
Lay Down the Common Metrics: Evaluating
Proof-of-Work Consensus Protocols’ Security

Ren Zhang
Nervos and imec-COSIC, KU Leuven

ren@nervos.org

Bart Preneel
imec-COSIC, KU Leuven

bart.preneel@esat.kuleuven.be

Abstract—Following Bitcoin’s Nakamoto Consensus protocol
(NC), hundreds of cryptocurrencies utilize proofs of work (PoW)
to maintain their ledgers. However, research shows that NC fails
to achieve perfect chain quality, allowing malicious miners to al-
ter the public ledger in order to launch several attacks, i.e., selfish
mining, double-spending and feather-forking. Some later designs,
represented by Ethereum, Bitcoin-NG, DECOR+, Byzcoin and
Publish or Perish, aim to solve the problem by raising the chain
quality; other designs, represented by Fruitchains, DECOR+ and
Subchains, claim to successfully defend against the attacks in the
absence of perfect chain quality. As their effectiveness remains
self-claimed, the community is divided on whether a secure PoW
protocol is possible. In order to resolve this ambiguity and
to lay down the foundation of a common body of knowledge,
this paper introduces a multi-metric evaluation framework to
quantitatively analyze PoW protocols’ chain quality and attack
resistance. Subsequently we use this framework to evaluate the
security of these improved designs through Markov decision
processes. We conclude that to date, no PoW protocol achieves
ideal chain quality or is resistant against all three attacks. We
attribute existing PoW protocols’ imperfect chain quality to
their unrealistic security assumptions, and their unsatisfactory
attack resistance to a dilemma between “rewarding the bad”
and “punishing the good”. Moreover, our analysis reveals various
new protocol-specific attack strategies. Based on our analysis, we
propose future directions toward more secure PoW protocols and
indicate several common pitfalls in PoW security analyses.

Index Terms—blockchain, proof-of-work consensus, incentive
compatibility, double-spending, censorship resistance

I. INTRODUCTION

By November 2018, more than six hundred digital curren-
cies leverage proofs of work (PoW), i.e., moderately hard com-
putational tasks, to maintain consensus on a public ledger of
transactions [1]. All PoW consensus protocols originate from
Bitcoin’s Nakamoto Consensus (NC) [2], in which participants,
called miners, compete in generating the latest block—a group
of new transactions bound with a solution to a computational
puzzle. The protocol helps participants reach agreement on a
sequence of blocks named the blockchain. The miner of each
blockchain block is entitled to a block reward of new bitcoins
to incentivize protocol participation. Remarkably, NC is the
first scheme that promises an inalterable public ledger without
prior knowledge on participants’ identities. Unfortunately, the
security of NC is challenged by several studies [3]–[7], in
which researchers identify a wide range of strategies that allow

An abridged version of this paper is to appear in the IEEE Symposium on
Security & Privacy, May 2019. Last revised on Feb. 22, 2019.

attackers with less than 50% of total computing power to
rewrite part of the blockchain with high success rate.

Given NC’s security weakness, a considerable amount of
non-NC PoW protocols [6]–[23] have emerged in the past few
years, which all claim to achieve stronger security properties.
Nevertheless, in the absence of a systematic evaluation, such
advancements remain self-claimed and not widely acknowl-
edged. Moreover, some protocols introduce new issues like
lowering the chain-growth rate [24], [25] or facilitating an
attacker to create disagreements among the compliant min-
ers [26]. This inconclusive situation also feeds the pessimistic
atmosphere surrounding PoW, leading new digital currencies
to abandon PoW and turn to other consensus mechanisms such
as proofs of stake (PoS), which all rely on stronger security
assumptions, yet open new attack vectors [27]–[29].

In this paper, we address this situation and explore the
(im)possibility of more secure PoW protocols. Our work and
contributions include:

A quantitative security evaluation framework. We identify
that NC’s key weakness lies in its low chain quality, defined
as the fraction of blockchain blocks mined by the compliant
miners. The unsatisfactory chain quality allows attackers to
substitute other miners’ blocks from the blockchain with
the attackers’, which impairs NC’s inalterability promise and
could be utilized by attackers to cause three kinds of damage:
they can (1) gain relative block rewards larger than their fair
share with a selfish mining attack [6]; (2) spend the same coin
more than once with a double-spending attack; and (3) force
rational miners to collectively censor certain target transactions
with a feather-forking attack [30].

Accordingly, to verify the self-claimed improvements of re-
cent non-NC protocols and to detect the security flaws in PoW
designs, we propose a comprehensive evaluation framework
including chain quality and three attack-resistance metrics
of incentive compatibility, subversion gain and censorship
susceptibility, corresponding to the aforementioned attacks.

Generalizing MDP-based methods for analyzing PoW
protocols. While Markov decision processes are commonly
used to explore an actor’s utility-maximizing strategies in a
stochastic environment, previous MDP-based analyses mostly
focus on NC with a rational, i.e., profit-driven, adversary [4],
[31], [32]. We generalize their methods on two dimensions.
First, by redefining the attacker’s utility, we extend the model

TABLE I
SECURITY ANALYSES BY THE PROTOCOL DESIGNERS AND OUR NEW RESULTS.

Group Protocol Designers’ analysis Our results

Better-chain-quality SHTB [12] None New protocol-specific attack strategy
Better-chain-quality UDTB [18], [21] Analysis against one attack strategy New protocol-specific attack strategy

Attack-resistant: reward-all Fruitchains [20] Formal analysis against selfish mining
assuming some parameters are large enough

Vulnerable to selfish mining and double-
spending attacks with reasonable parameters

Attack-resistant: punishment RS [12], [21] Analysis against one attack strategy Vulnerable to censorship attack
Attack-resistant: reward-lucky Subchains [11] None Vulnerable to all three attacks

to include byzantine adversaries, whose goals are not limited
to their economic gains. This generalization allows our model
to capture more real-world attack scenarios, such as censorship
or chain quality attacks. Second, by introducing new modeling
and acceleration techniques, our MDPs can model more com-
plicated systems and support longer block races than previous
works, which enables cross-protocol security comparison.

Moreover, our approach opens the possibility of applying
artificial intelligence techniques in analyzing protocol security.
By properly simplifying the protocol and confining the at-
tackers’ reasonable actions, these techniques enable systematic
exploration of a protocol’s vulnerabilities with a given attacker
goal, which helps improve the protocol design iteratively.
Systematic evaluation of non-NC PoW protocols. Based
on their self-claimed properties, we divide PoW protocols
claiming to improve NC’s security into two groups: better-
chain-quality protocols and attack-resistant protocols, differ-
ing in whether they accept imperfect chain quality as a given
condition. We then use our framework to evaluate the two
groups accordingly. Our findings are summarized as follow:
• No PoW protocol achieves perfect chain quality facing a

strong attacker. We first evaluate the chain quality of two
influential better-chain-quality protocols that are previously
unverified: smallest-hash tie-breaking (SHTB) [12] and un-
predictable deterministic tie-breaking (UDTB) [18], [21].
Joining the results of previous studies [4], [13], [31], we
confirm that an attacker with more than a quarter of total
mining power can obtain an unfair fraction of blockchain
blocks in all better-chain-quality protocols. We attribute the
low chain quality to information asymmetry between the
attacker and the compliant miners, which is inherent to the
unrealistic security assumptions in PoW protocols, including
the participants’ unawareness of their own network connec-
tivity and the lack of a globally synchronous clock.

• No attack-resistant protocol is resistant against all three
attacks. Then we evaluate the attack-resistant protocols
based on the metrics of incentive compatibility, subversion
gain, and censorship susceptibility. We further divide these
protocols into three groups based on their technical ap-
proaches: reward-all protocols, punishment protocols and
reward-lucky protocols. We choose a representative and
most influential protocol from each approach for evaluation:
Fruitchains [20], a variant of DECOR+ [12], [21] named
reward-splitting protocol (RS), and Subchains [11]. Our
analysis shows that all three approaches suffer from cer-

tain drawbacks: reward-all protocols remove the attacker’s
risk of losing block rewards in double-spending attacks;
punishment protocols aid feather-forking attacks; reward-
lucky protocols facilitate all three attacks. We attribute these
empirical results to a dilemma between “rewarding the bad”
and “punishing the good”.
Our findings show that no better-chain-quality protocol

outperforms NC’s chain quality in all attacker settings, neither
does any attack-resistant protocol outperforms NC in defend-
ing against all three attacks. Starting from our identified cruxes
hindering substantial improvement in both chain quality and
attack resistance, we point out several directions of future
improvements towards more secure PoW protocols.

Exposing limitations in existing PoW protocols’ security
analyses. The unsatisfactory security of PoW protocols roots
in the designers’ lack of [7], [8], [11], [12], [17]–[19], or
incomplete security analyses. Existing analyses are limited
either to only one attack strategy [6], [9], [21]–[23], turning
its back on the protocol-specific attack strategies, or to one or
two security properties [10], [13]–[16], [20], [33], leaving the
protocols more vulnerable against other attacker incentives. In
addition, our analysis reveals that, in some designers’ analysis,
certain parameters are artificially anchored to an unrealistic
range in order to prove the properties of the protocol, leaving
the real-world security unexplored. Of the five protocols we
model in this paper, a comparison between our results and the
designers’ own analyses is summarized in Table I. Our results
highlight that PoW protocols’ security is not a unidimensional
index, but rather a multi-metric property subjects to the law of
the minimum—security is decided by the weakest point in the
design. Therefore, future protocol analyses need to consider a
broad strategy space covering the all reasonable actions with
a given attacker goal, and incorporate multiple attacks with
real-world parameters.

