
MuSig-DN: Schnorr Multi-Signatures
with Verifiably Deterministic Nonces

Jonas Nick1, Tim Ruffing1, Yannick Seurin2, and Pieter Wuille1

1 Blockstream
jonas@n-ck.net

crypto@timruffing.de
pieter@wuille.net

2 ANSSI, Paris, France
yannick.seurin@m4x.org

September 1, 2020

Abstract. MuSig is a multi-signature scheme for Schnorr signatures, which supports key ag-
gregation and is secure in the plain public key model. Standard derandomization techniques for
discrete logarithm-based signatures such as RFC 6979, which make the signing procedure immune
to catastrophic failures in the randomness generation, are not applicable to multi-signatures as
an attacker could trick an honest user into producing two different partial signatures with the
same randomness, which would reveal the user’s secret key.
In this paper, we propose a variant of MuSig in which signers generate their nonce deterministically
as a pseudorandom function of the message and all signers’ public keys and prove that they
did so by providing a non-interactive zero-knowledge proof to their cosigners. The resulting
scheme, which we call MuSig-DN, is the first Schnorr multi-signature scheme with deterministic
signing. Therefore its signing protocol is robust against failures in the randomness generation as
well as attacks trying to exploit the statefulness of the signing procedure, e.g., virtual machine
rewinding attacks. As an additional benefit, a signing session in MuSig-DN requires only two
rounds instead of three as required by all previous Schnorr multi-signatures including MuSig.
To instantiate our construction, we identify a suitable algebraic pseudorandom function and
provide an efficient implementation of this function as an arithmetic circuit. This makes it possible
to realize MuSig-DN efficiently using zero-knowledge proof frameworks for arithmetic circuits
which support inputs given in Pedersen commitments, e.g., Bulletproofs. We demonstrate the
practicality of our technique by implementing it for the secp256k1 elliptic curve used in Bitcoin.
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1 Introduction

Multi-signatures. A multi-signature scheme [IN83] allows a group of signers, each having
their own secret/public key pair (ski, pki), to collaboratively compute a short signature σ on
a common message m, ideally with a size independent of the number of the signers. This
single signature can be verified given the message m and the set of public keys {pk1, . . . , pkn},
convincing a verifier that every signer approved message m.

Multi-signature schemes require great caution to prevent rogue-key attacks, where the
adversary, who is assumed to be able to choose its public key arbitrarily, computes it as
a function of honest users’ public keys, allowing it to produce forgeries easily. Many early
multi-signature schemes succumbed to such rogue-key attacks [OO93, LHL95, Har94, HMP95,
Lan96, MH96, OO99]. As rogue-key attacks typically imply that the adversary does not know
the secret key associated to its maliciously computed public key, one method for preventing
them is to assume the existence of certification authority (CA) and require users to prove
knowledge of their secret keys during public key registration. This is usually formalized as
the knowledge of secret key (KOSK) assumption [Bol03, LOS+06, RY07]: the security model
captures this registration step by demanding that the adversary provides the secret key for
any (adversarially chosen) public key involved in its forgery. However, existing standards for
registration protocols do not mandate that CAs require proofs of knowledge, and some settings
(typically, decentralized applications such as cryptocurrencies) even exclude CAs and public
key infrastructures by design. Hence, it is highly preferable to design multi-signature schemes
provably secure in the plain public-key model, meaning that participants can create their public
keys locally without the need to register them with a CA or any other central party in order
to participate in the protocol.

The very first multi-signature scheme provably secure in the plain public-key model [MOR01]
relies on a dedicated key generation phase run by all potential signers, after which the set
of potential signers is necessarily static and known in advance to verifiers. A major step was
made by Bellare and Neven [BN06] who proposed the first scheme (later referred to as BN in
this paper) provably secure in the plain public-key model and without a dedicated key setup
protocol.

Key Aggregation. Motivated by the foreseen integration of Schnorr signatures [Sch91] in
Bitcoin [WNR20], Maxwell et al. proposed MuSig [MPSW19], a multi-signature protocol for
Schnorr signatures provably secure in the plain public-key model. A prominent feature of this
scheme (that BN [BN06] was lacking) is key aggregation, meaning that the public keys of all
cosigners can be aggregated into a single public key p̃k. As a result, verifiers do not need to
be given the explicit list of all participants’ public keys anymore, and they can just use the
aggregate key instead. In fact, verifiers do not even need to know that p̃k is an aggregate key and
that signatures for this key are jointly generated by multiple signers. This enhances the privacy
of the signers and allows for a clean separation between simple Schnorr signature verification
(understood by ordinary Bitcoin nodes as part of the consensus rules) and the more complex
interactive multi-signature protocol (only supported by Bitcoin wallets that generate MuSig
signatures), which moreover makes it easier to deploy modifications to the multi-signature
protocol. While these advantages apply directly to the case that funds are jointly controlled
by multiple parties, “Taproot” [WNT20], an extension proposed to be integrated in Bitcoin
together with Schnorr signatures, applies the same advantages optimistically also to complex
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spending policies (colloquially referred to as smart contracts): in the common case that all
involved parties are willing to cooperate, they can rely on a multi-signature without even
revealing the existence of the smart contract, or even the involvement of more than one party,
to the public.

The MuSig Scheme. Let us recall the Schnorr signature scheme. Given an (additively denoted)
group G of prime order p with generator G, a secret/public key pair is a pair (x,X) ∈ Fp ×G
where X = xG. To sign a message m, the signer draws a nonce r uniformly at random in Fp,
computes R = rG, c = Hsig(X,R,m), and s = r+ cx mod p, where Hsig is some hash function,
and returns σ = (R, s). A purported signature (R, s) for message m and public key X is valid
iff sG = R+ Hsig(X,R,m)X.

In MuSig, the aggregate key associated with a group of n signers, each holding a Schnorr
key pair (xi, Xi = xiG), is defined as X̃ = ∑n

i=1 µiXi, where µi is a coefficient computed by
hashing all participants’ public keys as µi = Hagg({X1, . . . , Xn}, Xi) for some hash function
Hagg. In order to jointly sign some message m, each signer generates a partial nonce Ri = riG
and sends it to the other signers. Then, each signer computes the aggregate nonce R̃ = ∑n

i=1Ri
and a partial signature si = ri + cµixi mod p where c = Hsig(X̃, R̃,m) and sends si to other
signers. The multi-signature is (R̃, s) where s = ∑n

i=1 si. A multi-signature (R̃, s) for message
m and aggregate key X̃ can be verified exactly as a standard Schnorr signature.

Importantly, signers “commit” to their partial nonce by sending ti ··= Hcom(Ri) in the
initial communication round, where Hcom is a hash function. The first version of [MPSW19]
omitted the commitment round (resulting in a 2-round protocol) but it was found by Drijvers
et al. [DEF+19] that the corresponding security proof was flawed. Drijvers et al. further showed
that omitting this commitment round makes the scheme vulnerable to sub-exponential attacks
based on Wagner’s algorithm for the generalized birthday problem [Wag02]. Maxwell et al.
later revised [MPSW19] to provide a security proof for the 3-round version which includes the
commitment round. See also [BDN18] for an independent security proof of 3-round MuSig.

Deterministic Nonces. Discrete logarithm-based signatures are well-known to be vulnerable
to non-uniform generation of the nonce r [NS02, NS03], and there have been plenty of real-world
vulnerabilities and attacks exploiting bad randomness in nonces [HDWH12, BHH+14, CEV14,
Val14, BH19]. In particular, if the same nonce is used to sign two different messages, the secret
key can immediately be computed from the two signatures. This can be prevented by using
deterministic nonce generation, meaning the nonce r is computed by applying a pseudorandom
function (PRF) keyed with some secret key k to the message m [Bar97, Wig97, MNPV99,
Por13].3 This method does not only protect against failures in the randomness generation (e.g.,
due to a improperly seeded system PRG) but also against rewinding attacks, in which the
attacker tries to obtain signatures with the same nonce on two different messages by resetting
the signing algorithm, which potentially runs in a virtual machine (VM) and precomputes
the nonce before the message is determined. As a side benefit, deterministic nonce generation
allows to easily test implementations of the signature algorithm in a black-box manner using
test vectors.

However, as already noted by Maxwell et al. [MPSW19], deterministic nonce generation
is not directly possible with existing multi-signature protocols based on Schnorr signatures

3 In practice, one often sets k = sk for keying the PRF, as specified for example in RFC 6979 [Por13], which
uses an HMAC-based PRF.
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such as MuSig. In fact, when one tries to apply the aforementioned standard method of
generating nonces deterministically in order to improve their robustness against PRG failures
and VM rewinding attacks, the security of these protocols breaks down entirely! Say Alice
and Bob, holding respective keys (x1, X1) and (x2, X2), want to compute a multi-signature
on some message m. Alice computes r1 (say, as Fx1(m) for some pseudorandom function F )
and sends R1 = r1G to Bob who responds with R2 = r2G. Alice computes R̃ = R1 + R2
and her partial signature s1 = r1 + cµ1x1 mod p where c = Hsig(X̃, R̃,m) and sends s1 to
Bob. However, Bob chooses not to (or maybe cannot) produce his partial signature and
the protocol aborts. Later, a new signing attempt takes place for the same message and
Alice again sends R1, but Bob responds with R′2 6= R2. Alice computes R̃′ = R1 + R′2 and
s′1 = r1 + c′µ1x1 mod p where c′ = Hsig(X̃, R̃′,m) and sends s′1 to Bob. Bob (or any adversary
that has eavesdropped the communications between Alice and Bob) can now compute Alice’s
secret key x1 = (s1 − s′1)/(µ1(c− c′)).

Hence, each signer must ensure that their secret nonce ri changes unpredictably whenever
c = Hsig(X̃, R̃,m) changes. Since R̃ is a function of all participants’ nonces, this implies a
circular dependency in the choice of values ri as long as F is deterministic. The standard way
to solve this problem is to add a counter to the input of the function F . To ensure that the
same nonce r1 is never reused, this counter must only ever increase, and thus state must be kept
not only during a protocol session but also between multiple protocol sessions. Implementing
such an increase-only counter securely is a notoriously hard problem and arguably not easier
than implementing a secure pseudorandom number generator. Common pitfalls include the
synchronization of multiple concurrently running signing sessions (on potentially multiple
devices), the possibility to rewind VMs (potentially triggered by an attacker), users rewinding
the state of their system by restoring backups, and the possibility to clone state, e.g., by simply
copying files, using disk imaging tools, or advanced VM solutions. In particular, cryptographic
libraries lacking control over execution environments, which differ widely across operation
systems and hardware, are faced with the difficulty of keeping a permanent state of the counter
and typically would need to rely on the library user to keep the counter state in a proper way.

The aforementioned attack can easily be adapted to work for other multi-signature protocols
based on Schnorr signatures when (ab)used with deterministic nonces, e.g., BN as well as
the protocols by Boneh et al. [BDN18]. Moreover, introducing a KOSK assumption will not
help to prevent the attack. As a result, there is currently no multi-signature scheme based on
Schnorr signatures that can be implemented without access to secure randomness or state at
signing time.

1.1 Our Contribution

We propose a variant of the MuSig scheme called MuSig-DN (MuSig with Deterministic Nonces)
that allows signers to generate nonces deterministically and without having to maintain state.
To this end, signers compute their secret nonce ri by applying a pseudorandom function
F keyed with a secret key ui (that we call nonce key) to the message and all participants’
public keys. Then, they send their public nonce Ri = riG together with a non-interactive
zero-knowledge (NIZK) proof that ri was computed as specified. This NIZK proof can be
checked by cosigners using a public key Ui (that we call host key) associated with a secret
nonce key ui. This ensures that, given a set K of participants’ public keys (where a public key
now consists of both a standard Schnorr verification key Xi = xiG and a host key Ui) and a

4



message m, the nonce sent by each participant will be the same for any attempt to run the
protocol on input (K,m). If any signer tries to cheat by sending two different nonces, other
participants will detect it (as by soundness of the NIZK proof, at least one of the two nonces
will have an invalid proof) and abort the protocol before sending their partial signature.

While the high-level intuition regarding the security of the scheme is clear, proving it
formally for an arbitrary pseudorandom function F appears surprisingly subtle. Indeed, F
must remain pseudorandom even when the host key U is known. A natural choice is to define
U as a commitment to the nonce key u. Depending on the properties of the commitment
scheme COM, one runs into the following complications:

If COM is perfectly hiding, then F obviously remains pseudorandom given U . However,
since COM can only be computationally binding, an adversary could potentially send two
distinct nonces with a valid proof without breaking soundness of the NIZK proof system. Since
commitments are never explicitly opened during the protocol, there would be no way for a
reduction to exploit this behavior to break the binding property of COM, unless the NIZK
proof system is a proof of knowledge (PoK), allowing the reduction to extract two distinct
openings u and u′ of the same host key U .

If COM is instead perfectly binding, then for any protocol input (K,m) and any host key
U , there is at most one nonce R for which there exists a valid NIZK proof, as needed. However,
then the commitment can only be computationally hiding, which in turn means that there is,
in general, no guarantee that F is still pseudorandom given U .

Hence, if one wants to work at this level of abstraction, the price to pay is either the reliance
on a stronger type of NIZK proofs (namely, PoKs) or the additional (and likely non-standard)
assumption that F remains pseudorandom given a commitment to the secret key. We note that
it is unclear if the most obvious and most efficient candidates of NIZK PoK systems, which are
constructed using the Fiat-Shamir transform and whose extractability thus relies on rewinding
techniques via the forking lemma, are at all usable in our setting. Since the main argument in
the security proof of the multi-signature scheme relies on rewinding via the forking lemma
as well, and the adversary is allowed to adaptively start a polynomial number of concurrent
signing sessions, we expect to run into “exponential blow up” issues in the simulation as first
discovered by Shoup and Gennaro [SG02].

It might also be tempting to rely on a verifiable random function (VRF) [MRV99], i.e., a
PRF whose outputs can be publicly verified: given an output value together with a proof, anyone
can check that the function was correctly evaluated on the corresponding input. However, note
that the output of F is the secret nonce r, which is a scalar, whereas verifiers (i.e., cosigners)
are given the public nonce R = rG. Hence, VRFs do not seem directly fit for our setting. What
we need instead and what we will construct could rather be informally described as a “VRF
in the scalar”4, i.e., r is produced pseudorandomly but only R = rG is exposed. This strong
requirement rules out even the VRF by Dodis and Yampolskiy [DY05], which seems suitable
at first glance because it outputs a group element VRF(sk, x) = (1/(sk + x))G such that only
the evaluator of the VRF knows the discrete logarithm r = 1/(sk + x) of the group element.
However for this VRF, only the outputs (1/(sk + x))G are pseudorandom, whereas two scalars
r = 1/(sk + x) and r′ = 1/(sk + x′) can be trivially distinguished from randomness.

