like
any other key.

Efficiency and other scheme attributes. The signif-
icant gains in key setup achieved by our MS scheme are
not at the cost of performance. As Table 1 indicates, our
scheme, denoted MS-BN, compares favorably with previous
ones in terms of signing time, verifying time, signature size
and other attributes. We now discuss the information in the
table in a little more depth.

MS-BN is based on the Schnorr [42] scheme and is proven
secure in the random-oracle (RO) model [10] assuming hard-
ness of the standard discrete logarithm problem. (MS-Bo
and MS-MOR also use the RO model, but MS-LOSSW does
not.) MS-BN allows secure concurrent executions of signing
protocols by different subsets of the set of potential signers,
which is important because applications on the Internet are
inherently placed in a concurrent execution environment.
Concurrent signing is explicitly disallowed in [31]. Security
of our scheme is proved even when the adversary can control
the scheduling and mount rogue-key attacks, yet without the
KOSK assumption.

Unlike [11, 29], we do not use pairings (bilinear maps),
which not only results, for us, in greater efficiency and ease
of implementation, but also means we do not rely on the
relatively new and untested hardness assumptions related
to pairing-based cryptography. Verification in MS-BN is
cheaper than in MS-Bo, and both signing and verification
are cheaper in MS-BN than in MS-LOSSW. We have in-
cluded the system parameter size in the table mainly to
note that this is very large (25,920 bits) for MS-LOSSW,
unlike for any other scheme. Our signatures are 320 bits
as opposed to the 160 of MS-Bo because the latter uses the

Scheme Sign Verify |sig| |pk| |par| Key setup Assump

MS-MOR [31] 1 exp 1 exp 2 · 160 [3 + 2 lg(N)] · 160 0 dedicated key-reg DL
MS-Bo [11] 1 exp 2 pr 160 6 · 160 6 · 160 KOSK model (co)CDH
MS-LOSSW [29] 3 exp 2 pr 7 · 160 6 · 160 162 · 160 KOSK model (co)CDH

MS-BN 1 exp 1 exp 2 · 160 160 160 plain pk model DL

Table 1: MS scheme comparisons. For each scheme (the last is ours) we show the computational cost of
signing (per signer), the computational cost of verification of a multi-signature, the size of a multi-signature,
the size of the public key of an individual signer, the size of the system parameters common to all signers,
the type of key-setup, and the assumption used to prove security. All sizes are in bits. By “exp” we mean
an exponentiation. (Some of the exponentiations are actually multi-exponentiations, but these have the
same cost as single exponentiations.) N is the total number of signers in the system. By “pr” we mean
a pairing, whose cost estimate is 6–20 exponentiations. We assume we work over a 160-bit elliptic-curve
(EC) group for the DL-based schemes. For the coCDH-based schemes we assume an asymmetric pairing,
that is, e: G1 ×G2 → GT with G1 6= G2 (this to make the signatures as short as possible) and an isomorphism
ψ: G2 → G1 (this to make the proofs go through) with group-element representation sizes in G1,G2 and GT

being, respectively, 160-bits, 6 · 160 bits and 6 · 160 bits, which is what is needed, in this asymmetric-with-
isomorphism setting, to provide the 1024-bit RSA level of security achieved by 160-bit EC groups [18].

pairing-based BSL [13] short signature scheme, but our gain
in verification time (by a factor of 12-40) more than com-
pensates. The public keys in our scheme are shorter than
in any other scheme, an important benefit in case they have
to be transmitted with the multi-signature. Additionally, of
course, MS-BN is in the plain public-key model. Our effi-
ciency estimates do not take security into account, meaning
that all schemes are not necessarily compared at the same
level of security. We do this as we do not think our analyses
are tight (that is, the real security is better) and thus com-
paring at the same level would be misleading for practice.

New Forking Lemma. Our proof of security of the MS-BN
scheme relies on a generalization of the Forking Lemma
of [40] that may be of independent interest. The original
Forking Lemma of Pointcheval and Stern [40] applies to
signature schemes obtained from three-move identification
schemes via the Fiat-Shamir [16] transform in the random
oracle model. Roughly it says that in an expected O(1/ε)
repeated executions of a forger A with success probability ε,
one can find two accepting conversations that agree in the
first prover move but not the verifier challenge, leading, via
the special soundness property of Σ protocols, to recovery of
the secret key and hence a proof of security of the signature
scheme in the RO model. This lemma has been important in
proving security of signature schemes via the rewinding tech-
nique. However, the lemma seems hard (if not impossible)
to apply in situations like ours where we are not dealing with
a regular signature scheme but a MS scheme. Indeed, in the
past, variants of the lemma had to be formulated and proved
for different types of signatures. (For example, a version for
blind signatures is in [40], and one for ring signatures in [22].
Another variant is in [39].) The statement of our Forking
Lemma (cf. Lemma 1), in contrast to previous ones, makes
no mention of signatures or even, for that matter, random
oracles. Rather it asserts a simple lower bound on the prob-
ability that two executions of an arbitrary algorithm on cer-
tain (related) inputs both accept. This statement, we feel,
distills the probabilistic essence of the Forking Lemma and
divorces it from any particular application context. (In our
view, the Forking Lemma is something purely probabilis-
tic, not about signatures. Previous Forking Lemmas mixed
these things up.) In this form, it can be be applied not only
to prove security of regular signature schemes but also, as

we show, to prove security of schemes like ours where the
setting is more complex. Our Forking Lemma also provides
worst-case rather than expected-time guarantees on the con-
structed algorithm, in contrast to [40]. We feel this meshes
better with standard assumptions. (In using the Lemma of
[40], you need to assume, say, hardness of discrete-logarithm
computations against expected-time adversaries. This as-
sumption may be true, but is not the standard one.) Our
Forking Lemma can be viewed as an extension of the Reset
Lemma of [8], and our proof, which uses the techniques of
the latter, is simpler than that of [40].

Relation to aggregate signatures. A natural thought
is that multi-signatures are a special case of aggregate signa-
tures, and we know the latter have been implemented with-
out the KOSK assumption [12], so doesn’t this yield multi-
signatures in the plain public-key model? Let us explore
this.