II. NAKAMOTO CONSENSUS’S SECURITY ISSUES AND
ALTERNATIVE POW PROTOCOLS

A. Nakamoto Consensus

NC helps all network participants agree on and order the
set of confirmed transactions in a decentralized, pseudonymous
way. Each block contains its height—distance from the hard-
coded genesis block, the hash value of the parent block, a
set of transactions, and a nonce. Embedding the parent hash
ensures that a miner chooses which chain to mine on before

starting to mine. To construct a valid block, miners work on
finding the right nonce so that the block hash is smaller than
the block difficulty target. This target is adjusted every 2016
blockchain blocks so that on average one block is appended
to the blockchain in ten minutes. Compliant miners publish
blocks to the network the moment they are found. Miners are
incentivized by two kinds of rewards. First, a block reward
is allocated to the miner of every blockchain block. Second,
the value difference between the inputs and the outputs in a
transaction is called the transaction fee, which goes to the
miner who includes the transaction in the blockchain.

When more than one block extends the same preceding
block, a miner adopts and mines on the main chain that is most
computationally challenging to produce, which is commonly,
although inaccurately, referred to as the longest chain. When
several chains are of the same “length”, miners choose the first
chain they receive. We refer to this forked situation where
miners work on different parent blocks as a block race, an
equal-length block race as a tie, and blocks of the same
height as competing blocks. Mining on the longest chain or the
first-received block during a tie is denoted as the compliant
strategy [5], [26], [34], [35]. A short fork may not indicate
an attack, as natural forks occur when competing blocks
are discovered with an interval shorter than the propagation
delay. Luckily, this situation should be resolved quickly as
all miners switch to the same chain as soon as it grows
longer than the others. Blocks that are not on the longest
chain are orphaned and discarded by all miners. Orphaned
blocks receive no reward. By convention, Bitcoin users will
not consider a transfer of funds settled until it is confirmed
by six blocks, including the block containing the transaction.
We refer to Narayanan et al. [36] for a complete view of the
system.

B. Nakamoto Consensus’s Security Issues

Bitcoin’s designer believes that the protocol achieves perfect
chain quality, i.e., as long as more than half of total mining
power is compliant, any attempt to substitute blocks from
the blockchain fails with large probability [2]. Unfortunately,
this belief is disproved by several later studies [3]–[7], which
discover a family of strategies to replace the compliant miners’
blocks with the attackers’ at the end of the blockchain with
high success rate. The imperfect chain quality can be directly
exploited to manipulate vote results in some blockchains [37].

Moreover, the imperfect chain quality enables a variety of
other attacks, differing in the attackers’ goals:
• Selfish mining. In this attack first analyzed by Eyal and

Sirer [6], a selfish miner keeps discovered blocks secret
and mines on top of them, hoping to gain a larger lead on
the public chain of honest blocks mined by the compliant
miners. The selfish miner publishes the secret chain if it
has one block and the public chain catches up, or it has
more than one block and the lead is reduced to one. Though
risking the reward of the first secret block, once the selfish
chain is two blocks ahead of its competitor, the selfish miner
can securely invalidate compliant miners’ competing blocks.

This strategy has been generalized by Sapirshtein et al. [4]
and Nayak et al. [5] to a family of strategies.
This attack allows the selfish miner to gain unfair block
rewards. As the attacker’s revenue rises superlinearly with
the mining power share, rational miners are incentivized to
attack collectively for a higher input-output ratio. This situ-
ation not only damages the system’s decentralized structure,
but also raises the success rates of various other attacks.

• Double-spending. A successful double-spending attack re-
verses the payment after the service or goods are delivered.
The transaction to the merchant is replaced by a conflict-
ing transaction transferring the fund back to the attacker.
Double-spending were once believed to be difficult with less
than 50% of total mining power [2]. However, a 2016 paper
by Sompolinsky and Zohar [32] indicates that an attacker
with arbitrarily low mining power can profitably implement
the attack by combining it with selfish mining: the attacker
mines in secret to perform double-spending attacks, and
when there is little hope to orphan six blocks in a row,
the attacker publishes the secret blocks to claim the block
rewards, switching to selfish mining instead.

• Feather-forking. In this attack proposed by Miller [30],
the attacker publicly promises to fork the blockchain to
invalidate all blocks confirming the target transactions. The
attacker will keep mining on the forked chain until the main
chain is k blocks ahead. Although the attack is not profitable
and the success rate is low with minority mining power, the
rational choice for other miners is to join the attacker on
the censorship in order to avoid the potential loss.
A successful attacker can approve and decline transactions
at will, becoming the system’s de facto owner, which
violates the motivation of the permissionless design.
Researchers identify several other attacks against NC. Bon-

neau indicates an adversary may attack with temporarily
purchased mining power [38]. Meshkov et al. introduce the
coin-hopping attack, in which a miner exploits the difficulty
adjustment to gain more rewards with the same electricity
consumption [39]. Eyal [40] and Kwon et al. [41] analyze
attacks on the mining pools. Carlsten et al. observe that when
the block reward goes to zero in around 2140, miners have
incentives to publicly fork the blockchain and claim less
transaction fees in their new chain, driving rational miners to
mine on the new chain for higher remaining fees [35]. Tsabary
and Eyal reveal more incentive issues in this setting [42].
Nevertheless, these attacks either do not have their roots, as
well as their solutions in the consensus protocol, or do not
bring realistic threats in the coming decades.

C. Alternative PoW Protocols

A substantial number of alternative PoW protocols have
been proposed to address NC’s security issues. In this part
we split these designs into two groups, better-chain-quality
and attack-resistant protocols, based on their claims, and
selectively introduce some most influential designs. These
two groups are not mutually exclusive. Although we omit
non-security-related innovations and hybrid protocols, i.e.,

protocols that combine PoW with other consensus mecha-
nisms [43]–[45], our security analysis is still applicable to their
underlying PoW protocols. We refer interested readers to the
recent SoK paper of Bano et al. [28] for a more complete
overview of consensus protocols.

1) Better-chain-quality protocols: These designs usually
modify NC’s fork-resolving policy, hoping to reduce the prob-
ability that the compliant miners work on the attacker’s chain
during a block race. The first three designs abandon NC’s first-
received tie-breaking rule, yet still follow the longest-chain
rule, whereas the others abandon both rules.

a) Uniform tie-breaking: Eyal and Sirer suggest during
a tie, miners choose which chain to mine on uniformly at
random regardless of which one they receive first [6]. This
policy is adopted by the PoW component of Ethereum, the
cryptocurrency with the second largest market capitaliza-
tion [46]. Bitcoin-NG, a high-throughput blockchain proto-
col [47] implemented in two cryptocurrencies Waves [48] and
Aeternity [49], also follows uniform tie-breaking policy.

b) Largest-fee and smallest-hash tie-breaking: Lerner
proposes DECOR+, in which during a tie, miners choose
the chain whose tip, i.e., the last block, has the largest
transaction fees, and when multiple tips have the same amount
of fees, choose the one with the smallest hash [12]. A variant
of DECOR+ is implemented in Rootstock [17], a Bitcoin
sidechain [50]. The author believes a deterministic tie-breaking
policy helps the compliant miners choose the same chain in a
tie, thus limiting the attacker’s ability.

c) Unpredictable deterministic tie-breaking: In Byz-
coin [18], Kokoris-Kogias et al. recommend that ties are
resolved deterministically via a pseudorandom function taking
all competing blocks as inputs. This tie-breaking policy is also
described by Camacho and Lerner in an updated version of
DECOR+ [21]. Within this policy, the attacker can neither
determine whether a secretly-mined block can win a tie with
unfair possibility before all competing blocks are mined, nor
split the compliant mining power.

d) Publish or perish: Zhang and Preneel present a design
Publish or Perish, in which forks are resolved by comparing all
chains’ weights [13]. Blocks published after their competitors
do not contribute to the weight of its chain, and blocks that
incorporate links to their parents’ competitors are appreciated
more. Consequently, a block that is kept secret until a compet-
ing block is published contributes to neither or both branches,
hence it confers no advantage in winning the block race.

e) Others: Other better-chain-quality protocols include
the GHOST protocol designed by Sompolinsky and Zohar [33]
and Chainweb by Martino et al. [23].

2) Attack-resistant protocols: These designs usually modify
NC’s blockchain topology and reward distribution policy,
hoping to reduce the attacker’s profitability or to reduce the
compliant miners’ losses. They can be categorized into three
types: the first two types issue rewards based on the block’s
topological position in the blockchain, whereas the third type
issues rewards based on the block content.

B C E

D

A

time
pointer block

parent block

Fig. 1. A Fruitchains execution. Banana’s gap is height(E)−height(B) = 2.
Tomato is not a valid fruit because its pointer block (D) is orphaned. When
To = 3, pear is not valid even if it is included in E, as its gap reaches To.

time
block

weak block

parent

Fig. 2. A Subchains execution. Compliant miners would mine on the upper
chain because it is longer.

a) Reward-all protocols: In these designs, most of recent
PoW solutions receive a fraction of a full reward, although
some of them may not contribute to the transaction confir-
mation. Consequently, the compliant miners’ losses due to
malicious orphaning of their blocks are compensated.

