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Abstract

Tremendous growth in the cryptocurrency usage is exposing the inherent scalabilty issues with the
permissionless blockchain technology. Among few alternatives, payment-channel networks (PCNs) have
emerged as the most popular and practically deployed solution to overcome the scalability issues, allowing
the bulk of payments between any two users to be carried out off-chain. Unfortunately, as reported in
the literature and further demonstrated in this paper, current PCNs do not provide meaningful security
and privacy guarantees.

In this work, we lay the foundations for the design of secure and privacy-preserving PCNs. For
that, we formally define multi-hop locks, a novel cryptographic primitive that serves as a cornerstone
for the design of secure and privacy-preserving PCNs, and design several provably secure cryptographic
instantiations that make multi-hop locks compatible with the vast majority of cryptocurrencies. In
particular, we show that (partial) homomorphic one-way functions suffice to construct multi-hop locks
for PCNs supporting a script language (e.g., Bitcoin and Ethereum), and offer two constructions based
on Schnorr and ECDSA that allow for the development of PCNs even without scripts. Further multi-hop
locks constitute a generic primitive whose usefulness goes beyond regular PCNs and use those to realize
atomic swaps and interoperable PCNs. Finally, our performance evaluation on a commodity machine
finds that multi-hop locks operations can be performed in less than 100 milliseconds and require less
than 500 bytes, even in the worst case. This shows the practicality of our approach towards enhancing
security, privacy, interoperability, and scalability of today’s cryptocurrencies.

1 Introduction

Cryptocurrencies are raising in popularity and are playing an increasing role in the worldwide financial
ecosystem. Currently, just Bitcoin [40] has a market cap of 168 trillion USD and a growing number of
addresses and payments. In fact, the number of Bitcoin addresses and transactions grew approximately by
30% in 2017, reaching a peak of more than 850, 000 unique addresses and more than 420, 000 transactions
per day in Dec’17 [5]. This unimaginable striking demand has faced however strong scalability issues [21],
which go well beyond the rapidly increasing size of the blockchain. For instance, the permissionless nature of
the consensus algorithm used in Bitcoin today limits the transaction rate to tens of transactions per second,
whereas other payment networks such as Visa support peaks of up to 47,000 transactions per second.

Among the various proposals to solve the scalability issue [23,24,35,44], payment-channels have emerged
as the most widely deployed solution in practice. In a nutshell, the idea is that two users open a payment
channel by uploading onto the blockchain a single transaction, which is meant to lock their bitcoins in
a deposit secured by a Bitcoin smart contract. These users can then perform several payments between
each other without uploading any further transaction, by simply agreeing on the new deposit balance. A
transaction is required only at the end in order to close the payment channel and unlock the final deposit’s
balances, thereby drastically reducing the load on the blockchain. Further research in this area has proposed
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the concept of payment-channel network [44] (PCN), where two users not sharing a payment channel can
still pay each other using a path of open channels between them. Unfortunately, as we discuss below in
detail, current PCNs fall short of providing adequate security, privacy, and interoperability guarantees.

1.1 State-of-the-art in PCNs

Several practical deployments of PCNs exist today [2,8, 11]. These practical efforts are based on a common
reference description of the Lightning Network [9] aiming at interoperability. Unfortunately, this proposal is
understudied in terms of its security and privacy guarantees.

PCNs have attracted plenty of attention also from academia [28,31,36,39]. Malavolta et al. [36] proposed
a secure and privacy-preserving protocol for multi-hop payments. However, this requires non-trivial amount
of data (i.e., around 5 MB) to be exchanged between the users in the payment path. Moreover, this solution
requires a Hash Time-Lock Contract (HTLC) to be available in the cryptocurrency.

Green and Miers presented a hub-based privacy-preserving payment for PCNs [28]. This is based on
primitives only available in Zcash and it cannot be seamlessly deployed in Bitcoin. Moreover, this approach
is limited to paths with up to 3 users and the extension to support paths of arbitrary length remains an
open problem.

Poelstra [42] introduced the notion of Scriptless Scripts. In a nutshell, he described the possibility of
implementing the two-phase commit protocol used in the Lightning Network in a manner that no longer
requires the existence of smart contracts in the cryptocurrency. Instead, he proposes to leverage the signature
scheme used already in cryptocurrencies not only to validate a transaction, but also to validate it depending
on a given condition. Although interesting, current proposals [43] lack formal security and privacy treatments
and are based only on the Schnorr signature scheme, therefore being incompatible with cryptocurrencies like
Bitcoin.

In summary, the existing proposals are neither generically applicable nor interoperable, since they rely
on specific features (e.g., contracts) of individual cryptocurrencies. Furthermore, the theoretical foundations
of PCNs are not properly understood: For instance, it is not clear how many rounds of communication a
secure PCN requires, nor what security actually means.

1.2 Our contributions

In this work, we lay the theoretical foundations of PCNs and present the first interoperable, secure, and
privacy-preserving cryptographic construction for PCNs. Specifically,

• We introduce a novel cryptographic primitive called multi-hop locks, whose security and privacy properties
are defined as an ideal functionality in the UC model [20] in order to inherit the underlying composability
guarantees (Section 3).

• We show how to realize multi-hop locks in a script-based setting as well as in a scriptless one1 (Section 4).
In particular, we demonstrate that (partially) homomorphic operations suffice to build any script-based
multi-hop lock. Furthermore, we show how to realize multi-hop locks even without resorting to specific
scripts. This approach is of special interest because it is more generic and it reduces the transaction size,
and, consequently, the blockchain load. We give two concrete constructions based on Schnorr and ECDSA
signatures, solving a long-standing problem in the literature [43]. This makes multi-hop locks compatible
with the vast majority of cryptocurrencies (including Bitcoin and Ethereum). In fact, multi-hop locks are
being implemented right now in the Lightning Network [1].

• We implemented our cryptographic constructions and show that they require at most 60 milliseconds to
be computed and a communication overhead of less than 500 bytes in the worst case (Section 5). These
results demonstrate that multi-hop locks are practical and ready to be deployed.

• We demonstrate that the usefulness of multi-hop locks goes beyond regular PCNs, showing how to leverage
them to design atomic swaps and cross-currency PCNs (Section 6).
1In this work, we denote by scriptless script a modified version of a digital signature scheme so that a signature can only be

created faithfully fulfilling a cryptograhpic condition [43]. The resulting signature is verifiable following the unmodified digital
signature scheme. When applied to script-based systems like Bitcoin or Ethereum, they are accompanied by core scripts (e.g.,
script to verify the signature itself).
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2 Background

In this section, we provide the required background on payment channel networks.

2.1 Payment Channels

A payment channel allows two users to exchange bitcoins without committing every single payment to the
Bitcoin blockchain. For that, users first publish an on-chain transaction to deposit bitcoins into a multi-
signature address controlled by both users. Such deposit also guarantees that all bitcoins are refunded at
a mutually agreed time if the channel expires. Users can then perform off-chain payments by adjusting the
balance of the deposit in favor of the payee. When no more off-chain payments are needed (or the capacity
of the payment channel is exhausted), the payment channel is closed with a closing transaction included in
the blockchain. This transaction sends the deposited bitcoins to each user according the most recent balance
in the payment channel. We refer the reader to [23,24,37,44] for further details.

2.2 A Payment Channel Network (PCN)

A PCN can be represented as a directed graph G = (V,E), where the set V of vertices represents the
Bitcoin accounts and the set E of weighted edges represents the payment channels. Every vertex U ∈ V has
associated a non-negative number that denotes the fee it charges for forwarding payments. The weight on a
directed edge (U1, U2) ∈ E denotes the amount of remaining bitcoins that U1 can pay to U2.

A PCN is used to perform off-chain payments between two users with no direct payment channel between
them but rather connected by a path of open payment channels. For that, assume that S wants to pay α
bitcoins to R, which is reachable through a path of the form S → U1 → . . .→ Un → R. For their payment
to be successful, every link must have a capacity γi ≥ α′i, where α′i = α −

∑i−1
j=1 fee(Uj) (i.e., the initial

payment value minus the fees charged by intermediate users in the path). If the payment is successful, edges
from S to R are decreased by α′i. Importantly, to ensure that R receives exactly α bitcoins, S must start
the payment with a value α∗ = α+

∑n
j=1 fee(Uj). We refer the reader to [28,36,37,44] for further details.

The concepts of payment channels and PCNs have already attracted attention from academia [24,28,29,
33, 36, 37, 46]. In practice, the Lightning Network (LN) [9, 44] has emerged as the most prominent example.
Currently, there exist several independent implementations of the LN for Bitcoin [2,3,8,11]. Moreover, the LN
is also considered as a scalability solution in other blockchain-based payment systems such as Ethereum [10].

2.3 Multi-Hop Payments in the LN

A fundamental property that multi-hop payments have to fulfill is atomicity : Either the capacity of all
channels in the path is updated or none of the channels is changed. Partial updates can lead to coin losses
by the user. For instance, a user could pay certain bitcoins to the next user in the path but never receive the
corresponding bitcoins from the previous neighbour. The LN tackles this challenge by relying on a smart
contract called Hash Time-Lock Contract (HTLC) [44].

This contract locks x bitcoins that can be released only if the contract’s condition is fulfilled. The contract
is defined in terms of a hash value y := H(R) where R is chosen uniformly at random, the amount of bitcoins
x, and a timeout t, as follows:

HTLC (Alice, Bob, y, x, t):
1. If Bob produces the condition R∗ such that H(R∗) = y before t days,2Alice pays Bob x bitcoins.
2. If t days elapse, Alice gets back x bitcoins.

We depict in Figure 1 an illustrative example of the use of HTLC in a payment. For ease of exposition,
we assume that every user charges a fee of one bitcoin and the payment amount is 10 bitcoins. In this
payment, Edward first sets up the payment by creating a random value R and sending H(R) to Alice. Then,
the commitment round starts by Alice. She first sets on hold 13 bitcoins who is then followed by every
intermediate user by setting on hold the received amount minus his/her own fee. After Dave sets 10 coins
on hold with Edward, the latter knows that the corresponding payment amount is on hold at each channel
and he can start the releasing phase. For that, he reveals the value R to Dave allowing them to fulfill the
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Alice  Bob   Carol  Dave  Edward 

2. HTLC(A, B, y, 13, 4)

1. y := H(R)

6. R 

3. HTLC(B, C, y, 12, 3) 4. HTLC(C, D, y, 11, 2) 5. HTLC(D, E, y, 10, 1)

9. R 

20 / 7  50 / 38  12 / 1  15 / 5 

7. R 8. R 

Figure 1: Illustrative example of a payment from Alice to Edward for value 10 using HTLC contract. Non
bold (bold) numbers represent the capacity of payment channels before (after) the payment from Alice to
Edward. We assume all users to charge a payment fee of 1 bitcoin. First, the condition is sent from Edward
to Alice. The condition is then forwarded among users in the path to hold 10 bitcoin plus the fees left to pay
at each payment channel. Finally, the receiver shows R, releasing the held bitcoin at each payment channel.