Suppose signer i has produced a BSL signature [13] σi on
a message mi (i = 1, . . . , n). The procedure of [12] aggre-
gates σ1, . . . , σn into a single, aggregate signature σ. Multi-
signatures is simply the special case where mi = m is a
common message for all i ∈ L. Now, [12] do prove security
without the KOSK assumption, but for this need to assume
that the messages m1, . . . ,mn are distinct. So the multi-
signature case is exactly the one where they do not have
security without the KOSK assumption. In fact, in this
case, there actually is a rogue-key attack on the scheme.
Indeed, this MS scheme is exactly MS-Bo, which we know
is not secure against rogue-key attack without the KOSK
assumption.

However, [12] also suggest a workaround to the message
distinctness assumption. Have each signer prepend its pub-
lic key to its message before signing, so that the individual
signatures now are (in the MS case) on the enhanced mes-
sages pk1 ‖m, . . . , pk l ‖m. Now, security is guaranteed as
long as the enhanced messages are distinct. However, this
is not enough for security against rogue key attack in our
plain public-key model. If an attacker, playing the role of
signer 2, sets its public key pk2 to equal the public key pk1

of honest user 1 (an easy task) and outputs some forgery
on some message m for some group including signers 1, 2,
then we have a situation where two enhanced messages are
the same, so the result of [12] does not apply. To fix this

one can use the analysis of [6] that shows the scheme is se-
cure even if enhanced messages are not distinct, and then
we do obtain a secure MS scheme. However, verification of
a multi-signature for n signers costs n+ 1 pairings, making
it substantially less efficient than all the other schemes we
have discussed, where verification time does not depend on
the number of signers in the group.

Another potential route to multi-signatures is via sequen-
tial aggregate signatures [30]. These can be built from trap-
door permutation families in which there is a single domain
underlying the entire family [30], but in fact there seems to
be no example of such a family. RSA does not have the de-
sired property. The authors build some RSA-based schemes
directly, another one can be constructed using techniques
from [21]. Some limitations of the schemes of [30] are lifted
in [6]. However, a sequential-aggregate based MS scheme
will require a number of communication rounds proportional
to the number n of signers involved in a signature, as well
as n applications of the trapdoor function to verify, while all
previous protocols, including ours, are constant-round and
have constant verification cost.

2. NOTATION
Let N = {1, 2, 3, . . .}. A string means a binary one. The

empty string is denoted ε. If x, y are strings, then |x| is the
length of x. If x1, x2, . . . are objects then x1‖x2‖ . . . denotes
an encoding of them as strings from which the constituent
objects are easily recoverable. If S is a (multi)set, then |S|
is its cardinality, s

$← S denotes the operation of assigning
to s an element of S chosen at random, and 〈S〉 is a unique
encoding of S as a string. If A is a randomized algorithm,
then A(x1, . . . ; ρ) denotes its output on inputs x1, . . . and

coins ρ, while y
$← A(x1, . . .) means that we choose ρ at

random and let y = A(x1, . . . ; ρ).

3. A GENERAL FORKING LEMMA
Here we state and prove our Forking Lemma here that

we will use later to prove the security of our multi-signature
scheme. Our Forking Lemma, unlike that of Pointcheval and
Stern [40], makes no mention of signature schemes or ran-
dom oracles, but rather concentrates on the output behav-
ior of an algorithm when run twice on related inputs. This
makes it easily applicable in contexts other than standard
signature schemes, and separates the probabilistic analysis
of the rewinding from the actual simulation in the security
proof, allowing for more modular (and hence easier to ver-
ify) proofs. In the following, think of x as a public key and
h1, . . . , hq as replies to queries to a random oracle.

Lemma 1. [General Forking Lemma] Fix an integer
q ≥ 1 and a set H of size h ≥ 2. Let A be a randomized
algorithm that on input x, h1, . . . , hq returns a pair, the first
element of which is an integer in the range 0, . . . , q and the
second element of which we refer to as a side output. Let IG
be a randomized algorithm that we call the input generator.
The accepting probability of A, denoted acc, is defined as the
probability that J ≥ 1 in the experiment

x
$← IG ; h1, . . . , hq

$← H ; (J, σ)
$← A(x, h1, . . . , hq) .

The forking algorithm FA associated to A is the randomized
algorithm that takes input x proceeds as follows:

Algorithm FA(x)
Pick coins ρ for A at random

h1, . . . , hq
$← H

(I, σ)← A(x, h1, . . . , hq; ρ)

If I = 0 then return (0, ε, ε)

h′I , . . . , h
′
q

$← H
(I ′, σ′)← A(x, h1, . . . , hI−1, h

′
I , . . . , h

′
q; ρ)

If (I = I ′ and hI 6= h′I) then return (1, σ, σ′)
Else return (0, ε, ε).

Let

frk = Pr
h
b = 1 : x

$← IG ; (b, σ, σ′)
$← FA(x)

i
.

Then

frk ≥ acc ·
„

acc

q
− 1

h

«
. (1)

Alternatively,

acc ≤ q

h
+
p
q · frk . (2)

We proceed to the proof. We first recall two sublemmas that
we will use in the proof. The proofs are skipped here but
provided in the full version of our paper [7] for complete-
ness. The first is a standard fact which one can derive from
Jensen’s inequality, or as a consequence of the fact that the
variance of any random variable is non-negative:

Lemma 2. Let X be real-valued random variable. Then
E
ˆ
X2
˜
≥ E [X]2.

The next lemma is actually a consequence of the above al-
though it appears in [2] with a different proof:

Lemma 3. Suppose q ≥ 1 is an integer, and x1, . . . , xq ≥
0 are real numbers. Then

qX
i=1

x2
i ≥

1

q
·

qX

i=1

xi

!2

.

Proof of Lemma 1. We first prove (1) and then show
that it implies (2). For any input x let acc(x) denote the
probability that J ≥ 1 in the experiment

h1, . . . , hq
$← H ; (J, σ)

$← A(x, h1, . . . , hq) .

Also let

frk(x) = Pr
h
b = 1 : (b, σ, σ′)

$← FA(x)
i
.

We claim that for all x,

frk(x) ≥ acc(x) ·
„

acc(x)

q
− 1

h

«
. (3)

Then, with the expectation taken over x
$← IG, we have

frk = E [frk(x)] ≥ E

»
acc(x) ·

„
acc(x)

q
− 1

h

«–
=

E
ˆ
acc(x)2

˜
q

− E [acc(x)]

h

≥ E [acc(x)]2

q
− E [acc(x)]

h
= acc ·

„
acc

q
− 1

h

«
.

