Merkelized Abstract Syntax Trees

Jeremy Rubin, Manali Naik, Nitya Subramanian

{jlrubin, mnaik, nityas}@mit.edu
https://github.com/JeremyRubin/MAST

1. INTRODUCTION

In the context of modern cryptosystems, a common theme
is the creation of distributed trust networks. In most of these
designs, permanent storage of a contract is required. How-
ever, permanent storage can become a major performance
and cost bottleneck. As a result, good code compression
schemes are a key factor in scaling these contract based cryp-
tosystems. For this project, we formalize and implement a
data structure called the Merkelized Abstract Syntax Tree
(MAST) to address both data integrity and compression.
MASTSs can be used to compactly represent contractual pro-
grams that will be executed remotely, and by using some of
the properties of Merkle trees, they can also be used to ver-
ify the integrity of the code being executed. A concept by
the same name has been discussed in the Bitcoin commu-
nity for a while, the terminology originates from the work of
Russel O’Connor and Pieter Wuille, however this discussion
was limited to private correspondenceq’| We present a for-
malization of it and provide an implementation.The project
idea was developed with Bitcoin applications in mind, and
the experiment we set up uses MASTSs in a crypto currency
network simulator. Using MASTS in the Bitcoin protocol [2]
would increase the complexity (length) of contracts permit-
ted on the network, while simultaneously maintaining the
security of broadcasted data. Additionally, contracts may
contain privileged, secret branches of execution.

2. MAST DATA STRUCTURE

MASTSs combine the traits of Merkle Trees |1] and Ab-
stract Syntax Trees (ASTSs) to compactly and securely rep-
resent programs. Merkle trees are data structures that can
be used to efficiently verify the integrity of the data they
store. Data blocks are stored in the leaf nodes, and every
non-leaf node is the hash of the labels of its children nodes
(see Figure 1). In the Bitcoin Blockchain, Merkle trees are
currently used to efficiently store transaction history. ASTs,
on the other hand, represent the syntactic structure of pro-
grams. Primitives are located at the leaf nodes of ASTs,
and non-leaf nodes represent programmatic operations and
control flow mechanisms.

In a MAST, the root of the tree represents the entirety of
the program, while all other nodes represent subprograms.
Each path in the tree is a different execution branch that
the program can take. The structure is “Merkelized” in
that leaf nodes are hashes of the subprogram code that they

"We are thankful to Gregory Maxwell for providing us with
accurate historical references. The most significant public
discussion was a forum post by Peter Todd|3|

represent, and non-leaf nodes are hashes of the children la-
bels. MASTSs can therefore compactly represent the execu-
tion flow of a program with just a sequence of hashes that
specify which child edge to follow at each node. Overall,
this means that for a program of length n, a compression to
O(logn) could be expected.

h7=h(h5+h6) |

hS=h(h1+h2) | L

[" he=h(n3+ha)

Data 1 Data 2 Data 3 Data 4

Figure 1: An example of the construction of a
Merkle Tree

3. IMPLEMENTATION
3.1 MAST Nodes

A MAST node is constructed with string content and par-
ent pointers. The string content is code that can be ex-
ecuted. A MAST node can have any number of children,
each one representing a different branch of program execu-
tion, and new branches can be added via the addBr method.
Joining all the string content from each node along a path
in a MAST therefore yields the code for one possible path
of execution for a program.

Since branches in a MAST don’t have to be added in any
particular order, maintaining consistency during tree con-
struction would be cumbersome. Instead, the hash function
of a MAST node computes the correct Merkle hash using
the current state of the tree. It does so by first forming
a binary tree of all direct children nodes. As this tree is
constructed, hashes are concatenated and hashed to com-
pute a new Merkle hash at each level of the binary tree.
Then, the root hash of the children tree is summed with
the hash of the node’s own content, producing a Merkle
hash representing the node’s code and children. By not in-
cluding the node’s content in the binary tree we establish
a syntax-tree style construction where the parent executes
before the child. Figure 2a shows the structure used to cal-
culate the Merkle hash of a given MAST node. The four

https://github.com/JeremyRubin/MAST

children branches are placed in a binary tree whose root
is the yellow “Branch Merkle Root.” This Branch Merkle
Root hash is summed with the content hash on the left to
give the Merkle Root.