In light of these observations, we opt to work at a lower level of abstraction and consider a
specific way of constructing F that allows us to circumvent the aforementioned difficulties. In

4 Or “VRF in the exponent” if one prefers multiplicative group notation.
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particular, we avoid introducing non-standard assumptions and we rely only the soundness of
the NIZK proofs (instead of their extractability).

The specific PRF we consider has a simple algebraic structure in order to allow for an
efficient implementation in an arithmetic circuit. Let E be a cyclic group (written additively)
of order q with generator P , which may be different from the group G on which the multi-
signature scheme is defined. Let further Hnon: {0, 1}∗ → E be a hash function (where index
‘non’ reflects that it will be used for generating the nonce in the multi-signature scheme), and
let f : E → Fp be a sufficiently “regular” function (meaning that f(A) is close to uniform
when A is uniformly distributed in E). Then F has key space Fq and message space {0, 1}∗
and for u ∈ Fq and z ∈ {0, 1}∗ it is defined as

Fu(z) ··= f(uHnon(z)). (1)

It can easily be proved that the “core” construction (u, z) 7→ uHnon(z) is pseudorandom under
the decisional Diffie-Hellman (DDH) assumption in group E (in the random oracle model
for Hnon), even when U = uP is known. This PRF has been considered before in various
contexts [DDP06, FZ13, PWH+17]. By regularity of f , F is also pseudorandom, and U can
be used as host key “committing” to u.

Given a host key U , an input z ∈ {0, 1}∗ (which in the protocol will consist of an encoding
of the list of all participants’ verification and host keys and the message m to be signed), and
a nonce R = rG, proving that R has been computed correctly means proving (using witness
u) that U = uP and R = f(uV )G, where V = Hnon(z). In particular, note that Hnon is “out
of scope” of the statement being proved.

Obtaining a 2-Round Protocol. Switching to such an algebraic, ROM-based PRF has
an interesting benefit: it allows us to obtain a 2-round protocol. Recall that in the first of
the three communication rounds of MuSig, signers “commit” to their public nonce Ri by
sending ti ··= Hcom(Ri). This step prevents any participant from controlling the aggregate
nonce R̃ = ∑

Ri, and from a provable security point of view, allows the reduction to simulate
the signing oracle, as we explain briefly now (see [BN06, BDN18, MPSW19] for details). The
reduction algorithm, whose goal is to compute the discrete logarithm of some challenge X1 ∈ G,
runs the adversary A on input X1 as the honest user’s public key, meaning that the goal of A
is to return a forged multi-signature involving X1. The adversary can execute the signature
protocol with the honest user by providing a message m and a multiset X = {X1, X2, . . . , Xn}
where X2, . . . , Xn are arbitrary public keys of purported cosigners. The reduction must simulate
the honest signer without knowing the secret key corresponding to X1. The standard strategy
for this, assuming Hsig is modeled as a random oracle, is to draw the partial signature s1
and the “challenge” c uniformly at random, to let R1 ··= s1G − cµ1X1, and to program
Hsig(X̃, R̃,m) ··= c, where X̃ and R̃ are respectively the aggregate public key and the aggregate
nonce for the instance of the protocol at hand. However, the reduction must be able to compute
R̃ and program Hsig before sending the honest user’s nonce R1. This is where the commitment
round comes into play. For BN [BN06] and MuSig [BDN18, MPSW19], assuming Hcom is
modeled as a random oracle, the reduction can retrieve the nonces that will be sent by the
adversary in the second communication round immediately after the first round (simply by
looking at the queries made by the adversary to Hcom that were answered with values ti),
hence before sending R1.
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When moving to deterministic nonces computed with the function F defined in Eq. (1),
we can forgo the commitment round and rely on a different strategy for computing R̃ “in
advance” using a trapdoor property of F . Namely, when the adversary starts the protocol with
the honest signer, it must specify the host keys U2 = u2P, . . . , Un = unP for the purported
cosigners. In the random oracle model for Hnon, the reduction can draw v uniformly at random
and program Hnon(z) ··= vP , where z consists of the list of all participants’ verification keys
and host keys and the message. Since uiHnon(z) = uivP = vUi, this allows the reduction to
compute the nonces R2, . . . , Rn that will be sent by the adversary (and hence R̃) without
knowing the secret nonce keys associated with U2, . . . , Un as Ri = f(vUi).

Note that the number of rounds of the protocol depends in fact on the initial knowledge of
signers regarding public keys of their cosigners. If cosigners’ verification keys Xi or host keys
Ui are not known, then the protocol has three rounds as all Xi’s and Ui’s must be sent before
the nonces can be computed by the signers.

Purify: An Efficient Instantiation. It remains to find a suitable group E and a NIZK
proof system in which the two relations U = uP (in E) and R = f(uV )G (in G) can be
proven efficiently. Our choice for E relies on quadratic twists of elliptic curves, which are
known to be useful for generating random bits from random curve points [Kal87]. Given the
group order p of G, let E1 and E2 be elliptic curves over Fp and quadratic twists of each other
with twisting factor d 6= 0, where d is a quadratic non-residue in Fp. Then there is an elliptic
curve E ∼= E1 × E2 over the quadratic extension field Fp2 ∼= Fp(

√
d) that admits a suitable

regular function f given by f(W ) = x0 for a non-zero point W = (x0 + x1
√
d, y0 + y1

√
d) on

E [Gür05, FP07].
Since E ∼= E1 × E2, we can perform the group arithmetic of E in E1 and E2, which in turn

can be efficiently done in an arithmetic circuit over Fp. By using a NIZK proof framework
that natively supports secret input scalars s ∈ Fp given in public “commitments” sG ∈ G
as inputs to the arithmetic circuit, e.g. Bulletproofs [BBB+18], we can avoid the very costly
scalar multiplication f(uV ) ·G in G.

Since f is easy to compute, our main challenge in the implementation of F is to construct
an arithmetic circuit for the two scalar multiplications uP and uV in E. As P and V = Hnon(z)
are public, we can precompute values that only depend on P and V outside the circuit. By
performing the scalar multiplications using a wNAF (windowed Non Adjacent Form) algorithm
and further exploiting that the scalar is the same for both, we are able to obtain a circuit with
just below 8d log2(p)e multiplication gates.

With a concrete circuit of 2030 gates built for G being the secp256k1 elliptic curve as used
in Bitcoin, creating a NIZK proof takes 943 ms and verifying it takes 61 ms using Bulletproofs
(see Section 6.2).

We stress that NIZK proofs are only used during the signing protocol of MuSig-DN. In
particular, since MuSig-DN outputs a normal Schnorr signature, verification of the signature
including its performance is unaffected. In fact, signature verifiers cannot even tell that an
interactive protocol was used to produce the signature.

1.2 Purify Compared to Other PRFs

Our construction for F aims to strike a balance between security assumptions and proof
efficiency. Since we would like to use NIZK proof frameworks that can natively handle
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computations in Fp, the performance of the NIZK proof (for proving, and sometimes for
verifying) is typically primarily a function of the number of multiplication gates necessary to
represent the statement as an arithmetic circuit over Fp.

If one does not care about the complexity of the statement, traditional symmetric-key
constructions such as HMAC [BCK96] (as used in RFC 6979) or AES may be feasible
instead. For example, if we assume that HMAC-SHA256 with key u is indistinguishable from
random to an attacker who knows uG, it can be used as F directly. Unfortunately, these
constructions are generally expensive to implement in arithmetic circuits. A circuit to verify
HMAC-SHA256 requires 91 559 multiplication gates,5 and even using unpadded SHA256
directly (one compression function invocation) takes 22 493 gates. These numbers are per
iteration: if p is close to a power of two, one iteration may be enough, but otherwise the circuit
may need multiple iterations to get unbiased results.

Much better complexity can be achieved using symmetric-key PRFs that are specifically
designed for efficiency in arithmetic circuits. Possible candidates include LowMC [ARS+15],
MiMC [AGR+16, AGP+19] and the Marvellous family [AAB+19]. The latter includes the
Rescue cipher, which would permit an F with a 288-gate verification circuit.6 However, these
PRFs are relatively young and none of them have received a sufficient amount of scrutiny
and cryptanalysis. Albrecht et al. [ACG+19] conclude that these “block cipher designs for
‘algebraic platforms’ (...) may be particularly vulnerable to algebraic attacks”, and call for
further research from the cryptographic community.

Our approach is less efficient than the constructions from this class, as it needs 2030 gates
at the 128-bit security level, but retains provable security under the well-understood DDH
assumption in the random oracle model.

2 Preliminaries

The security parameter will be denoted λ. All algorithms are probabilistic unless stated
otherwise. Given an algorithm A, y ··= A(x1, . . . , xn; ρ) means that y is the output of A when
run on input x1, . . . , xn and randomness ρ. We let y ← A(x1, . . . , xn) denote the operation
of sampling a random ρ and letting y ··= A(x1, . . . , xn; r) and we let [A(x1, . . . , xn)] denote
the set of outputs returned with non-zero probability by A on inputs x1, . . . , xn. When A has
oracle access to some function Oracle, we write y ← AOracle(x1, . . . , xn).

Probabilities. The statistical distance (or total variation distance) ∆(X,Y ) between two
random variables X and Y with range S is defined as

∆(X,Y ) ··=
∑
s∈S

1
2 |Pr [X = s]− Pr [Y = s]| .

It is well-known that

∆(X,Y ) = max
A
|Pr [1← A(X)]− Pr [1← A(Y )]| ,

5 This assumes optimized circuits generated by jsnark [Kos15], which take advantage of the message being
known to the verifier.

6 This assumes Rescue in sponge mode with parameters m = 2, α = 5, N = 24, and p equal to the secp256k1
order, as suggested by the Rescue designers in private communication for a 128-bit security level.
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where the maximum is taken over all (deterministic or probabilistic) algorithms (even compu-
tationally unbounded) taking some input in S and returning a bit b, where the probabilities
are taken over the randomness of X or Y and A’s randomness.

Given a random variable X and an integer n ≥ 1, let X(n) ··= (X1, . . . , Xn) denote the
product distribution where the Xi’s are fully independent and distributed as X. We rely on
the following well-known fact.

Lemma 1. Let X and Y be two random variables with range S and n ≥ 1. Then

∆(X(n), Y (n)) ≤ n ·∆(X,Y ).

We refer the reader to Appendix A for a proof.
Let A and B be two finite non-empty sets. A function f : A→ B is said to be regular if

any b ∈ B has the same number of pre-images by f ; it is ε-regular if

∆(f(UA), UB) ≤ ε,

where UA, resp. UB follows the uniform distribution on A, resp. B.

Security Games. A security game GAMEpar(λ) indexed by a set of parameters par consists
of a main procedure and a collection of oracle procedures. The main procedure, on input the
security parameter λ, initializes variables and generates input on which an adversary A is run.
The adversary interacts with the game by calling oracles provided by the game and returns
some output, based on which the game computes its own output b (usually a single bit), which
we write b← GAMEApar(λ). When the game outputs the truth value of a predicate, we identify
false with 0 and true with 1.

Let S be some set, which may depend on the security parameter λ. The random oracle
model (ROM) [BR93] replaces a cryptographic hash function H: {0, 1}∗ → S by a truly random
function. In security games, the adversary is given access to an oracle RO which is implemented
by lazy sampling: a lookup table T is initialized empty and queries x are answered as follows:
if T(x) is not yet defined, a random y←$S is sampled and stored as T(x) ··= y; then the oracle
returns T(x).

PRNGs and PRFs. Let G = (Gλ : {0, 1}λ → Yλ) for some set Yλ be a family of functions. G
is a secure pseudorandom number generator (PRNG) if for any p.p.t. adversary A,

Advprng
G,A (λ) ··=

∣∣∣Pr[x←$ {0, 1}λ : 1← A(G(x))]− Pr[y←$Yλ : 1← A(y)]
∣∣∣ = negl(λ) .

Let G = (Gλ : {0, 1}λ × {0, 1}∗ → Yλ) for some set Yλ be a family of functions. G is a
secure pseudorandom function (PRF) if for any p.p.t. adversary A,

Advprf
G,A(λ) ··=

∣∣∣Pr[k←$ {0, 1}λ : 1← AG(k,·)(1λ)]− Pr[1← ARO(1λ)]
∣∣∣ = negl(λ) ,

where RO is defined as in the previous paragraph with S = Yλ.
We note that even though we describe our construction Purify as a PRF, will not rely on

the above PRF definition to formalize its security. While the function F in Purify is indeed
a PRF, we will work at a lower level of abstraction in our security proofs. The above PRF
definition will instead be necessary to capture the pseudorandomness of a helper function
RandDer, which we use to derandomize NIZK proofs (see Section 4).
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Game DLAGrGen(λ)

(p,G, G)← GrGen(1λ)
x←$Fp ; X ··= xG

x′ ← A(p,G, G,X)
return (x′ = x)

Game DDH-bAGrGen,GrGen′ (λ) // b ∈ {0, 1}

(p,G, G)← GrGen(1λ) ; (q,E, P, f)← GrGen′(p)
x, y, z←$Fq
X ··= xP ; Y ··= yP ; Z0 ··= xyP ; Z1 ··= zP

b′ ← A(q,E, P,X, Y, Zb)
return b′

Fig. 1. The DL and DDH problems.

Groups. A group description is a triple Γ = (p,G, G) where G is an (additively denoted)
cyclic group of order p and G is a generator of G. A (prime-order) group generation algorithm
is an algorithm GrGen which on input 1λ returns a group description (p,G, G) where p is a
λ-bit prime. Fix t ∈ poly(λ) and ε = negl(λ). A (t, ε)-companion group generation algorithm
is an algorithm GrGen′ which on input a λ-bit prime p returns (q,E, P, f) where (q,E, P ) is a
group description (with q not necessarily prime) and f : E→ Fp is an ε(λ)-regular function
computable in time at most t(λ). We will require that the discrete logarithm (DL) problem is
hard in G and the decisional Diffie-Hellman (DDH) problem is hard in E, as formalized below.

Definition 1. Let game DL be as defined in Fig. 1. The discrete logarithm problem is said
hard w.r.t. GrGen if for any p.p.t. adversary A,

Advdl
GrGen,A(λ) ··= Pr

[
1← DLAGrGen(λ)

]
= negl(λ) .

Let games DDH-0 and DDH-1 be as defined in Fig. 1. The decisional Diffie-Hellman
problem is said hard w.r.t. (GrGen,GrGen′) if for any p.p.t. adversary A,

Advddh
GrGen,GrGen′,A(λ) ··=

∣∣∣Pr
[
1← DDH-0AGrGen,GrGen′(λ)

]
− Pr

[
1← DDH-1AGrGen,GrGen′(λ)

]∣∣∣
= negl(λ) .