This establishes (1). Above, we used (3), Lemma 2 and
also the fact that E [acc(x)] = acc.

We proceed to the proof of (3). For any input x, with
probabilities taken over the coin tosses of FA we have

frk(x) = Pr
ˆ
I = I ′ ∧ I ≥ 1 ∧ hI 6= h′I

˜
≥ Pr

ˆ
I = I ′ ∧ I ≥ 1

˜
− Pr

ˆ
I ≥ 1 ∧ hI = h′I

˜
= Pr

ˆ
I = I ′ ∧ I ≥ 1

˜
− Pr [I ≥ 1]

h

= Pr
ˆ
I = I ′ ∧ I ≥ 1

˜
− acc(x)

h
.

It remains to show that Pr [I = I ′ ∧ I ≥ 1] ≥ acc(x)2/q.
Let R denote the set from which A draws its coins at ran-
dom. For each i ∈ {1, . . . , q} let Xi: R×Hi−1 → [0, 1] be
defined by setting Xi(ρ, h1, . . . , hi−1) to

Pr
h
J = i : hi, . . . , hq

$← H ; (J, σ)← A(x, h1, . . . , hq; ρ)
i

for all ρ ∈ R and h1, . . . , hi−1 ∈ H. Regard Xi as a random
variable over the uniform distribution on its domain. Then

Pr
ˆ
I = I ′ ∧ I ≥ 1

˜
=

qX
i=1

Pr
ˆ
I = i ∧ I ′ = i

˜
=

qX
i=1

Pr [I = i] · Pr
ˆ
I ′ = i

˛̨
I = i

˜
=

qX
i=1

X
ρ,h1,...,hi−1

Xi(ρ, h1, . . . , hi−1)
2 · 1

|R| · |H|i−1

=

qX
i=1

E
ˆ
X2

i

˜
≥

qX
i=1

E [Xi]
2 ,

where in the last step we used Lemma 2. Now let xi = E [Xi]
for i ∈ {1, . . . , q}, and apply Lemma 3. We get

qX
i=1

E [Xi]
2 ≥ 1

q
·

qX

i=1

E [Xi]

!2

=
1

q
· acc(x)2 .

This completes the proof of (3) and thus of (1). We now
show how to obtain (2). Using (1) we have“

acc− q

2h

”2

= acc2 − q

h
· acc +

q2

4h2
≤ q · frk +

q2

4h2
.

Taking the square root of both sides, and using the fact that√
a+ b ≤

√
a+
√
b for any real numbers a, b ≥ 0, we get

acc− q

2h
≤

p
q · frk +

r
q2

4h2
=

q

2h
+
p
q · frk .

Re-arranging terms yields (2).

4. MULTI-SIGNATURES
Here we provide our definitions for multi-signatures with

security in the plain public-key model.

The model. Consider a group of signers signing the same
message m, each having as input its own public and secret
key as well as a list of the public keys of the other signers.
The signers want to interact in a protocol which eventually
outputs a compact signature σ that represents the signature
of each individual signer on the message m. We assume the
signers are connected to each other via point-to-point links
over which they can send messages. We do not assume these
links are secure (that is, they are neither private nor authen-
ticated) and we do not assume a broadcast primitive. The
signers interact for some number of rounds. In each round,

view a signer as receiving a (but not necessarily the same)
message from every other signer, performing some compu-
tation, and then sending a message to every other signer,
except that in the first round the “received message” is the
party’s input (and so is not really received) and in the last
round the “sent message” is a local output (and so is not
really sent). The local output is either ⊥ to indicate failure
or is the compact signature σ. Instances of the protocol may
be executed concurrently, with one signer possibly partici-
pating in several concurrent instances at the same time.

In describing protocols, we will have each signer assign
indices 1, . . . , n to the signers, with itself being signer 1. We
clarify that these are local references to the cosigners partici-
pating in this protocol instance. (That is, each signer in this
protocol instance chooses its own indexing, so that signer 3
on my list and your list may not be the same. Think of
the index a signer gives to its cosigners as locally identifying
the link over which they communicate.) These indices have
no certified relationship with the public keys. In particular,
they are not identities.

Formally a multi-signature scheme MS = (Pg,Kg, Sign,
Vf) consists of four algorithms. A central authority runs the
parameter generation algorithm Pg to generate the system-
wide parameters par . Each signer independently generates

its own public and private key pair via (pk , sk)
$← Kg(par).

We stress that this is a non-interactive process that can be
performed by any signer at any given time. New signers can
join the system at will, and need not engage in expensive
protocols with a CA or with other signers to prove knowl-
edge of the corresponding secret key before participating in
signing protocols. The Sign algorithm represents the signing
protocol as indicated above. The verification algorithm Vf
takes as input a multiset of public keys L = {pk1, . . . , pkn},
the message m and a candidate signature σ, and outputs 1
if σ is a valid signature for L and m, or outputs 0 other-
wise. (Because users may let their keys depend on those
of other users, we explicitly allow them to be the same by
modeling L as a multiset.) We have the obvious correct-
ness requirement, namely that if a group of signers begin
their interaction with public keys L = {pk1, . . . , pkn} and
message m, and all signers follow the protocol (meaning,
perform their computations according to Sign) then all have
local output σ such that Vf returns 1 on input L, σ.

When describing protocols we will not specify the algo-
rithms directly but instead describe them informally by say-
ing what parties receive, compute and send in each round.

Security. The notion of security requires that it be infea-
sible to forge multi-signatures involving at least one honest
signer. As in previous works [31, 12, 29] we can in fact as-
sume there is a single honest signer. Our adversary will be
viewed as having effectively corrupted all other signers. It
can choose their public keys as it likes, even as a function of
the public key of the honest signer, and can interact arbitrar-
ily with the honest signer in any number of concurrent in-
stances before outputting its forgery attempt. In somewhat
more detail, we consider the following three-phase game as-
sociated to multi-signature scheme MS = (Pg,Kg, Sign,Vf)
and adversary (forger) F:

Setup: The game chooses system-wide parameters par
$←

Pg and a key-pair (pk∗, sk∗)
$← Kg(par) for the for the “tar-

get” (honest) signer. The target public key pk∗ is given as
input to the forger F.