3.2 Proof Lists

In order to verify the integrity of code, the MAST func-
tion generateFullProofUpward generates a proof list to a
given Merkle root hash from the current node. It does so by
traversing the tree upwards, generating a list of the Merkle
hashes and code content it passes along the way. The logic
gets more complicated due to the fact that Merkle hashes
are calculated using a binary tree (as described in Section
3.1). As a result, the proof list generator crawls up this bi-
nary tree until it hits the branch Merkle root (the parent
MAST node), and then repeats the process until the desti-
nation node is reached. The content and hashes included in
the proof list for a piece of content is shown in Figure 2b.

For the verification process, we assume that another ma-
chine (without the entire program code) has the Merkle hash
of the MAST root node. With a proof list whose destina-
tion node is the MAST root hash, this other machine could
verify the code in the proof list by iterating over it, sum-
ming up the hash values to make sure that they add up to
the next hash value in the proof list. If the final summation
yields the root hash, then the sequence of hashes provided
is correct. We check the integrity of the code against hashes
in the proof list as content hashes are represented.

Additionally, scripts can be compiled to a proof format

that is compatible with opcodes used on the Bitcoin Blockchain.

We did not put any MAST’s onto the blockchain, but tested
it via a bitcoin script interpretor we wrote. This further
augments compatibility between our MAST implementation
and the Bitcoin protocol and allows for potential future ex-
tensibility of this project to be integrated within the Bitcoin
Blockchain.

Merkle Root

Branch Merkle Root

Merkle Root

Branch Merkle Root

Ccnlent| | Hash | | Hash

[

Content Content Content Content

Figure 2: Structure of a simple MAST and accom-
panying proof. The recursive data structure (left)
and a proof for a particular branch of execution for
a MAST (right)

3.3 Consensus Protocol Simulation

We implemented a crypto currency network simulator to
use MASTSs to verify and execute code transferred over the
network. To simulate the transaction verification process
used in Bitcoin, we created ConsensusNode objects to exe-
cute and validate the code in a transaction. We implemented
three types of ConsensusNode: GoodNode, EvilNode, and

InconsistentNode. GoodNodes execute code properly and
include transactions in their local ledgers if they are valid.
EvilNodes can add invalid transactions to their ledgers and
exclude valid ones. InconsistentNodes behave correctly
with some probability. With the three node types, we can
simulate more realistic network conditions and the presence
of adversaries. ConsensusNode can be further subtyped to
simulate other types of adversaries.

Code for a transaction is stored in a MAST, and the trans-
action saves the corresponding root Merkle hash. The com-
pression MASTSs offer reduces the amount of data that has
to be transferred between nodes during validation, as well
as the amount of data that is stored in the ledgers. Rather
than sending and storing the entire transaction code, we only
transmit and store the desired path through the MAST (as
a sequence of Merkle hashes). Using an args array, we sup-
port passing arguments to transaction code and specifying
the subsequent transactions to be run. Transactions also
have associated amounts that are used to check whether the
code is valid. A valid transaction is one whose amount is
at least as large as the sum of amounts of its subsequent
transactions.

After individual nodes validate/invalidate a set of transac-
tions, a special GlobalConsensus node determines the final
outcome of a transaction; a transaction is valid if a majority
of the ConsensusNodes validate it. The GlobalConsensus
node updates a global ledger representing the correct state
of the system, and ConsensusNodes sync with this ledger at
each simulation tick to maintain accurate state.