HTLC contract and settle the new capacity at the payment channel. The value R is then passed backwards
in the path allowing the settlement of each payment channel in the path.

3 Definition

In the following we introduce a new cryptographic primitive called multi-hop lock. This primitive generalizes
the locking mechanism used for payments in state-of-the art PCNs such as the Lightning Network. As
motivated in the previous section, we model the primitive such that it allows for an initial setup phase in
which the first node of the path provides the other nodes on the path with some secret (path-specific) state.
Formally, a multi-hop lock is defined with respect to a universe of users U and it is a five-tuple of PPT
algorithms and protocols L = (KGen,Setup, Lock,Rel,Vf) defined as follows:

Definition 1 (Multi-hop lock). A multi-hop lock L = (KGen,Setup, Lock,Rel,Vf) consists of the following
efficient algorithms:

• {(ski, pk), (skj , pk)} ← 〈KGenUi(1λ),KGenUj (1
λ)〉 : On input the security parameter 1λ the key generation

protocol returns a shared public key pk and a secret key ski (skj, respectively) to Ui and Uj.

• {sI0, . . . , (sIn, kn)} ←
〈

SetupU0
(1λ, U1, . . . , Un), . . . , SetupUn(1λ)

〉
: On input a set of identities (U1, . . . , Un)

and the security parameter 1λ, the setup protocol returns, for i ∈ [0, n], a state si to each party Ui. The
receiver Un additionally receives a key kn.

• {(`, sRi ), (`, sLi+1)} ←
〈

LockUi(s
I
i , ski, pk), LockUi+1(sIi+1, ski+1, pk)

〉
: On input two initial states sIi and

sIi+1, two secret keys ski and ski+1, and a public key pk, the locking protocol is executed between two
parties (Ui, Ui+1) and returns a lock ` and a right state sRi to Ui and the same lock ` and a left state sLi+1

to Ui+1.

• k′ ← Rel(k, (sI , sL, sR)) : On input an opening key k and a set of states (sI , sL, sR), the release algorithm
returns a new opening key k′.

• {0, 1} ← Vf(`, k) : On input a lock ` and a key k the verification algorithm returns a bit b ∈ {0, 1}.

Correctness. A multi-hop lock is correct if the verification algorithm Vf always accepts a honestly gener-
ated lock-key pair. For a more detailed and formal correctness definition, we refer the reader to Appendix A.

Key Ideas. Figure 2 illustrates the usage of the different protocols underlying the multi-hop lock primitive:
We assume an initial phase where a network of users is generated using the (interactive) KGen protocol for
establishing pairwise links between users. Consequently, all users in this network are assumed to hold a
secret key and a shared public key for each link that they created. We recreate thereby the opening of
payment channels that compose the PCN.
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Lock ,U1 U2 Lock ,Un−2 Un−1

k1k0 Release kn

Figure 2: Illustration of the usage of the multi-hop lock primitive. It is assumed that links between the users
on the path have been created upfront using the KGen algorithm and that the resulting public and secret
keys are implicitly given as argument to the corresponding executions of the Lock protocol. Otherwise, the
inputs (outputs) to (from) the Lock protocol and the Rel algorithm are indicated by blue (orange) arrows.

In the setup phase (depicted in green), the sender U0 decides upon a path of users (U0, . . . , Un) and
executes the Setup protocol with the nodes of the path. Each user Ui on the path learns its initial state
sIi and the receiver Un additionally learns the initial opening key kn. The introduction of the initial state
at each intermediate user is crucial for security and privacy. Intuitively, we can use this initial state as
“rerandomization factor” to ensure that locks in the same path are unlinkable for the adversary.

Next, in the locking phase, each pair of users jointly executes the pairwise Lock protocol, starting from
U0. Two users Ui and Ui+1 run the Lock protocol on their initial states sIi and sIi+1 to generate a lock `i.
The creation of this lock represents the commitment from Ui to perform an application-dependent action if
a cryptographic problem is solved by Ui+1. In the case of LN, this operation represents the commitment of
Ui to pay a certain amount of coins to Ui+1 if Ui+1 solves the cryptographic condition. Each user also learns
some secret information sRi (resp. sLi+1) that will be needed for releasing the lock later on. As the locks are
directed, the usage of this information will differ depending on whether it was gained while creating a lock
with a preceding (left) or with a subsequent (right) neighbor on the path: As Ui creates a lock with its right
neighbor, it learns the state sRi denoting the state of its right lock. Correspondingly, Ui+1 learns the state
sLi denoting the state of its left lock. While these extra states are not present in the LN (i.e., every lock is
based on the same cryptographic puzzle H(R)), having them is crucial for security. They make the releasing
of different locks in the path independent from each other and therefore enable the possibility to ensure that
a lock `i can only be released if `i+1 has been released before.

Finally, after the entire path is locked, the receiver Un can use the information it received during the
setup phase (kn and sIn) together with the information it learned from creating its left lock (sLn) to generate
a key for releasing its left lock. In the same fashion each intermediate node can use its state (containing the
initial state as well as the states from locking) to derive a valid key for its left lock from a valid key for its
right lock using the Rel algorithm. This last phase resembles the opening phase of the LN where each pair
of users settles the new balances for their deposit at each payment channel in the payment path.

3.1 Security and Privacy Definition

To model security and privacy in the presence of concurrent executions we resort to the universal com-
posability framework from Canetti [20]. We allow thereby the composition of multi-hop locks with other
application-dependent protocols while maintaining security and privacy guarantees. We model the players in
our protocol as interactive Turing machines that communicate with a trusted functionality F via secure and
authenticated channels. We model the attacker A as a PPT machine that corrupts a subset of users prior
the execution of the interaction. Upon corruption of a user U , the attacker is provided with the internal
state of U and the incoming and outgoing communication of U is routed through A. Let EXECτ,A,E be the
ensemble of the outputs of the environment E when interacting with the adversary A and parties running
the protocol τ (over the random coins of all the involved machines).

Definition 2 (Universal Composability). A protocol τ UC-realizes an ideal functionality F if for any PPT
adversary A there exists a simulator S such that for any environment E the ensembles EXECτ,A,E and
EXECF,S,E are computationally indistinguishable.
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KeyGen(Uj , {L,R})

Upon invocation by Ui:

send (Ui, {L,R}) to Uj

receive b from Uj

if b = ⊥ send ⊥ to Ui and abort

if L insert (Ui, Uj) into U and send (Ui, Uj) to Ui

if R insert (Uj , Ui) into U and send (Uj , Ui) to Ui

Lock(lid)

Upon invocation by Ui:

if getStatus(lid) 6= Init or getLeft(lid) 6= Ui then abort

send (lid, Lock) to getRight(lid)

receive b from getRight(lid)

if b = ⊥ send ⊥ to Ui and abort

updateStatus(lid , Lock)

send (lid, Lock) to Ui

Setup(U0, . . . , Un)

Upon invocation by U0:

if ∀i ∈ [0, n− 1] : (Ui, Ui+1) /∈ U then abort

∀i ∈ [0, n− 1]: lidi ←$ {0, 1}λ

insert (lid0, U0, U1, Init, lid1), (lidn−1, Un−1, Un, Init,⊥)
into L
send (⊥, lid0,⊥, U1, Init) to U0

send (lidn−1,⊥, Un−1,⊥, Init) to Un

∀i ∈ [1, n− 1]: insert (lidi, Ui, Ui+1, Init, lidi+1) into L
send (lidi−1, lidi, Ui−1, Ui+1, Init) to Ui

Release(lid)

Upon invocation by Ui:

if getRight(lid) 6= Ui or getStatus(lid) 6= Lock or

getStatus(getNextLock(lid)) 6= Rel

and getNextLock(lid) 6= ⊥ then abort

updateStatus(lid , Rel)

send (lid,Rel) to getLeft(lid)

Figure 3: Ideal functionality for multi-hop locks

Ideal Functionality. We formally define the ideal world functionality F for multi-hop locks in the follow-
ing. For ease of exposition, we assume that each pair of users establishes only a single link per direction. The
model can be easily extended to handle the more generic case. F works in interaction with a universe of users
U and initializes two empty lists (U ,L) := ∅, which are used to track the users and the locks, respectively.
The list L represents a set of lock chains. The entries are of the form (lidi, Ui, Ui+1, f, lidi+1) where lidi
is a lock identifier that is unique even among other lock chains in L, Ui and Ui+1 are the users connected
by the lock, f ∈ {Init, Lock,Rel} is a flag that represents the status of the lock, and lidi+1 is the identifier
of the next lock in the path. For sake of better readability, we define functions operating on L extracting
lock-specific information given the lock’s identifier, such as the lock’s status (getStatus(·)), the nodes it is
connecting (getLeft(·), getRight(·)), and the next lock’s identifier (getNextLock(·)). In addition we define an
update function updateStatus(·, ·) that changes the status of lock to a new flag.

The interfaces of the functionality F are specified in Figure 3. The KeyGen interface allows a user to
establish a link with another user (specifiying whether it wants to be the left or the right part of the link).
The Setup interface allows a user U0 to setup a path (starting from U0) along previously established links.
The Lock interface allows a user to create a lock with its right neighbor on a previously created path and
finally the Release algorithm allows a user to release the lock with its left neighbor, in case that the user is
either the receiver or its right lock has been released before. Internally, the locks are modelled by identifiers
that are unique across all paths that have been created. Consequently, each lock identifier also identifies the
path along which it was established.

3.2 Discussion

We discuss how the security and privacy properties for multi-hop locks are modeled by the ideal functionality.

Atomicity. Loosely speaking, atomicity means that every user in a path is able to release its left lock in
case that his right lock was already released. This is enforced by F as i) it is keeping track of the chain of
locks and their current status in the list L and ii) the Release interface of F allows one to release a lock lid
(changing the flag to Rel) if and only if lid is locked and the follow-up lock (getNextLock(lid)) was already
released.
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Consistency. A multi-hop lock is consistent if no attacker can release his left lock without its right lock
being released before. This prevents scenarios where some multi-hop lock is released before the receiver is
reached. To see why our ideal functionality models this property, observe that the Release interface allows
a user to release the left lock if and only if the right lock has already been released or if the user itself is the
receiver.

Relationship Anonymity. Relationship anonymity [14] requires that each intermediate node does not
learn any information about the set of users in a multi-hop lock beyond its direct neighbors. This property is
satisfied by F as the lock identifiers are sampled at random and during the locking phase a user only learns
the identifiers of its left and right lock as well as its left and right neighbor.

4 Constructions

Here we describe our constructions for multi-hop locks.

4.1 Cryptographic Building Blocks

Throughout this work we denote by λ ∈ N+ the security parameter. Given a set S, we denote by x←$S
the sampling of and element uniformly at random from S, and we denote by x ← A(in) the output of the
algorithm A on input in. We denote by min(a, b) the function that takes as input two integers and returns
the smaller of the two. In the following we briefly recall the cryptographic building blocks of our schemes.