Attack: F can start a protocol instance with the honest
signer by providing the latter with a message m and a mul-
tiset L = {pk1, . . . , pkn} of purported cosigners, where pk∗

occurs in L at least once. It can choose these public keys as
it wishes, including as a function of pk∗ and previous proto-
col flows. In interacting with the honest signer, F will play
the role of all signers in L other than one instance of pk∗,
sending messages to, and receiving messages from, the hon-
est signer. The forger can schedule an arbitrary number of
protocol instances concurrently, interacting with “clones” of
the honest signer, where each clone maintains its own state
and uses its own coins but all use the keys pk∗, sk∗ and follow
the protocol (meaning use algorithm Sign) to compute their
responses to received messages. When the honest signer
terminates then its local output (whether ⊥ or a compact
signature) is returned to F.

Forgery: At the end of its execution, F outputs a multiset
L = {pk1, . . . , pkn}, a message m and a forged signature
σ. The forger is said to win the game if Vf(L,m, σ) = 1,
pk∗ ∈ L and F never initiated a signing protocol with L,m.

The advantage of algorithm F in breaking MS, denoted as
Advuf-cma

MS (F), is defined as the probability that F wins the
above game, where the probability is taken over the coin
tosses of the forger, the honest signer, and the setup phase.
We say that a forger F (t, qS, N, ε)-breaks MS if F runs in
time at most t, F initiates at most qS signing protocols with
the honest signer, the number of public keys in the multi-
set L involved in any signing query or in the forgery is at
most N , and Advuf-cma

MS (F) ≥ ε. The scheme MS is said
to be (t, qS, N, ε)-secure if no forger (t, qS, N, ε)-breaks it.
In the random oracle model, the Sign and Vf algorithms,
as well as the adversary, additionally have access to a ran-
dom oracle H : {0, 1}∗ → D, where D is a set possibly
depending on the system parameters. The additional pa-
rameter qH denotes the maximum number of F’s random
oracle queries. (If there is more than one random oracle, we
mean the total number of queries to all random oracles.) We
say that F (t, qS, qH, N, ε)-breaks MS in the random oracle
model, and that MS is (t, qS, qH, N, ε)-secure in the random
oracle model.

Discussion. Note that the game described above does not
require the adversary to fix the public keys of all signers
in the system at the beginning of the game (as is required
by the notions of [31, 11]), or to submit the secret keys of
all corrupt signers to a special certification oracle (as is re-
quired by the notions of [11, 29]). Rather, our model allows
the adversary to dynamically add new signers to the system,
using arbitrary public keys that may depend on the target
public key or on previous signing interactions. It thereby
avoids the KOSK assumption and does not presume expen-
sive proof of knowledge protocols to be performed with the
CA. This security notion reflects a real-world system with
the desirable features that new signers can join on-the-fly
using self-generated keys, and that existing (external) CA
infrastructure can be reused for the certification of these
keys.

Interactive aggregate signatures. Although multi-
signatures are presented as being about a bunch of signers
signing a single common message, one can consider some-
thing more general where each party has its own message.
Let us call this an interactive aggregate signature (IAS).

Here party i has message Mi. The parties start knowing
all messages and each other’s public keys, interact, and fi-
nally produce an aggregate signature that is supposed to
validate that party i signed Mi for all i involved. An IAS
scheme can be viewed either as a generalization of a sequen-
tial aggregate signature scheme [30] where the interaction
between signers is arbitrary rather than sequential, or as an
extension of a MS scheme where each signer has a different
message. IAS schemes potentially have more applications
than MS schemes. However, we observe that IAS and MS
are equivalent in the sense that any scheme for one is easily
turned into a scheme for the other. Indeed, we can imple-
ment IAS given a MS scheme by using as message in the
latter the tuple of all messages and public keys of the for-
mer. On the other hand, obviously, we an implement an MS
scheme given an IAS scheme by setting the messages of all
parties to the single message of the MS scheme. For this
reason we do not explicitly consider IAS schemes further,
but it is worthwhile to note that that the single-message re-
striction of an MS scheme is not really limiting. We also
think IAS schemes are interesting in that they unify aggre-
gate and multi-signatures, both of which are special cases of
IASs.

5. OUR MULTI-SIGNATURE SCHEME
Our scheme is based on Schnorr’s signature scheme [42].

Let G be a cyclic group of prime order p, and let g be a gen-
erator of G. Recall that a Schnorr signature of a message
m under public key X ∈ G is a pair (R, s) ∈ G × Zp such
that gs = RXc in G, where c is the response to a random
oracle query on R‖m. A first idea to aggregate signatures
may be to let a signature under keys L = {X1, . . . , Xn}
of message m be a pair (R, s) such that gs = R

Qn
i=1X

c
i ,

where c = H(R‖〈L〉‖m) is determined by a random ora-
cle. Without restrictions on key generation however, this
type of scheme is vulnerable to a well-known attack [24,

27, 32, 31] where a corrupt signer chooses x1
$← Zp and

sets its public key X1 ← gx1 ·
Qn

i=2X
−1
i . This way, x1

essentially becomes the “secret key” for the entire group
of signers L = {X1, . . . , Xn}: signer 1 can by himself sign
any message m in name of the entire group L by choosing

r
$← Zp and computing (R = gr , s = cx1 + r mod p) where

c = H(R‖〈L〉‖m).
We counteract this attack by using a different value ci

in the exponent of each public key Xi, so that the verifica-
tion equation becomes gs = R

Qn
i=1X

ci
i , where the values

for ci are determined by independent random oracle queries
ci = H(Xi‖R‖〈L〉‖m). With the help of our general Forking
Lemma (see Lemma 1), we succeed in extracting from any
forger the discrete logarithm of the target public key. The
way we apply the Forking Lemma is particularly interesting
because we need certain random oracle responses to be the
same in both executions of the adversary, even though the
corresponding queries may not occur until after the fork.

A second problem is that, in order to respond to the
forger’s signature queries, the simulator needs to know the
value of R before the forger does so that it can program the
random oracle. The value of R is typically computed as the
product of individual shares of R chosen by each signer. Un-
less the target signer is the last to reveal his share (which we
cannot assume to always be the case), the forger knows R
before the simulator does, enabling the forger to perform a

random oracle query involving R and thereby to prevent the
simulator from programming this entry later on. We over-
come this problem by letting signers first “commit” to their
share of R through an additional random oracle query. The
simulator, who sees all random oracle queries, can therefore
look up the individual shares of R before the forger can, and
can thus correctly program the random oracle.

