LN as a Directed Graph

Single-Funded Channel Topology

Thaddeus Dryja <rx@awsomnet.org>

DG717
2016-04-11

LN recap

e Make channel between 2 nodes

e Update channel state

e Close co-operatively via interactive
multisig

e Close non-cooperatively with stored
signatures and timeout

LN recap

Multi-hop via trustless HTLC

Channels are edges of a graph

Traverse graph via HTLCs

Off-chain payments:

o In non-adversarial conditions, big speed
and throughput increases

o In adversarial conditions, falls back to
similar security as underlying network

How to build the network

e A and B want to make a

{A’s UTXO } [B’s UTXO }

channel

o But wait... do they? e
Why? l

o Do they know each [gm;' }
other? o

e Dual-funded channels are
useful but tricky

A’s UTXO B’s UTXO

Dual-funded channels lz_m_outmnm
e Some trust involved [Chamel]
e You're signing your UTXOs uipe

away!

e Do they really want a channel?
Or do they just want to waste
your time (and your money’s
time?)

e Timing, identity, fun stuff

Single-funded channels

e Simple: A asks B for a pubkey,
then tells B about the channel. G @)
e B has nothing at risk, never signs l

their UTXOs.

e Couple payment and channel [5&22?&' }
creation. While A funds (A8B)
completely, initial state allocates
money to B.

Channel exhaustion

Exhausted channels must be avoided In
general

Makes attacks free:

o state 5| have 0 coins, in state 4 | had >0 coins.
o Broadcast state 4! | have nothing to lose!

Don’t accept state transitions that would
exhaust the other side
Don’t try to exhaust from your side

Channel exhaustion exception

e At state 0, channel exhaustion is OK.

e There is no previous non-exhausted state to
broadcast, so there’s no attack

e Helps flexibility of single-funded channels:

o A can make a “full push channel” to B. Open a 1 coin
channel and send the whole coin over. (A is exhausted)

o A can open a “zero push channel” to B. Open a 1 coin
channel and send nothing. (B is exhausted)

Simplest possible Ul

pay(dest, amt)
Can payment be made with existing channels?
If yes, do that! (whole point of LN) Done.

If no, make a full push channel to dest. Done.
Works!

Directed -> Undirected

e Channels can start out exhausted, @
but won’t be for long

e Anyone trying to send you funds can
use those channels @

e The arrows in the directed graph AN
may not point the direction you think

e Can make cycles o

TX efficiency

e Over-funding channels can help

e Lots of channels between the same 2 nodes is
kindof ugly.

e But, channels are super cheap to make (only
12 bytes more than p2wpkh)

e Also cheap to close (20f2 multisig, but vsize
only ~25 bytes more.

TX efficiency

e All the complex transactions (preimages,
HTLCs, timeouts) will basically never happen.
e Oxygen mask TXs

e Open channel without payment only for new
use cases

The real problem

e People have been talking (arguing?) about
scalability for a while

e Propagation, capacity, centralization, block
size, segwit, XT, hard forks, soft forks, salad
forks

e Everyone’'s been ignoring the REAL problem
with bitcoin’s scalabillity...

Downward scalability

e Bitcoin only has 8 decimal places (“satoshis”)
e 1 USD is 250,000 satoshis
e A micro-payment is 10° USDwsp)= 0.25 satoshi

Bitcoin does not support micro-payments.

Sub-satoshi

e Sure you could TRUST your channel
counterparty. But where's the fun in that?
e How to subdivide without trust?

e Probabilistic payments

o Rivest's “Peppercoin” (early 2000s)
o Based on inequality of LSBs of an RSA sig

e Previous ideas of this in bitcoin
(Rafael Pass and abhi shelat 2015)

Probabilistic payment

e How to pay someone a
satoshi with an agreed
upon probability?

e No trusted 3rd party

e \Where to get randomness”

e Limited opcodes (fun
opcodes all disabled)

Word | Opcode Hex Input
OP.CAT 126 |OxTe|x1x2

OP_SUBSTR|127 |0x7f |in begin size jout

OPLEFT 128 |0xBO|in sice

0P RIGHT (128 |0v81|insize
opSIZE (130 |0x82|in
Bitwise logic

Output

out

Description

out

out

insize | Pushes the string length of the top element of the stack (without popping it)

If any opcode marked as disabled is present in a script, it must abort and fail.

Word |Opcode Hex Input| Output Description

OP_EQUAL 135 |0x87|xLx2 [True/false |Returns I if the inputs are exactly equal, 0 otherwise.
OP_EQUALVERIFY|135 |0x88 x1 x2 |Nothing / fail Same as OP_EQUAL. but runs OP_VERIFY afterward,
Arithmetic

Note: Arithmetic inputs are limited ta signed 32-bit integers, but may overflow their output.

If any input value for any of these commands is longer than 4 bytes, the Script must abort and fail. If any opcode marked as disabledis present in a script - it mu

Word Opeode
0P_1ADD 139
op_15U8 140
op_2MuL 141
0P 201V 142
OF_NEGATE 143
op_ABS 144
oP_NOT 145
0P_ONOTEQUAL 146
0p_aDD 147
op_sUB 148
op_muL 119
op DIV 150
op_moD 151
OP_LSHIFT 152
0P_RSHIFT 153
OP_BOOLAND 156
OP_BOOLOR 155
0P NUMEQUAL 156
0P_NUMEQUALVERIFY 157
0P_NUMNOTEQUAL 158
OP LESSTHAN 159

0x8d in out

0x30 in out The input is made positive.