Homomorphic One-Way Functions. A function g : D → R is one-way if, given a random element
x ∈ R, it is hard to compute a y ∈ D such that g(y) = x. We say that a function g is homomorphic if D and
R define two abelian groups and for each pair (a, b) ∈ D2 it holds that g(a◦ b) = g(a)◦ g(b), where ◦ denotes
the group operation. Throughout this work we denote the corresponding arithmetic group additively.

Commitment Scheme. A commitment scheme COM consists of a commitment algorithm (decom, com)←
Commit(1λ,m) and a verification algorithm {0, 1} ← Vcom(com, decom,m). The commitment algorithm
allows a prover to commit to a message m without revealing it. In a second phase, the prover can convince
a verifier that the message m was indeed committed by showing the unveil information decom. The security
of a commitment scheme is captured by the standard ideal functionality Fcom [20].

Non-Interactive Zero-Knolwedge. Let R be an NP relation and let L be the set of positive instances,
i.e., L := {x | ∃w s.t. R(x,w) = 1}. A non-interactive zero-knowledge proof [17] scheme NIZK consists of
an efficient prover algorithm π ← PNIZK(w, x) and an efficient verifier {0, 1} ← VNIZK(x, π). A NIZK scheme
allows the prover to convince the verifier about the existence of a witness w for a certain statement x without
revealing any additional information. The security of a NIZK scheme is modelled by the following ideal
functionality FNIZK: On input (prove, sid, x, w) by the prover, check if R(x,w) = 1 and send (proof, sid, x) to
the verifier if this is the case.

Homomorphic Encryption. One of the building blocks of our work is the additive homomorphic encryp-
tion scheme HE := (KGenHE,EncHE,DecHE) from Paillier [41]. The scheme supports homomorphic operation
over the ciphertexts of the form EncHE(pk,m) ·EncHE(pk,m′) = EncHE(pk,m+m′). We assume that Paillier’s
encryption scheme satisfies the notion of ecCPA security, as defined in the work of Lindell [34].

Schnorr Signatures. Let G be an elliptic curve group of order q with base point G and let H : {0, 1}∗ →
{0, 1}|q| be a collision resistant hash function (modelled as a random oracle). The key generation algorithm
KGenschnorr(1

λ) of a Schnorr signature [47] samples some x←$Zq and sets the corresponding public key as
Q := x · G. To sign a message m, the signing algorithm Sigschnorr(sk,m) samples some k←$Zq, computes
e := H(Q‖k · G‖m), sets s := k − xe, and returns σ := (R, s), where R := k · G. The verification
Vfschnorr(pk, σ,m) returns 1 if and only if s · G = R + H(Q‖R‖m) · Q. Schnorr signatures are known to be
strongly unforgeable against the discrete logarithm assumption [27]. We assume the existence of a 2-party
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SetupUi(1
λ) SetupU0

(1λ, U1, . . . , Un) SetupUn(1λ)

y0 ←$D
Y0 := g(y0)

∀i ∈ [1, n− 1] : yi ←$D

if Yi 6= Yi−1 + g(yi) then abort(Yi−1, Yi, yi)←−−−−−−−− Yi := Yi−1 + g(yi) (Yn−1,kn:=
∑n−1
i=0 yi)−−−−−−−−−−−−−−→

return (Yi−1, Yi, yi) return y0 return ((Yn−1, 0, 0), kn)

LockUi(s
I
i , ski, pk) LockUi+1(sIi+1, ski+1, pk)

parse sIi as (Y ′i , Yi, yi) Yi−−−−−→parse si+1 as (Y ′i+1, Yi+1, yi+1)

if Yi 6= Y ′i+1 then abort

return (Yi,⊥) return (Yi,⊥)

Rel(k, (sI , sL, sR))

parse sI as (Y ′, Y, y)

return k − y

Vf(`, k)

return
g(k) = `

Figure 4: Algorithms and protocols for the generic construction

protocol Πschnorr
KGen where the two players, on input x0 and x1, set a shared public key Q := (x0 +x1) ·G. Such

a protocol can be realized using standard techniques [38].

ECDSA Signatures. Let G be an elliptic curve group of order q with base point G and let H : {0, 1}∗ →
{0, 1}|q| be a collision resistant hash function. The key generation algorithm KGenECDSA(1λ) samples a private
key as a random value x←$Zq and sets the corresponding public key is Q := x ·G. To sign a message m, the
signing algorithm SigECDSA(sk,m) samples some k←$Zq and computes e := H(m). Let (rx, ry) := R = k ·G,
the algorithm computes r := rx mod q and s := e+rx

k mod q. The signature consists of (r, s). The verification
algorithm VfECDSA(pk, σ,m) recomputes e = H(m) and returns 1 if and only if (x, y) = e

s · G + r
s · Q and

r = x mod q. It is a well known fact that for every valid signature (r, s), also the pair (r,−s) is a valid
signature. To make the signature strongly unforgeable we augment the verification equation with a check
that s ≤ q−1

2 . We assume the existence of an interactive protocol ΠECDSA
KGen executed between two users where

the one receives (x0, Q, sk), where sk is a Paillier secret key and Q = x0 · x1 · G, whereas the other obtains
(x1, Q,EncHE(pk, x0 · x1)), where pk is the corresponding Paillier public-key. An efficient protocol that fits
these requirements has been recently proposed by Lindell [34].

Anonymous Communication. We assume an anonymous communication channel Πanon available among
peers of the network, which is modelled by the ideal functionality Fanon which anonymously delivers messages
to users in the network.

4.2 Generic Construction

An interesting question related to multi-hop locks is under which class of hard problems such a primitive
exists. A generic construction using trapdoor permutation was given (implicitly) in [36]. Here we propose
a scheme from any homomorphic one-way function. Examples of homomorphic one-way functions include
discrete logarithm and the learning with error problem [45]. Let g : D → R be a homomorphic one-way
function, and let Πanon be an anonymous communication channel. The algorithms of our construction are
given in Figure 4. Note that the key generation algorithm simply returns the identities of the users and
therefore it is omitted.

In the setup algorithm, the user U0 initializes the multi-hop lock by sampling n values (y0, . . . , yn−1) from

the domain of g. Then it sends (via Πanon) a triple (g(
∑i−1
j=0 yj), g(

∑i
j=0 yj), yi) to each intermediate user.

The intermediate user Ui can then check that the triple is well formed using the homomorphic properties
of g. Two contiguous users Ui and Ui+1 can agree on the shared value of `i := Yi = g(

∑i
j=0 yj) by simply

comparing the second and first element of their triple, respectively. Note that publishing a valid opening
key k such that g(k) = ` corresponds to inverting the one-way function g. The opening of the locks can be

triggered by the last node in the chain Un: The initial key kn :=
∑n−1
i=0 yi consists of a valid pre-image of
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`n−1 := Yn−1. As soon as the “right” lock is released, each intermediate user Ui has enough information to
release its “left” lock. To see this, observe that g(ki+1− yi) = g(

∑i
j=0 yi− yi) = g(

∑i−1
j=0 yi) = Yi−1. For the

security of the construction, we state the following theorem. Due to space constrains, the proof is deferred
to Appendix B.

Theorem 1. Let g be a homomorphic one-way function and let Πanon be an anonymous communication
channel, then the construction in Figure 4 UC-realizes the ideal functionality F .

Discussion. The generic construction presented here requires a cryptocurrency supporting scripts that
define (partially) homomorphic operations. This construction is therefore of special interest in blockchain
technologies such as Ethereum [7] and Hyperledger Fabric [13], where any user can freely deploy a smart
contract without restrictions in the cryptographic operations available. We stress that any function with
homomorphic properties are suitable to implement our construction. For instance, lattice-based functions
(e.g., from the learning with errors problem) can be used for applications where post-quantum cryptography
is required. However, many cryptocurrencies, leaded by Bitcoin, do not support unrestricted scripts and
the deployment of generic multi-hop locks require non-trivial changes (i.e., a hard-fork). To overcome
this practical challenge, we propose scriptless multi-hop locks, where digital a signature scheme that can
simultaneously be used for authorization and locking.

4.3 Schnorr-based Construction

In the following we cast the idea of Poelstra [42] in our framework. The crux of the construction is that
a lock shall consist only of a message m and a public key pk of a given signature scheme (Schnorr in this
case) and can be released only with a valid signature σ of m under pk. As discussed before, this enables
to use multi-hop locks in conjunction to cryptocurrencies that do not support custom scripts. On a high-
level, our scheme resembles Poelstra’s paradigm, with the crucial difference that it requires one less round
of communication. The construction exploits specific homomorphic properties of Schnorr signatures, with a
novel usage of the randomness, which we also leverage later to support interoperable Schnorr-ECDSA locks.

Let G be an elliptic curve group of order q with base point G and let H : {0, 1}∗ → {0, 1}|q| be a hash
function. The Schnorr-based construction is formally described in Figure 5. The key generation algorithm
consists of an execution of the Πschnorr

KGen protocol. At the end of a successful run, Ui receives (xi, pk) whereas
Uj obtains (xj , pk), where pk := (xi + xj) · G. The setup of a multi-hop lock is very similar to the setup
of the generic construction in Section 4.2 except that the one-way function g is now instantiated with
discrete logarithm over elliptic curves. Each intermediate user Ui receives a triple (Yi−1, Yi, yi) such that
Yi := Yi−1 +yi ·G, from Πanon. For technical reasons, the initiator of the multi-hop lock also includes a proof
of wellformedness for each Yi.

Prior to the locking phase, two users Ui and Ui+1 (implicitly) agree on the value Yi and on a message m
to be signed. Each message is assumed to be unique for each session (e.g., contains a transaction identifier).
The locking algorithm consists of an “incomplete” distributed signing of m. First, the two parties agree on a
randomly chosen element R0+R1 using a standard coin tossing protocol, then they set the randomness of the
signature to be R := R0+R1+Yi. Note that at this point the parties cannot complete the signature since they
do not know the discrete logarithm of Yi. Instead, they jointly compute the value s := r0 + r1 + e · (x0 + x1)
as if Yi was not part of the randomness, where e is the hash of the transcript so far. The resulting (R, s) is
not a valid signature on m, since the additive term y∗ (where y∗ ·G = Yi) is missing from the computation
of s. However, rearranging the terms, we have that (R, s+ y∗) is a valid signature on m. This implies that,
once the discrete logarithm of Yi is revealed, a valid signature m can be computed by Ui+1. Leveraging
this observation, Ui+1 can enforce an atomic opening: The subsequent locking (between Ui+1 and Ui+2) is
conditioned on some Yi+1 = Yi + yi+1 ·G. This way, the opening of the right lock reveals the value y∗+ yi+1

and Ui+1 can immediately extract y∗ and open its left lock with a valid signature on m. The security of the
construction is shown by the following theorem. We refer the reader to Appendix B for a full proof.