We now proceed to describe the scheme and analyze its
security. We begin by recalling some necessary definitions.

The discrete logarithm assumption. Let G be a multi-
plicative group of prime order p, and let G∗ = G \ {1}. The
advantage of algorithm A in solving the discrete logarithm
problem in G is defined as

Advdlog
G (A) = Pr

h
gx = y

˛̨
g

$← G∗ ; y
$← G ; x

$← A(y)
i
.

We say that A (t, ε)-solves the discrete logarithm problem in

G if it runs in time at most t and Advdlog
G (A) ≥ ε, and we

say that the discrete logarithm problem in G is (t, ε)-hard if
no algorithm A (t, ε)-solves it.

The scheme. Let k = blog2 pc, let l0, l1 ∈ N, and let H0 :
{0, 1}∗ → {0, 1}l0 and H1 : {0, 1}∗ → {0, 1}l1 be random
oracles. To these, we associate the multi-signature scheme
MS-BN = (Pg,Kg, Sign,Vf) as follows:

Parameter generation. A trusted center chooses a ran-

dom generator g
$← G∗ and publishes (G, p, g) as system-

wide parameters.

Key generation. Each signer runs the Kg algorithm to

generate a random secret key x
$← Zp and the corre-

sponding public key X ← gx.

Signing. Let X1 and x1 be the public and private key of
a signer, let m be the message to be signed, and let
X2, . . . , Xn be the public keys of all other cosigners. We
recall that the indices 1, . . . , n are merely local references
to cosigners, defined by one signer within one protocol
instance. These indices are not tied to public keys in a
global way, and in particular are not unique identities
of signers. The communication proceeds in a number
of rounds, where in each round each signer receives a
message from every other signer, performs some local
computation, and sends a message to every other signer.
Round 1:

– Local input: x1, L = {X1, . . . , Xn}, m
– Computation: Choose r1

$← Zp, compute R1 ←
gr1 and query t1 ← H0(R1).

– Send to signer i: t1

Round 2:

– Receive from signer i: ti

– Send to signer i: R1

Round 3:

– Receive from signer i: Ri

– Computation: For all 2 ≤ i ≤ n, check that ti =
H0(Ri). Abort the protocol with local output ⊥
if this is not the case; otherwise, compute R ←Qn

i=1Ri, query c1 ← H1(X1‖R‖〈L〉‖m) where
〈L〉 is a unique encoding of L (e.g. the sequence of
keys in lexicographic order), and compute s1 ←
x1c1 + r1 mod p.

– Send to signer i: s1

Round 4:

– Receive from signer i: si

– Computation: s←
Pn

i=1 si mod p

– Local output: the signature σ = (R, s)

Verification. Given a multiset of public keys L = {X1,
. . . , Xn}, message m and signature σ = (R, s), the veri-
fier computes ci ← H1(Xi‖R‖〈L〉‖m) for all 1 ≤ i ≤ n.
He accepts the signature if gs = R

Qn
i=1X

ci
i , and rejects

otherwise.

Efficiency. An overview comparing the efficiency of our
scheme to that of other (provably secure) multi-signature
schemes is given in Table 1. Compared to the MS-MOR
scheme [31], our MS-BN scheme avoids the expensive in-
teractive key generation protocol, while offering consider-
ably shorter public keys and maintaining the same signature
length and signing/verification costs. Moreover, our scheme
allows for concurrent signing sessions at the cost of one extra
round of interaction (and the computation of some hash val-
ues). Compared to the MS-Bo scheme [11], our scheme has
about twice the signature size, yet offers faster verification.
Our scheme beats the MS-LOSSW scheme [29] in all costs.
Moreover, our scheme has the advantage over MS-Bo and
MS-LOSSW of not relying on pairings to be defined over the
underlying group. On the other hand, the signing protocol
in our scheme has more rounds of interaction than in the
other schemes.

We note that when we motivated communication reduc-
tion in the Introduction (in particular for mobile devices),
we were referring to the size of the signature, not to the
communication cost of the protocol that computes the sig-
nature. This is because it is the signatures that are fre-
quently communicated. In fact the protocol may take place
over a a different, cheaper medium, yet produce signatures
(e.g. certificates) that are placed on mobile devices and then
frequently transmitted by these devices.

Security. The following theorem implies that the MS-BN
scheme meets our definition of security in the plain public-
key model (i.e., without the KOSK assumption).

Theorem 4. If there exists a (t, qS, qH, N, ε)-forger F in
the random-oracle model against the MS scheme MS-BN de-
scribed above, then there exists an algorithm B that (t′, ε′)-
breaks the discrete logarithm problem in G, where

ε′ ≥ ε2

qH + qS
− 2qH + 16N2qS

2l0
− 8NqS

2k
− 1

2l1
, (4)

t′ = 2t+ qStexp +O((qS + qH)(1 + qH +NqS))

and texp is the time of an exponentiation in G.

Proof of Theorem 4. The idea of the proof is to use
our Forking Lemma to obtain from the forger F two forgeries
(R, s) and (R′, s′) satisfying

gs = R

nY
i=1

Xci
i and gs′ = R

nY
i=1

Xi
c′i ,

such that ci = c′i if Xi is the target public key X∗, and
ci 6= c′i for all other keys. We can then extract the discrete
logarithm of X∗ by dividing the two equations above. Spe-
cial care must be taken however in responding F’s random
oracle queries so that the above relations between ci and c′i
are ensured. In particular, F may not ask the queries defin-
ing ci and c′i until after the fork, where the two executions

of F have already diverged. We overcome this by fixing the
response values to these queries before the fork, and by rec-
ognizing the queries when they actually occur after the fork.
It is mainly due to the modularity of our simplified Forking
Lemma that the complexity of the proof is kept manageable.

We are now ready to present the actual proof. Given a
(t, qS, qH, N, ε)-forger F, consider the following algorithm A.
On inputs g ∈ G∗, X∗ ∈ G and h1, . . . , hqH+qS ∈ {0, 1}

l1 ,
algorithm A runs the forger F on input system parameters
par = (G, p, g) and target public key pk∗ = X∗. Algo-
rithm A initializes counters ctr1, ctr2 to zero, and maintains
initially empty associative arrays T0[·],T1[·, ·],T2[·]. It as-
signs T2[X

∗] ← 0 and answers F’s oracle queries as fol-
lows. Tables T0 and T1 are used to simulate random oracles
H0 and H1, respectively, while T2 assigns a unique index
1 ≤ i ≤ qH +NqS to each public key X occurring either as
a cosigner’s public key in one of F’s signature queries, or as
the first item in the argument of one of F’s queries to H1.
Algorithm A assigns index 0 to the target public key X∗

by setting T2[X
∗] ← 0. It responds to F’s oracle queries as

follows:

• H0(R): If T0[R] is undefined, then A chooses T0[R]
$←

{0, 1}l0 . It returns T0[R] to F.