NIZK Proof Systems. Let R be an NP-relation. For (s, w) ∈ R we call s the statement and
w the witness. Let LR denote the language associated with R, i.e., LR ··= {s : ∃w, (s, w) ∈ R}.
A non-interactive zero-knowledge (NIZK) proof system Π for R consists of the following three
algorithms:
– crs← Π.Setup(1λ): the setup algorithm takes the security parameter and returns a common

reference string (CRS) crs;
– π ··= Π.Prv(crs, s, w; ρ): the prover algorithm takes as input a CRS crs, a pair (s, w) ∈ R,

and an explicit randomness argument ρ and returns a proof π; it returns ⊥ if (s, w) /∈ R
– b ··= Π.Ver(crs, s, π): the (deterministic) verifier algorithm takes as input a CRS crs, a

statement s, and a proof π and returns a bit b ∈ {0, 1}.
Proof system Π is complete if for every λ and every adversary A,

Pr
[

crs← Π.Setup(1λ) ; (s, w)← A(crs) ; π ← Π.Prv(crs, s, w; ρ) :
(s, w) ∈ R ∧ Π.Ver(crs, s, π) = 0

]
= 0.
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Game ZK-bAΠ,R(λ)

crs0 ← Π.Setup(1λ)

(crs1, τ)← Π.SimSetup(1λ)

b′ ← AProve(crsb)
return b′

Oracle Prove(s, w)

ρ←$ {0, 1}λ

π0 ··= Π.Prv(crs0, s, w; ρ)
π1 ← Π.SimPrv(crs1, τ, s)
return πb

Fig. 2. The zero-knowledge game for a proof system Π.

A proof system Π is zero-knowledge if proofs leak no information about the witness. We
define a simulator for a proof system Π as a pair of algorithms:

– (crs, τ)← Π.SimSetup(1λ): the simulated setup algorithm takes the security parameter and
outputs a CRS together with a trapdoor τ ;

– π∗ ← Π.SimPrv(crs, τ, s): the simulated prover algorithm takes as input a CRS, a trapdoor
τ , and a statement s and outputs a simulated proof π∗.

Definition 2 (Zero-knowledge). Let games ZK-0 and ZK-1 be as defined in Fig. 2. A proof
system Π for relation R is zero-knowledge if there exists a simulator (Π.SimSetup,Π.SimPrv)
such that for any p.p.t. adversary A,

Advzk
Π,R,A(λ) ··=

∣∣∣Pr
[
1← ZK-0AΠ,R(λ)

]
− Pr

[
1← ZK-1AΠ,R(λ)

]∣∣∣ = negl(λ) .

Soundness requires that no p.p.t. adversary can produce a valid proof for a false statement
except with negligible probability. Simulation-soundness is strictly stronger and requires that
this holds even when the adversary has oracle access to the simulated prover.

Definition 3 ((Simulation-)soundness). Let games SND, resp. SS be defined as in Fig. 3.
A proof system Π for relation R is sound, resp. simulation-sound w.r.t. simulator (Π.SimSetup,
Π.SimPrv), if for any p.p.t. adversary A,

Advsnd
Π,R,A(λ) ··= Pr

[
1← SNDAΠ,R(λ)

]
= negl(λ) ,

resp. Advss
Π,R,A(λ) ··= Pr

[
1← SSAΠ,R(λ)

]
= negl(λ) .

3 Multi-Signature Schemes

A multi-signature scheme MS consists of these algorithms:

– par← MS.Setup(1λ): the setup algorithm takes the security parameter and returns public
parameters par;

– (sk, vk)← MS.KeyGen(par): the key generation algorithm takes the public parameters and
returns a secret key sk and a verification key vk;
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Game SNDAΠ,R(λ)

crs← Π.Setup(1λ)
(s, π)← A(crs)
return s /∈ LR ∧ Π.Ver(crs, s, π)

Game SSAΠ,R(λ)

(crs, τ)← Π.SimSetup(1λ) ; Q ··= ( )

(s, π)← ASimProve(crs)
return (s, π) /∈ Q ∧ s /∈ LR ∧ Π.Ver(crs, s, π)

Oracle SimProve(s)

π ← Π.SimPrv(crs, τ, s)
Q ··= Q‖(s, π)
return π

Fig. 3. The soundness and simulation-soundness games for a proof system Π.

– σ ← 〈MS.Sign(par,V,m, sk1), . . . ,MS.Sign(par,V,m, skn)〉 is an interactive protocol run
by all the cosigners. Each signer runs the protocol on common inputs the public parameters
par, a message m, and a multiset V of all participants’ verification key {vki}ni=1 and on
secret input its own secret key ski; each participant obtains a signature σ as common
output;

– b← MS.Ver(par,V,m, σ): the (deterministic) verification algorithm takes public parameters
par, a multiset V of verification keys, a message m, and a signature σ and returns a bit
b ∈ {0, 1}.

3.1 Security
The security model for a multi-signature scheme in the plain public-key model [BN06] requires,
informally, that it be infeasible for an attacker to forge multi-signatures involving the verification
key of at least one honest signer. The security game proceeds as follows. The game generates
keys (sk1, vk1) for the honest signer. The adversary gets vk1 and can start and engage in
(concurrent) instances of the signing protocol with the honest signer for arbitrary messages m
and arbitrary multisets of verification keys V such that vk1 ∈ V. Since we work in the plain
public-key model, the adversary can choose other keys in V arbitrarily, in particular it can
copy vk1. Eventually, it returns a multiset of verification keys V, a message m, and a signature
σ. The adversary wins if σ is a correct signature for (V,m), vk1 ∈ V, and the adversary never
started an instance of the signing protocol for the pair (V,m). Again, other verification keys
in V can be arbitrary (in particular, vk1 can appear multiple times).
Definition 4 (EUF-CMA). Let game EUF-CMA be as defined in Fig. 4. A multi-signature
scheme MS is existentially unforgeable under chosen-message attacks (EUF-CMA-secure) if
for any p.p.t. adversary A,

Adveuf-cma
MS,A (λ) ··= Pr

[
1← EUF-CMAAMS(λ)

]
= negl(λ) .

3.2 Additional Security of Deterministic Signing
If the signing protocol MS.Sign is fully deterministic in its inputs par,V,m, ski, then EUF-CMA
security implies security against additional attacks of practical relevance.
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Game EUF-CMAAMS(λ)

par← MS.Setup(λ)
(sk1, vk1)← MS.KeyGen(par)
// honest signer has index ’1’

Q ··= ( )

(V,m, σ)← ASign(par, vk1)
return vk1 ∈ V ∧ (V,m) /∈ Q ∧MS.Ver(par,V,m, σ) = 1

Oracle Sign(V,m)

if vk1 /∈ V then return ⊥
// honest signer must be in the multiset

execute MS.Sign(par,V,m, sk1)
// update Q

Q ··= Q‖(V,m)

Fig. 4. The EUF-CMA security game for a multi-signature scheme MS.

Failures in Randomness Generation. A deterministic signing protocol is trivially un-
affected by failures in external randomness sources, e.g., system PRGs, because it does not
access such sources.

Rewinding Attacks. A deterministic signing protocol prevents state rewinding attacks.
Observe that an EUF-CMA adversary who is given the additional capability of rewinding
the honest signer in any chosen signing session to just before some chosen round j can be
simulated by an ordinary EUF-CMA adversary that simply opens an additional second session
with the honest user (on the same inputs) and replays rounds 1 to j − 1 from the first session
in the second session. Since the honest signer is fully deterministic, it will reach the same
internal state in the second session just before round j as it did previously in the first session.

4 Description of MuSig-DN

In this section, we give a detailed description of the MuSig-DN scheme, which is a modification
of MuSig to support deterministic nonce generation.

Let GrGen be a group generation algorithm and GrGen′ be a (t, ε)-companion group
generation algorithm for some t ∈ poly(λ) and ε ∈ negl(λ). Given (p,G, G) ∈ [GrGen(1λ)]
and (q,E, P, f) ∈ [GrGen′(p)], let KeyDer be a PRNG with key space {0, 1}λ and range
Fp × Fq × {0, 1}λ, let KeyDer′, KeyDer′′, and KeyDer′′′ be the projections of KeyDer onto
respectively its first, second and third output component, let RandDer be a PRF with key
space {0, 1}λ, input space {0, 1}∗, and range {0, 1}λ, let Hagg and Hsig be hash functions from
{0, 1}∗ to Fp and Hnon be a hash function from {0, 1}∗ to E, and let Π be a NIZK proof system
whose prover algorithm Π.Prv needs at most λ bits of randomness and which is zero-knowledge
and simulation-sound for the relation

R = {((p,G, G, q,E, P, f,F , U, V,R), u) : U, V ∈ E \ F ∧ U = uP ∧ R = f(uV )G}, (2)

where F is a set of exceptional group elements negligibly small in E on which the prover
algorithm is allowed to fail. We will omit p,G, G, q,E, P, f,F when they are clear from the
context. Looking ahead, the set F will allow for a simpler and more efficient construction
of a proof system (see Sections 5 and 6). Note that simulation-soundness guarantees that a
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statement involving U or V in F is rejected by the verifier algorithm except with negligible
probability.

We define the scheme MS ··= MuSig-DN[GrGen,GrGen′,KeyDer,RandDer,Π,F ] as follows
(see also Fig. 5 for a pure pseudocode description).

Setup. On input 1λ, the setup algorithm MS.Setup runs (p,G, G)← GrGen(1λ), (q,E, P, f)←
GrGen′(p), and crs← Π.Setup(1λ) and returns par ··= (p,G, G, q,E, P, f, crs).

Key generation. On input par = (p,G, G, q,E, P, f, crs), the key generation algorithm MS.KeyGen
draws a secret key sk←$ {0, 1}λ and computes x ··= KeyDer′(sk) (called signature key) and
the verification key X ··= xG; it returns sk and vk ··= X.

Signing. Let sk1, x1 = KeyDer′(sk1), andX1 = x1G be respectively the secret key, the signature
key, and the verification key of the local signer, let m be the message to sign, let X2, . . . , Xn

be the verification keys of the other cosigners, and let X ··= {X1, . . . , Xn} be the multiset
of all participants’ verification keys.7 The signer first computes the aggregate key X̃ as
follows:

µi ··= Hagg(X, Xi), 1 ≤ i ≤ n
X̃ ··=

∑n
i=1 µiXi.

It computes its nonce key u1 ··= KeyDer′′(sk1) and the corresponding host key U1 ··=
u1P and sends U1 to all other cosigners. Upon reception of other signers host keys Ui,
2 ≤ i ≤ n, it computes V ··= Hnon(K,m) with multiset K ··= {(X1, U1), . . . , (Xn, Un)},8
it computes r1 ··= f(u1V ), R1 ··= r1G, and k ··= KeyDer′′′(sk1), derives randomness
ρ ··= RandDer(k, (K,m)), generates a NIZK proof

π1 ··= Π.Prv(crs, (U1, V,R1), u1; ρ),

and sends (R1, π1) to all other cosigners. Upon reception of pairs (Ri, πi), 2 ≤ i ≤ n, from
other cosigners, the signer runs Π.Ver(crs, (Ui, V,Ri), πi) and aborts if any verification does
not pass. Otherwise, it computes

R̃ ··=
∑n
i=1Ri,

c ··= Hsig(X̃, R̃,m),
s1 ··= r1 + cµ1x1,

and sends s1 to all other cosigners. Finally, upon reception of s2, . . . , sn from other cosigners,
it computes s = ∑n

i=1 si. The signature is (R̃, s).
Verification. On input a multiset of verification keys X = {X1, . . . , Xn}, a message m, and

a signature (R̃, s), the verification algorithm MS.Ver computes µi ··= Hagg(X, Xi) for
1 ≤ i ≤ n, X̃ ··=

∑n
i=1 µiXi, c ··= Hsig(X̃, R̃,m) and returns 1 if sG = R̃ + cX̃ and 0

otherwise.

7 Indices 1, . . . , n are local references to signers, and index 1 is w.l.o.g the index of the local signer.
8 We assume a canonical serialization of multisets, e.g., implemented by sorting and then serializing all elements.
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MS.Setup(1λ)

(p,G, G)← GrGen(1λ)
(q,E, P, f)← GrGen′(p)

crs← Π.Setup(1λ)
return par ··= (p,G, G, q,E, P, f, crs)

MS.KeyGen(par)

(p,G, G, q,E, P, f, crs) ··= par
sk←$ {0, 1}λ

x ··= KeyDer′(sk) ; X ··= xG

vk ··= X

return (sk, vk)

MS.Ver(par,X,m, (R̃, s))

(p,G, G, q,E, P, f, crs) ··= par
{X1, . . . , Xn} ··= X

X̃ ··=
∑n

i=1 Hagg(X, Xi)Xi
c ··= Hsig(X̃, R̃,m)

return (sG = R̃+ cX̃)

MS.Sign(par,X,m, sk1)

(p,G, G, q,E, P, f, crs) ··= par
x1 ··= KeyDer′(sk1) ; X1 ··= x1G

if X1 /∈ X then return ⊥
{X1, . . . , Xn} ··= X
µ1 ··= Hagg(X, X1)

X̃ ··=
∑n

i=1 Hagg(X, Xi)Xi
u1 ··= KeyDer′′(sk1) ; U1 ··= u1P

send U1 ; receive (U2, . . . , Un)
K ··= {(X1, U1), . . . , (Xn, Un)}
V ··= Hnon(K,m)
W ··= u1V ; r1 ··= f(W ) ; R1 ··= r1G

k ··= KeyDer′′′(sk1) ; ρ ··= RandDer(k, (K,m))
π1 ··= Π.Prv(crs, (U1, V, R1), u1; ρ)
if π1 = ⊥ then return ⊥
send (R1, π1) ; receive ((R2, π2), . . . , (Rn, πn))
for i = 2 . . . n do

if Π.Ver(crs, (Ui, V, Ri), πi) = 0 then return ⊥

R̃ ··=
∑n

i=1 Ri

c ··= Hsig(X̃, R̃,m)
s1 ··= r1 + cµ1x1

send s1 ; receive (s2, . . . , sn)

return (R̃,
∑n

i=1 si)

Fig. 5. The multi-signature scheme MS ··= MuSig-DN[GrGen,GrGen′,KeyDer,Π,F ].

Deterministic Signing. The NIZK proof algorithm Π.Prv is in general probabilistic. To
obtain a fully deterministic signing protocol, which is robust against failures of external
randomness sources and secure against rewinding attacks (see Section 3.2), we derandomize
not only the generation of the nonce r1 but also Π.Prv by deriving its randomness ρ using the
PRF RandDer on the protocol inputs (K,m).