4. APPLICATIONS AND EXPERIMENTS

4.1 Contractual Agreements

Using the previously discussed consensus protocol, we im-
plemented a contract modeling a will that utilized the shared
contract creation, verification, and execution functionalities
of the MAST to create a multiparty execution environment.
The will-based contract we implemented consisted of an
agreement between three parties: Alice, Bob, and Carol.
The branches of the tree represent approved expenditures
both before and after Alices death, and present clauses of
the contract as a series of branches that are unlocked upon
the fulfillments of certain conditions in conjunction with the
signatures of relevant signatories. This structure allows for
sub-contracts to exist within the subset of the primary signa-
tories and enables full transparency of the content of the con-
tract while restricting execution of certain clauses to when
necessary preconditions are satisfied.

The consensus protocol to verify valid construction and
execution of the will was implemented using a group of
ConsensusNodes (comprised of the three types discussed above)
which each verified the validity of a transaction.

4.2 Code Compression

The primary benchmarks used to quantify code compres-
sion were a series of python scripts, which can be found in
our repo at the location MAST /bin. The file longcode.py
(Figure 3) generates a Merkle tree with tens of thousands of
branches, yielding a total code length of 2M characters, The
post-compression result after applying our algorithms was
under 23,500 characters, indicating a compression rate of
over 90%. We cannot compare the code compression we saw
directly to compressing with another algorithm such as LZW

because such algorithms employ frequency based compres-
sion and longcode uses repeated segments again and again.
This is OK to do because we perform structural compression.
Instead, we compared it to using zip to compress code from
the Linux kernel. This took it from roughly 6115332 char-
acters in length to 1754665 characters, a compression rate
of 70%. It is important to note that compression algorithms
could also be used in several places in MASTs as well: per
code block, and on the complete proof list. Additionally, we
use an unoptimized message format to send MASTs which
is essentially a list of [([subproof], data, mroot)]. This could
be further optimized to not use punctuation and whitespace,
and to use more efficient character encodings. Surprisingly,
encoding the proof in a bitcoin script (ie, self proving) was
more efficient than having an external validation script.

ex = "some code"

M = Mast("compile", "")

n =M

for i, ¢ in enumerate(X*[code]):

[n.addBr(c) for i in xrange(Y)]

n = n.addBr(c)
proof = n.generateFullProofUpward(M.hash)
Run in simulator
merkleVerifyExec (M.hash (), proof, 10)
Generate and run as Bitcoin script
scriptSig, script = toScript(pr, M.hash)

full = scriptSig + script
run(full)
print "compression rate:", 1-len(together)/(len

(code) *(Y+1))

Figure 3: Pseudocode demonstrating code compres-
sion on a Merkle tree with millions of characters.
Conversion to a MAST representation yielded a
compression score of over 90%

5. SIGNIFICANCE AND FUTURE WORK

The primary impact of this project is in its applications
to established environments utilizing contracts. The intro-
duction of MASTSs has potential to greatly impact existing
problems ranging from Bitcoin contracts to code transfer be-
tween distributed nodes on a network. Potential improve-
ments to this implementation of the MAST could include
greater support for distributed construction and execution
or the addition of a framework allowing greater extensibility
by users of this data structure. Complete integration with
Bitcoin would reduce the amount of data that is stored in
the Blockchain, and will make it possible to perform more
complex transactions like the will we modeled.

6. REFERENCES

[1] R. Merkle. Protocols for public key cryptosystems. In
Proc. 1980 Symposium on Security and Privacy, IEEE
Computer Society, pages 122-133. IEEE Computer
Society, 1980.

[2] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. 2008.

[3] P. Todd. Re: Which clients fully support p2sh and/or
multisig? https://bitcointalk.org/index.php?
topic=255145.msg2757327#msg2757327. Accessed:
2014-12-16.

https://bitcointalk.org/index.php?topic=255145.msg2757327#msg2757327
https://bitcointalk.org/index.php?topic=255145.msg2757327#msg2757327

	Introduction
	MAST Data Structure
	Implementation
	MAST Nodes
	Proof Lists
	Consensus Protocol Simulation

	Applications and Experiments
	Contractual Agreements
	Code Compression

	Significance and Future Work
	References