Theorem 2. Let COM be a secure commitment scheme, let NIZK be a non-interactive zero knowledge
proof, let Πschnorr

KGen be a secure shared key generation protocol, and let Πanon be an anonymous communication
channel. If Schnorr signatures are strongly existentially unforgeable, then the construction in Figure 5 UC-
realizes the ideal functionality F .
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SetupUi (1
λ) SetupU0

(1λ, U1, . . . , Un) SetupUn (1λ)

y0 ←$Zq
Y0 = y0 ·G
∀i ∈ [1, n− 1] : yi ←$Zq
Yi := Yi−1 + yi ·G

st′ :=
(∑i

j=0 yj , {∃y s.t. Yi = y ·G}
)

st := {∃y s.t. Yi = y ·G} (Yi−1,Yi,πi)←−−−−−−−−− πi ← PNIZK(st′) (Yn−1,kn:=
∑n−1
i=0 yi)−−−−−−−−−−−−−−−→

b← VNIZK(st, πi)

if b = 0 then abort

Yi := Yi−1 + yi ·G
return (Yi−1, Yi, yi) return y0 return ((Yn−1, 0, 0), kn)

LockUi (s
I
i , ski, pk) LockUi+1

(sIi+1, ski+1, pk)

parse sIi as (Y ′0 , Y0, y0) parse sIi+1 as (Y ′1 , Y1, y1)

r0 ←$Zq r1 ←$Zq
R0 := r0 ·G R1 := r1 ·G
π0 ← PNIZK(r0, {∃r0 s.t. R0 = r0 ·G}) π1 ← PNIZK(r1, {∃r1 s.t. R1 = r1 ·G})

com←−−(decom, com)← Commit(1λ, (R1, π1))

(R0,π0)−−−−−→b1 ← VNIZK({∃r0 s.t. R0 = r0 ·G}, π0)

if b1 = 0 then abort

e := H(pk‖R0 +R1 + Y ′1‖m)

if Vcom(com, decom, (R1, π1)) 6= 1 then abort (decom,R1,π1,s)←−−−−−−−−−−−s := r1 + e · ski+1 mod q

b0 ← VNIZK({∃r1 s.t. R1 = r1 ·G}, π1)

if b0 = 0 then abort

e := H(pk‖R0 +R1 + Y0‖m)

if s ·G 6= R1 + e · (pk− ski ·G) then abort

s′ := s+ r0 + e · ski mod q s′−→if s′ ·G 6= R0 +R1 + e · pk then abort

return ((m, pk), s′) return ((m, pk), (R0 +R1 + Y ′1 , s
′))

Rel(k, (sI , sL, sR))

parse sI as (Y ′, Y, y); parse k as (R, s); parse sL as (W0, w1)

w := w1 + s− (sR + y) mod q

return (W0, w)

Vf(`, k)

parse ` as (m, pk); parse k as (R, s)

e := H(pk‖R‖m)

return s ·G = R+ e · pk

Figure 5: Algorithms and protocols for the Schnorr-based construction

Discussion. The Schnorr-based construction, first sketched by Poelstra and formally defined and charac-
terized in this work, can be deployed in any cryptocurrency that uses the Schnorr digital signature scheme
as authorization mechanism for transactions, independently of the script language supported. However, this
construction is not compatible with those system, prominently Bitcoin, that rely on ECDSA to authorize
the transactions. Therefore, an ECDSA-based scriptless multi-hop lock is desirable both from a practical
prospective and it is an interesting theoretical problem whether it can be done at all. To the best of our
knowledge, this was considered as an open problem [43]. The core difference is that the Schnorr-based con-
struction exploits the linear structure of the signature, whereas the ECDSA signing algorithm completely
break this linearity feature. In the following, we show how to overcome this problem, introducing our novel
scriptless ECDSA-based construction for multi-hop locks.

4.4 ECDSA-based Construction

In the following, we present an instantiation of multi-hop locks based on ECDSA signatures: Locks are of
the form (pk,m) and can only be opened with a valid ECDSA signature σ on m under pk.

10



LockUi (s
I
i , ski, pk) LockUi+1

(sIi+1, ski+1, pk)

parse sIi as (Y ′0 , Y0, y0) parse sIi+1 as (Y ′1 , Y1, y1)

parse ski as (x0, skHE) parse ski as (x0, skHE)

r0 ←$Zq r1 ←$Zq
R0 := r0 ·G R1 := r1 ·G
R′0 := r0 · Y0 R′1 := r1 · Y ′1
π0 ← PNIZK(r0, {∃r0 s.t. R0 = r0 ·G and R′0 = r0 · Y0}) π1 ← PNIZK(r1, {∃r1 s.t. R1 = r1 ·G and R′1 = r1 · Y ′1})

com←−−(decom, com)← Commit(1λ, (R1, R
′
1, π1))

(R0,R
′
0,π0)

−−−−−−−−→b1 ← VNIZK({∃r0 s.t. R0 = r0 ·G and R′0 = r0 · Y ′1}, π0)

if b1 = 0 then abort

(rx, ry) := R = r1 · R′0
ρ←$Zq2

if Vcom(com, decom, (R1, R
′
1π1)) 6= 1 then abort (decom,R1,R

′
1,π1,c

′)
←−−−−−−−−−−−−−−c

′ := crx(r1)−1
· EncHE(pk, H(m)(r1)

−1 + ρq)

b0 ← VNIZK({∃r1 s.t. R1 = r1 ·G and R′1 = r1 · Y0}, π1)

if b0 = 0 then abort

s← DecHE(skHE, c
′)

(rx, ry) := R = r0 · R′1

if s · R1 6= rx · pk +H(m) ·G then abort s′:=s·r−1
0 mod q

−−−−−−−−−−−−→if s′ · r1 · R0 6= rx · pk +H(m) ·G then abort

return ((m, pk), (s′,m, pk)) return ((m, pk), (rx, s
′))

Rel(k, (sI , sL, sR))

parse sI as (Y ′, Y, y), k as (r, s), sL as (w0, w1), sR as (s′,m, pk)

t := w1 · ( s
′

s
− y)−1

t′ := w1 · (− s
′

s
− y)−1

if VfECDSA(pk, (w0,min(t,−t)),m) = 1 return (r,min(t,−t))
if VfECDSA(pk, (w0,min(t′,−t′)),m) = 1 return (r,min(t′,−t′))

Vf(`, k)

parse ` as (m, pk)

parse k as (r, s)

return 1 iff (r, ·) =
H(m)
s
·G+ r

s
· pk and

s ≤ q−1
2

Figure 6: Algorithms and protocols for the ECDSA-based construction. The Setup protocol is as defined
in Figure 5

Let G be an elliptic curve group of order q with base point G and let H : {0, 1}∗ → {0, 1}|q| be a hash
function. The ECDSA-based construction is shown in Figure 6. Each pair of users (Ui, Uj) generates a
shared ECDSA public key pk = (xi · xj) · G via the ΠECDSA

KGen protocol. Additionally, Ui receives his share
x0 and a Paillier secret key, whereas and Uj receives the share x1 and an encryption c of x0 · x1. The
corresponding key generation protocol is fully described in [34]. The setup of a multi-hop lock is identical
to the Schnorr-based construction and can be found in Figure 5.

The locking algorithm is initiated by two users Ui and Ui+1 who agree on a message m (which encodes a
unique id) and on a value Yi := y∗ ·G of unknown discrete logarithm. The two parties then run a coin tossing
protocol to agree on a randomness R = (r0 · r1) · Yi. When compared to the Schnorr instance, the crucial
technical challenge here is that the randomnesses are composed multiplicatively due to the structure of the
ECDSA signature and therefore, the trick applied in the Schnorr construction no longer applies here. R is
computed through a Diffie-Hellman-like protocol, where the parties exchange r0 · Yi and r1 · Yi and locally
recompute R. As before, the shared ECDSA signature is computed by “ignoring” the term Yi, since the

parties are unaware of its discrete logarithm. The corresponding tuple
(
rx, s

′ := rx·(xi·xi+1)+H(m)
r0·r1

)
is jointly

computed using the encryption of xi · xi+1 and the homomorphic properties of Paillier encryption. This
effectively means that (rx, s

′) = (rx, s
∗ · y∗), where (rx, s

∗) is a valid ECDSA signature on m. In order to
check the validity of s′, the parties additionally need to exchange the value R∗ := (r0 ·r1)·G = (y∗)−1 ·R. The
computation of R∗ (together with the corresponding consistency proof) is piggybacked in the coin tossing.
Given R∗, the validity of s′ can be easily verified by both parties by recomputing it “in the exponent”.

From the perspective of Ui+1, releasing his left lock without a key for his right lock implies solving the
discrete logarithm of Yi. On the converse, once the right lock is released, the value y∗ + yi+1 is revealed
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(where yi+1 is part of the state of Ui+1) and a valid signature can be computed as
(
rx,

s′

y∗

)
. The security of

the construction is established by the following theorem (see Appendix B for a full proof).

Theorem 3. Let COM be a secure commitment scheme, let NIZK be a non-interactive zero knowledge proof,
let ΠECDSA

KGen be a secure shared key generation protocol, and let Πanon be an anonymous communication
channel. If ECDSA signatures are strongly existentially unforgeable and Paillier encryption is ecCPA secure,
then the construction in Figure 6 UC-realizes the ideal functionality F .

Discussion. The ECDSA-based multi-hop lock brings several advantages to Bitcoin apart from being fully
compatible and the fact that it can be deployed today without even a soft fork. As the release information
for a lock is a single signature independently of the cryptographic condition, it reduces the transaction size
and therefore the associated fees and the amount of memory eventually required in the blockchain when
the payment channel is closed. Moreover, it improves the fungibility of Bitcoin, a crucial property for
any currency: The transaction encoding of a multi-hop lock is structurally identical to a direct payment
between two persons, therefore blending conditional payments into regular payments. This set of features
have attracted the attention of the Bitcoin community and our proposed solution has been started to be
implemented and tested.

4.5 Interoperable Multi-hop Locks

We observe that, when instantiated over the same elliptic curve G, the setup protocols of the Schnorr and
ECDSA constructions are identical. This means that in principle the initiator of the lock does not need to be
aware of whether each intermediate lock will be computed using the ECDSA or Schnorr method. This opens
the door to interoperable multi-hop locks: Given a unified setup, the intermediate pair of users can generate
locks using an arbitrary locking protocol. The resulting multi-hop lock is a chaining of (potentially) different
locks and the release algorithm needs to be adjusted accordingly. For the case of ECDSA-Schnorr the user
needs to extract the value y∗ from the right Schnorr signature (R∗, s∗) and his state sR := s′ = s∗−y∗+yi+1

and sI := (Yi, Yi+1, yi+1). Given y∗, he can factor it out of its left state sL = ((r, s · y∗),m, pk) and recover
a valid ECDSA signature.

The complementary case (Schnorr-ECDSA) is handled mirroring this algorithm. Similar techniques also
apply to the generic construction, when the one-way function is instantiated appropriately (i.e., with discrete
logarithm over the same curve). This flexibility in the choice of the locking algorithm immediately enables
cross-currency atomic swaps and payment channels (see Section 6). The security for the interoperable multi-
hop locks follows similar to the standard case.