Stateless Signing. Security against rewinding attacks implies that unforgeability is guaran-
teed even in the case that signers do not have a secure non-resettable storage for keeping state
between the rounds of a single signing session. However, MuSig-DN with its fully deterministic
signing algorithm goes one step further: since all state in the signing protocol at a given point
in time can be recomputed from the protocol inputs and the messages received thus far, some
signers may be stateless, i.e., they do not need to keep state at all between the rounds of
signing session, not even for correct functionality. Instead, it suffices that only one of the
signers (or an untrusted third party) invokes the stateless signers by providing them with the
public inputs and all previously sent messages from the cosigners. For example, if signer 1 is
stateless, it is possible to ask it for its third-round message s1 by providing it with the public
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inputs m,X and the previously sent messages ((Ui), Ri, πi)), 2 ≤ i ≤ n from the cosigners,
and signer 1 can simply replay the first two rounds of the protocol internally to produce s1.

Two-Round Scheme. In practice, the nonce/host key pair (u1, U1) can be computed at key
generation time and U1 transmitted only once to other cosigners alongside the verification key
X1. The cosigners can then store the pair (X1, U1) as a long-term key. Then a signing session
of our protocol needs effectively only two rounds.

The security of this optimization is justified by our security proof, which in fact considers
a security game that passes U1 as an additional input to the adversary in the beginningof the
game (see Game0 in Appendix B).

Public Keys. On the other hand, one cannot let the host key U be formally part of the
verification key vk of a signer. This would allow an adversary to run the signing protocol
on input ({(X1, U1), (X2, U2)},m), thus getting a valid signature σ, and return as forgery a
tuple ({(X1, U1), (X2, U

′
2)},m, σ) where U ′2 6= U2: since σ is valid for ({(X1, U1), (X2, U

′
2)},m)

but the protocol was never executed on input ({(X1, U1), (X2, U
′
2)},m), this would be a win

according to Definition 4. This artificial problem could be solved by adapting the syntax and
the security definition for multi-signature schemes; however, we preferred to abide by the
standard definition.

On the Inputs to the Hash. Signers are supposed to compute their signature/verification
key pair and their nonce/host key pair from the same secret key sk, so that when all signers are
honest the multiset of verification keys X uniquely determines the multiset of verification/host
key pairs K. Hence, one could wonder whether it is indeed necessary to hash K instead of X
in Hnon. However, assuming V is computed as V ··= Hnon(X,m), a dishonest signer could use
two different host keys Ui and U ′i in two executions of the protocol with the same common
input (X,m). This would result in the honest signer computing two partial signatures with
the same nonce r1 for different aggregate nonces R̃ and R̃′, hence leaking its signature key.

Robustness. A useful property of the interactive signing protocol is that it is robust in the
following sense: if a signing session fails due to some of the participants sending messages that
do not adhere to the protocol specification, it can be determined who is responsible for the
failure (assuming that the network is reliable). The only failure cases in which the signing
protocol outputs ⊥ are that the NIZK prover algorithm outputs ⊥ or that some cosigner i
sends an invalid NIZK proof πi. Given a complete NIZK proof system, these cases correspond
to the exceptional cases V ∈ F or Ui ∈ F . Since the set F is negligibly small in E, the former
case happens with at most negligible probability and the latter case implies that the cosigner
i is disruptive except with negligible probability. The remaining failure case is that the signing
protocol outputs an invalid signature. In that case, the disruptive cosigners can be identified by
checking the equalities siG = Ri + cXi individually for every 2 ≤ i ≤ n as already in MuSig.

Reducing the Number of Keys. In practice, it may be desirable to reuse a single nonce key
across different signature keys in order to reduce the number of public host keys that signers
need to store or retransmit if they are involved in many signing setups. Using a single nonce
key for multiple signature keys is particularly natural when the host key and the signature
keys are derived using a hierarchical deterministic Bitcoin wallet [Wui13, DFL19]. Similarly, it
may be desirable to use multiple nonce keys with the same signature key, e.g., if the same
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signature key is stored on multiple devices. We believe that these usage modes do not affect
the security of MuSig-DN, but we leave a formal treatment for future work.

Security. We state the security of MuSig-DN in the following theorem whose proof can be
found in Appendix B.

Theorem 1. Let GrGen be a group generation algorithm for which the DL problem is hard and
GrGen′ be a (t, ε)-companion group generation algorithm for which the DDH problem is hard.
Let KeyDer be a PRNG, RandDer a PRF, and Π be a zero-knowledge and simulation-sound
NIZK proof system for relation R as defined in Eq. (2) for some set F . Then the multi-signature
scheme MS ··= MuSig-DN[GrGen,GrGen′,KeyDer,RandDer,Π,F ] is EUF-CMA-secure in the
random oracle model.

Precisely, for any p.p.t. adversary A making at most qh random oracle queries and initiating
at most qs instances of the signature protocol with the honest signer, there exist p.p.t. adversaries
Bprng, Bprf , Bsnd, Bzk, Bss, Bdl, and Bddh with

Adveuf-cma
MS,A (λ) ≤ (qh + qs + 1)3/4

(
Advdl

GrGen,Bdl(λ)
)1/4

+ Advprng
KeyDer,Bprng

(λ) + Advprf
RandDer,Bprf

(λ) + Advsnd
Π,Bsnd(λ) + Advzk

Π,Bzk(λ)

+ Advddh
GrGen′,Bddh

(λ) + Advss
Π,Bss(λ) + qsε+ 2(qh + qs + 1)2

p
+ 2
p1/4 .

5 Purify: A Pure Elliptic Curve PRF

In this section, we describe a suitable companion group generation algorithm GrGen′ (see
Section 2) which, given a λ-bit prime p, returns a tuple (q,E, P, f) where (q,E, P ) is a group
description and f : E → Fp is an ε(λ)-regular function for some ε ∈ negl(λ). We call our
construction Purify because the consonants spell PRF and the secret parts of the computation
are purely based on elliptic curves.

The construction makes use of randomness extractors that rely on the DDH problem over
elliptic curves [Gür05, FP07]. Let p > 3 be prime and let Fp be the finite field with p elements.
An elliptic curve in short Weierstrass form is a set of points

E = {(x, y) ∈ (Fp)2 : y2 = x3 + ax+ b} ∪ {0E}

where a and b are elements of Fp such that 4a3 + 27b2 6= 0 and 0E is the point at infinity. It
is well-known that E can be equipped with a group law with neutral element 0E. Given an
integer n, we let E[n] denote the subgroup of n-torsion points, i.e., E[n] ··= {P ∈ E : nP = 0E}.

Let d 6= 0 be a quadratic non-residue in Fp. The curve

Ẽ = {(x, y) ∈ (Fp)2 : y2 = x3 + ad2x+ bd3} ∪ {0Ẽ}

is a quadratic twist of E. Curves E and Ẽ are not isomorphic over Fp (unless b = 0 and −1 is a
quadratic non-residue in Fp, in which case E is supersingular) but they become isomorphic over
the quadratic extension field Fp2 ∼= Fp[X]/(X2−d) ∼= Fp(

√
d) = {u0 +u1

√
d : (u0, u1) ∈ (Fp)2},

the isomorphism being (x, y) 7→ (dx, d
√
dy).
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The basic construction of GrGen′ is as follows: given p, select an elliptic curve E over
Fp2 ∼= Fp(

√
d) whose group of points is cyclic of order q together with a generator P and such

that DDH is assumed to be hard over E and define

f : E→ Fp

Q 7→
{

0 if Q = 0E
x0 if Q = (x0 + x1

√
d, y0 + y1

√
d).

Let Up be the uniform distribution on Fp and UE be the uniform distribution on E. Farashahi
and Pellikaan [FP07], improving on a result by Gürel [Gür05, Lemma 1], showed that Up and
f(UE) are statistically close. More precisely, Corollary 3 by Farashahi and Pellikaan [FP07]
states for p > 18 the bound

∆(Up, f(UE)) ≤ 3
√
p
≤ 3
√

2
2λ/2

.

In other words, f is ε-regular for ε = 3
√

2/2λ/2.
Our goal is to construct a PRF onto Fp of the form

Fu(z) = f(uHnon(z)), (3)

where u ∈ Fq is the key and Hnon : {0, 1}∗ → E is a hash function. In order for this function to
be both computable and verifiable against a public key U = uP by an arithmetic circuit with
low multiplicative complexity, we restrict ourselves to specific curves constructed as follows:

– Fix a quadratic non-residue d ∈ F∗p.
– Find a, b ∈ Fp such that:
• the equation y2 = x3 + ax+ b defines an elliptic curve E1 over Fp of prime order q1 in
which DDH is assumed to be hard;9
• the equation y2 = x3 + ad2x + bd3 defines an elliptic curve E2 over Fp (a quadratic

twist of E1) of prime order q2 6= q1, in which DDH is assumed to be hard.

Lemma 2. Consider the elliptic curve E = E1(Fp2), defined by equation y2 = x3 + ax + b
over Fp2. Then

(i) E is isomorphic to the direct product E1×E2 of E1 and E2; in particular, it is cyclic and
has order q = q1q2;

(ii) there is an efficiently computable and invertible isomorphism φ:E→ E1 × E2.

Proof. Let E′ be the curve defined by y2 = x3 + ad2x+ bd3 over Fp2 and let τ : E→ E′ be the
twisting isomorphism defined by τ(x, y) = (dx, d

√
dy). Let q1 = p+ 1− t be the number of

points of E1. Then E2 has q2 = p+1+t points and E has p2 +1−(t2−2q) = (p+1)2−t2 = q1q2
points.

Since q1 and q2 are coprime, let m1 and m2 be such that m1q1 +m2q2 = 1. Consider

ψ:E→ E[q1]× E[q2]
Q 7→ (m2q2Q,m1q1Q).

9 This means in particular that E1 must have a large embedding degree.
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Note that E[q1] = E1 (as E1 is a subgroup of E[q1] and E[q1] is a proper subgroup of E) and
E[q2] = τ−1(E2) (as τ−1(E2) is a subgroup of E[q2] and E[q2] is a proper subgroup of E), which
implies in particular that #E[q1] = q1 and #E[q2] = q2. Hence, ψ is an efficiently computable
isomorphism whose inverse, given by (R,S) 7→ R+ S, is also efficiently computable. Hence,
φ ··= τ ′ ◦ψ where τ ′ : E[q1]×E[q2]→ E1×E2 is defined by τ ′(R,S) = (R, τ(S)) is an efficiently
computable and invertible isomorphism from E to E1 × E2. This proves (i) and (ii) (the fact
that E is cyclic follows from the Chinese Remainder Theorem).

Moreover, assuming DDH is hard in E1 and E2, DDH is also hard in E1 × E2 with a tight
reduction [GKR04a, Lemma 4], and since φ is efficiently invertible, DDH is also hard in E.

As a consequence, instead of working over E, one can project the computation onto E1 and
E2, where the arithmetic is simpler, and then combine the two to obtain the final result. Let
H1 and H2 be hash functions onto E1 and E2 respectively.10 Define a hash function Hnon onto
E as

Hnon(z) ··= φ−1(H1(z),H2(z)). (4)
Using the definition of φ given in the proof of Lemma 2, one can easily see that Hnon(z) =
H1(z) + τ−1(H2(z)), where τ−1(x, y) = (d−1x, d−3/2y). Using the indifferentiability notion by
Maurer et al. [MRH04], one can show that Hnon “behaves” like a random oracle assuming H1
and H2 are random oracles. As the EUF-CMA security notion is a single-stage game [RSS11],
this ensures that the proof of Theorem 1 (see Appendix B) carries over to MuSig-DN used
with this construction (in the random oracle model for H1 and H2).

Claim. Hnon as defined in (4) is indifferentiable [MRH04] from a random oracle onto E.

Proof. This follows from the results of Brier et al. [BCI+10, Th. 1] by noting that z 7→
(H1(z),H2(z)) is a random oracle onto E1×E2 and that an efficiently computable and invertible
isomorphism is an admissible encoding [BCI+10, Def. 4].

We can now work out an explicit formula for Fu(z) in terms of multiplications in E1 and
E2, with F as defined in Eq. (3), and Hnon as defined in Eq. (4):

Fu(z) = f (uHnon(z))
= f

(
uφ−1(H1(z),H2(z))

)
.

For u ∈ Fq, let u1 = u mod q1 and u2 = u mod q2. Then

Fu(z) = f
(
φ−1(u1H1(z), u2H2(z))

)
= f

(
u1H1(z) + τ−1(u2H2(z))

)
.

Letting u1H1(z) = (x1, y1) and u2H2(z) = (x2, y2),

Fu(z) = f
(
(x1, y1) + τ−1 ((x2, y2))

)
= f

(
(x1, y1) + (d−1x2, d

−3/2y2)
)
.

10 For example, the functions H1 and H2 can be instantiated with the help of a counter and a hash function
from {0, 1}∗ to Fp. The counter is concatenated to the hash input and the hash output is interpreted as the
x-coordinate of E1 or E2 respectively. If there is no corresponding y-coordinate, the counter is incremented
and the process is repeated until a valid point is found. Since H1 and H2 only operate on public data there is
no risk of leaking information through timing.
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Using the group law in E to write the x-coordinate explicitly (see the final paragraph in
Section 6.1 for an explicit formula),

Fu(z) = f

(d−3/2y2 − y1
d−1x2 − x1

)2

− x1 − d−1x2, . . .


= f

((
y2

1 + d−3y2
2 − 2d−2√dy1y2

(d−1x2 − x1)2 − x1 − d−1x2, . . .

))
.

Evaluating f , which corresponds to dropping the y-coordinate and the
√
d component in the

x-coordinate, we have

Fu(z) = y2
1 + d−3y2

2
(x1 − d−1x2)2 − x1 − d−1x2,

By the E1 and E2 curve equations to substitute y2
1 and y2

2,

Fu(z) = x3
1 + ax1 + b+ d−3(x3

2 + ad2x2 + d3b)
(x1 − d−1x2)2 − x1 − d−1x2

= x3
1 + ax1 + b+ (d−1x2)3 + ad−1x2 + b

(x1 − d−1x2)2 − x1 − d−1x2.

Finally we obtain

(5)Fu(z) = (x1 + d−1x2)(a+ x1d
−1x2) + 2b

(x1 − d−1x2)2 .

In other words, the PRF evaluation is a simple function of the x-coordinates of u1H1(z) and
u2H2(z).

This equation does not hold in the exceptional cases that u1H1(z) = 0E1 or u2H2(z) = 0E2 ,
which exactly correspond to U = uP or V = Hnon(z) having order less than q. To avoid these
cases when constructing a concrete NIZK proof system, we define the set F ⊆ E (see Section 4)
as F = {P ∈ E : q1P = 0E ∨ q2P = 0E}. Clearly F is negligibly small in E.