0x91 in out If the input is 0 or 1, it is flipped. Otherwise the output will be 0.
.DXEE ab out a is added to b.

0x34 ab out b is subtracted from a.
.DXE7 ab out

0x9¢ |ab out Returns 1 if the numbers are equal, 0 otherwise.

0x3f ab out Returns 1 if a is less than b, 0 otherwise.

Probabilistic payment

e Op code to use: OP_SIZE

e Basic idea: 2-party envy-free cake cutting
(divide and choose)

e Divider picks a pre-image length

(pre-image bytes are from /dev/urandom or can be from some hash tree or whatever)

e Divider sends hash
e Chooser picks pre-image length based on hash
e Choose the wrong length, get the Satoshi

Probabilistic payment

e Making it iterative needs a few more steps

e Done in a “limbo” channel (can’t be closed un-
cooperatively for a number of blocks)

e Dave divides, Carol chooses

e Dave is paying Carol 0.5 satoshi

(0.000000005 BTC) (5 nanoBTC)

Probabilistic payment

e Carol makes random Y1, Y2, (normal length) hashes both
and sends the hashes to Dave

e Dave makes X (L bytes long), hashes, and makes 2 output
scripts. (3 paths to spend each) Puts script in txout, txin is
channel outpoint, Signs both, sends txs to Carol

Script 1/ Tx 1

SigCarol && 10 blocks |
SigDave && Y1 ||
SigDave && len(X) == 20

Script2/Tx 2

SigCarol && 10 blocks ||
SigDave && Y2 ||
SigDave && len(X) == 21

Carol’s choices

e Carol now has 2 half signed TXs. She can:
Nothing

Sign & broadcast both

Sign & broadcast TX1

Sign & broadcast TX2

Choose TX1, sign and send sig, Y1 to Dave
Choose TX2, sign and send sig, Y2 to Dave

OO0k wh =

1: Nothing

e Channelis in limbo for 20 blocks or so. Dave

IS like “what the heck Carol” and closes after
that

. Sign & broadcast both

This is really the same as signing and
broadcasting only one

She’s just letting the miners choose which TX
happens instead of picking herself

Once one gets into a block, Dave proceeds as
iIf that one is chosen

3/4: Sign & broadcast a chosen TX
e I|f she chose the WRONG length, she wins

after 10 blocks

e If she chose the RIGHT length, Dave sweeps

Immediately

Script 1/ Tx 1
SigCarol && 10 blocks ||
SigDave && Y1 ||

SigDave && len(X) == 20

Script2/Tx 2

SigCarol && 10 blocks ||
SigDave && Y2 ||
SigDave && len(X

5/6: Sign & send sig and other Y preimage

e Choose 20, sign TX1 and send Y2 to Dave

e Claims TX1, Revokes claim on TX2

e C(Carol can no longer sign and broadcast TX2 as she loses
even if len(X)==21

e Dave can broadcast TX1 and only TX1. He reveals X and

they say GG
Script 1/ Tx 1 Script2/ Tx 2
SigCarol && 10 blocks | SigCarol && 10 blocks ||
SigDave && Y1 || SigDave && Y2 ||
SigDave && len(X) == 20 SigDave && len(X

Probabilistic payment: iterate

e After Carol sends Y1, sig2, Dave needs to
reveal X. They both know who gets the satoshi

e The cooperate and update the channel state
based on where the satoshi goes. If they don't,
either can close at the updated state

e Note that for sub-satoshi, these TXs actually
have 2 outputs -

TX1(script1:49, script2:51) TX2(script2:49, script1:51)

Probabilistic payment: timing

e \When Carol gets the 2 TXs from Dave, she
considers that a payment

e Carol can unilaterally close with the probability
of an incremented satoshi

e Deliver goods, then respond with length choice

Probabilistic payment: probabilities

e Just described 0.5 chance; for 0.333 chance,
there are 3 scripts, for lengths 20, 21, 22

e Can have 0.25, 0.1... Can't really do 0.001
though (preimages get too long to manage)

e But does get us at least one OOM scalability

Probabilistic payment: probabilities

Relies on collision resistance of hash function; if Dave can
do ~28° work and find a collision with different lengths, he

can cheat

OK, just use hash256 instead of hash160...

But ~2%° work costs way more than a satoshi

Can actually do 12/13 byte pre-images! 2% work for Carol
to break (pre-image attack), and would be 2*° for Dave to

collide... but there are no colliding 12 byte pre-images

Summary

e 3Single funded channels are easier

e Exhausted channels are bad, but exhausted-on-open is
OK

e Network can grow with single funded, TXs are cheap

e The real scalability problem has been ignored... until now

e Pre-Image Length Probabilistic Payments (PILPP?) can
scale Bitcoin into the true micro-payment range

e Trustless nano-payments (femto, atto?) possible with
chains of PILPPs

e Avoid divisibility forks (hard / soft / spork)

e May have low demand with current price of Bitcoin, but we

Questions

e There probably are some
e But they're not written on this slide

e Because causality

Thanks to: DG717 for hosting, Denise & Michael for setting
this up, sponsors for pizza, and everyone for coming!