5 Performance Analysis

Here we describe the implementation and evaluation of the different constructions of multi-hop locks, demon-
strating their practicality and deployment readiness.

5.1 Implementation

We have developed a prototypical Python implementation to demonstrate the feasibility of our construction
and evaluated its performance in terms of computation time, computation cost, and communication overhead.
We have used the Charm library [6,12] for the cryptographic operations. We have instantiated Schnorr and
ECDSA signatures over the elliptic curve secp256k1 (i.e., the one used in Bitcoin) and we have implemented
the homomorphic one-way function with the discrete log function g(x) := x ·G over the same curve. Zero-
knowledge protocols for the knowledge of discrete logarithms have been implemented using Σ protocols [22]
and made non-interactive using the Fiat-Shamir transformation [26]. For a commitment scheme we have
used SHA-256 modeled as a random oracle [15].
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Generic Schnorr ECDSA
Setup Time (ms) 0.3 · n 1 · n 1 · n

Comm (bytes) 96 · n 128 · n 128 · n
Lock Time (ms) – 2 60

Comm (bytes) 32 256 416
Rel Time (ms) – 0.002 0.02

Comm (bytes) 0 0 0
Vf Time (ms) – 0.6 0.06

Comm (bytes) 0 0 0
Comp Cost (gas) 350849 · n 0 0
Lock size (bytes) 32 32 + |m| 32 + |m|
Open size (bytes) 32 64 64

Table 1: Comparison of the resources required to execute the algorithms for the different multi-hop locks.
We denote by n the length of the path. We denote the negligible computation times by – (e.g., single
memory read). We denote the size of an application-dependent message by |m| (e.g., a transaction in a
payment-channel network).

5.2 Evaluation

We conducted our experiments on a machine with an Intel Core i7, 3.1 GHz and 8 GB RAM. In this analysis,
we consider the following four algorithms: Setup, Lock,Rel,Vf. We do not investigate on KGen as we use
off-the-shelf algorithms without modification. Moreover, the key generation is executed once and for all upon
creating a link and thus does not affect the online performance of multi-hop locks. We refer the reader to [38]
and [34] for a detailed performance evaluation of the key generation for Schnorr and ECDSA, respectively.

For each algorithm considered here, we report three measurements. First, the computation time required
by the two parties sharing a multi-hop lock. Second, the cost of such computation in the Ethereum blockchain
for the generic construction. We do not consider this measurement for scriptless approaches as they do not
require smart contracts. Finally, we measure the communication overhead.

Additionally, in this analysis we consider the memory overhead for the application to handle the infor-
mation (i.e., the lock and the opening) required by the multi-hop locks. The results of our performance
analysis are summarized in Table 1.

Computation Time. We measure the computation time required by the users to perform the different
algorithms. For the case of two-party algorithms (e.g., Setup and Lock) we consider the time for the two
users together. We make two main observations: First, script-based construction based on discrete logarithm
is faster than scriptless multi-hop locks, while ECDSA is slower than Schnorr among the scriptless options.
Second, all the algorithms require computation time of at most one millisecond on a commodity hardware.

Computation Cost. We measure the computation cost in terms of the gas required by a smart contract
implementing the corresponding algorithm in Ethereum. Naturally, we consider this cost only for the generic
approach based on discrete logarithm. We observe that setting up the corresponding contract requires 350849
unit of gas per hop. At the time of writing, each multi-hop lock requires considerably less that 0.01 USD.

Communication Overhead. We measure the communication overhead as the amount of information
that users need to exchange during the execution of interactive protocols, in particular, Setup and Lock.
As expected, the generic construction based on discrete logarithm requires less communication overhead
than scriptless constructions. Among the scriptless constructions, ECDSA requires a higher communication
overhead. This higher communication overhead is mainly due to having the signing key distributed mul-
tiplicatively instead of additively and a more complex structure of the final signature when compared to
Schnorr.
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Application Overhead. We measure the overhead incurred by the application in terms of the memory
required to handle application-dependent data, i.e., information defining the lock and the opening. In tune
with the rest of measurements, the generic construction based on discrete logarithm requires the smallest
amount of memory, both for lock and opening information. Scriptless approaches require the same amount
of memory from the application.

6 Applications

In this section, we describe how multi-hop locks can be seamlessly applied in current blockchain applications
to improve their security and privacy.

6.1 Payment-Channel Networks

As described in Section 2, the Lightning Network relies on the HTLC contract to perform multi-hop payments
between any two users. Each hop must correctly set the HTLC and authorize it with an ECDSA transaction.
The final transaction in a hop consists of the complete HTLC and two signatures, one from each of the parties
sharing a payment channel, among other fields. This solution has privacy issues, as described throughout
this paper.

A first approach towards a solution could consist on deploying the generic construction for multi-hop locks
to inherit their security and privacy properties, at the cost of adding support for homomorphic functions in
the Bitcoin scripting language. Although sound, this approach lacks deployability as adding new functionality
in a cryptocurrency requires consensus from the majority of the users.

More interestingly, the scriptless ECDSA multi-hop lock construction presented in this work can be
seamlessly adopted in the Lightning Network, conveying thereby several advantages. First, it eliminates the
privacy issues existing in the current Lightning Network due to the use of the HTLC contract. Second, it
reduces the transaction size as a single signature is required per transaction. This has the benefit of lowering
the communication overhead, the transaction fees, and the blockchain memory requirements for closing
a payment channel. In fact, we have received initial feedback from the Lightning Network community
indicating the suitability of our ECDSA-based construction and that initial implementation and testing has
been triggered.

The applicability of our proposals are not restricted to the Lighting Network or Bitcoin: There exist other
payment-channel networks that could similarly take advantage of the scriptless multi-hop locks presented
in this work. For instance, the Raiden Network has been presented as a payment-channel network for the
scalability issue in Ethereum. The adoption of our ECDSA scriptless multi-hop locks would bring to the
Raiden Network the same benefits as to the Lightning Network. Similarly, the scriptless Schnorr-based multi-
hop locks could be seamlessly deployed in payment-channel networks where Schnorr is used for authorization
instead of ECDSA.

6.2 Atomic Swaps

Assume two users U0 and U1 holding coins in two different cryptocurrencies that want to exchange them.
An atomic swap protocol ensures that either the coins are swapped or the balances are untouched, i.e., the
exchange must be performed atomically. Current atomic swaps protocols [18] leverage the HTLC contract
to perform the swap. In a nutshell, an atomic swap can be seen as a multi-hop payment over a path of the
form (U0, U1, U0). This approach inherits the privacy concerns of HTLC contract. Scriptless multi-hop locks
enhance also this application domain with formally proven security guarantees.

Additionally, our constructions contribute to the fungibility of the coins, a crucial aspect in any currency
and therefore also in cryptocurrencies. Current protocols rely on transactions that are clearly distinguish-
able from regular payments (i.e., one to one payments). In particular, atomic swaps transactions contain the
HTLC contract, in contrast with regular transactions. Scriptless multi-hop locks eliminate this issue since
even atomic swaps transactions only require a single signature from a public key, making them indistinguish-
able from regular payments. Similar arguments also apply for multi-hop payments in PCNs.
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6.3 Interoperable PCNs

In the plethora of cryptocurrencies existing today, an interesting problem consists in performing a multi-hop
payment where each link represents a payment channel defined in a different cryptocurrency. In this manner,
a user with a payment channel funded in a given cryptocurrency can use it to pay to another user with a
payment channel in a different cryptocurrency. Currently, the InterLedger protocol [48] tackles this problem
and proposes a mechanism to perform cross-currency multi-hop payments. This protocol relies on the HTLC
protocol aiming at ensuring the atomicity of the payment across different hops.

However, apart from the already discussed issues associated with HTLC, the InterLedger protocol man-
dates that all cryptocurrencies implement HTLC contracts. This obviously hinders the deployment of this
approach. Instead, it is possible to use the different multi-hop locks constructions presented in this work in
a single path (see Section 4.5), therefore expanding the domain of cross-currency multi-hop payments.

7 Related Work

A recent work [25] shows a protocol to compute an ECDSA signature using multi-party computation. How-
ever, it is not as efficient as the Lindell approach [34].

There exists an extensive literature proposing constructions for payment channels [4,23,24,33,44]. These
works focus on a single payment channel and their extension to PCNs remain an open challenge. Tum-
bleBit [29] and Bolt [28] support off-chain payments while achieving payment anonymity guarantees. How-
ever, the privacy guarantees of these approaches are restricted to single-hop payments and their extension
to support multi-hop payments remain an open challenge.

The LN has emerged as the most promising approach for PCN in practice. Its current description [9]
is being followed by several implementations [2, 3, 8, 11]. However, these implementations suffer from the
privacy issues with PCNs as described in this work. Instead, we provide several constructions for multi-hop
locks that can be leveraged to have secure and privacy-preserving multi-hop payments.

Malavolta et al. [36] propose a protocol for secure and privacy-preserving multi-hop payments compatible
with the current LN. Their approach, however, imposes an overhead of around 5 MB for the nodes in the
network, therefore, hindering its deployability. Here, we propose several efficient constructions that require
only a few bytes of communication.

In the recent literature, we can find proposals for secure and privacy-preserving atomic swaps. Tesser-
act [16] leverages trusted hardware to perform real time cryptocurrency exchanges. The Merkleized Abstract
Syntax Trees (MAST) protocol has been proposed as a privacy solution for atomic swaps [32]. However,
MAST relies on scripts that are not available in the major cryptocurrencies today. Moreover, specific con-
tracts for atomic swaps hinder the fungibility of the currency: An observer can easily differentiate between
a regular payment and a payment resulting from an atomic swap.

8 Conclusion

In this work, we lay the foundations for security, privacy and interoperability guarantees in PCNs, propos-
ing a novel cryptographic construction (multi-hop locks). We instantiate multi-hop locks in two settings:
script-based and scriptless. In the script-base setting, as a theoretical insight we demonstrate that multi-hop
locks can be realized from any (partially) homomorphic operation. In the scriptless setting, we define two
constructions based on Schnorr and ECDSA respectively, thereby catering the vast majority of cryptocur-
rencies. Our performance evaluation shows that multi-hop locks are practical: in the worst case, running
they take less than 100 milliseconds and it conveys a communication overhead of less than 500 bytes.

Moreover, we show that multi-hop locks are of interest in several applications apart from PCNs, such
as atomic swaps and interoperable PCNs. The Lightning Network community has picked up our ECDSA
construction and initial implementation and tests have started.

In the future, we plan to devise cryptographic instantiations of PCNs for the few cryptocurrencies that
are not yet covered, most notably Monero. Furthermore, we intend to support advanced features of PCNs,
such as the possibility to split dynamically payments across different paths. Finally, we would like to devise
cryptographic instantiations that are post-quantum secure.
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A Multi-hop Locks Correctness

In this section, we define the notion of correctness for multi-hop locks.