The E group law used above only applies in case the summands are distinct and not each
other’s negation, so we must verify that is the case for (x1, y1) and τ−1 ((x2, y2)). Since they
are in distinct subgroups E[q1] and E[q2] there is only a problem if both lie in the intersection of
those subgroups. As q1 and q2 are coprime, that intersection is exactly {0E}, which is excluded
by being a subset of F .

6 Efficient NIZK

It remains to construct an efficient NIZK proof for the relation

R = {((p,G, G, q,E, P, f,F , U, V,R), u) : U, V ∈ E \ F ∧ U = uP ∧ R = f(uV )G}.

In this section, we describe an arithmetic circuit11 over the field Fp for this statement, where p
is the group order of G. Recall that the public points R ∈ G and U ∈ E are in different groups.
11 An arithmetic circuit with n inputs over a field F is a directed acyclic graph with n vertices of in-degree 0

labeled with variables x1, . . . , xn taking values in F and whose all other vertices have in-degree 2 and are
labeled with one of the two arithmetic operations {+,×}.
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By using a NIZK proof framework for arithmetic circuits that natively supports secret input
scalars s ∈ Fp given in public “commitments” sG ∈ G as inputs to the circuit, we avoid the
costly scalar multiplication f(uV ) ·G in G. Note that in the typical case G is an elliptic curve
group of order p and defined over a field Fp′ with p′ 6= p such that this multiplication would
be prohibitively expensive to implement in a circuit over the “wrong” field Fp.

We optimize for a low number of multiplication gates in the circuit, which makes our
technique compatible and efficient when used with NIZK proof frameworks for arithmetic circuit
satisfiability meeting the aforementioned requirement of supporting inputs in commitments,
e.g., Bulletproofs [BBB+18] and the recent framework by Lai, Malavolta and Ronge [LMR19].

This section gives a high-level description of our circuit, which has 2030 multiplication
gates for a 256-bit curve. A full implementation of the circuit in Python is available [Wui19].

Elliptic Curve Selection. Arithmetic operations over elements in Fp will be native to our
circuit and thus very efficient. To make use of these native operations, we would like to work
on elliptic curves E1 and E2 over the field Fp, i.e., the coordinates of points on E1 and E2 are
elements of Fp. For typical choices of G (and hence p) such as the secp256k1 elliptic curve
used in Bitcoin, it is feasible to find suitable curves E1 and E2 in few CPU days on a modern
laptop using the SageMath computer algebra system [Sag19]. We make our code and curve
parameters of E1 and E2 suitable for a few common choices available [Wui19].

For the sake of concreteness, we assume the secp256k1 curve in the remainder of this
section. For this choice of G, the group order is p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1,
which we treat as negligibly close to 2256.

Handling Exceptional Points. As our circuit relies on Eq. (5) to evaluate f , it is
not prepared to handle the exceptional points in the set F . However, since F is efficiently
recognizable, we can simply modify the prover and verifier algorithm of a given NIZK proof
framework to immediately output ⊥ or 0, respectively, when run on an input with U ∈ F or
V ∈ F .

6.1 Construction of Arithmetic Circuit

Half-range Point Multiplication. Given the x-coordinates of uP and uV , the function
f can be computed with 4 multiplications using Eq. (5). Thus the main task of the circuit
is to perform the two scalar multiplications uP and uV . We use a variant of a wNAF
(windowed Non Adjacent Form) algorithm. In more detail, we represent u by a 255-bit string
k = (k0, · · · , k254) ∈ {0, 1}255 as

u = 80(1 + 2k0 + 4k1)(−1)k2 + 81(1 + 2k3 + 4k4)(−1)k5 + · · ·
+ 883(1 + 2k249 + 4k250)(−1)k251

+ (2252 + 2253k252 + 2254k253 + k254).

It can be verified that u ∈ {1, . . . , 2255}. Since Eq. (5) does not depend on the y-coordinate
of uV , the “sign” of u is irrelevant and p/2 is just below 2255, this range suffices for u. By
multiplying the entire equation with an input point Q ∈ {P, V }, we obtain

uQ = 80(1 + 2k0 + 4k1)(−1)k2Q+ 81(1 + 2k3 + 4k4)(−1)k5Q+ · · ·
+ 883(1 + 2k249 + 4k250)(−1)k251Q

+ (2252 + 2253k252 + 2254k253 + k254)Q,
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a recipe for computing uQ. Our resulting algorithm evaluates the sum of points on the right-
hand side from left to right. The summands in the first and second line can be precomputed
multiples of Q of the form [−8i · 7Q,−8i · 5Q,−8i · 3Q,−8i ·Q, 8i ·Q, 8i · 3Q, 8i · 5Q, 8i · 7Q]; the
lookup of these can be efficiently implemented as 2-bit lookups with an optional negation. The
summands in the last line correspond to other precomputed multiples of points; the lookup of
these can be implemented as 3-bit lookups.

A crucial property of this algorithm is that a point will never be added to itself or its
negation when computing the sum from the left to the right. This follows from the observation
that the absolute value of the coefficient of any summand is always greater than the sum of all
coefficients in the previous summands. By avoiding these two special cases, we can work with
an incomplete group law (see below).

Lookup Tables. We often need a circuit that implements a lookup in a constant table of 2m
values based on the value of m bits [HBHW19, Section A.3.3.9].

One bit. To implement the map {0 7→ v0, 1 7→ v1} based on the value of the bit b0, write the
expression as v0 + (v1 − v0)x. This is a linear expression in b0, so no multiplications are
needed.

Two bits. To implement the map {00 7→ v00, 10 7→ v10, 01 7→ v01, 11 7→ v11}, based on the
value of the variables b0 and b1, precompute A = v00, B = v10 − v00, C = v01 − v00,
D = v00 + v11 − v01 − v10. The lookup can then be written as A+Bx+ Cy +Dxy. This
requires one multiplication to find b0b1. When multiple lookups based on the same b0 and
b1 are needed, this multiplication can be shared across all of them.

Three bits. To implement a map from 3 bits b0, b1, and b2 to 8 values, precompute A = v000,
B = v100 − v000, C = v010 − v000, D = v001 − v000, E = v000 + v110 − v100 − v010,
F = v000 + v101− v100− v001, G = v000 + v011− v010− v001, H = v100 + v010 + v001 + v111−
v000− v110− v101− v011. The lookup can then be written as A+Bb0 +Cb1 +Db2 +Eb0b1 +
Fb0b2 +Gb1b2 +Hb0b1b2. This requires 4 multiplications; one for each of b0b1, b0b2, b1b2,
and b0b1b2. Again these multiplications are shared across all lookups using the same input
bits.

Precomputed Odd Multiples of Points. To construct a circuit that looks up the
coordinates of one of [−8i · 7Q,−8i · 5Q,−8i · 3Q,−8i · Q, 8i · Q, 8i · 3Q, 8i · 5Q, 8i · 7Q]
where Q ∈ {P, V }, using 3 input bits b0, b1, b2 with just 2 multiplication gates, we start by
constructing two instances of the two-bit lookup circuit from the previous paragraph; one for
the x-coordinate of [8i ·Q, 8i · 3Q, 8i · 5Q, 8i · 7Q] and one for the y-coordinate of those same
points. This consumes b0 and b1, and needs one gate (as the product of the two bits only needs
to be computed once). The bit b2 is then used to optionally negate the y-coordinate. That
costs another gate (Y = (2z − 1)Y ′), and extends the range to all 8 outputs.

Affine Elliptic Curve Point Addition. For point additions, it is often preferable to
represent curve points in Jacobian coordinates because this largely avoids expensive modular
divisions. However, when all we care about is verifying the validity of a given equation, modular
division is just as expensive as a multiplication – it is just a multiplication where the role of
the output is swapped with one of the inputs.
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Table 1. Running time of Bulletproofs with Purify arithmetic circuits for secp256k1, averaging over 50 runs.

Algorithm Batch size Time
Prover (Π.Prv) - 943 ms
Verifier (Π.Ver) 1 50 ms

2 61 ms
10 143 ms
100 1078 ms

This makes the simpler, affine coordinates more appealing. If the input points are
(x1, y1), (x2, y2) and their sum is (x3, y3), then for γ = (y2 − y1)/(x2 − x1) we have

γ(x2 − x1) = (y2 − y1), x3 = γ2 − x1 − x2, y3 = γ(x1 − x3)− y1.

It requires 3 multiplication gates to verify these equations. Note that even if we ignore the point
at infinity, these formulas do not form a complete group law: If the two input points are each
other’s negation, no satisfaction can be found. If the two points are equal, γ(x2−x1) = y2− y1
will be valid for every value of γ. We stress that our circuit works securely with this incomplete
group law as discussed above.

6.2 Implementation and Performance Evaluation

To evaluate the performance of Purify we generated the arithmetic circuit for G = secp256k1,
and benchmarked it on a Bulletproofs implementation written in C. We make our code
available [Wui19, Nic20]. Besides the fact that it supports inputs given in commitments we
choose Bulletproofs as proof system because its security is based only on the DL assumption
in G, which we already require for the security of MuSig-DN. As a result, we do not introduce
computational assumptions beyond the hardness of DDH on the curves E1 and E2.

We ran the experiments on an Intel i7-7820HQ system pinned to 2.90 GHz using a single
thread and using no more than 50 MB of memory. The implementation takes advantage of
the secp256k1 endomorphism to speed up scalar multiplication, and leverages Bulletproofs’
support for batch verification of multiple proofs (which can be used to verify the proofs of all
cosigners in a single batch). For reference, verifying a Schnorr signature takes 58 µs on the
same system. The results in Table 1 show that MuSig-DN is practical on commodity hardware.

The proof size is 1124 bytes. Bulletproofs [BBB+18] enables a signer to create a single
aggregate proof for multiple concurrent signing sessions, e.g., when signing multiple transactions
with the same set of cosigners at the same time. This would further save bandwidth because
the resulting aggregate proof is smaller than sending a separate proofs for every signing session.
We have not implemented this optimization.

7 Further Applications

We believe that our techniques are useful beyond the area of deterministic multi-signatures. In
this section we describe further promising applications of Purify. We leave a formal treatment
for future work.

23



Verifiable Encryption of Discrete Logarithms. A verifiable encryption scheme (VES)
is a public-key encryption scheme in which a ciphertext for some encryption key V comes
with a proof that (i) the ciphertext is indeed decryptable for anybody with the decryption
key corresponding to V , and (ii) the resulting plaintext has some special property. Purify
specifically applies to the verifiable encryption of a discrete logarithm, i.e., in our case property
(ii) means that the resulting plaintext is a discrete logarithm of some given public group
element R. The only VES we are aware of that supports this use case is by Camenisch and
Shoup [CS03] and is specific to discrete logarithms in finite fields and does not generalize to
other groups such as elliptic curve groups.

We believe that our techniques imply a VES for discrete logarithms in any prime-order
group G supported by our construction and in particular elliptic curve groups. Say V = vP ∈ E
is the public encryption key. To encrypt the discrete logarithm r of public group element
R = rG ∈ G to V , generate a random ephemeral scalar u of E, and output the ElGamal-style
ciphertext (U, c) = (uP, r + f(uV )) together with a NIZK proof that there is a witness (u, r)
such that

U = uP ∧ R = rG ∧ r = c− f(uV ),
ignoring expectional cases. This statement corresponds to the correct decryption r = c −
f(vU) = c− f(uV ). Observe that this statement is very similar to the proof statement used in
MuSig-DN; the only difference is that the discrete logarithm of R is offset by an additional
public input c.

A practical usage example in the context of cryptocurrencies is verifiable encryption to an
escrow agent trusted by buyer and seller of a good [Zmn19]. In this scenario, the buyer (with
verification key A = aG) does not trust the seller (with verification key B = bG) to ship the
goods after receiving a payment in Bitcoin. Therefore, the buyer first sends the coins to some
aggregate verification key X̃ jointly controlled by both parties (e.g., X̃ can be generated from
A and B as in MuSig). Because the seller does not trust the buyer to finalize the payment
honestly, the buyer uses VES to encrypt her secret key a to the escrow agent, and sends the
resulting ciphertext together with the proof of correct encryption to the seller. After having
verified the proof of correct encryption with respect to the verification key A, the seller delivers
the good. If the buyer now refuses to cooperate with the seller to unlock the money and send
it to the seller, the seller can instead provide an out-of-band proof of the buyer’s misbehavior
to the escrow agent and request the decryption of the buyer’s secret key a. The advantage of
this particular protocol is that the escrow agent does not need to be involved (and does not
even learn about the existence of the deal) in the common case that buyer and seller cooperate.
Nevertheless, the seller can be sure that the escrow agent is indeed able to obtain a due to the
use of VES.

Double-Authentication-Preventing Signatures. In a double-authentication-preventing
signature (DAPS) scheme [PS14, PS17], signatures on messages are created with respect to an
additional subject value. Signers are held accountable in the following sense: If a signer signs
two different messages for the same subject, then the secret key can be computed from the
two signatures.

This property is supposed to disincentivize signers from signing conflicting statements, i.e.,
certify two different public keys for the same individual (the subject). Even though initially
proposed for public-key infrastructures, DAPS have been proposed to be used in the context
of cryptocurrencies in non-equivocation contracts [RKS15] where the secret key is also used as
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a key to access a cryptocurrency wallet. If the signer signs two conflicting statements, then
everybody is able to steal (or burn the funds) of the misbehaving signer.

Recall that discrete logarithm-based signature schemes suffer from the property that
reusing the same nonce R for two signatures on two different messages will expose the secret
key. With this in mind, an obvious idea to construct DAPS is to turn this weakness into a
feature and force the signer to derive the nonce R deterministically from some secret and
the subject, such that signing two messages for the same subject will imply the use of the
same R and thus exposure of the secret key. However, this seemingly simple approach so far
has resisted all attempts to turn it into a concrete realization of DAPS. Derler, Ramacher,
and Slamanig [DRS18] explain the issues that arise when trying to use a VRF such as the
one by Dodis and Yampolskiy [DY05] and call the aforementioned idea a dead end, and all
existing constructions of DAPS in the discrete logarithm setting [RKS15, Poe18, DRS18] rely
on different ideas. We conjecture that an approach that relies on Purify to derive R overcomes
these difficulties, precisely because it provides a stronger pseudorandomness property than the
Dodis-Yampolskiy PRF as discussed in Section 1.1.
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A Proof of Lemma 1

We proceed by induction. The result obviously holds for n = 1. Assuming that it holds for
n− 1, we prove that it holds for n. For s ∈ S, let µ(s) ··= Pr [X = s] and ν(s) ··= Pr [Y = s].
Then, we derive the induction step as follows.