Fruitchains by Pass and Shi [20] distributes rewards to all
recent fruits, which are parallel products of block mining.
Similar to “a block candidate is a block if its hash’s first l bits
are smaller than a predefined target”, the candidate is a fruit if
its hash’s last l bits are smaller than another target. Although
generated from the same mining process, fruits and blocks
have different functionalities. Each block embeds an ordered
fruit list, similar to each block in NC embeds an ordered
transaction list; transactions are embedded in fruits instead.
Transactions are ordered based on their first fruit appearances
in the blockchain. In addition to the transactions, each fruit
contains a pointer to a recent main chain block which the fruit
miner is certain will not be orphaned. A fruit is valid if its
pointer block is not orphaned, or its gap—the height difference
between its pointer block and the main chain block contains
the fruit—is smaller than a timeout threshold To

1. All valid
fruits receive the same reward and blocks receive nothing.
This incentive mechanism is also adopted by Thunderella, a
blockchain design of the same authors [43].

Other designs of this type include the PoW component of
Ethereum, the Inclusive protocol by Lewenberg et al. [10],
SPECTRE by Sompolinsky et al. [14], Meshcash by Bentov
et al. [15], and PHANTOM by Sompolinsky and Zohar [16].

b) Punishment protocols: As it is often hard to tell
which of the competing blocks are mined by the attacker,
these designs forfeit rewards of all competing blocks to deter
attacks. In DECOR+, the block reward is split evenly among
all competing blocks of the same height [12], [21]. The authors
propose some other punishment rules for suspected malicious
behaviors. Bahack suggests another punishment protocol [7].

1To here corresponds to Rκ in [20], where R is a recency parameter with
a recommended value of 17, κ is a security parameter whose value is not
specified.

c) Reward-lucky protocols: These designs selectively
reward PoW solutions, hoping that these solutions serve as
anchor points to stabilize the blockchain. Subchains by Rizun
demands miners to broadcast weak blocks, i.e., block candi-
dates with larger difficulty target, in addition to blocks [11].
Weak blocks also count in chain length and contribute to the
transaction confirmation, though receive no reward. Subchains
follows NC’s longest chain and first-received rule. Bobtail by
Bissias and Levine [22] is another reward-lucky protocol.

III. EVALUATION FRAMEWORK AND SECURITY MODEL

As non-NC PoW protocols’ security improvements remain
self-claimed, we propose our evaluation framework in order
to investigate whether they have fixed NC’s weaknesses, and
to shed light on the possibility of such improvement.

A. Evaluation Framework

We present four metrics for a more comprehensive view on
PoW protocols’ security. This is not an exhaustive list of all
metrics proposed in the literature, but rather a comparative
framework with NC as the benchmark. In particular, though
the chain-growth and the common-prefix properties are also
used to quantify consensus protocol security [3], [15], [25],
[51], they are not included, because the attack vectors on these
properties are only introduced by certain non-NC protocols.

1) Chain quality: This metric measures the difficulty to
substitute the honest main chain blocks. In line with previous
research [3], [25], [51], we define the chain quality Q as the
expected lower bound on the fraction of honest main chain
blocks, given that the attacker controls a fraction of total
mining power α. Defining Bc and Ba as the total number
of main chain blocks mined by the compliant miners and the
attacker respectively, and s the attacker’s strategy, we have:

Q(α) = min
s

lim
t→∞

Bc

Ba +Bc
.

Ideally, Q(α) = 1 − α, namely the attacker gets main chain
blocks at most proportional to the mining power. A protocol’s
chain quality is not related to its reward distribution policy.

2) Incentive compatibility: This metric measures a proto-
col’s selfish mining resistance. It is defined as the expected
lower bound on the relative revenue of the compliant min-
ers [4]–[7], [13], [26], [31], namely:

I(α) = min
s

lim
t→∞

∑
Rc∑

Ra +
∑
Rc

,

where
∑
Ra and

∑
Rc are the cumulative rewards received by

the attacker and the compliant miners, respectively. Incentive
compatibility shares the same ideal value 1 − α with chain
quality. Unlike chain quality, all three attack resistance metrics
are tightly related to the reward distribution policy.

3) Subversion gain: This metric measures the profitability
of double-spending attacks, which is quantified as the time-
averaged illegal upper bound profit in a specific attack model,
in line with several previous papers [26], [31], [32]. In this
model, every honest block contains a payment transaction to
the merchant, whose conflicting version is embedded in the

block’s secret competitor, if the competitor exists. The service
or goods are delivered when the block containing the payment
transaction reaches σ confirmations, with σ = 6 in Bitcoin, or
the attacker gives up on attacking this block. In the former
case, if the payment transaction is later invalidated, for every
block that is orphaned after confirmation, the attacker receives
a double-spending reward Vds, in the unit of block rewards.
In other words, if the attacker successfully orphans k blocks
in a row, the double-spending reward is defined as

Rds(k, σ, Vds) =

{
0, k < σ
(k + 1− σ)Vds, k ≥ σ , (1)

where k + 1− σ is the number of σ-confirmation blocks that
are orphaned. In addition, if the first payment transaction is
invalidated before reaching σ confirmations, Rds = 0. The
attacker receives no punishment for failed double-spending
attempts, because if an attack fails, the service or goods
will be delivered eventually, compensating the attacker’s loss.
This metric captures multiple aspects of a protocol’s double-
spending resistance. First, incorporating

∑
Ra forces the

attacker to balance the risk of losing block rewards with the
double-spending gain. Second, the merchant is allowed to
delay delivery if the conflicting transaction is broadcast before
σ confirmations, counteracting the attack. Third, longer forks,
which cause more damage in reality, result in higher rewards.

The subversion gain of the attacker is defined as:

S(α, σ, Vds) = max
s

lim
t→∞

∑
Ra +

∑
Rds

t
− α,

where t represents the lasting time, measured as the number of
block generation intervals; α is the time-averaged mining re-
ward without the double-spending attack. Ideally, the attacker
complies with the protocol to avoid losing any block reward,
namely S(α, σ, Vds) = 0. However, an attacker is always
incentivized to deviate as long as Vds is large enough.

4) Censorship susceptibility: Inspired by feather-forking
attacks, we measure censorship susceptibility as the maximum
fraction of income loss the attacker incur on compliant miners
in a censorship retaliation attack. We choose not to incorporate
the attacker’s economic loss, as the retaliation does not happen
if the censorship threat succeeds. As long as the other miners
are convinced of the attacker’s determination, the only factor
affecting their strategy is the expected loss of not cooperating.
Unlike feather-forking, in which the retaliation starts after
receiving the block containing the target transaction, in our
model, the attack is initiated as soon as compliant miners start
mining the block. This setting is practical, as the attacker can
learn the transaction inclusion as soon as the mining starts by
eavesdropping in compliant mining pools. Another difference
with feather-forking is that we remove the reliance on the
parameter k by allowing the attacker to drop the falling-behind
chain and try to orphan the next honest block at any time.
As the attacker’s goal is to maximize the compliant miners’
loss, mining on a falling-behind chain is not always optimal.
Our generalized setting captures multiple attack scenarios. For
example, in an extreme form of the attack, attackers degrade

the system’s availability by replacing honest blocks with empty
blocks, delaying all transactions’ confirmation.

A protocol’s censorship susceptibility is defined as:

C(α) = max
s

lim
t→∞

∑
Oc∑

Oc +
∑
Rc

,

where
∑
Oc is the compliant miners’ cumulative reward

loss due to the attack, in the unit of block rewards. Ideally,
C(α) = 0, namely the compliant miners have no risk rejecting
a censorship request.

B. Threat Model
We follow the threat model of most studies on PoW

security [3]–[7], [9], [13], [26], [31], [32], [52]. In this model,
there is only one colluding pool of malicious miners, denoted
as “the attacker”, with less than half of total mining power.
All other miners are compliant. This is the strongest form of
the attacks as multiple attackers cause more damage when
combining their mining power. We do not consider the effect
of transaction fees as in [35], [42], [53]. Neither do we
incorporate the difficulty adjustment mechanism as in [39].

In terms of network connectivity, the attacker cannot drop
other miners’ messages or downgrade their propagation speed.
However, the attacker may, after seeing a compliant miner’s
message, send a new one to certain miners that arrives before
the original message. The propagation delay is modeled as
a fixed natural orphan rate, as in [31]. Unfortunately, as
many protocols we evaluate are under development and their
parameters are not specified, it is difficult to estimate their
orphan rates. Therefore we assume all protocols in this work
have the same expected block interval and zero natural orphan
rate, in order to ensure a fair comparison on the protocol level.
As long as the systems’ block intervals and orphan rates are
available, our evaluation can incorporate these real-world data.

In this model, the following result has been proven [4], [52]:
if the protocol follows the longest-chain rule and the attacker is
rational, there are at most two active chains at any given time:
a public chain, and at most one attacker chain, whose last
several blocks might be hidden from the compliant miners.
Any more-than-two-chain strategy decreases the attacker’s
effective mining power, therefore is strictly dominated by a
two-chain strategy. We refer to the last common block of these
two chains, namely the last block recognized by all miners, as
the consensus block.