Definition 3 (Correctness of multi-hop locks). Let L be a multi-hop lock, λ ∈ N+ and n ∈ poly(λ). Let
(U0, . . . , Un) ∈ Un be a vector of users, (sk0, . . . , skn−1) and (sk∗1, . . . , sk

∗
n) two vectors of private keys and

(pk0, . . . , pkn−1) a vector of shared public keys such that for all 0 ≤ i < n, it holds that

{(ski, pki), (sk
∗
i+1, pki)} ← 〈KGenUi(1λ),KGenUi+1

(1λ)〉.

Let (sI0, . . . , s
I
n) be vector of initial states and kn be a key such that for all 0 ≤ i < n

{sI0, . . . , (sIn, kn)} ←

〈
SetupU0

(1λ, U1, . . . , Un)
. . .

SetupUn(1λ)

〉

Furthermore, let (`0, . . . , `n−1) be a vector of locks, (sL1 , . . . , s
L
n) and (sR0 , . . . , s

R
n−1) vectors of states, and

(k0, . . . , kn−1) a vector of keys such that for all 0 ≤ i < n, it holds that

{(`i, sRi ), (`i, s
L
i+1)} ←

〈
LockUi(s

I
i , ski, pki)

LockUi+1(sIi+1, sk
∗
i+1, pki)

〉
and

ki ← Rel(ki+1, (s
I
i+1, s

L
i+1, s

R
i+1))

where sRn is ⊥. We say that L is correct if there exists a negligible function negl such that for all 0 ≤ i < n
it holds that

Pr [Vf(`i, ki) = 1] ≥ 1− negl(λ).

B Security Analysis

Throughout the analysis we denote by poly(λ) any function that is bounded by a polynomial in λ. We denote
any function that is negligible in the security parameter by negl(λ). We say that an algorithm is PPT if it
is modelled as a probabilistic Turing machine whose running time is bounded by some function poly(λ). In
the following we elaborate on the security analysis of our constructions.
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We shall point out that in this analysis we model a very strong variant of anonymous communication,
which might not always be reasonable to assume. More realistic privacy guarantees are captured by onion
routing [19] functionalities or mix networks [30]. For ease of exposition we stick to our simplistic model,
noting that our proof is completely parametric and one can switch to a less idealized functionality in a
modular manner.

B.1 Generic Construction

Here we elaborate the proof of Theorem 1.

Proof. We define the following sequence of hybrids, where we gradually modify the initial experiment.

H0 : Is identical to the protocol as described in Section 4.2.

H1 : Instead of sending messages through the Πanon channel, the parties communicate in interaction with
the ideal functionality Fanon.

Anon(m, Ui)

Upon invocation Uj on input (m, Ui):

send (m, Ui) to Ui

H2 : Consider the following ensemble of variables in the interaction with A: A honest user Ui, a key pair
(ski, pk), a state sI , a tuple (`i, `i+1, s

L, sR) such that

{·, (`i, sL)} ← 〈·, LockUi(sI , ski, pk)〉

and
{(`i+1, s

R), ·} ← 〈LockUi(sI , ski, pk), ·〉.

If, for any set of these variables, the adversary returns some k such that Vf(`i+1, k) = 1 and Vf(`i,Rel(k, (s
I , sL, sR))) 6=

1, then the experiment aborts.

H3 : Consider the following ensemble of variables in the interaction with A: A pair of honest users (U0, Ui)
a set of (possibly corrupted) users (U1, . . . , Un), a key pair (ski, pk), a set of initial states

(sI0 . . . , s
I
n)← 〈SetupU0

(1λ, U1, . . . , Un), . . . ,SetupUn(1λ)〉,

and a pair of locks (`i−1, `i) such that

{·, (`i−1, ·)} ← 〈·, LockUi(sIi , ski, pk)〉

and
{(`i, ·), ·} ← 〈LockUi(sIi , ski, pk), ·〉.

If, for any set of these variables, the adversary returns some ki−1 such that Vf(`i−1, ki−1) = 1 before the
user Ui outputs a key ki such that Vf(`i, ki) = 1, then the experiment aborts.

H4 : Let S = (U0, . . . , Um) be an ordered set of (possibly corrupted) users. We say that that an ordered
subset A = (U1, . . . , Uj) is adversarial if Ui is honest and (Ui+1, . . . , Uj) are corrupted. Note that every set
of users can be expressed as a concatenation of adversarial subsets, that is S = (A1|| . . . ||Am′), for some
m′ ≤ m. Whenever a honest user is requested to setup a lock for a certain set S = (A1|| . . . ||Am′), it
initializes an independent lock for each subset (Ai, A

0
i+1), where A0

i+1 is the first element of the (i + 1)-th
set, if present. Whenever some A0

i+1 is requested to release the key for the corresponding lock (recall that
all A0

i+1 are honest nodes) it releases the key for the fresh lock (Ai, A
0
i+1) instead.

S : The interaction of the simulator is identical to H4 except that the actions of S are dictated by the
interaction with F . The simulator reads the communication of A with the honest users via Fanon and is
queried by F on the following set of inputs.

1. (·, ·, ·, ·, Init): The simulator reconstruct the adversarial set (defined above) from the ids and sets up a
fresh lock chain.
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2. (·, Lock): The simulator initiates the locking procedure with the adversary and replies with ⊥ if the
execution is not successful.

3. (·,Rel) The simulator releases the key of the corresponding lock and publishes it.

If A interacts with a honest user (e.g., by releasing a lock) the simulator queries the corresponding interface
of F .

Note that the simulator is efficient and interacts in the adversary with the ideal world. Furthermore, the
simulation is always consistent with the ideal world, i.e., if the adversary’s action is not supported by
the interfaces of F the simulation aborts. What is left to be shown is that the neighbouring hybrids are
indistinguishable to the eyes of the environment E .

Lemma 1. For all PPT distinguishers E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof. Follows directly from the security of Πanon.

Lemma 2. For all PPT distinguishers E it holds that

EXECH1,A,E ≡ EXECH2,A,E .

Proof. Follows from the homomorphic property of the function g: Recall that a key-lock pair (k, `) is valid
if and only if g(k) = `. Let (ki, `i) be the output of A, by construction we have that `i = `i−1 + g(yi), for
some (`i−1, yi), which is part of the state of the honest node. Since the release algorithm computes ki − yi
we have that

g(ki − yi) = g(ki)− g(yi)

= `i − g(yi)

= `i−1 + g(yi)− g(yi)

= `i−1

with probability 1, by the homomorphic property of g.

Lemma 3. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. Let q ∈ poly(λ) be a bound on the number of interactions. Recall that H2 and H3 differ only for the
case where the adversary outputs a key for a honestly generated lock before the trapdoor is released. Assum-
ing towards contradiction that the probability that this event happens is non-negligible, we can construct
the following reduction against the one-wayness of g: On input some Y ∗ ∈ R, the reduction guesses a session
j ∈ [1, q] and some index i ∈ [1, n]. The setup algorithm of the j-th session is modified as follows: Yi is set
to be Y ∗. Then, for all ι ∈ [i− 1, 0], the setup samples some yι ∈ D and returns (Yι = Yι+1− g(yι), Yι+1, yι).
The setup samples a random yi ∈ D and sets Yi+1 = g(yi). Then, for ι ∈ [i + 1, n − 1], the setup samples
yι ∈ D returns (Yι, Yι + g(yι), yι). The nodes (U1, . . . , Un−1) are given the corresponding output (except for

Ui) and Un is given (Yn−1,
∑n−1
j=i yj). If the node Ui is requested to release the lock, the reduction aborts.

At some point of the execution the adversary A outputs some y∗, and the reduction returns y∗ + yi−1.
The reduction is clearly efficient and, whenever j and i are guessed correctly, the reduction does not

abort. Since the group defined by g is abelian, the distribution induced by the modified setup algorithm is
identical to the original (except for the initial state of U1). Also note that, whenever j and i are guessed
correctly, the user Ui is honest and therefore the adversary does not not see the corresponding internal state.
It follows that the reduction is identical to H2, to the eyes of the adversary. Finally, whenever the adversary
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outputs some valid ki−1 for `i−1, then it holds that g(ki−1) = `i−1. Substituting we have that

g(ki−1) = `i−1

g(y∗) = Yi−1

g(y∗) = Y ∗ − g(yi−1)

g(y∗) + g(yi−1) = Y ∗

g(y∗ + yi−1) = Y ∗.

It follows that the reduction is successful with probability at least 1
q·n·poly(λ) . This proves our statement.

Lemma 4. For all PPT distinguishers E it holds that

EXECH3,A,E ≡ EXECH4,A,E .

Proof. Recall that adversarial sets are always interleaved by a honest node. Therefore in H3 for each
adversarial set starting at index i there exists a y such that Yi = Yi−1 + g(y) and A is not given y. Since y
is randomly sampled from D we have that Yi−1 + g(y) ≡ Y ′, for some Y ′ sampled uniformly from R, which
corresponds to the view of A in H4.

Lemma 5. For all PPT distinguishers E it holds that

EXECH4,A,E ≡ EXECF,S,E .

Proof. The changes between the two experiments are only conceptual and the equivalence of the views
follows.

This concludes our analysis.

B.2 Schnorr-based Construction

Here we prove Theorem 2.

Proof. We define the following sequence of hybrids, where we gradually modify the initial experiment.

H0 : Is identical to the protocol as described in Section 4.3.

H1 : Instead of sending messages through the Πanon channel, the parties communicate in interaction with
the ideal functionality Fanon.

Anon(m, Ui)

Upon invocation Uj on input (m, Ui):

send (m, Ui) to Ui

H2 : All the calls to the commitment scheme are replaced with interactions with the ideal functionality Fcom,
defined in the following.

Commit(sid,m)

Upon invocation by Ui (for i ∈ {0, 1}):
record (sid, i,m) and send (com, sid) to U1−i

if some (sid, ·, ·) is already stored ignore the message

Decommit(sid)

Upon invocation by Ui (for i ∈ {0, 1}):
if (sid, i,m) is recorded then send (decom, sid,m) to U1−i

Instead of calling the Commit algorithm on some message m, the parties sent a message of the form Com-
mit(sid, m) to the ideal functionality, and the decommitment algorithm is replaced with a call to Decom-
mit(sid). The verifying party simply records messages from Fcom.

H3 : All the calls to the NIZK scheme are replaced with interactions with the ideal functionality FNIZK:
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Prove(sid, x, w)

Upon invocation by Ui (for i ∈ {0, 1}):
if R(x,w) = 1 then send (proof, sid, x) to U1−i

Instead of running the proving algorithm in input (x,w), the proving party queries the functionality on
Prove(sid, x, w). The verifier records the messages from FNIZK.

H4,H5,H6,S : The subsequent hybrids are defined as H2,H3,H4,S, respectively, in Theorem 1.

As argued before, the simulator is efficient and the interaction is consistent with the inputs of the ideal
functionality. In the following we prove the indistinguishability of the neighbouring experiments.

Lemma 6. For all PPT distinguishers E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof. Follows directly from the security of Πanon.

Lemma 7. For all PPT distinguishers E it holds that

EXECH1,A,E ≈ EXECH2,A,E .