• H1(X‖Q): If T2[X] is undefined then A increases ctr2

and sets T2[X]← ctr2. Let i = T2[X]. If T1[i, Q] has not
yet been defined, then A immediately assigns random val-
ues to all entries T1[j,Q] for 1 ≤ j ≤ qH +NqS, increases
ctr1 and assigns T0[0, Q]← hctr1 . (If the argument of the
query cannot be parsed as X‖Q, then A simply returns a
random element of {0, 1}l1 , preserving consistency if the
same query is asked again.)

• Signing query with public keys L and message m: If
X∗ 6∈ L then algorithm A returns ⊥ to F; otherwise, it
parses the elements of L as {X1 = X∗, X2, . . . , Xn} and
continues as follows. First, it checks for all 2 ≤ i ≤ n
whether T2[Xi] has already been defined; it increases ctr2

and sets T2[Xi]← ctr2 if not. Then, A increases counter

ctr1 and sets c1 ← hctr1 . It chooses s1
$← Zp, computes

R1 ← gs1X−c1
1 and sends t1 = H0(R1) to all cosigners.

After receiving t2, . . . , tn from F (who’s playing the role
of the cosigners), A searches in table T0 for the values
Ri so that ti = T0[Ri]. If no such Ri can be found for
some 2 ≤ i ≤ n, then A sets a flag alert ← true and
sends R1 to all cosigners. If more than one such value is
found for some Ri, then it sets bad1 ← true, aborts the
execution of F and halts with output (0, ε). Otherwise,
A computes R ←

Qn
i=1Ri and checks whether T1[0, Q]

has already been defined for Q = R‖〈L〉‖m. If so, it
sets bad2 ← true, aborts the execution of F and halts
with output (0, ε). If not, it sets T1[0, Q] ← c1, chooses

T1[i, Q]
$← {0, 1}l1 for all 1 ≤ i ≤ qH + NqS, and sends

R1 to all cosigners.

If, after receiving R2, . . . , Rn, there exists an index 1 ≤
i ≤ n such that H0(Ri) 6= ti, then A stops the signing
protocol returning ⊥. If alert = true while H0(Ri) = ti
for all 1 ≤ i ≤ n, then it sets bad3 ← true, aborts the
execution of F and halts outputting (0, ε). Otherwise, it
sends s1 to all cosigners.

After receiving s2, . . . , sn, A computes s ←
Pn

i=1 si mod
p and returns (R, s) as the signature.

Eventually, F outputs a forged signature (R, s) together
with multiset L = {X1, . . . , Xn} and message m. Algorithm
A first performs additional queries H1(Xi‖R‖〈L〉‖m) for 1 ≤
i ≤ n, thereby making sure that T2[Xi] is defined. Let
1 ≤ J ≤ qH + qS be the index such that T1[0, R‖〈L〉‖m] =
hJ , and let n∗ be the number of times that X∗ occurs
in L. If F’s forgery is valid, algorithm A halts returning
(J, (R, hJ , s, n

∗)); if not, it halts returning (0, ε).
Let Pr [bad i] denote the probability of the event that flag

bad i gets set to true. Consider set H = {0, 1}l1 and input

generator IG that returns random elements g,X∗ $← G. We
bound the accepting probability acc of A with respect to
these, as defined in Lemma 1, as follows:

acc ≥ ε− Pr [bad1]− Pr [bad2]− Pr [bad3]

≥ ε− (qH +NqS + 1)2

2l0+1

−
qSX

i=1

„
qH +NqS

2k
+
qH + qS

2k
+
N

2l0

«
≥ ε− (qH +NqS + 1)2

2l0
− 2qS(qH +NqS)

2k
.

We clarify how the bounds in the second inequality were
obtained. If at some point in the execution of F two val-
ues Ri 6= R′

i are found such that ti = H0(Ri) = H0(R
′
i),

then clearly at least one collision must have occurred in
H0. However, all response values of H0 are chosen uni-
formly at random from {0, 1}l0 , and since there are at most
qH+NqS queries to H0, the probability that at least one col-
lision occurs is at most ((qH +NqS)(qH +NqS +1)/2)/2l0 ≤
(qH +NqS + 1)2/2l0 .

To cause bad2 to be set to true during the i-th signing
query, we distinguish between the case that H0(R1) was pre-
viously queried by the forger, and the case that it wasn’t. In
the first case, F probably knows R and may have deliberately
queried H1(X‖R‖〈L〉‖m) for someX. But since R1 was cho-
sen by A independently from F’s view at the beginning of
the signing protocol, the probability that F queried H0(R1)
is at most (qH + NqS)/p ≤ (qH + NqS)/2k. In the second
case, F’s view is completely independent of R1, and hence of
R. The probability that R occurred by chance in a previous
query to H1 or was set by A in one of the i − 1 previous
signature simulations is at most (qH + qS)/p ≤ (qH + qS)/2k.

Lastly, in order to set bad3 = true, F must have pre-
dicted the value of H0(Ri) for at least one 1 ≤ i ≤ n, which
it can do with probability at most N/2l0 . The third inequal-
ity follows from simple rearranging of terms after assuming
(without loss of generality) that qH, qS, N > 0.