C. Modeling Mining Processes as MDPs
An MDP is a discrete time stochastic control process that

models the decision making in situations where outcomes
are partly random and partly under the control of a decision
maker. To model a system as an MDP, we need to encode
all status and history information that might influence the
strategic player’s decisions into a state, and the player’s
available decisions into several actions. Moreover, a state
transition matrix describes the probability distribution of the
next state over every (state, action) pair. At last, when cer-
tain (state, action, new state) transition happens, a reward is
allocated to the player to facilitate utility computation.

In line with previous studies [4], [13], [26], [31], [32],
mining is modeled as a sequence of steps. The MDP state de-
scribes the blockchain’s status at the beginning of a step, which
incorporates all information that might affect the attacker and
the compliant miners’ decisions, e.g., the lengths of competing
chains, the miners of the last several blocks, and the number
of unpublished attacker blocks. Encoding a blockchain status
into a state is challenging, as despite the sparseness of the
transition matrices and our optimization, an MDP solver gives
the exact solution only when the number of states is less than
about 107. In each step, the attacker first decides how many
secret blocks to publish. Next, the rewards are distributed for
certain blocks if all miners agree that these blocks are settled,
either as main chain blocks, orphans or uncles, i.e., orphans
that are referred to in the main chain. Afterwards, all miners
start mining. The compliant miners choose which chain to
mine on based on public information, whereas the attacker
may choose either chain. The action in an MDP describes the
attacker’s choices on how many blocks to publish and which
chain to mine on. A new block is then mined by either the
attacker or the compliant miners, with probability distribution
according to their mining power shares. New honest blocks are
published immediately, whereas the attacker decides whether
to publish his new block at the beginning of the next step. The
attacker’s old blocks published in the next step might reach
the compliant miners before the new honest block. The MDP
state transition is triggered by the new mining event. The
rationale behind this publish-reward-mine-found sequence is
that rational decisions may only change when a new block is
available [4], [7]. Whenever it is infeasible to model the exact
system, we choose to favor the compliant miners and limit the
attacker’s ability, ensuring the attacker’s utility is achievable
in reality to better demonstrate the protocols’ weaknesses.

As a concrete example, in [4]’s selfish mining MDP for NC,
a state is a 3-tuple (la, lc, fork) where la and lc represents the
length of the attacker chain and the public chain, respectively,
and fork indicates whether there is an ongoing tie and the latest
block’s miner. There are at most four available actions at any
moment: Adopt to throw away the attacker chain and mine
on the public chain, Override to publish until the (lc + 1)-th
attacker block to invalidate the public chain, Match to publish
until the lc-th attacker block to cause a tie, and Wait to keep
mining on the attacker chain. We omit the reward distribution
and the state transition matrices here.

IV. CHAIN QUALITY ANALYSIS ON
BETTER-CHAIN-QUALITY PROTOCOLS

This section evaluates the chain quality Q(α) of NC, uni-
form tie-breaking (UTB), smallest-hash tie-breaking (SHTB),
unpredictable deterministic tie-breaking (UDTB) and Publish
or Perish (PoP). We do not consider largest-fee tie-breaking,
as it enables a malicious miner to locally generate a huge-
fee transaction and to embed it in the miner’s own block to
increase the chance of winning a tie. Neither do we consider
GHOST, as it behaves identically to NC when the network
delay is negligible [33]. At last, we leave the evaluation of

DAG-based protocols, such as [23], to future work as the
notion of chain quality is not directly applicable to them.

When orphaned blocks receive no reward and the main
chain blocks receive full rewards, the chain quality is equiva-
lent to the compliant miners’ relative revenue. Therefore, we
implement this reward distribution policy in all MDPs of this
section, and define the utility as the attacker’s relative revenue
1 − Q(α), in order to find the chain quality. We refer to [4]
on converting mining rewards to relative revenue.

This equivalence also allows us to reuse the relative revenue
MDP designs of previous studies. We re-implement the NC,
UTB and PoP MDPs as described in [4] and [13]. Our imple-
mentation can model block races longer than previous studies,
as we accelerate the programs by allocating memory only
once before assigning values to the state transition matrices.
In this section, we first model the mining process of SHTB
and UDTB, and then present the evaluation results.

A. Modeling SHTB
The key challenge of modeling SHTB is to encode in a state

the hashes of the latest blocks, as compliant miners resolve
ties via comparing these hashes. Unfortunately, a block hash
is usually a 256-bit value; encoding which makes the total
number of states too large to be solvable. Therefore, we split
the hash value space into a small number of regions and
only encode the hash region number. When comparing two
hashes from the same region, we consider the public chain
tip to be smaller, which favors the compliant miners. As this
simplification discourages the attacker, our MDP computes an
upper bound on SHTB’s chain quality. We defer the detailed
MDP design to Appendix A. This will not prevent the readers
from understanding our results as long as they intuitively
understand our evaluation framework described in Sect. III.

B. Modeling UDTB
The main challenge is to model the pseudorandom function

(PRF) determining a tie’s winner. We address this challenge
by introducing a binary field tie in the state representation,
denoting whether the public chain tip has priority over its com-
petitor after applying the PRF. This field is meaningful when
the attacker chain is no shorter than the public chain. Every
time the public chain tip is updated, it has equal probability
to be 0 or 1. The design can be found in Appendix B.

C. Evaluation Results
1) Solving for the optimal policies: Our MDPs output the

attacker’s optimal policy and the expected fraction of main
chain blocks following this policy, namely 1−Q(α), allowing
us to compute Q(α). Besides α, another input in NC is γ,
defined as the proportion of compliant mining power that
works on the attacker chain during a tie. We compute Q(α)
for all five protocols with α between 0.1 and 0.45 with interval
0.05. Three different γ values are chosen for NC: 0, 0.5, and
1. The fail-safe parameter k in PoP is set to 3, following the
authors’ recommendation [13].

For NC, UTB and UDTB, we set the maximum block race
length, denoted as lmax, to 160, which is large enough so that

0
0.05

0.1
0.15

0.2
0.25
0.3

0.35
0.4

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

(1
-α

)-Q
(α

)

The attacker's mining power share α

NC, γ=0
NC, γ=0.5
NC, γ=1
UTB
SHTB (lower bounds)
UDTB
PoP

Fig. 3. The difference between the chain quality Q(α) and the ideal value
1− α of NC, UTB, SHTB, UDTB and PoP. Larger number indicates worse
performance. Q(α) does not converge for PoP and SHTB when α = 0.45
and α ≥ 0.4, respectively.

A time

honest block

publishing timeB

network
D

attacker block

C

E

Fig. 4. In NC, if E is published, no compliant miner would mine on it because
the attacker chain is not the first-received chain in the tie. However, in UTB,
UDTB and SHTB, some compliant miners might switch to mine on E.

Q(α)’s lower and upper bounds differ in less than 4 × 10−5

for all inputs. The detailed computation of these bounds can
be found in Sect. 4.2 of [4]. For PoP, lmax is set to 30, which
is larger than the value 12 in the authors’ implementation [26].
For SHTB, we set lmax to be 40 and split the valid hash space
into 15 equal-size regions. Once lmax is reached, the attacker
is forced to publish the attacker chain and end the block race.
For the latter two protocols, we check the convergence by
examining whether the results are affected if lmax decreases
by two. Data points that do not converge are discarded.

2) Chain quality: Our results of NC, UTB and PoP in Fig. 3
match those from previous studies [4], [13], [31]. We list our
new insights as follows.

Result 1: UTB and UDTB’s Q(α) are almost identical; they
perform no better than NC when γ ≤ 0.5 for all inputs.

For all our inputs, UTB’s and UDTB’s Q(α) differ in
at most 1%. UDTB may outperform UTB when natural
forks happen frequently, as these forks are resolved faster
in UDTB due to the compliant miners’ convergence. UTB’s
and UDTB’s unsatisfactory performance is attributed to the
following protocol-specific strategy: as neither policy takes the
block receiving time into consideration, an attacker who keeps
mining from behind the public chain may still win the block
race with a tie, as illustrated in Fig. 4. Consequently, their
chain quality is lower than that of NC when γ = 0.5.

Result 2: SHTB achieves the lowest chain quality among
all better-chain-quality protocols.

An examination of the optimal strategies reveals the cause
of SHTB’s poor chain quality. In SHTB, when α = 0.1, the
optimal action when “the attacker finds a smallest-hash-region
block before the compliant miners find anything” is to keep
mining privately, whereas in all other protocols except NC,

TABLE II
THE PROFITABLE THRESHOLD PT OF NC, UTB, SHTB, UDTB AND POP.

Protocol PT Protocol PT

NC, γ = 0 0.3333 SHTB (upper bounds) 0.0652
NC, γ = 0.5 0.2500 UDTB 0.2321
NC, γ = 1 0.0000 PoP 0.2500

UTB 0.2321

γ = 1, the weak attacker publishes the block. In other words,
resolving ties by comparing hashes allows the attacker to better
estimate the probability of winning, hence he is more inclined
to deviate when the odds are in favor. Moreover, SHTB enables
“catching up from behind” strategy like UTB and UDTB.