Proof. Follows directly from the security of the commitments scheme COM.

Lemma 8. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. Follows directly from the security of the non-interactive zero-knowledge scheme NIZK.

Lemma 9. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. In order to show this claim, we introduce an intermediate experiment.

H∗3 : The key generation and locking algorithms are substituted with the interaction with the functionality
Fschnorr, which provides any two users with the interfaces specified below. Note that the signing interface is
called by both parties on input m and y =

∑i
j=0 yj , where i is the position of the lock in the chains and the

yj are defined as in the original protocol.

KeyGen(G, G, q)

Upon invocation by both U0 and U1 on input (G, G, q):

sample x←$Zq and compute Q = x ·G
set skU0,U1 = x

sample x0 and x1 randomly

sample a hash function H : {0, 1}∗ → {0, 1}|q|

send (x0, Q) to U0 and (x1, Q) to U1

ignore future calls by (U0, U1)

Sign(m, y)

Upon invocation by both U0 and U1 on input (m, y):

compute (R, s) = Sigschnorr(skU0,U1 ,m)

return (R, s− y)

We defer the indistinguishability proof to lemma 10. Let cheat by the event that triggers an abort of the exper-
iment inH4, that is, the adversary returns some k such that Vf(`i+1, k) = 1 and that Vf(`i,Rel(k, (s

I , sL, sR))) 6=
1. Assume towards contradiction that Pr [cheat | H∗3] ≥ 1

poly(λ) , then we can construct the following reduction

against the strong-existential unforgeability of Schnorr signatures: The reduction receives as input a public
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key pk and samples an index j ∈ [1, q], where q ∈ poly(λ) is a bound on the total amount of interactions. Let
Q be the key generated in the j-th interaction, the reduction sets Q = pk. All the calls to the signing algo-
rithm are redirected to the signing oracle. If the event cheat happens, the reduction returns corresponding
(k∗, `∗) = (σ∗, (m∗, pk∗)), otherwise it aborts.

The reduction is clearly efficient. Assume for the moment that j is the index of the interaction where
cheat happens, and let i + 1 be the index that identifies the lock `∗ in the corresponding chain. Note that
in case the guess of the reduction is correct we have that pk∗ = pk. Since cheat happens we have that
Vfschnorr(pk

∗,m∗, σ∗) = 1 and the release fails, i.e., Vf(`i,Rel(k, (s
I
i , s

L
i , s

R
i )) 6= 1 (where `i is the lock in the

previous position as `∗ in the same chain). Recall that the release algorithm parses sLi as (Wi,0, wi,1) and
σ∗ as (R∗, s∗) and returns (Wi,0, wi,1 + s∗ − (sRi + yi)). Substituting with the corresponding values(

Wi,0, wi,1 + s∗ − (sRi + yi)
)

=

Ri,
si − i−1∑

j=0

yj

+ s∗ −

sj − i∑
j=0

yj

+ yi


= (Ri, si + s∗ − sj) ,

where sj is the answer of the oracle on the j-th session on input mj . This implies that s∗ 6= sj , otherwise
(Ri, si) would be a valid signature since it is an output of the signing oracle. Since each message uniquely
identifies a session (the same message is never queried twice to the interface Sign(m,y)) this implies that
(σ∗, (m∗, pk∗)) is a valid forgery. By assumption this happens with probability at leasts 1

q·poly(λ) , which is a

contradiction and proves that Pr [cheat | H∗3] ≤ negl(λ). Since the experiments H3 and H4 differ only when
cheat happens (and H4 aborts), we are only left with showing the indistinguishability of H3 and H∗3.

Lemma 10. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH∗3 ,A,E .

Proof. The proof consists of the description of the simulator for the interactive lock algorithm. The simulator
for the key generation phase is trivial and therefore it is omitted. We describe two simulators depending
on whether the honest adversary is playing the role of the ”left” or ”right” party. For each proof, both the
simulators implicitly check that the given witness is valid and abort if this is not the case.

1. Left corrupted: Prior to the interaction the simulator is sent (Y, y, (prove, {∃y∗ s.t y∗ · G = Y }, y∗)),
which is the state corresponding to the execution of the lock. After agreeing on a message m,
the simulator sends (com, sid) to A, for a random sid. The simulator also queries the interface
Sign on input m, y∗ and receives a signature σ = (R, s). At some point of the execution A sends
(R0, (prove, {∃r0 s.t r0 ·G = R0}, r0)). The simulator replies with

decom, sid,

 R∗ = R− (R0 + Y ),(
proof, sid,
{∃r∗ s.t r∗ ·G = R∗}

)  ,

R∗, (s− r0 − e · x0)

 ,

where e = H(pk‖R∗‖m) and x0 is the value returned by the key generation to A. The rest of the
execution is unchanged.

2. Right corrupted: Prior to the interaction the simulator is sent (Y, y, (prove, {∃y∗ s.t y∗ ·G = Y }, y∗)),
which is the state corresponding to the execution of the lock. After agreeing on a message m, the
simulator is given (

com, sid,

(
R1,

(
prove, sid,
{∃r1 s.t r1 ·G = R1}, r1

) ))
by A. The simulator then queries the interface Sign on input m, y∗ and receives a signature σ =
(R, s). The simulator sends (R∗ = R− (R1 + Y ), (proof, sid, {∃r∗ s.t r∗ ·G = R∗})) to A and receives
((decom, sid), s∗) in response. The simulator checks whether s∗ = r1 + e · x1, where e = H(pk‖R∗‖m),
and returns s if this is the case.
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Both simulators are obviously efficient and the distributions induced by the simulated views are identical to
the ones of the original protocol.

This concludes the proof of lemma 9.

Lemma 11. For all PPT distinguishers E it holds that

EXECH4,A,E ≈ EXECH5,A,E .

Proof. Let q ∈ poly(λ) be a bound on the number of interactions. Let cheat denote the events that triggers
an abort in H5 but not in H4. In the following we are going to show that Pr [cheat | H4] ≤ negl(λ), thus
proving the indistinguishability of H4 and H5. Assume that the converse is true, then we can construct
the following reduction against the discrete logarithm problem (which is implied by the sEUF of Schnorr):
On input some Y ∗ ∈ G, the reduction guesses a session j ∈ [1, q] and some index i ∈ [1, n]. The setup
algorithm of the j-th session is modified as follows: Yi is set to be Y ∗. Then, for all ι ∈ [i− 1, 0], the setup
samples some yι ∈ Zq and returns (Yι = Yι+1 − yι · G, Yι+1, yι). The setup samples a random yi ∈ Zq and
sets Yi+1 = yi · G. Then, for ι ∈ [i + 1, n − 1], the setup samples yι ∈ Zq returns (Yι, Yι + yι · G, yι). The

nodes (U1, . . . , Un−1) are given the corresponding output (except for Ui) and Un is given (Yn−1,
∑n−1
j=i yj).

If the node Ui is requested to release the lock, the reduction aborts. At some point of the execution the
adversary A outputs some k∗ = (R∗, s∗). The reduction parses sR as the updated state of Ui and returns
s∗ + yi−1 − sR.

The reduction is clearly efficient and, whenever j and i are guessed correctly, the reduction does not abort.
Since the group G is abelian and the Ui is honest, the distribution induced by the modified setup algorithm
is identical to the original to the eyes of the adversary. Recall that cheat happens only in the case where k∗ is
a valid opening for `i and the release algorithm is successful on input k∗ (if the last condition is not satisfied
both H4 and H5 abort). Substituting, we have that sR is of the form r0 + r1 + e · (x0 + x1)− y = s′ − y, for
some y ∈ Zq. Since the release is successful, then it must be the case that (R′ = (r0 + r1) ·G+ Yi−1, s

′) is a
valid Schnorr signature on the message mi−1 (agreed by the two parties in the locking algorithm for `i−1),
which implies that y · G = Yi−1. As argued in the proof of lemma 9, if s∗ 6= s′, then we have an attacker
against the strong unforgeability of the signature scheme. It follows that s∗ = s′ with all but negligible
probability. Substituting we have

(s∗ + yi−1 − sR) ·G = (s∗ + yi−1 − s′ + y) ·G
= (yi−1 + y) ·G
= yi−1 ·G+ y ·G
= yi−1 ·G+ Yi−1

= yi−1 ·G+ (Y ∗ − yi−1 ·G)

= Y ∗

as expected. Since, by assumption, this happens with probability at least 1
q·n·poly(λ) we have a successful

attacker against the discrete logarithm problem. This proves our statement.

Lemma 12. For all PPT distinguishers E it holds that

EXECH5,A,E ≡ EXECH6,A,E .

Proof. Recall that adversarial sets are always interleaved by a honest node. Therefore in H5 for each
adversarial set starting at index i there exists a y such that Yi = Yi−1 + y ·G and A is not given y. Since y
is randomly sampled from Zq we have that Y + i− 1 + y ·G ≡ Y ′, for some Y ′ sampled uniformly from G,
which corresponds to the view of A in H6.

Lemma 13. For all PPT distinguishers E it holds that

EXECH6,A,E ≡ EXECF,S,E .

Proof. The change is only syntactical and the indistinguishability follows.

This concludes our analysis.
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B.3 ECDSA-based Construction

In the following we prove Theorem 3.

Proof. The sequence of hybrids that we define is identical to the one described in the proof of Theorem 2.
In the following we prove the indistinguishability of neighbouring experiments only for the cases where the
argument needs to be modified. If the argument is identical, the proof is omitted.

Lemma 14. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. In order to show this claim, we introduce an intermediate experiment.

H∗3 : The key generation and locking algorithms are substituted with the interaction with the functionality
FECDSA, which provides any pair of users with the interfaces specified below. Note that the locking algorithm
is called by both parties on input m and y =

∑i
j=0 yj , where i is the position of the lock in the chains and

the yj are defined as in the original protocol.

KeyGen(G, G, q)

Upon invocation by both U0 and U1 on input (G, G, q):

sample x←$Zq and compute Q = x ·G
sample x0 and x1 randomly

sample a hash function H : {0, 1}∗ → {0, 1}|q|

sample a key pair (skU0,U1 , pkU0,U1
)← KGenHE(1λ)

compute c← EncHE(pk, r̃) for a random r̃

send (x0, Q,H, sk) to U0 and (x1, Q,H, c) to U1

ignore future calls by (U0, U1)

Sign(m, y)

Upon invocation by both U0 and U1 on input (m, y):

compute (r, s) = SigECDSA(skU0,U1 ,m)

return (r,min(s · y,−s · y))

The indistinguishability proof of H3 and H∗3 is formally shown in lemma 15. Let cheat by the event that
triggers an abort of the experiment in H4, that is, the adversary returns some k such that Vf(`i+1, k) = 1
and Vf(`i,Rel(k, (s

I , sL, sR))) 6= 1. Assume towards contradiction that Pr [cheat | H∗3] ≥ 1
poly(λ) , then we can

construct the following reduction against the strong-existential unforgeability of ECDSA signatures: The
reduction receives as input a public key pk and samples an index j ∈ [1, q], where q ∈ poly(λ) is a bound
on the total amount of interactions. Let Q be the key generated in the j-th interaction, the reduction sets
Q = pk. All the calls to the signing algorithm are redirected to the signing oracle. If the event cheat happens,
the reduction returns corresponding (k∗, `∗) = (σ∗, (m∗, pk∗)), otherwise it aborts.