Now consider an algorithm B that on input X∗ runs the
forking algorithm FA(X∗), which with probability frk re-
turns (1, (R, h, s, n∗), (R′, h′, s′, n′

∗
)) with h 6= h′. These

forgeries are such that

gs = R

nY
i=1

Xci
i and gs′ = R′

n′Y
i=1

X ′
i
c′i

where L = {X1, . . . , Xn} and m are the public keys and the
message involved in F’s forgery and ci = H1(Xi‖R‖〈L〉‖m)
are the relevant random oracle responses from the first run.
Let I∗ ⊆ {1, . . . , n} be the set of indices such that Xi =
X∗. Variables L′, X ′

1, . . . , X
′
n′ ,m

′, c′1, . . . , c
′
n′ , I

′∗ are defined
analogously for the second run of F. We will show later that,
due to the way that A simulates F’s environment, it must
hold that n = n′, that L = L′, that I∗ = I ′

∗
, that n∗ = n′

∗
,

that ci = c′i for i 6∈ I∗, and that ci = h and c′i = h′ for
i ∈ I∗. Dividing the two equations above then gives

gs−s′ =
Y
i∈I∗

(X∗)
h−h′

= (X∗)
n∗(h−h′)

,

so that B can compute the discrete logarithm of X∗ as (s−
s′)/(n∗(h − h′)) mod p. The probability that algorithm B
succeeds in doing so is given by

ε′ ≥ frk

≥ acc2

qH + qS
− 1

2l1

≥ ε2

qH + qS
− 2(qH +NqS + 1)2

(qH + qS) · 2l0
− 4qS(qH +NqS)

(qH + qS) · 2k
− 1

2l1

≥ ε2

qH + qS
− 2qH + 16N2qS

2l0
− 8NqS

2k
− 1

2l1
,

where again we assume without loss of generality that qH, qS,
N > 0. The theorem follows.

We still have to argue why the equalities between all
the variables in both runs of A hold. In the case that
F returned (1, (R, h, s, n∗), (R, h′, s′, n′

∗
)), let J be the in-

dex that A returned after both executions by FA. In A’s
first execution, hJ = h is assigned to T1[0, R‖〈L〉‖m] =
H1(X

∗‖R‖〈L〉‖m) at the moment when F makes its first
query H1(X‖R‖〈L〉‖m) for some public key X (so not nec-
essarily X∗), where L = {X1, . . . , Xn}. Likewise, in the
second run, h′J = h′ is assigned to T1[0, R

′‖〈L′〉‖m′] when F
queries H1(X

′‖R′‖〈L′〉‖m′) for some public key X ′, where
L′ = {X ′

1, . . . , X
′}. Up to the point of this hash query, how-

ever, the environments of F provided by A in the first and
the second run are identical, because A uses the same in-
puts, random tape and values h1, . . . , hJ−1 to generate F’s
inputs, random tape and oracle responses. Therefore, the
two executions of F are identical up to this point, and in
particular the arguments of both hash queries must be the
same, implying that R = R′, L = L′, n = n′, Xi = X ′

i

and mi = m′
i for 1 ≤ i ≤ n. Moreover, the entries for

X1, . . . , Xn in T2 are assigned at the latest when parsing the
arguments of this hash query, causing the values of T2[Xi] to
be the same in both runs as well. The forger’s other queries
H1(Xi‖R‖〈L〉‖m) may not occur until much later, but the
response values T1[T2[Xi], R‖〈L〉‖m] for these queries are
chosen before the fork, and hence are the same in both runs
as well. Therefore, it holds that ci = c′i for all 1 ≤ i ≤ n,
that ci = hJ = h for i ∈ I, and that c′i = h′J = h′ for i ∈ I,
which concludes the proof.

The running time t′ of B is twice that of A plus the time
needed to compute the discrete logarithm (s − s′)/(n∗(h −
h′)) mod p. The running time of A is the running time t of
F plus the time needed to answer qH + NqS random oracle
queries and qS signature queries. We assume that expo-
nentiations in G take time texp, and all other operations
take unit time. Each random oracle query may cause A to
perform O(1 + qH + NqS) unit-time operations. Each sig-
nature query involves one multi-exponentiation in G and
O(1 + qH + NqS) unit-time operations. Therefore, we have
t′ = 2t+ qStexp +O((qS + qH)(1 + qH +NqS)).

Reduction tightness. The reduction presented above is
tighter than that of the MS-MOR scheme [31], but is still
not tight, as can be seen from (4). In comparison, the
security proof of the MS-MOR scheme requires two appli-
cations of the forking technique (once to extract the secret

keys of corrupt players, and once to obtain two forgeries)
and qH · qS rewindings (to simulate signing protocols) of the
forger, yielding a considerable loss in the tightness of the se-
curity reduction. The pairing-based MS-Bo and MS-LOSSW
schemes do not have tight security reductions either.

6. FURTHER RESULTS
Our scheme is based on the Schnorr signature scheme [42],

but our techniques can be applied to other schemes follow-
ing the Fiat-Shamir paradigm as well. However, unlike the
case of standard signatures [1], a three-move identification
scheme does not automatically give rise to a multi-signature
scheme: compression of signatures requires a special homo-
morphism to exist on conversation transcripts. A number of
three-move identification schemes in the literature turn out
to have such a homomorphism though. In particular, one
can obtain efficient multi-signature schemes based on dis-
crete logarithms from [36], based on RSA from [19], based
on factoring from [16, 15, 33, 37], and based on pairings
from [23]. In the full version of this paper [7], we also adapt
ideas from Katz and Wang [26] to construct a scheme with
a tight security reduction to the decisional Diffie-Hellman
problem, at the cost of a slight increase in signing and veri-
fication time.

Acknowledgments
Mihir Bellare was supported by NSF grant CNS-0524765
and a gift from Intel Corporation. Gregory Neven is a
Postdoctoral Fellow of the Research Foundation - Flanders
(FWO-Vlaanderen), and was supported in part by the Con-
certed Research Action (GOA) Ambiorics 2005/11 of the
Flemish Government and in part by the European Commis-
sion through the IST Programme under Contract IST-2002-
507932 ECRYPT.

7. REFERENCES
[1] M. Abdalla, J. H. An, M. Bellare, and

C. Namprempre. From identification to signatures via
the Fiat-Shamir transform: Minimizing assumptions
for security and forward-security. EUROCRYPT 2002,
LNCS 2332, Springer-Verlag.

[2] M. Abdalla and L. Reyzin. A new forward-secure
digital signature scheme. ASIACRYPT 2000,
LNCS 1976, Springer-Verlag.

[3] C. Adams, S. Farrell, T. Kause, and T. Monen.
Internet X.509 Public Key Infrastructure Certificate
Management Protocol (CMP). Internet Engineering
Task Force RFC 4210, 2005.

[4] K. Barr and K. Asanovic. Energy aware lossless data
compression. MobiSys 2003, ACM Press.