3) Profitable threshold: We calculate the profitable thresh-
old (PT), the maximum α that achieves the ideal chain quality
1−α and display the results in Table II. We choose the term PT
in line with previous works, despite that it is a little misleading
as there is no profit in the context of chain quality.

Result 3: To date, no PoW protocol achieves the ideal chain
quality when α > 0.25.

SHTB’s actual PT should be zero, because as long as a se-
cret block’s hash is small enough, the probability of winning a
tie can be arbitrarily high, encouraging the attacker to withhold
the block. The seemingly above-zero result is because we are
unable to encode the hash to arbitrary granularity.

Result 4: No protocol modification outperforms NC, γ = 0
when α ≤ 0.39.

NC, γ = 0 achieves the best chain quality for all α ≤ 0.35
in Fig. 3. It is only outperformed by PoP when γ ≥ 0.4. We
locate the exact value where PoP starts to outperform NC with
a binary search: in both PoP and NC, Q(0.3901) = 0.5372.

D. What Goes Wrong: Information Asymmetry

We attribute NC’s poor chain quality to the protocol’s in-
capability in distinguishing the honest chain from the attacker
chain, due to information asymmetry. When two competing
chains simultaneously emerge, no information can help the
compliant miners identify the attacker chain, or even whether
there is an attacker chain, as the fork might be caused by a tem-
porary network partition. In contract, possessing information
of both chains, the attacker makes more informed decisions
of “gambling” only when the odds are in favor. Since this
information asymmetry has not been effectively addressed in
non-NC protocols, their attempts to raise the chain quality
remain unsatisfactory.

Unfortunately, we believe it is difficult to solve this infor-
mation asymmetry within PoW protocols’ security assump-
tions. In these assumptions, compliant miners can only rely,
almost exclusively, on limited public information, namely the
blockchain topology and block content, to choose which chain
to mine on. While other public information, such as the
network partition status, which is highly likely to be available
to all miners in reality, as well as the compliant miners’
private information such as their network connectivity or the
difference between a block’s timestamp and its receiving time,

B C

B’

A

time uncle
parent

D

C’ D’

E full reward

half reward
no reward

Fig. 5. An RS execution. gap(C′) = height(E) − height(C′) = 2. When
To = 3, B′ is not visible even if it is referred to in E as its gap reaches To.

is ignored in identifying the attacker chain. The attacker, on the
other hand, is able to act on all available information. In other
words, the information asymmetry is anchored and intensified
in these protocols through their unrealistic and inconsistent
security assumptions.

V. INCENTIVE COMPATIBILITY ANALYSIS ON TYPICAL
ATTACK-RESISTANT PROTOCOLS

In the following sections, we analyze the attack resistance
of NC and three most influential designs, one from each type
of attack-resistant protocols introduced in Sect. II-C2. For
reward-all and reward-lucky protocols, we choose Fruitchains
and Subchains, respectively. For punishment protocols, we im-
plement our own variant of DECOR+ named reward-splitting
protocol (RS). Unlike DECOR+, RS follows NC’s longest
chain and first-received fork-resolving policy. This modifi-
cation excludes the influence of the chain quality from our
attack resistance analysis, as all four protocols in comparison
share the same chain quality. Most insights we gain are direct
generalizable to all protocols of the same type.

A. Modeling Fruitchains

We use Ratiof2b to denote the ratio of fruit difficulty target
to block difficulty target. For example, Ratiof2b = 2 means
that of all the units—mining products, two thirds are fruits
and one third are blocks in expectation.

The main challenge of modeling Fruitchains is to encode
each fruit’s pointer block. The number of states grows expo-
nentially with the number of steps if we encode all possible
choices of each fruit. To address this complexity, we assume
all compliant miners know when the block race starts and act
optimally to avoid honest fruits being orphaned. Moreover, the
attacker’s action to cause a tie is disabled so that no honest fruit
points at attacker-chain blocks. These assumptions are in favor
of the compliant miners. Consequently, incentive compatibility
is computed as an upper bound, while subversion gain and
censorship susceptibility are computed as lower bounds. Our
Fruitchains MDP design can be found in Appendix C.

B. Defining and Modeling RS

In RS, we define a block’s gap as the height difference
between the first main chain block that refers to the block
and the block itself. A main chain block’s gap is defined as
zero. This definition, unlike that of Fruitchains, enables an
accurate modeling of our protocol. A block is visible if its gap
is strictly smaller than the timeout threshold To. Each block
reward is split among all visible blocks of the same height.
Other reward-forfeiting mechanisms of DECOR+ are omitted

as they are related to its own fork-resolving policy. Therefore,
RS’s numerical results are not the same as those of DECOR+.

To model RS, we observe that when the attacker wins
a block race, it is uncertain whether the orphaned honest
blocks are rendered invisible, as they might still be included
in the blockchain as uncles. Therefore, we introduce an extra
field history, a string of at most To − 1 bits, in our state
representation to encode blocks whose rewards are not settled
prior to the current block race. Each bit in history denotes the
blockchain’s status at a specific height. Interested readers can
find the MDP design in Appendix D.

C. Modeling Subchains

The ratio of weak block difficulty target to block difficulty
target is denoted as Ratiow2b. Note that Ratiow2b is not
equivalent to Ratiof2b in Fruitchains. In Fruitchains, a unit
is a fruit as long as the fruit target is met; in Subchains, a unit
is a weak block when the weak-block target is met and the
block target is not met. When Ratiow2b = 2, half of the units
are weak blocks while the other half are blocks in expectation.

A straightforward encoding of a Subchains state includes
both chains’ block/weak-block mining sequences, in which
the number of states grows exponentially with the block race
length. To compress the state space, we observe that in all
outcomes of a block race, the public chain is either adopted
or abandoned by both miners as a whole. Similar argument
applies to the public chain’s competing attacker-chain units.
Therefore, we encode only the number of blocks in both
chains, the attacker chain’s last three units and the length
difference between the two chains instead of two full mining
sequences. This simplification limits the attacker’s ability: the
attacker can keep no more than three private units after every
publication. Hence our Subchains MDP favors the compliant
miners. The complete MDP design is in Appendix E.

D. Evaluation Results

Our MDPs output the attacker’s optimal strategies and their
expected relative revenue, namely 1 − I(α). For all three
protocols, we compute I(α) with α between 0.1 and 0.45 with
interval 0.05 and γ = 0, 0.5 and 1, except that our Fruitchains
MDP does not support γ = 0.5. We list NC’s I(α) in Table III
for comparison.

1) Fruitchains: Fruitchains is evaluated with the following
set of parameters. Ratiof2b is set to 1 so that the expected
number of fruits equals that of blocks, which is the simplest
case. The maximum block race length lmax is set to 20. Two
different To values, 7 and 13 are selected so that we can verify
whether a larger To results in a higher I(α). In practice, To
should be no bigger than σ + 1, where σ is the confirmation
threshold, otherwise an attacker can start mining a competing
chain to double-spend a confirmed transaction without risk-
ing any fruit rewards. Hence the maximum To required by
Bitcoin’s six-confirmation convention and Ethereum’s twelve-
confirmation convention are 7 and 13, respectively. Other MDP
thresholds are set so the probability that these thresholds are
reached before lmax is around one percent. The attacker is

time
honest block

attacker block

pointer block

parent block

Fig. 6. Selfish mining in Fruitchains, To = 3. Attacker fruits mined before
the To-th attacker block are embedded in both chains, whereas honest fruits
are only embedded in honest blocks. The attacker loses only the strawberry
if losing the block race; however, if the attacker wins the race with ≥ To
attacker blocks, all honest fruits are invalidated.

forced to publish the entire chain if any threshold is reached.
The results can be found in the first four data lines of Table IV.

Result 5: In terms of I(α), Fruitchains performs worse than
that of NC for various parameter choices when γ = 0.

In NC, when γ = 0, a weak attacker publishes the blocks
immediately after they are mined, giving up the temporary lead
to avoid losing the block rewards. In contrast, in Fruitchains,
as blocks receive no reward, the attacker has no incentive
to publish any blocks when neither chain reaches length To.
This property encourages more audacious block-withholding
behaviors aiming to orphan all honest fruits with a long
attacker chain. Moreover, this property decreases the profitable
threshold to zero: the attacker can withhold blocks as long as
the attacker chain is in the lead, regardless of how small α is.
An examination of the optimal strategies verifies our inference.

Fruitchains performs better than NC when γ = 1. This is
because in Fruitchains—unlike in NC—winning a block race
with a short chain does not increase the attacker’s relative
revenue.

Result 6: In Fruitchains, I(α) increases along with To, at
the price of longer transaction confirmation delay.

As To increases, the chance that the attacker chain reaches
To before the public chain decreases, limiting the attacker’s
unfair relative revenue. According to the authors, I(α) gets
arbitrarily close to the ideal value 1−α with a large enough To.
Unfortunately, as To ≤ σ+1, σ must increase along with To,
resulting in longer transaction confirmation time. Fruitchains’s
authors have not specified the value of To.

Next we study the influence of Ratiof2b on I(α). Two other
Ratiof2b values, 2 and 0.5, are chosen for To = 13. The results
can be found in the last four lines of Table IV.

Result 7: In Fruitchains, I(α) increases along with Ratiof2b,
at the price of more repeating transactions in different fruits.