2∆(X(n), Y (n)) =
∑

(s1,...,sn)∈Sn
|µ(s1) · · ·µ(sn)− ν(s1) · · · ν(sn)|

=
∑

(s1,...,sn)∈Sn
|µ(s1) · · ·µ(sn)− µ(s1) · · ·µ(sn−1)ν(sn)

+ µ(s1) · · ·µ(sn−1)ν(sn)− ν(s1) · · · ν(sn)|
≤

∑
(s1,...,sn)∈Sn

µ(s1) · · ·µ(sn−1) · |µ(sn)− ν(sn)|

+
∑

(s1,...,sn)∈Sn
ν(sn) · |µ(s1) · · ·µ(sn−1)− ν(s1) · · · ν(sn−1)|

=
∑

(s1,...,sn−1)∈Sn−1

µ(s1) · · ·µ(sn−1)

︸ ︷︷ ︸
=1

·
∑
sn∈S

|µ(sn)− ν(sn)|
︸ ︷︷ ︸

=2∆(X,Y )

+
∑
sn∈S

ν(sn)
︸ ︷︷ ︸

=1

·
∑

(s1,...,sn−1)∈Sn−1

|µ(s1) · · ·µ(sn−1)− ν(s1) · · · ν(sn−1)|

︸ ︷︷ ︸
≤2(n−1)∆(X,Y )

≤ 2n ·∆(X,Y ).

B Security Proof

In this section, we prove the security of MuSig-DN as stated in the following theorem that we
recall from Section 4.

Theorem 1. Let GrGen be a group generation algorithm for which the DL problem is hard and
GrGen′ be a (t, ε)-companion group generation algorithm for which the DDH problem is hard.
Let KeyDer be a PRNG, RandDer a PRF, and Π be a zero-knowledge and simulation-sound
NIZK proof system for relation R as defined in Eq. (2) for some set F . Then the multi-signature
scheme MS ··= MuSig-DN[GrGen,GrGen′,KeyDer,RandDer,Π,F ] is EUF-CMA-secure in the
random oracle model.

Precisely, for any p.p.t. adversary A making at most qh random oracle queries and initiating
at most qs instances of the signature protocol with the honest signer, there exist p.p.t. adversaries
Bprng, Bprf , Bsnd, Bzk, Bss, Bdl, and Bddh with

Adveuf-cma
MS,A (λ) ≤ (qh + qs + 1)3/4

(
Advdl

GrGen,Bdl(λ)
)1/4

+ Advprng
KeyDer,Bprng

(λ) + Advprf
RandDer,Bprf

(λ) + Advsnd
Π,Bsnd(λ) + Advzk

Π,Bzk(λ)

+ Advddh
GrGen′,Bddh

(λ) + Advss
Π,Bss(λ) + qsε+ 2(qh + qs + 1)2

p
+ 2
p1/4 .
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We start with a brief overview of the proof (using the notation of Section 4). The general
strategy is similar to the security proof of MuSig [MPSW19]: we describe a reduction to the
DL problem which simulates the honest prover without knowledge of its secret key x1 and
then extracts x1 from the forgery returned by the attacker. To this end, we use the Forking
Lemma [PS00] twice: first to extract the discrete logarithm of the aggregate key involved in the
forgery, and then to extract the discrete logarithm of the honest user’s public key X1. The main
difference to the security proof of MuSig lies in how the signature oracle corresponding to the
honest user is simulated. As usual with Schnorr signatures, the idea is to draw s1, c←$ Fp, to
let R1 ··= s1G− ca1X1, and to program Hsig(X̃, R̃,m) ··= c. Then r1 ··= s1− ca1x1 is uniformly
random in Fp, which under DDH and by the assumption that f is regular is indistinguishable
from f(u1Hnon(K,m)). Moreover, since R1 is not generated as specified by the protocol, we
switch to simulated NIZK proofs, which by the zero-knowledge property of the proof system
are indistinguishable from normal proofs.

In order to be able to program Hsig adequately, the adversary must not have previously
queried Hsig on input (X̃, R̃,m). This implies that Hsig must be programmed before the
reduction sends R1 to the adversary. The reduction programs Hnon(K,m) ··= vP for v←$ Fq,
which allows to compute the nonces Ri (i ≥ 2) that will be sent by the adversary as Ri = f(vUi)
and hence to compute R̃ and program Hsig (more precisely, the adversary cannot send a nonce
different from Ri unless it breaks simulation-soundness of Π).

Note that the adversary might copy the honest signer’s host key and set Ui = U1. This case
must be handled before the switch to simulated proofs since afterwards, there are two possible
nonces that the adversary could send and that would not allow to break simulation-soundness
of Π: the (fake) nonce R1 sent by the reduction and the correct nonce f(u1V )P . For host keys
Ui 6= U1, checking correctness of the nonce Ri sent by the adversary requires knowledge of
the discrete logarithm of Hnon(K,m). However, programming Hnon(K,m) ··= vP can only be
done after the reduction step to DDH, hence after the switch to simulated proofs and random
nonces, so that the two cases Ui = U1 and Ui 6= U1 must be handled separately.

Proof. Let MS ··= MuSig-DN[GrGen,GrGen′,KeyDer,Π,F ] and A be an adversary against the
EUF-CMA-security of MS. We proceed with a sequence of games whose formal definition can
be found in Fig. 6 to Fig. 8. Since we work in the ROM, hash functions Hagg, Hsig, and Hnon
are replaced with random oracles ROagg, ROsig, and ROnon respectively. For brevity we let
−−→RO ··= (ROagg,ROsig,ROnon).

Game0. This is the original unforgeability experiment of Definition 4 applied to MS where
we made the following changes. First, the nonce/host key pair (u1, U1) for the honest user is
computed during the initialization of the game and U1 is given as input to A. Clearly, this is
w.l.o.g as the first message sent by the honest user in a signing session is always U1. Second, we
omit the first round of the signing protocol where host keys are exchanged: instead, the adversary
calls the signing oracle Sign on input (K,m) where K is a multiset of verification/host key
pairs {(X1, U1), . . . , (Xn, Un)}, and the oracle returns ⊥ in case (X1, U1) /∈ K. Again, this is
w.l.o.g. as this is equivalent to A calling the signing oracle on input a multiset of verification
keys X, the oracle sending U1 if X1 ∈ X and ⊥ otherwise, and the adversary answering with
U2, . . . , Un. Finally, values W , r1, and ρ computed by oracle Sign are stored in tables Tddh,
Trand, and Tρ respectively, so that they are not computed again if Sign is called twice or more
on the same inputs (K,m). This is purely syntactical and will simplify game hops later. Hence,
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one has
Advgame0

MS,A (λ) = Adveuf-cma
MS,A (λ).

Game1. In Game1, we draw x1, u1, and k uniformly at random instead of drawing sk1 and
calling KeyDer(sk1). It is straightforward to construct an adversary Bprng against the PRNG-
security of KeyDer which on input (x1, u1, k) simulates Game0 if (x1, u1, k) = KeyDer(sk1) and
Game2 if (x1, u1) is uniformly random. Hence,

Advgame1
MS,A (λ) ≥ Advgame0

MS,A (λ)− Advprng
KeyDer,Bprng

(λ).

Game2. In Game2, we draw ρ uniformly at random instead of calling RandDer(k, (K,m)), and
store it in a table Tρ (this way, the same bitstring ρ is used if Sign(K,m) is called again). It
is straightforward to construct an adversary Bprf against the PRF-security of RandDer which
simulates Game1 if ρ = RandDer(k, (K,m)) and Game1 if ρ is uniformly random. Hence,

Advgame2
MS,A (λ) ≥ Advgame1

MS,A (λ)− Advprf
RandDer,Bprf

(λ).

Game3. In Game3, during a call to Sign(K,m), we check whether the adversary copied the
honest user’s host key U1 and managed to return a nonce different from R1 yet with an
accepting proof, and abort the game if this is the case. Since for a nonce Ri 6= R1, the tuple
(U1, V,Ri) cannot be in the language, this breaks soundness of Π. More precisely, we construct
an adversary Bsnd for game SNDΠ. It receives crs←$ Π.Setup(1λ) and simulates Game3. If the
game ends up at line (I), Bsnd returns the corresponding tuple (U1, V,Ri), otherwise it aborts.
Since Bsnd wins game SNDΠ exactly when Game2 returns true but Game3 does not, we have

Advgame3
MS,A (λ) ≥ Advgame2

MS,A (λ)− Advsnd
Π,Bsnd(λ).

Game4. We define Game4 from Game3 by switching to simulated proofs. In the previous Game3
we ensure that the same protocol inputs (K,m) yield the same prover randomness ρ and in
turn the same NIZK proof π1 by storing ρ in table Tρ and passing it as an explicit randomness
argument to Π.Prv. To ensure that the same is true in Game4, we store and pass ρ as an explicit
randomness argument to Π.SimPrv in Game4 in an analogous manner. Game4 is easily shown to
be indistinguishable from Game3 by constructing the following adversary Bzk for game ZKΠ: it
receives crs (which is either generated by Π.Setup or Π.SimSetup) and simulates Game3/Game4,
querying its oracle Prove((U1, V,R1), u1) when producing a proof. It returns 1 if the game
returns true and 0 otherwise. Since Bzk exactly simulates Game3 or Game4 depending on the
random bit of the challenger of the ZKΠ game, one has

Advgame4
MS,A (λ) ≥ Advgame3

MS,A (λ)− Advzk
Π,Bzk(λ).

Game5. We define Game5 as Game4 except that during a call to Sign(K,m), the group
element W , which is computed as u1V in Game4, is drawn uniformly at random and stored
in a table Tddh (this way, the same group element W is used if Sign(K,m) is called again).
We construct an adversary Bddh solving the DDH problem in E as follows. On input a DDH
instance (U1, V̄ , W̄ ), Bddh simulates Game4/Game5 as follows: it draws x1←$ Fp, computes
X1 ··= x1G, and runs A on input (par, X1, U1). When an assignment to Tnon(K,m) occurs,
Bddh draws α, β←$ Fq, lets V ··= αP + βV̄ and W ··= αU1 + βW̄ , and stores Tnon(K,m) ··= V
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and Tddh(K,m) ··= W . It returns 1 if A wins the game and 0 otherwise. (Note that Bddh does
not need the discrete logarithm of U1 for simulating the game.)

We prove in Appendix D that the way Bddh re-randomizes V̄ and W̄ ensures that for
each pair (K,m), (i) Tnon(K,m) is uniformly random and (ii) (U1,Tnon(K,m),Tddh(K,m))
is a DDH tuple if (U1, V̄ , W̄ ) is a DDH tuple, whereas Tddh(K,m) is uniformly random if
(U1, V̄ , W̄ ) is a non-DDH tuple. Hence, when (U1, V̄ , W̄ ) is a DDH tuple, then Bddh perfectly
simulates Game4, whereas when (U1, V̄ , W̄ ) is a non-DDH tuple, it perfectly simulates Game5.
Consequently,

Advgame5
MS,A (λ) ≥ Advgame4

MS,A (λ)− Advddh
GrGen′,Bddh

(λ).

Game6. In Game6, everything is similar to Game5 except that the secret nonce r1, which is
computed as f(W ) in Game5, is drawn uniformly at random in Fp. Since W is uniform in
Game5, by ε-uniformity of f and Lemma 1, we have

Advgame6
MS,A (λ) ≥ Advgame5

MS,A (λ)− qsε.

Game7. In Game7, we first change how queries to ROnon are answered. Instead of drawing
Tnon(K,m)←$ E, we draw v←$ Fq and let Tnon(K,m) ··= vP . The value v is stored in an
additional table T′non. Clearly, this is a purely syntactic change. Moreover, we check that
the nonces R2, . . . , Rn sent by the adversary (for host keys Ui 6= U1) have been computed
correctly. The value v ··= T′non(K,m) is retrieved and the game checks that Ri = f(vUi)G. If
for some i ∈ {2, . . . , n} the proof πi was valid yet Ri 6= f(vUi)G, the game aborts and returns
false. We construct an adversary Bss against simulation-soundness of Π as follows. It receives
crs←$ Π.SimSetup(λ) and has access to an oracle SimProve. It simulates Game7, querying
SimProve for simulating proofs for nonces R1. If the game stops at line (II), then Bss returns
the corresponding tuple (Ui, V,Ri), otherwise it aborts. Since Bss wins game SSΠ exactly when
Game6 returns true but Game7 does not, we have

Advgame7
MS,A (λ) ≥ Advgame6

MS,A (λ)− Advss
Π,Bss(λ).

Game8. In Game8, we compute the values R′2, . . . , R′n of the nonces that we expect to receive
from the adversary. This allows to deduce the aggregate nonce R̃, the value c ··= ROsig(X̃, R̃,m)
and the partial signature s1 before sending (R1, π1). Since both Game7 and Game8 abort in
case the adversary sends a nonce Ri 6= R′i, the two games are identical and hence

Advgame8
MS,A (λ) = Advgame7

MS,A (λ).

Game9. In Game9, we compute the partial signature s1 without the signing key x1 using the
standard strategy to simulate Schnorr signatures in the ROM. Namely, we draw c and s1
randomly (storing (c, s1) in place of r1 in Trand), define R1 ··= s1G − cµ1X1, and program
Tsig(X̃, R̃,m) ··= c, unless Tsig(X̃, R̃,m) has already been defined. Clearly, Game8 and Game9
are identical unless Game9 returns false at line (III). For each query Sign(K,m), R1 and
hence R̃ is uniformly random in a set of size p, hence this happens with probability at most
|Tsig|/p. Since the size of Tsig is upper bounded by qh + qs,12 and since there are at most qs
calls to Sign, one has

Advgame9
MS,A (λ) ≥ Advgame8

MS,A (λ)− qs(qh + qs)
p

.

12 Each signature query can incur at most one assignment in Tsig. The final verification query may also incur
an assignment to Tsig but it can only happen once all queries to Sign have been made.
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Game10. Our final game is Game10, where we exclude a bad event that would prevent the
application of the Forking Lemma. Namely, for any multiset of keys X, when a call ROagg(X, X)
first occurs for any X ∈ X, we randomly assign Tagg(X, X ′) for all X ′ ∈ X and compute the
corresponding aggregate key. If it collides with a previous aggregate key or with the aggregate
key of a non-⊥ entry in Tsig, the game abort and returns false.13 Clearly, Game9 and Game10
are identical unless Game10 returns false at line (IV). Let us upper bound the probability that
this happens. First, there are at most qh + qs + 1 calls to ROagg that might cause the game
to return false (each query to Sign as well as the final call to MS.Ver might incur up to N
calls to ROagg, but they are all for the same key set X, hence only the first call can make the
game return false). For each call, X̃ is uniformly random in a set of size at least p, hence the
game returns false with probability at most (|AggKeys|+|Tsig|)/p. Since the size of AggKeys
and Tsig are both upper bounded by qh + qs + 1, one obtains

Advgame10
MS,A (λ) ≥ Advgame9

MS,A (λ)− (qh + qs + 1)2

p
.