The reduction runs in polynomial time. Assume for the moment that j is the index of the interaction
where cheat happens, and let i+ 1 be the index that identifies the lock `∗ in the corresponding chain. Note
that in case the guess of the reduction is correct we have that pk∗ = pk. Since cheat happens we have that
VfECDSA(pk∗,m∗, σ∗) = 1 and the release fails, i.e., Vf(`i,Rel(k

∗, k∗, (sIi , s
L
i , s

R
i ))) 6= 1 (where `i is the lock

in the previous position as `∗ in the same chain). Recall that the release algorithm parses sLi as (wi,0, wi,1),

σ∗ as (r∗, s∗), and sRi as (s′,m, pk) and computes t = w1 · ( s
′

s∗ − y)−1 and t′ = w1 · (− s′

s∗ − y)−1. Then it
returns either (wi,0,min(t,−t)) or (wi,0,min(t′,−t′)) depending on which verifies as a valid signature on m
under pk. Substituting with the corresponding values (for the case t is the lower term)

(wi,0, t) =

(
ri, wi,1 ·

(
s′

s∗
− y
)−1)

=

ri, si · i−1∑
j=0

yj ·

(
sj ·

∑i
j=0 yj

s∗
− yi

)−1
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where sj is the answer of the oracle on the j-th session on input the corresponding message mj . If we set
s∗ = sj then we have

(wi,0, t) =

ri, si · i−1∑
j=0

yj ·

 i∑
j=0

yj − yi

−1


= (ri, si)

which is a valid signature on mi (since it is the output of the signing oracle) and the release would be
successful. So this cannot happen and we can assume that s∗ 6= sj . A similar argument (substituting t with
t′) can be used to show that it must be the case that s∗ 6= −sj . Since each message uniquely identifies a
session (the same message is never queried twice to the interface Sign(m,y)) this implies that (σ∗, (m∗, pk∗))
is a valid forgery. By assumption this happens with probability at leasts 1

q·poly(λ) , which is a contradiction

and proves that Pr [cheat | H∗3] ≤ negl(λ). Since the experiments H3 and H4 differ only when cheat happens
(and H4 aborts), we are only left with showing the indistinguishability of H3 and H∗3.

Lemma 15. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH∗3 ,A,E .

Proof. The proof consists of the description of the simulator for the interactive lock algorithm. The simulator
for the key generation phase is identical as the one described in the work of Lindell [34]. In the following we
describe the two simulators for the locking protocol depending on whether the honest adversary is playing
the role of the ”left” or ”right” party. For each zero-knowledge proof, both the simulators implicitly check
that the given witness is valid and abort if this is not the case.

1. Left corrupted: Prior to the interaction the simulator is sent (Y, y, (prove, {∃y∗ s.t y∗ · G = Y }, y∗)),
which is the state corresponding to the execution of the lock. After agreeing on a message m, the
simulator sends (com, sid) to A, for a random sid. The simulator also queries the interface Sign on

input m, y∗ and receives a signature σ = (r, s). The simulator sets R = H(m)
s · G + r

s · pk. At some
point of the execution A sends (R0, R

′
0, (prove, {∃r0 s.t r0 · G = R0 and r0 · Y = R′0}, r0)). Then the

simulator samples a ρ← Zq2 and computes c′ ← EncHE(pk, s · r0 + ρq). Then it provides the attacker
with 

decom, sid,


R∗ = (r0)−1 ·R,R1 = y−1 ·R∗, proof, sid,{

∃r∗ s.t r∗ ·G = R1

and r∗ · Y = R∗

} 

 ,

R1, R
∗, c′

 .

The rest of the execution is unchanged.

The executions are identical except for the way c′ is computed. In order to show the statistical proximity
we invoke a the following helping lemma.

Lemma 16. [34] For all (r, s, p) ∈ Zq and for a random ρ ∈ Zq2 , the distributions EncHE(pk, r · s mod q +
pq + ρq) and EncHE(pk, r · s mod q + ρq) are statistically close.

In the real world c′ is computed as EncHE(pk, r · s mod q + pq + ρq), for some p which is bounded by q since
the only operation performed without modular reduction are one multiplication and one addition, which
cannot increase the result by more than q2. Since the distribution EncHE(pk, r · s mod q+ ρq) is identical to
the simulation, the indistinguishability follows.

2. Right corrupted: Prior to the interaction the simulator is sent (Y, y, (prove, {∃y∗ s.t y∗ ·G = Y }, y∗)),
which is the state corresponding to the execution of the lock. After agreeing on a message m, the
simulator is givencom, sid,

 R1, R
′
1,

 prove, sid,{
∃r1 s.t r1 ·G = R1 and
r1 · Y = R′1

}
, r1
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by A. The simulator then queries the interface Sign on input m, y∗ and receives a signature σ =

(r, s). Then it sets R = H(m)
s · G + r

s · pk and R∗ = R − (R1 + Y ) and sends (R0 = y−1 ·
R∗, R∗, (proof, sid, {∃r∗ s.t r∗ ·G = R0 and r∗ · Y = R∗})) to A. The attacker sends ((decom, sid), c′)
in response. The simulator checks

DecHE(sk, c′) = r̃ · r · (r1)−1 +H(m) · r−11 mod q,

where r̃ was sampled in the key generation algorithm. If the check holds true, the simulator sends s
to A.

The distributions induced by the simulator is identical to the real experiment except for the way c is
computed. Towards showing indistinguishability, consider the following modified simulator, that is given
the oracle O(c′, a, b) as defined in the following security experiment of the Paillier encryption scheme.

Exp− ecCPAAHE(λ) :

(sk, pk)← KGenHE(1λ)

(w0, w1)←$Zq
Q = w0 ·G
b←$ {0, 1}
c← EncHE(pk, wb)

b′ ← A(pk, c, Q)O(·,·,·)

where O(c′, a, b) returns 1 iff DecHE(sk, c′) = a + b · wb
return 1 iff b = b′

Instead of performing the last check, the simulator queries the oracle on input (c′, a = H(m) · r−11 , b =
r · (r1)−1). It is clear that the modified simulator accepts if and only if the simulator described above
accepts. Assume towards contradiction that the modified simulator can be efficiently distinguished from the
real world experiment. Then we can reduce to the security of Paillier as follows: On input (pk, c,Q), the
reduction simulates the inputs of A as described in the modified simulator using the input pk, Q, and c as
the corresponding variables. It is easy to see that the reduction is efficient. Note that if b = 0 then we
have that c = EncHE(pk, w0) and Q = w0 · G, which is identical to the real world execution. On the other
hand if b = 1 then it holds that c = EncHE(pk, w1) and Q = w0 · G, where w1 is uniformly distributed in
Z− q, which is identical to the (modified) simulated experiment. This implies that the modified simulation
is computationally indistinguishable from the real world experiment. Since the modified simulation and
the simulation (as described above) are identical to the eyes of the adversary, the validity of the lemma
follows.

This concludes the proof of lemma 14.

Lemma 17. For all PPT distinguishers E it holds that

EXECH4,A,E ≈ EXECH5,A,E .

Proof. Let q ∈ poly(λ) be a bound on the number of interactions. Let cheat denote the event that triggers
an abort in H5 but not in H4. In the following we are going to show that Pr [cheat | H4] ≤ negl(λ), thus
proving the indistinguishability of H4 and H5. Assume that the converse is true, then we can construct the
following reduction against the discrete logarithm problem (which is implied by the sEUF of ECDSA): On
input some Y ∗ ∈ G, the reduction guesses a session j ∈ [1, q] and some index i ∈ [1, n]. The setup algorithm
of the j-th session is modified as follows: Yi is set to be Y ∗. Then, for all ι ∈ [i − 1, 0], the setup samples
some yι ∈ Zq and returns (Yι = Yι+1 − (yι) · G, Yι+1, yι). The setup samples a random yi ∈ Zq and sets
Yi+1 = yi ·G. Then, for ι ∈ [i+1, n−1], the setup samples yι ∈ Zq and returns (Yι, Yι+yι ·G, yι). The nodes

(U1, . . . , Un−1) are given the corresponding output (except for Ui) and Un is given (Yn−1,
∑n−1
j=i yj). If the

node Ui is requested to release the lock, the reduction aborts. At some point of the execution the adversary
A outputs some k∗ = (r∗, s∗). The reduction parses sR = (s′,m, pk) as the updated state of Ui then checks
the following:

27



1.
(
s
s∗ + yi−1

)
·G = Y ∗

2. −
(
s′

s∗ + yi−1

)
·G = Y ∗

and returns the LHS term of the equation that satisfies the relation.
The reduction is clearly efficient and, whenever j and i are guessed correctly, the reduction does not

abort. Since the G is abelian and the Ui is honest, the distribution induced by the modified setup algorithm
is identical to the original to the eyes of the adversary. Recall that cheat happens only in the case where
k∗ is a valid opening for `i and the release algorithm is successful on input k∗ (if the last condition is not

satisfied both H4 and H5 abort). Substituting, we have that s′ is of the form x0·x1·rx+H(m)
r0·r1 = s̃ · y, where

R′ = r0 · r1 · Yi−1 = (rx, ry), for some y ∈ Zq. Since the release is successful, then it must be the case that
(rx, s̃) is a valid ECDSA signature on the message mi−1 (agreed by the two parties in the locking algorithm
for `i−1). This implies that y ·G = Yi−1. As argued in the proof of lemma 14, if s∗ 6= s̃ and s∗ 6= s̃, then we
have an attacker against the strong unforgeability of the signature scheme. It follows that s∗ = s̃ or s∗ = −s̃
with all but negligible probability. Substituting we have(

s′

s∗
+ yi−1

)
·G =

(
s̃ · y
s∗

+ yi−1

)
·G

=
s̃ · y
s∗
·G+ yi−1 ·G

= y ·G+ yi−1 ·G
= Yi−1 + yi−1 ·G
= (Y ∗ − yi−1 ·G) + yi−1 ·G
= Y ∗

which implies that condition (1) holds if s∗ = s̃. For the other case

−
(
s′

s∗
+ yi−1

)
·G = −

(
s̃ · y
s∗

+ yi−1

)
·G

= − s̃ · y
s∗
·G+ yi−1 ·G

= y ·G+ yi−1 ·G
= Yi−1 + yi−1 ·G
= (Y ∗ − yi−1 ·G) + yi−1 ·G
= Y ∗

which means that condition (2) is satisfied if s∗ = −s̃. Since, by assumption, this happens with probability
at least 1

q·n·poly(λ) we have a successful attacker against the discrete logarithm problem. This proves our
statement.

This concludes our proof.
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