This result is similar to that of the Newton-Pepys prob-
lem [54]: a higher Ratiof2b lowers the execution’s variance,
thus favors the compliant miners with majority mining power.
However, the gain comes with a trade-off: more parallel fruits
contain more repeating transactions, which demands better
network optimization to avoid wasting bandwidth.

2) RS: Three different To values are chosen: 3, 6 and 9.
To = 6 here is roughly equivalent to To = 7 in Fruitchains:
in both cases, the first honest unit’s reward is removed when
the sixth attacker chain block is accepted by all miners. The

TABLE III
INCENTIVE COMPATIBILITY I(α) OF NC.

γ 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0 0.9000 0.8500 0.8000 0.7500 0.7000 0.6292 0.5114 0.3303
0.5 0.9000 0.8500 0.8000 0.7500 0.6731 0.5698 0.4275 0.2404
1 0.8889 0.8235 0.7500 0.6667 0.5714 0.4615 0.3333 0.1818

TABLE IV
INCENTIVE COMPATIBILITY I(α) OF FRUITCHAINS, COMPUTED AS UPPER

BOUNDS, SELECTIVELY SHOWN. ENTRIES THAT PERFORM WORSE THAN
NC ARE IN RED ITALIC. I(0.1) = 0.9 FOR ALL (To,Ratiof2b, γ)

COMBINATIONS.

(To,Ratiof2b, γ) \ α 0.15 0.2 0.25 0.3 0.35

(7,1,0) 0.8494 0.7961 0.7356 0.6614 0.5658
(7,1,1) 0.8493 0.7956 0.7337 0.6557 0.5532

(13,1,0) 0.8500 0.7997 0.7472 0.6864 0.6068
(13,1,1) 0.8500 0.7997 0.7470 0.6854 0.6036
(13,2,0) 0.8500 0.7997 0.7472 0.6866 0.6072
(13,2,1) 0.8500 0.7997 0.7470 0.6856 0.6040

(13,0.5,0) 0.8500 0.7997 0.7472 0.6864 0.6065
(13,0.5,1) 0.8500 0.7997 0.7470 0.6853 0.6033

TABLE V
I(α) AND PROFITABLE THRESHOLD PT OF REWARD-SPLITTING PROTOCOL
(RS). ENTRIES PERFORM WORSE THAN NC ARE IN RED ITALIC. OMITTED
ENTRIES, INCLUDING ALL ENTRIES WITH α ≤ 0.25, REALIZE THE IDEAL

VALUE I(α) = 1− α.

(To, γ) \ α 0.3 0.35 0.4 0.45 PT

(3,0) 0.6084 0.4842 0.3097 0.3022
(3,0.5) 0.5997 0.4534 0.2575 0.3021
(3,1) 0.6921 0.5771 0.4292 0.2406 0.2918
(6,0) 0.5283 0.3454 0.3549

(6,0.5) 0.5056 0.2945 0.3509
(6,1) 0.6397 0.4899 0.2816 0.3428
(9,0) 0.5566 0.3690 0.3752

(9,0.5) 0.5388 0.3210 0.3702
(9,1) 0.5269 0.3098 0.3647

profitable thresholds are also calculated. We set lmax = 30 and
all data points converge. The results are shown in Table V.

Result 8: In RS, I(α) increases along with To.
RS with To = 3 outperforms Fruitchains with To = 7

for all inputs. I(α) is further improved when To increases.
For any α < 0.5, RS is able to achieve the ideal I(α) with
a large enough To, rather than getting asymptotically close
to the ideal value as in Fruitchains. This is because unlike
Fruitchains where block withholding has no risk, in RS half of
the secret blocks’ rewards are at risk even if the attacker wins
the block race. Therefore, when the potential risk outweighs
the relative revenue gain in selfish mining, the attacker follows
the compliant strategy and I(α) = 1− α.

3) Subchains: The maximum numbers of blocks in both
chains are set to 20. The length difference of the chains diffu
is set in range [−5, 20]. The attacker is forced to end the

TABLE VI
I(α) OF SUBCHAINS, UPPER BOUNDS, SELECTIVELY SHOWN. ENTRIES

PERFORM WORSE THAN NC ARE IN RED ITALIC.

(Ratiow2b, γ) \ α 0.1 0.15 0.2 0.25 0.3

(2,0) 0.8990 0.8467 0.7922 0.7342 0.6712
(2,0.5) 0.8970 0.8426 0.7853 0.7241 0.6570
(2,1) 0.8889 0.8235 0.7500 0.6667 0.5714
(3,0) 0.8987 0.8456 0.7895 0.7288 0.6613

(3,0.5) 0.8960 0.8401 0.7804 0.7156 0.6432
(3,1) 0.8889 0.8235 0.7500 0.6667 0.5714

time

honest block
honest weak block

publishing time
B

network
v

attacker weak block
attacker block

w

Fig. 7. A typical selfish mining strategy for a weak attacker in Subchains.
The attacker withholds only weak blocks to invalidate honest blocks. In this
example, honest block B is invalidated by attacker weak blocks v and w.

block race once the border numbers are reached. Two different
Ratiow2b values, 2 and 3 are selected to verify whether a larger
weak-block-to-block ratio results in a higher I(α). The results
are selectively displayed in Table VI.

Result 9: In Subchains, PT = 0 for all parameter combi-
nations. In other words, Subchains is not incentive compatible
regardless of how weak the attacker is.

We examine the optimal strategies and discover a series
of attacks. For example, when the first several units in a
block race are attacker weak blocks, the attacker will not
publish them regardless of how small α is, as weak blocks
receive no reward. These weak blocks are used to invalidate
honest blocks, thus increasing the attacker’s relative revenue.
Consequently, Subchains is never incentive compatible.

Subchains always performs worse than NC with γ < 1.
Two protocols are equally bad when γ = 1, because in
both protocols, every attacker unit can orphan an honest unit
without any risk.

Result 10: In Subchains, I(α) decreases as Ratiow2b in-
creases.

Unfortunately, a larger Ratiow2b does not help I(α). This
is because more weak blocks give the attacker more windows
to orphan honest blocks with attacker weak blocks.

VI. SUBVERSION GAIN ANALYSIS

We first describe how to modify the incentive compatibility
MDPs to get subversion gain MDPs, and then present our

results.

A. Modeling Subversion Gain

Similar to previous works [26], [31], [32], all subversion
gain MDPs output average reward per step, rather than the
relative revenue, as the latter value has no practical meaning.

1) NC and RS: Our NC subversion gain MDP extends
previous works [26], [31], [32] by allowing the merchant
to delay delivery if the conflicting transaction is broadcast
before the first payment transaction in a block race receives
σ confirmations. In order to carry this “early publication”
information to reward allocation, we introduce an extra field
matched in the state representation, which is a binary value
encoding whether the earliest attacker block in this block race
is published to cause a tie before σ confirmations. When
all miners accept some attacker blocks into the blockchain
and matched = false, the attacker receives double-spending
rewards Rds in addition to the block rewards, which is defined
according to Eqn. (1) in Sect. III-A3. RS’s subversion gain
MDP follows the same modifications.

2) Fruitchains: Fruitchains’s subversion gain MDP issues
Rds according to Eqn. (1) when the attacker wins a block
race. There is no need to introduce a matched field, as our
Fruitchains MDP does not allow publishing part of the attacker
chain. Note that k and σ in the equation only count the
number of blocks, as fruits do not contribute to the transaction
ordering. The outputs are normalized to average reward per
confirmation, namely per block, rather than per unit, in line
with other protocols in comparison.

3) Subchains: As our Subchains MDP does not encode the
public chain’s length, we assume the service or goods are
delivered when the transaction is confirmed by σ′ blocks,
so that σ′ × Ratiow2b is roughly equivalent to σ in other
protocols. In line with other protocols’ “one unit of block
reward per confirmation” rule, each main chain block receives
Ratiow2b reward units. The double-spending reward Rds is
also multiplied by Ratiow2b to incorporate the transactions
embedded in weak blocks and later reverted. A matched field
is added to the state encoding, similar to that of NC and RS.

B. Evaluation Results

1) Subversion gain: We display results from one set of
parameters and inputs that cover all new insights in Fig. 8. The
attacker has the strongest propagation advantage, i.e., γ = 1.
We set σ = 6 following Bitcoin’s convention. Rds is set to 3,
which is of the same order of magnitude as the block reward,
forcing the attacker to balance two kinds of rewards. The
timeout thresholds To are set to 7 and 6 in Fruitchains and
RS, respectively. Ratiof2b and Ratiow2b are set to 1 and 2 in
Fruitchains and Subchains. We set the maximum number of
blocks in a block race in Subchains bmax = 12, and lmax = 24
in the three other protocols to ensure a fair comparison.

Result 11: The subversion gain S(α, σ, Vds) of Fruitchains
and Subchains is larger than that of NC in our setting, while
that of RS is smaller.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

 niag noisrebuS
S

(α
, 6

, V
ds

)

The attacker's mining power share α

Subchains (lower bounds)
Fruitchains (lower bounds)
NC
RS

Fig. 8. Subversion gain S(α, σ, Vds) of four protocols when γ = 1, σ =
6, Rds = 3, lmax = 24. Larger number indicates worse performance.