The Reduction to DL. Gathering all equations above yields

Advgame10
MS,A (λ) ≥ Adveuf-cma

MS,A (λ)− δ (6)

where
δ ··= Advprng

KeyDer,Bprng
(λ) + Advprf

RandDer,Bprf
(λ) + Advsnd

Π,Bsnd(λ) + Advzk
Π,Bzk(λ)

+ Advddh
GrGen′,Bddh

(λ) + Advss
Π,Bss(λ) + qsε+ 2(qh + qs + 1)2

p
.

At this point, we are ready to construct an algorithm solving the DL problem for GrGen. More
precisely, we show that there exists an algorithm Bdl such that

(7)Advdl
GrGen,Bdl(λ) ≥

(
Advgame10

MS,A (λ)
)4

(qh + qs + 1)3 − 3
p
.

The proof is very similar to the one for MuSig [MPSW19] and relies on a double application
of the Forking Lemma [PS00]. It is detailed in Appendix C.

It is straightforward to check that all algorithms Bx constructed during the proof are
polynomial-time. Combining Eq. (6) and Eq. (7), one obtains the result.

C Proof for the Reduction to DL

The construction of Bdl relies on a generalization of the Forking Lemma [PS00] due to Bellare
and Neven [BN06] that we recall below. Here we state a variant which is slightly adapted to
our setting: it allows for an arbitrary set S as range of the random oracle (instead of a set of
fixed-length bitstrings).

13 This corresponds to events BadColl and BadOrder in the original MuSig paper [MPSW19].
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Game0 Game1 Game2 Game3

Game4 Game5 Game6 Game7

(p,G, G)← GrGen(1λ)
(q,E, P, f)← GrGen′(p)

crs← Π.Setup(1λ) (crs, τ)← Π.SimSetup(1λ)

par ··= (p,G, G, q,E, P, f, crs)
sk1 ←$ {0, 1}λ // only in Game0

(x1, u1, k) ··= KeyDer(sk1)

x1 ←$Fp ; u1 ←$Fq ; k←$ {0, 1}λ

X1 ··= x1G ; U1 ··= u1P

Q ··= ( )
Tagg,Tsig,Tnon ··= ( ) // tables for simulating ROs

Tddh,Trand ··= ( ) Tρ ··= ( ) T′non ··= ( )

(X,m, σ)← ASign,−→RO(par, X1, U1)
return X1 ∈ X ∧ (X,m) /∈ Q

∧MS.Ver(par,X,m, σ) = 1

Oracle ROagg(X, X)

if Tagg(X, X) = ⊥ then
Tagg(X, X)←$Fp

return Tagg(X, X)

Oracle ROsig(X̃, R̃,m)

if Tsig(X̃, R̃,m) = ⊥ then
Tsig(X̃, R̃,m)←$Fp

return Tsig(X̃, R̃,m)

Oracle ROnon(K,m)

if Tnon(K,m) = ⊥ then
Tnon(K,m)←$E

T′non(K,m)←$Fq
Tnon(K,m) ··= T′non(K,m)P

return Tnon(K,m)

Oracle Sign(K,m)

if (X1, U1) /∈ K then return ⊥
{(X1, U1), . . . , (Xn, Un)} ··= K
X ··= {X1, . . . , Xn}
µ1 ··= ROagg(X, X1)

X̃ ··=
∑n

i=1 ROagg(X, Xi)Xi
V ··= ROnon(K,m)

v ··= T′non(K,m)

if Tddh(K,m) = ⊥ then

Tddh(K,m) ··= u1V Tddh(K,m)←$E

W ··= Tddh(K,m)
if Trand(K,m) = ⊥ then

Trand(K,m) ··= f(W ) Trand(K,m)←$Fp

r1 ··= Trand(K,m)
R1 ··= r1G

if Tρ(K,m) = ⊥ then
Tρ(K,m) ··= RandDer(k, (K,m))

Tρ(K,m)←$ {0, 1}λ

ρ ··= Tρ(K,m)
π1 ··= Π.Prv(crs, (U1, V, R1), u1; ρ)

π1 ··= Π.SimPrv(crs, τ, (U1, V, R1); ρ)

if π1 = ⊥ then return ⊥
send (R1, π1)
receive ((R2, π2), . . . , (Rn, πn))
for i = 2 . . . n do

if Π.Ver(crs, (Ui, V, Ri), πi) = 0 then return ⊥

if Ui = U1 ∧Ri 6= R1 then
abort game and return false (I)

if Ui 6= U1 ∧Ri 6= f(vUi)G then
abort game and return false (II)

R̃ ··=
∑n

i=1 Ri

c ··= ROsig(X̃, R̃,m)
s1 ··= r1 + cµ1x1 mod p
Q ··= Q‖(X,m)
return s1

Fig. 6. Games Game0 to Game7 used in the proof of Theorem 1. Algorithm MS.Ver is as defined in Fig. 5.
Changes are incremental (e.g., boxed statements apply to Game2 but also Game3, . . . , Game7).
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Oracle Sign(K,m) (Game8)

if (X1, U1) /∈ K then return ⊥
{(X1, U1), . . . , (Xn, Un)} ··= K
X ··= {X1, . . . , Xn}
µ1 ··= ROagg(X, X1)
X̃ ··=

∑n

i=1 ROagg(X, Xi)Xi
V ··= ROnon(K,m)
v ··= T′non(K,m)
if Trand(K,m) = ⊥ then

Trand(K,m)←$Fp
r1 ··= Trand(K,m)
R1 ··= r1G

if Tρ(K,m) = ⊥ then
Tρ(K,m)←$ {0, 1}λ

ρ ··= Tρ(K,m)
π1 ··= Π.SimPrv(crs, τ, (U1, V, R1); ρ)
if π1 = ⊥ then return ⊥
for i = 2 . . . n do

if Ui = U1 then R′i ··= R1

else R′i ··= f(vUi)G
R̃ ··= R1 +

∑n

i=2 R
′
i

// inlining c ··= ROsig(X̃, R̃,m)

if Tsig(X̃, R̃,m) = ⊥ then
c←$Fp
Tsig(X̃, R̃,m) ··= c

s1 ··= r1 + cµ1x1 mod p
send (R1, π1)
receive ((R2, π2), . . . , (Rn, πn))
for i = 2 . . . n do

if Π.Ver(crs, (Ui, V, Ri), πi) = 0 then
return ⊥

if Ui = U1 ∧Ri 6= R1 then
abort game and return false

if Ui 6= U1 ∧Ri 6= f(vUi)G then
abort game and return false

Q ··= Q‖(X,m)
return s1

Oracle Sign(K,m) (Game9)

if (X1, U1) /∈ K then return ⊥
{(X1, U1), . . . , (Xn, Un)} ··= K
X ··= {X1, . . . , Xn}
µ1 ··= ROagg(X, X1)
X̃ ··=

∑n

i=1 ROagg(X, Xi)Xi
V ··= ROnon(K,m)
v ··= T′non(K,m)
if Trand(K,m) = ⊥ then

Trand(K,m)←$ (Fp)2

(c, s1) ··= Trand(K,m)
R1 ··= s1G− cµ1X1

if Tρ(K,m) = ⊥ then
Tρ(K,m)←$ {0, 1}λ

ρ ··= Tρ(K,m)
π1 ··= Π.SimPrv(crs, τ, (U1, V, R1); ρ)
if π1 = ⊥ then return ⊥
for i = 2 . . . n do

if Ui = U1 then R′i ··= R1

else R′i ··= f(vUi)G
R̃ ··= R1 +

∑n

i=2 R
′
i

if Tsig(X̃, R̃,m) = ⊥ then

Tsig(X̃, R̃,m) ··= c

else abort game and return false (III)
send (R1, π1)
receive ((R2, π2), . . . , (Rn, πn))
for i = 2 . . . n do

if Π.Ver(crs, (Ui, V, Ri), πi) = 0 then
return ⊥

if Ui = U1 ∧Ri 6= R1 then
abort game and return false

if Ui 6= U1 ∧Ri 6= f(vUi)G then
abort game and return false

Q ··= Q‖(X,m)
return s1

Fig. 7. Games Game8 and Game9 used in the proof of Theorem 1. The main procedure and oracles ROagg,
ROsig, and ROnon are as in Game7. Changes from Game7 to Game8 and from Game8 to Game9 are highlighted.
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Game10

(p,G, G)← GrGen(1λ)
(q,E, P, f)← GrGen′(p)
(crs, τ)← Π.SimSetup(1λ)
par ··= (p,G, G, q,E, P, f, crs)
x1 ←$Fp ; u1 ←$Fq
X1 ··= x1G ; U1 ··= u1P

Q ··= ( ) ; AggKeys ··= ( )
Tagg,Tsig,Tnon ··= ( ) // tables for simulating ROs

Trand,T′non,Tρ ··= ( )

(X,m, σ)← ASign,−→RO(par, X1, U1)
return X1 ∈ X ∧ (X,m) /∈ Q ∧MS.Ver(par,X,m, σ) = 1

Oracle ROagg(X, X) // X,X1 ∈ X by assumption

if Tagg(X, X) = ⊥ then
for X ′ ∈ X \ {X1} do Tagg(X, X ′)←$Fp
Tagg(X, X1)←$Fp
{X1, . . . , Xn} ··= X
X̃ ··=

∑n

i=1 ROagg(X, Xi)Xi
if X̃ ∈ AggKeys ∨ ∃(R̃,m) : Tsig(X̃, R̃,m) 6= ⊥ then

abort game and return false (IV)
AggKeys ··= AggKeys‖X̃

return Tagg(X, X)

Oracle ROsig(X̃, R̃,m)

if Tsig(X̃, R̃,m) = ⊥ then
Tsig(X̃, R̃,m)←$Fp

return Tsig(X̃, R̃,m)

Oracle ROnon(K,m)

if Tnon(K,m) = ⊥ then
T′non(K,m)←$Fq
Tnon(K,m) ··= T′non(K,m)P

return Tnon(K,m)

Oracle Sign(K,m)

if (X1, U1) /∈ K then return ⊥
{(X1, U1), . . . , (Xn, Un)} ··= K
X ··= {X1, . . . , Xn}
µ1 ··= ROagg(X, X1)
X̃ ··=

∑n

i=1 ROagg(X, Xi)Xi
V ··= ROnon(K,m)
v ··= T′non(K,m)
if Trand(K,m) = ⊥ then

Trand(K,m)←$ (Fp)2

(c, s1) ··= Trand(K,m)
R1 ··= s1G− cµ1X1

if Tρ(K,m) = ⊥ then
Tρ(K,m)←$ {0, 1}λ

ρ ··= Tρ(K,m)
π1 ··= Π.SimPrv(crs, τ, (U1, V, R1); ρ)
if π1 = ⊥ then return ⊥
for i = 2 . . . n do

if Ui = U1 then R′i ··= R1

else R′i ··= f(vUi)G
R̃ ··= R1 +

∑n

i=2 R
′
i

if Tsig(X̃, R̃,m) = ⊥ then
Tsig(X̃, R̃,m) ··= c

else abort game and return false
send (R1, π1)
receive ((R2, π2), . . . , (Rn, πn))
for i = 2 . . . n do

if Π.Ver(crs, (Ui, V, Ri), πi) = 0 then
return ⊥

if Ui = U1 ∧Ri 6= R1 then
abort game and return false

if Ui 6= U1 ∧Ri 6= f(vUi)G then
abort game and return false

Q ··= Q‖(X,m)
return s1

Fig. 8. Game Game10 used in the proof of Theorem 1. Changes from Game9 to Game10 are highlighted.
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Lemma 3 (Generalized Forking Lemma [BN06]). Fix integers q and λ. Let V be a
randomized algorithm which takes as input some main input inp and elements h1, . . . , hq in
some finite set S and returns either a distinguished failure symbol ⊥ or a pair (i, out), where
i ∈ {1, . . . , q} and out is some side output. The accepting probability of V, denoted acc(V), is
defined as the probability, over the random draw of inp (according to some well-understood
distribution), h1, . . . , hq←$S, and the random coins of V, that V returns a non-⊥ output.
Consider algorithm ForkV , taking as input inp, described on Fig. 9. Let frk be the probability
(over the draw of inp and the random coins of ForkV) that ForkV returns a non-⊥ output. Then

frk ≥ acc(V)
(acc(V)

q
− 1
|S|

)
.

Let q ··= qh + qs + 1. In order to construct Bdl we define two wrapper algorithms V and W
to which we will successively apply the forking lemma.

Algorithm V. The first algorithm V is defined in Fig. 10. It takes as main input inpV =
(p,G, G,X∗, hagg,1, . . . , hagg,q) where (p,G, G) is a group description, X∗ ∈ G is a uniformly
random group element, and hagg,1, . . . , hagg,q as well as hsig,1, . . . , hsig,q are uniformly random
elements of S = Fp and simply runs GameA10 (cf. Fig. 8), except it sets X1 ··= X∗ and uses
hagg,j for the j-th assignment in Tagg for inputs of the form (X, X1) and hsig,j for the j-th
assignment in Tsig. If the game returns false then V returns ⊥. Otherwise, let (X,m, R̃, s) be
the output of A in the game, and let {X1, . . . , Xn} ··= X, µi ··= Tagg(X, Xi) for 1 ≤ i ≤ n,
µ ··= (µ1, . . . , µn), and X̃ ··=

∑n
i=1 µiXi. Let also ̂a and ̂s be the indexes such that assignments

Tagg(X, X1) ··= hagg,̂a and Tsig(X̃, R̃,m) ··= hsig,̂s occurred. Note that the execution of MS.Ver
at the end of the game ensures that µ, ̂a, and ̂s are well-defined. Then V returns (̂s, outV)
where outV = (hsig,̂s , ̂a,X,µ, R̃, s). Clearly, the accepting probability of V (as defined in
Lemma 3) is

acc(V) = Advgame10
MS,A (λ). (8)

Before defining the second algorithm W, we prove a number of properties of V and ForkV .

Algorithm ForkV(inp)

pick random coins ρV for V
h1, . . . , hq ←$S

α ··= V(inp, h1, . . . , hq; ρV)
if α = ⊥ then return ⊥ else (i, out) ··= α

h′i, . . . , h
′
q ←$S

α′ ··= V(inp, h1, . . . , hi−1, h
′
i, . . . , h

′
q; ρV)

if α′ = ⊥ then return ⊥ else (i′, out′) ··= α′

if i = i′ ∧ hi 6= h′i then return (out, out′) else return ⊥

Fig. 9. The “forking” algorithm ForkV built from V.