[5] M. Bellare and O. Goldreich. On defining proofs of
knowledge. CRYPTO 1992, LNCS 740,
Springer-Verlag.

[6] M. Bellare, C. Namprempre, and G. Neven.
Unrestricted aggregate signatures. Cryptology ePrint
Archive, Report 2006/285, 2006.

[7] M. Bellare and G. Neven. New multi-signatures and a
general forking lemma. Full version of this paper,
available from
http://www.cs.ucsd.edu/users/mihir, 2006.

[8] M. Bellare and A. Palacio. GQ and Schnorr
identification schemes: Proofs of security against
impersonation under active and concurrent attacks.
CRYPTO 2002, LNCS 2442, Springer-Verlag.

[9] M. Bellare, T. Ristenpart, and S. Yilek. Work in
progress, 2006.

[10] M. Bellare and P. Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
ACM CCS 1993, ACM Press.

[11] A. Boldyreva. Threshold signatures, multisignatures
and blind signatures based on the
gap-Diffie-Hellman-group signature scheme.
PKC 2003, LNCS 2567, Springer-Verlag.

[12] D. Boneh, C. Gentry, B. Lynn, and H. Shacham.
Aggregate and verifiably encrypted signatures from
bilinear maps. EUROCRYPT 2003, LNCS 2656,
Springer-Verlag.

[13] D. Boneh, H. Shacham, and B. Lynn. Short signatures
from the Weil pairing. ASIACRYPT 2001,
LNCS 2248, Springer-Verlag.

[14] A. De Santis and G. Persiano. Zero-knowledge proofs
of knowledge without interaction. FOCS 1992, IEEE
Computer Society Press.

[15] U. Feige, A. Fiat, and A. Shamir. Zero knowledge
proofs of identity. Journal of Cryptology, 1(2):77–94,
1988.

[16] A. Fiat and A. Shamir. How to prove yourself:
Practical solutions to identification and signature
problems. CRYPTO 1986, LNCS 263, Springer-Verlag.

[17] M. Fischlin. Communication-efficient non-interactive
proofs of knowledge with online extractors.
CRYPTO 2005, LNCS 3621, Springer-Verlag.

[18] S. D. Galbraith, K. G. Paterson, and N. P. Smart.
Pairings for cryptographers. Cryptology ePrint
Archive, Report 2006/165, 2006.

[19] L. C. Guillou and J.-J. Quisquater. A “paradoxical”
indentity-based signature scheme resulting from
zero-knowledge. CRYPTO 1988, LNCS 403,
Springer-Verlag.

[20] L. Harn. Group-oriented (t, n) threshold digital
signature scheme and digital multisignature. IEE
Proceedings – Computers and Digital Techniques,
141(5):307–313, 1994.

[21] R. Hayashi, T. Okamoto, and K. Tanaka. An RSA
family of trap-door permutations with a common
domain and its applications. PKC 2004, LNCS 2947,
Springer-Verlag.

[22] J. Herranz and G. Sáez. Forking lemmas for ring
signature schemes. INDOCRYPT 2003, LNCS 2947,
Springer-Verlag.

[23] F. Hess. Efficient identity based signature schemes
based on pairings. SAC 2002, LNCS 2595,
Springer-Verlag.

[24] P. Horster, M. Michels, and H. Petersen.
Meta-multisignatures schemes based on the discrete
logarithm problem. IFIP/SEC 1995. Chapman & Hall.

[25] K. Itakura and K. Nakamura. A public-key

cryptosystem suitable for digital multisignatures. NEC
Research & Development, 71:1–8, 1983.

[26] J. Katz and N. Wáng. Efficiency improvements for
signature schemes with tight security reductions.
ACM CCS 2003, ACM Press.

[27] S. K. Langford. Weakness in some threshold
cryptosystems. CRYPTO 1996, LNCS 1109,
Springer-Verlag.

[28] C.-M. Li, T. Hwang, and N.-Y. Lee.
Threshold-multisignature schemes where suspected
forgery implies traceability of adversarial shareholders.
EUROCRYPT 1994, LNCS 950, Springer-Verlag.

[29] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and
B. Waters. Sequential aggregate signatures and
multisignatures without random oracles.
EUROCRYPT 2006, LNCS 4004, Springer-Verlag.

[30] A. Lysyanskaya, S. Micali, L. Reyzin, and
H. Shacham. Sequential aggregate signatures from
trapdoor permutations. EUROCRYPT 2004,
LNCS 3027, Springer-Verlag.

[31] S. Micali, K. Ohta, and L. Reyzin.
Accountable-subgroup multisignatures. ACM CCS
2001, ACM Press.

[32] M. Michels and P. Horster. On the risk of disruption
in several multiparty signature schemes.
ASIACRYPT 1996, LNCS 1163, Springer-Verlag.

[33] K. Ohta and T. Okamoto. A modification of the
Fiat-Shamir scheme. CRYPTO 1988, LNCS 403,
Springer-Verlag.

[34] K. Ohta and T. Okamoto. A digital multisignature
scheme based on the Fiat-Shamir scheme.
ASIACRYPT 1991, LNCS 739, Springer-Verlag.

[35] K. Ohta and T. Okamoto. Multi-signature schemes
secure against active insider attacks. IEICE
Transactions on Fundamentals of Electronics
Communications and Computer Sciences,
E82-A(1):21–31, 1999.

[36] T. Okamoto. Provably secure and practical
identification schemes and corresponding signature
schemes. CRYPTO 1992, LNCS 1751, Springer-Verlag.

[37] H. Ong and C.-P. Schnorr. Fast signature generation
with a Fiat Shamir–like scheme. EUROCRYPT 1990,
LNCS 473, Springer-Verlag.

[38] PKCS #10: Certification request syntax standard.
RSA Data Security, Inc., 2000.

[39] D. Pointcheval, E. Brickell, S. Vaudenay, and
M. Yung. Design validations for discrete logarithm
based signature schemes. PKC 2000, LNCS 1751,
Springer-Verlag.

[40] D. Pointcheval and J. Stern. Security arguments for
digital signatures and blind signatures. Journal of
Cryptology, 13(3):361–396, 2000.

[41] J. Schaad. Internet X.509 Public Key Infrastructure
Certificate Request Message Format, Internet
Engineering Task Force RFC 4211, 2005.

[42] C.-P. Schnorr. Efficient signature generation by smart
cards. Journal of Cryptology, 4(3):161–174, 1991.