0.01

0.1

1

10

100

1000

0.1 0.2 0.3 0.4

 ytnuob noisrevbuS
R

sb
(α

, σ
)

The attacker's mining power share α

NC, σ=3
NC, σ=6
RS, σ=3
RS, σ=6

Fig. 9. Subversion bounty Rsb(α, σ) of NC and RS, γ = 0.95.

Fruitchains and Subchains perform worse than NC for
most α values. Fruitchains appears to achieve better perfor-
mance when α = 0.45 due to its MDP’s limited action
set. Indeed, if we truncate NC’s and RS’s action sets to
the same as Fruitchains’s, they outperform Fruitchains when
α = 0.45. The reasons of Subchains’s and Fruitchains’s
unsatisfactory performance are similar to those of their I(α).
As blocks in Fruitchains and weak blocks in Subchains have
no reward, withholding them is risk-free. More audacious
block-withholding behaviors result in higher expected double-
spending reward regardless of how small Rds is.

RS achieves better double-spending resistance than NC, and
sometimes even achieves the ideal value 0, because the attacker
has to balance the potential gain of double-spending and the
potential loss in block rewards. When the risk outweighs the
benefit, the attacker follows the compliant strategy.

2) Subversion bounty: To further evaluate a protocol’s
double-spending resistance, we define the subversion bounty
Rsb(α, σ) as the minimum Rds that causes a rational attacker
to deviate from the compliant strategy. We only compute
Rsb(α, σ) for NC and RS as Rsb(α, σ) ≡ 0 in the two other
protocols. We choose γ = 0.95 rather than 1, because in the
latter case, the attacker never follows the compliant strategy
in NC, as every attacker block can orphan an honest block
without any risk. The results are shown in Fig. 9.

Result 12: Raising σ drastically increases Rsb for weak
attackers, but it is less effective for strong attackers.

Strong attackers can often find more than one block in a row,
allowing them to initiate double-spending for less rewards.

Result 13: Rsb(α, σ) decreases superlinearly with α.
The subversion bounty provides some guidance for mer-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

 ytilibitpecsuS pihsrosne
C

C
(α

)

The attacker's mining power share α

RS, γ=0
Subchains (lower bounds), γ=0
NC, γ=0
Fruitchains (lower bounds), γ=0

0

0.2

0.4

0.6

0.8

1

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

 ytilibitpecsuS pihsrosne
C

C
(α

)

The attacker's mining power share α

Subchains (lower bounds), γ=0.5
NC, γ=0.5
RS, γ=0.5
NC, γ=1
Subchains (lower bounds), γ=1
RS, γ=1
Fruitchains (lower bounds), γ=1

Fig. 10. Censorship susceptibility C(α) of four protocols, lmax = 40. We
put γ = 0.5 and γ = 1 in the same chart to save space. Larger number
indicates worse performance.

chants to choose the maximum value received in a block and
the number of confirmations, based on the estimated attacker
ability and the consensus protocol.

VII. CENSORSHIP SUSCEPTIBILITY ANALYSIS

A. Modeling Censorship Susceptibility

The censorship susceptibility MDPs are different from in-
centive compatibility MDPs in their reward calculation. Here,
the attacker’s reward in a step is calculated as the compliant
miners’ loss Oc due to the attack. In NC, Oc is defined as the
number of orphaned honest blocks. In Fruitchains, the attacker
receives all compliant miners’ fruit rewards if the attacker wins
a block race no shorter than To. In RS, the attacker receives
one block reward for each honest block rendered invisible and
half of a block reward for each visible honest block with a
competitor. In Subchains, the attacker receives Ratiow2b units
of rewards for each invalidated honest block.

B. Evaluation Results

The protocols’ C(α) are computed with the following
parameters. Three γ values are considered: 0, 0.5 and 1,
with the exception that our Fruitchains MDP does not support
γ = 0.5. We set bmax in Subchains as 20 and lmax = 40 in the
three other protocols to ensure a fair comparison. We truncate
a field representing the attacker’s own fruits in Fruitchains
MDP to enable larger values for lmax, as these fruits do not
contribute to the censorship attack. Other parameters are the

same with our subversion gain evaluation. The results are listed
in Fig. 10.

Result 14: Subchains’s C(α) performs worse than NC,
whereas Fruitchains performs better. RS’s C(α) is worse than
NC when γ = 0, but better when γ ≥ 0.5.

Subchains performs worse than NC for all parameter sets
with α < 0.45 and γ < 1. When γ = 1, its performance is
almost identical to that of NC. The reason for Subchains’s poor
performance in C(α) is similar to that of I(α). RS performs
worse than NC when γ = 0 because in NC, the attacker cannot
orphan an honest block with just one attacker block in a block
race, whereas in RS, the attacker block can “loot” half of a
block reward from its honest competitor. Fruitchains performs
the best for all α ≤ 0.3 because in Fruitchains, the attacker
cannot invalidate any honest fruit without winning a block race
of length To, which is difficult for weak attackers.

An interesting fact is that when α ≥ 0.4, RS’s C(α)
outperforms that of Fruitchains, due to their different gap
definitions. In Fruitchains, winning a block race with at least
To blocks invalidates all honest fruits mined in the current
block race, as their gaps are calculated from their pointer
blocks, which are either “outdated”—mined before the current
block race, or invalidated—not in the main chain. On the
other hand, RS’s gap is calculated from an uncle’s own height,
therefore when the attacker wins a long block race, the last
several honest blocks may still be referred to in the blockchain
as valid uncles, splitting the attacker’s rewards.

Result 15: Fruitchains’s and RS’s gap definitions perform
better in terms of censorship resistance facing weak and strong
attackers, respectively.

VIII. SECURITY TRADE-OFFS IN ATTACK RESISTANCE

A. Security vs. Performance

Our results confirm two security-performance trade-offs.
First, longer confirmation delay contributes to better attack
resistance, as shown in Result 6, 8, and our subversion bounty
analysis. Second, higher bandwidth consumption, if properly
utilized, strengthens the system by reducing the attacker’s
“lucky” space of gambling, as shown in Result 7. Moreover,
our model quantifies the influence of each parameter on the
protocols’ attack resistance, allowing practitioners to choose
these parameters according to their use cases.

B. “Rewarding the Bad” vs. “Punishing the Good”

None of the protocols we have studied successfully defends
against all three attacks. Their weaknesses are not protocol-
specific, but inherent to their technical approaches. Reward-
all protocols improve censorship resistance by increasing the
difficulty to invalidate other miners’ rewards, at the price of
removing the risk to fork the blockchain, thus encouraging
double-spending attacks. Punishment protocols improve selfish
mining and double-spending resistance by discouraging mali-
cious behaviors, at the price of lowering the attacker’s diffi-
culty to damage the compliant miners’ income, thus facilitating
censorship. Reward-lucky protocols, contrary to their design-
ers’ intention, allow the attacker to invalidate the compliant

miners’ “lucky” blocks with the attacker’s “unlucky” units in
a risk-free manner, leaving them more vulnerable to all three
attacks. We conclude that none of the three approaches can
improve the security of PoW against three major attacks; they
only offer different trade-offs in resistance. In other words,
to date, no protocol achieves better resistance than NC in
defending all three attacks.

We further summarize these weaknesses into a dilemma
between “rewarding the bad” and “punishing the good”, which
roots in information asymmetry we identified in Sect. IV-D.
Recall that due to this asymmetry, when the blockchain
is forked, the protocol is unable to distinguish whether a
contentious unit, be it a block, fruit or weak block, is a
product of compliant or malicious behavior. As a result, if
all contentious units are rewarded or punished equally, either
“the bad” are rewarded, as in reward-all protocols, or “the
good” are punished, as in punishment protocols. Selectively
rewarding some contentious units without solving information
asymmetry, as in reward-lucky protocols, usually increases
the vulnerability to malicious manipulation, allowing both
undesirable consequences to happen. This dilemma reveals
that it is difficult, if not impossible, to defend against all three
attacks with just a novel reward distribution policy.

IX. DISCUSSION

A. Future Directions for PoW Protocol Designs

First, we highlight an empirical lesson summarized from our
findings: complexity is the enemy of security. As demonstrated
by our results, despite the simplicity of NC, to date there
is no protocol that surpasses NC in all our security metrics
when the attacker has no network propagation advantage.
The seemingly more sophisticated later designs, contrary to
their own claims, not only invite new attack strategies, but
also complicate the analysis. In fact, some protocols are so
complicated that their vulnerabilities could only be revealed
through our MDP modeling.

As we have identified the cruxes of existing designs’ un-
satisfactory chain quality and attack resistance as their unre-
alistic and inconsistent security assumptions and the dilemma
between “rewarding the bad” and “punishing the good”, re-
spectively, we present our suggestions on more secure PoW
designs in the following two directions, accordingly.