37



Algorithm V(p,G, G,X∗, hagg,1, . . . , hagg,q, hsig,1, . . . , hsig,q)

(q,E, P, f)← GrGen′(p,G, G) ; (crs, τ)← Π.SimSetup(1λ)
par ··= (p,G, G, q,E, P, f, crs)
X1 ··= X∗ ; u1 ←$Fq ; U1 ··= u1P

Q ··= ( ) ; AggKeys ··= ( )
Tagg,Tsig,Tnon,Trand,T′non,Tρ ··= ( )
ja ··= 0 ; js ··= 0 // counters for assignments in Tagg and Tsig

Indagg ··= ( ) ; Indsig ··= ( ) // tables for storing indexes

(X,m, (R̃, s))← ASign,−→RO(par, X1, U1)

if X1 ∈ X ∧ (X,m) /∈ Q ∧MS.Ver(par,X,m, (R̃, s)) = 1 then
{X1, . . . , Xn} ··= X
for i = 1 . . . n do µi ··= Tagg(X, Xi)

µ ··= (µ1, . . . , µn) ; X̃ ··=
∑n

i=1 µiXi

̂a ··= Indagg(X, X1) ; ̂s ··= Indsig(X̃, R̃,m)

out ··= (hsig,̂s , ̂a,X,µ, R̃, s)
return (̂s, out)

else return ⊥

Oracle ROagg(X, X) // X,X1 ∈ X by assumption

if Tagg(X, X) = ⊥ then
for X ′ ∈ X \ {X1} do Tagg(X, X ′)←$Fp
ja ··= ja + 1
Tagg(X, X1) ··= hagg,ja

Indagg(X, X1) ··= ja

{X1, . . . , Xn} ··= X

X̃ ··=
∑n

i=1 ROagg(X, Xi)Xi
if X̃ ∈ AggKeys ∨ ∃(R̃,m) : Tsig(X̃, R̃,m) 6= ⊥ then

abort algorithm and return ⊥

AggKeys ··= AggKeys‖X̃
return Tagg(X, X)

Oracle ROsig(X̃, R̃,m)

if Tsig(X̃, R̃,m) = ⊥ then
js ··= js + 1

Tsig(X̃, R̃,m) ··= hsig,js

Indsig(X̃, R̃,m) ··= js

return Tsig(X̃, R̃,m)

Oracle ROnon(K,m)

if Tnon(K,m) = ⊥ then
T′non(K,m)←$Fq
Tnon(K,m) ··= T′non(K,m)P

return Tnon(K,m)

Oracle Sign(K,m)

if (X1, U1) /∈ K then return ⊥
{(X1, U1), . . . , (Xn, Un)} ··= K
X ··= {X1, . . . , Xn}
µ1 ··= ROagg(X, X1)
X̃ ··=

∑n

i=1 ROagg(X, Xi)Xi
V ··= ROnon(K,m)
v ··= T′non(K,m)
if Trand(K,m) = ⊥ then
js ··= js + 1
c ··= hsig,js ; s1 ←$Fp
Trand(K,m) ··= (c, s1)

(c, s1) ··= Trand(K,m)
R1 ··= s1G− cµ1X1

π1 ··= Π.SimPrv(crs, τ, (U1, V, R1); ρ)
if π1 = ⊥ then return ⊥
for i = 2 . . . n do

if Ui = U1 then R′i ··= R1

else R′i ··= f(vUi)G
R̃ ··= R1 +

∑n

i=2 R
′
i

if Tsig(X̃, R̃,m) = ⊥ then
Tsig(X̃, R̃,m) ··= c

Indsig(X̃, R̃,m) ··= js

else abort algorithm and return ⊥
send (R1, π1)
receive ((R2, π2), . . . , (Rn, πn))
for i = 2 . . . n do

if Π.Ver(crs, (Ui, V, Ri), πi) = 0 then
return ⊥

if Ui = U1 ∧Ri 6= R1 then
abort algorithm and return ⊥

if Ui 6= U1 ∧Ri 6= f(vUi)G then
abort algorithm and return ⊥

Q ··= Q‖(X,m)
return s1

Fig. 10. Wrapper algorithm V. Changes to Game10 are highlighted.
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Lemma 4. Consider a successful (i.e., not returning ⊥) execution

(̂s, (hsig, ̂a,X,µ, R̃, s))← V(p,G, G,X∗, hagg,1, . . . , hagg,q, hsig,1, . . . , hsig,q)

and let {X1, . . . , Xn} ··= X, (µ1, . . . , µn) ··= µ, and X̃ ··=
∑n
i=1 µiXi. Then the following

properties hold:

(i) X∗ ∈ X;
(ii) µi = hagg,̂a for any i such that Xi = X∗;
(iii) sG = R̃+ hsigX̃.

Moreover, consider a successful execution

((hsig, ̂a,X,µ, R̃, s), (h′sig, ̂′a,X′,µ′, R̃′, s′))← ForkV(p,G, G,X∗, hagg,1, . . . , hagg,q).

Then one has

(iv) hsig 6= h′sig;
(v) ̂a = ̂′a, X = X′, µ = µ′, and R̃ = R̃′.

Proof. Property (i) follows from the fact that V returns ⊥ in case X1 = X∗ /∈ X. Property (ii)
follows easily by inspection of the code of Fig. 10. Property (iii) simply expresses the validity
of the forgery returned by A (as V returns ⊥ if the forgery is invalid). Property (iv) follows
directly from the definition of ForkV as it returns ⊥ if hsig,̂s = h′sig,̂s .

It remains to prove property (v). Consider the first execution of V run by ForkV :

(̂s, (hsig, ̂a,X,µ, R̃, s))← V(p,G, G,X∗, hagg,1, . . . , hagg,q, hsig,1, . . . , hsig,q; ρV)

and let {X1, . . . , Xn} ··= X, (µ1, . . . , µn) ··= µ, and X̃ ··=
∑n
i=1 µiXi. Let also m be the

message for which A returned its forgery (i.e., A’s output was (X,m, R̃, s)). We first show that
Tsig(X̃, R̃,m) was necessarily assigned during a call to ROsig. Note that Tsig(X̃, R̃,m) can
only be assigned during a call to ROsig or a call to Sign. Assume towards contradiction that
it is during a call Sign(K̂,m), and let X̂ be the multiset of verification keys corresponding to
K̂. We distinguish two cases:

1. If X̂ = X, then (X,m) would be appended to Q at the end of the execution of Sign and
consequently V would return ⊥ after A returns its forgery.

2. If X̂ 6= X, then, since the aggregate keys corresponding to X and X̂ are both equal to
X̃ (for X̂ this follows from the assumption that Tsig(X̃, R̃,m) was assigned during the
call Sign(K̂,m)), necessarily V would abort and return ⊥ during either the first call
ROagg(X, ·) (which occurs at the latest during the final call to MS.Ver) or the first call
ROagg(X̂, ·) (which occurs at the latest during the call to Sign(K̂,m)).

In both cases we reach a contradiction, which proves the claim.
Consider now the second execution of V run by ForkV :

(̂s, (h′sig, ̂′a,X′,µ′, R̃′, s′))
← V(p,G, G,X∗, hagg,1, . . . , hagg,q, hsig,1, . . . , hsig,̂s−1, h

′
sig,̂s , . . . , h

′
sig,q; ρV)
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and let {X ′1, . . . , X ′n} ··= X′, (µ′1, . . . , µ′n) ··= µ′, and X̃ ′ ··=
∑n
i=1 µ

′
iX
′
i. By inspection, the

two executions are identical up to the ̂s-th assignment in Tsig: by definition of ̂s, it is
Tsig(X̃, R̃,m) ··= hsig,̂s(= hsig) in the first execution and Tsig(X̃ ′, R̃′,m′) ··= h′sig,̂s(= h′sig) in
the second execution, where m′ is the message for which A returns its forgery in the second
execution. Moreover, by the claim above this assignment occurs during a call ROsig(X̃, R̃,m)
in the first execution, resp. ROsig(X̃ ′, R̃′,m′) in the second execution. This implies that the
arguments of the two calls are equal, which implies in particular that R̃ = R̃′ and X̃ = X̃ ′.

Before proving other equalities, we show that in both executions, there is necessarily a call
ROagg(X, ·) and a call ROagg(X′, ·) before the call ROsig(X̃, R̃,m). Indeed, if this were not
the case, then necessarily V would abort and return ⊥ in the first (resp., second) execution
during the first call ROagg(X, ·) (resp., ROagg(X′, ·)) (which occurs at the latest during the
final call to MS.Ver) since Tsig(X̃, R̃,m) 6= ⊥ at this moment.

This in turns implies that X = X′. Indeed, assume that X 6= X′. Since the aggregate keys
corresponding to X and X′ are both equal to X̃, necessarily V would abort and return ⊥ in
both executions during the first call ROagg(X, ·) or the first call ROagg(X′, ·), depending on
which occurs first, since X̃ ∈ AggKeys: a contradiction.

Finally, this also implies that ̂a = ̂′a and µ = µ′ since both executions are identical until
the assignment of Tsig(X̃, R̃,m).

Algorithm W. From V, we define a second algorithm W as follows. It takes as main
input inpW = (p,G, G,X∗) and uniformly random elements hagg,1, . . . , hagg,q of S = Fp
and runs ForkV(p,G, G,X∗, hagg,1, . . . , hagg,q). If ForkV returns ⊥ then W returns ⊥ as well.
Otherwise, let the output of ForkV be ((hsig, ̂a,X,µ, R̃, s), (h′sig, ̂a,X,µ, R̃, s′)), where we
used Lemma 4 (v) to equate elements of the two outputs of V, and let {X1, . . . , Xn} ··= X,
(µ1, . . . , µn) ··= µ, and X̃ ··=

∑n
i=1 µiXi. By Lemma 4 (iii), one has

sG = R̃+ hsigX̃ and s′G = R̃+ h′sigX̃

with hsig 6= h′sig by Lemma 4 (iv). Hence, W can compute the discrete logarithm x̃ of X̃ as

x̃ ··= (s− s′)(hsig − h′sig)−1 mod p.

Then W returns (̂a, outW) where outW = (hagg,̂a ,X,µ, x̃).
By Lemma 3 with S = Fp, the accepting probability of W satisfies

acc(W) ≥ acc(V)2

q
− acc(V)
|Fp|

≥ acc(V)2

q
− 1
p
. (9)

As for V, we prove a number of properties regarding W and ForkW .

Lemma 5. Consider a successful execution

(̂a, (hagg,X,µ, x̃))←W(p,G, G,X∗, hagg,1, . . . , hagg,q)

and let {X1, . . . , Xn} ··= X, (µ1, . . . , µn) ··= µ, and X̃ ··=
∑n
i=1 µiXi. Then the following

properties hold:

(i) X∗ ∈ X;
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(ii) µi = hagg for any i such that Xi = X∗;
(iii) X̃ = x̃G.

Moreover, consider a successful execution

((hagg,X,µ, x̃), (h′agg,X′,µ′, x̃′))← ForkW(p,G, G,X∗)

and let {X1, . . . , Xn} ··= X, (µ1, . . . , µn) ··= µ, and (µ′1, . . . , µ′n′) ··= µ′. Then one has

(iv) hagg 6= h′agg;
(v) X = X′, n = n′, and µi = µ′i for any i such that Xi 6= X∗.

Proof. Properties (i) and (ii) follow directly from the corresponding properties in Lemma 4,
while property (iii) follows from the discussion above. Property (iv) follows directly from the
definition of ForkW as it returns ⊥ if hagg,̂a = h′agg,̂a .

To prove property (v), consider the two executions of W run by ForkW , which in turn run
V twice each. By inspection, the four executions are identical up to the ̂a-th assignment in
Tagg of the form Tagg(·, X∗): in the first two executions it is Tagg(X, X∗) ··= hagg,̂a(= hagg)
and in the last two executions it is Tagg(X′, X∗) ··= h′agg,̂a(= h′agg). This ̂a-th assignment
might happen either because of a call to ROagg or to ROsig made by A or during the final
call to MS.Ver. In all cases, the argument of the call are the same and it can easily be checked
that this implies X = X′. Moreover, since n = |µ|= |X| and n′ = |µ′|= |X′| this also implies
n = n′. Finally, since all four executions are identical up to this ̂a-th assignment and since all
assignments Tagg(X, X ′) for x′ 6= X happen before, this implies that µi = µ′i for any i such
that Xi 6= X∗.

Reduction Bdl. Finally, we define Bdl. On input (p,G, G,X∗), it runs ForkW(p,G, G,X∗). If
ForkW returns ⊥ then Bdl returns ⊥ as well. Otherwise, let ((hagg,X,µ, x̃), (h′agg,X,µ′, x̃′))
be the output of ForkW and let {X1, . . . , Xn} ··= X, (µ1, . . . , µn) ··= µ, and (µ′1, . . . , µ′n) ··= µ′

(using Lemma 5 (v) to equate elements of the two outputs of W).
Let n∗ be the number of times X∗ appears in X. Then, by Lemma 5 (ii), (iii), and (v),

one has

x̃G =
n∑
i=1

µiXi = n∗haggX
∗ +

∑
i∈[n]:Xi 6=X∗

µiXi

x̃′G =
n∑
i=1

µ′iXi = n∗h′aggX
∗ +

∑
i∈[n]:Xi 6=X∗

µiXi.

Since n∗ 6= 0 and hagg 6= h′agg by Lemma 5 (i) and (iv) respectively, Bdl computes the discrete
logarithm of X∗ as

x∗ = (x̃− x̃′)(n∗)−1(hagg − h′agg)−1.

By Lemma 3, Eq. (8), and Eq. (9), one has

Advdl
GrGen,Bdl(λ) ≥ acc(W)2

q
− acc(W)

p
≥ acc(V)4

q3 − 3
p

=

(
Advgame10

MS,A (λ)
)4

(qh + qs + 1)3 − 3
p
,

which concludes the proof.
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D Rerandomization of DDH Instances

We prove the following result.

Lemma 6. Let (q,E, P ) be a group description. Let U = uP , V = vP , and W = wP be
three group elements. Consider the three following ways of sampling a pair of group elements
(V ′,W ′):

(i) α, β←$ Fq; V ′ ··= αP + βV ; W ′ ··= αU + βW ;
(ii) v′←$ Fq; V ′ ··= v′P ; W ··= uv′P ;
(iii) v′, w′←$ Fq; V ′ ··= v′P ; W ′ ··= w′P .

Then (i) and (ii) result in identically distributed pairs if w = uv and (i) and (iii) result in
identically distributed pairs if w 6= uv.

Proof. When (V ′,W ′) is sampled according to (i), one has V ′ = (α + βv)P and W ′ =
(αu + βw)P . If w = uv, then W ′ = u(α + βv)P and hence (i) and (ii) are equivalent since
(α+ βv) is uniformly distributed. If w 6= uv, then the system{

α+ βv = v′

αu+ βw = w′

has a unique solution (α, β) ∈ (Fp)2 for any pair (v′, w′) ∈ (Fp)2, hence (i) and (iii) result in
identically distributed pairs.
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