1) Introducing and realizing practical assumptions to raise
the chain quality: Such assumptions may include:
• Awareness of network conditions. Knowledge on whether

the network is partitioned and the slowest block propagation
time allows the participants to identify block withholding
behaviors with a higher level of confidence. This informa-
tion helps distinguish between honest and attacker blocks,
and thus it contributes to raising chain quality.
In the real world, well-established techniques from dis-
tributed databases can help to detect network partitions.
The block propagation delay can be estimated from various
measurement data, such as the current orphan rate [55],
which are locally available or accessible from multiple
online sources [56],

• A loosely synchronized clock. With a loosely synchronized
clock, participants can use the gap between a block’s
receiving time and its timestamp as an indicator of malicious
behaviors. This indicator could help to further raise the
chain quality in combination with the previous assumption.
Note that the assumption of a roughly accurate clock is
necessary for all PoS protocols and is inherent to NC, as
Bitcoin adjusts the block difficulty and the block reward
according to the block timestamps reported by the miners.
As the creation of new bitcoins will stop at around the year
2140, Bitcoin trusts all miners not to collectively set their
clocks faster in order to drain all the remaining bitcoins to
themselves.

• Responsible parties with large deposits or public real-world
identities. The absence of legislation in permissionless
blockchains is not in favor of security. This situation can be
mitigated by demanding a large deposit before performing
certain actions to increase the amount of penalty, or limiting
these actions to parties with publicly verified real-world
identities in order to put their reputation at stake.
Realizing these assumptions requires continuous work from

researchers and developers. These efforts are worthwhile due
to the paramount importance of chain quality in blockchain’s
security.

2) Outsourcing liability to raise attack resistance:
• Introducing additional punishment rules. The unfair rewards

go to the malicious miners can be balanced with additional
punishment. This approach demands that cryptographic
proofs of the malicious behaviors are embedded in the
blockchain. For example, accountable assertions can be used
to deter double-spending [57]. Designing such proofs for
censorship attacks is an interesting research direction.

• Relying on “layer 2” protocols to protect against specific
attacks. This approach reduces the consensus protocol’s
pressure on defending against certain attacks. For exam-
ple, as Bitcoin’s layer 2 solution, lightning network [58]
guarantees double-spending resistance for its transactions,
requiring the underlying consensus protocol to resist against
selfish mining and censorship attacks.
Network-level optimization on accelerating block propaga-

tion also contributes to improving security. This is because
faster block propagation reduces natural orphans, leaving the
attackers fewer opportunities to exploit these blocks for their
attacks [33].

B. Future Directions for PoW Protocols’ Security Analyses

Three common pitfalls in existing security analyses prevent
these vulnerabilities from being discovered in the first place:
• Limiting the analysis to only one attack strategy. Our work

shows that such analysis is far from sufficient: protocol-
specific rules often inspire new attack strategies, causing
more damage than the generic strategy analyzed by the
designer. Typical examples include SHTB’s “smallest hash
first” rule that inspires a “withhold when the hash is small
enough” strategy and Subchains’s “weak block counts in

chain length” rule that inspires a “withhold weak blocks to
invalidate honest blocks” strategy. In particular, given the
recent advancement of artificial intelligence, we can expect
future attackers to be equipped with more sophisticated
strategies. Therefore, a solid protocol design calls for a
formal, rather than a heuristic, security analysis.

• Limiting the analysis against just one type of attacker
incentive. The blockchain ecosystem results in complex
interactions between attackers and other players: an attacker
may focus on short-term rewards, as in double-spending
attacks, or risk short-term rewards for higher future returns,
as in selfish mining, or even sacrifice all rewards to cause
damage on other players, as in censorship attacks. This
complexity, together with the multifunctional nature of
blockchains, demands the security evaluation to be more
comprehensive in terms of attacker incentive. Nevertheless,
existing analyses typically focus on short-term reward seek-
ers, leaving the protocol vulnerable to attackers with the
two other incentives. The problem is more prominent for
permissionless designs, where transactions are processed by
anonymous parties, who abide by the protocol only out of
their will and interests as defined by themselves. The lack
of outside-the-blockchain negative consequences, especially
legislative ones, opens the door for various attacker incen-
tives which need to be taken into account.

• Proving the system’s security within an unrealistic param-
eter range. Even if the security proofs give solid results, it
is unclear whether the system is secure in a more realistic
parameter range. For example, we reveal that Fruitchains is
susceptible to selfish mining and double-spending attacks
if the confirmation delay is shortened to more reasonable
values. Therefore, we argue that future security analyses
should depart from real-world parameters to provide more
objective and meaningful results.
As demonstrated in this research, analyzing protocol secu-

rity with artificial intelligence techniques has the following
three-fold advantage. First, it simplifies the analysis with well-
established algorithms, which enables us to analyze protocols
more complicated than NC. Second, it allows accurate eval-
uation of the parameter choices. Third, these techniques can
compute the attacker’s optimal strategies, allowing designers
to gain direct insights and iteratively improve their designs.

Note that, although vulnerability identification is simplified,
it is more difficult to prove that a protocol resists against
an attack with these techniques. Security cannot be claimed
without proving that the strategy space used to compute the
utility covers all rational strategies.

X. RELATED WORK

Most research analyzing PoW protocol security focuses on
NC. To the best of our knowledge, this paper presents the first
cross-protocol multi-metric blockchain security evaluation. We
briefly overview related research on evaluating PoW protocol
security here, in addition to Sect. II-B.

Garay et al. define and calculate NC’s common prefix
and chain quality when the network delay is negligible and

the total mining power is fixed [3]. Their results are later
generalized by Pass et al. to bounded network delay [51]
and by Garay et al. to variable mining power [59]. Several
impossibility results are proved by Pass and Shi [63], such
as the security properties hold only when the delay is known
a priori. Garay et al. then formalize PoW as a cryptographic
primitive to simplify the proofs [60]. Wei et al. present the
lower bound of chain growth and common prefix when the
attacker can honest blocks’ propagation but has no mining
power [61]. Duong et al. prove NC’s security when some nodes
do not store the entire blockchain [62]. Kiayias et al. study
the equilibria of two simplified mining games with a rational
attacker [52].

Modeling a consensus protocol as a Markov process allows
researchers to quantify the attacker’s optimal utility with well-
studied algorithms. Specifically, Gervais et al. study the selfish
mining and double-spending resistance of NC with different
parameters [31]. Zhang and Preneel evaluate the security of
Bitcoin Unlimited, a Bitcoin scaling proposal [26]. Kiffer
et al. [64] analyze Chainweb’s and GHOST’s consistency,
namely whether all compliant parties share the same ledger,
regardless of whether the ledger is biased by an attacker.

XI. CONCLUSION

Since the introduction of Bitcoin, new PoW designs emerge
on a daily basis from both industry and academia. However,
technology advancement cannot be simply measured by the
number of protocols, but only by convincing improvements in
performance or security. Unfortunately, the security of most
of these alternative protocols remains self-claimed, and many
of them seem to share similar vulnerabilities. To address this
situation, this paper systematically analyze the security of
seven most representative and influential alternative designs.
However, our results show that none of these designs out-
perform NC in terms of either the chain quality or attack
resistance in all scenarios. We identify the roots of their
unsatisfactory performance as PoW protocols’ unrealistic as-
sumptions and information asymmetry between the compliant
miners and the attacker. Moreover, we discover a considerable
number of protocol-specific attacks and quantify two security-
performance trade-offs with finer granularity. These results
allow us to pinpoint some promising directions towards more
secure PoW protocol designs and more solid security analysis.

ACKNOWLEDGEMENTS

This work was supported in part by Blockstream, the Flem-
ish government imec ICON BoSS project, and the Research
Council KU Leuven: C16/15/058. We would like to thank
Yonatan Sompolinsky, Andrew Miller, Kaiyu Shao, Pieter
Wuille, Gregory Maxwell, Adam Back and the anonymous
reviewers for their valuable comments and suggestions.

REFERENCES

[1] mapofcoins. (2018) Map of coins: BTC map. [Online]. Available:
http://mapofcoins.com/bitcoin

[2] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash system.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[3] J. A. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin backbone
protocol: Analysis and applications,” in EUROCRYPT, 2015, pp. 281–
310.

[4] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in Bitcoin,” in Financial Cryptography and Data Security,
2016, pp. 515–532.

[5] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gener-
alizing selfish mining and combining with an eclipse attack,” in IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2016,
pp. 305–320.

[6] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in Financial Cryptography and Data Security. Springer,
2014, pp. 436–454.

[7] L. Bahack, “Theoretical Bitcoin attacks with less than half of the
computational power (draft),” arXiv preprint arXiv:1312.7013, 2013.

[8] Ethereum white paper: Modified Ghost implementation. [Online].
Available: https://github.com/ethereum/wiki/wiki/White-Paper]modified
-ghost-implementation

[9] E. Heilman, “One weird trick to stop selfish miners: Fresh Bitcoins,
a solution for the honest miner.” Cryptology ePrint Archive, Report
2014/007, 2014, https://eprint.iacr.org/2014/007.

[10] Y. Lewenberg, Y. Sompolinsky, and A. Zohar, “Inclusive block chain
protocols,” in Financial Cryptography and Data Security, 2015, pp. 528–
547.

[11] P. R. Rizun, “Subchains: A technique to scale Bitcoin and
improve the user experience,” Ledger, 2016. [Online]. Available:
https://www.ledgerjournal.org/ojs/index.php/ledger/article/view/40

[12] S. D. Lerner. (2015) DECOR+HOP: A scalable blockchain protocol.
[Online]. Available: https://scalingbitcoin.org/papers/DECOR-HOP.pdf

[13] R. Zhang and B. Preneel, “Publish or Perish: A backward-compatible
defense against selfish mining in Bitcoin,” in CT-RSA 2017: The Cryp-
tographers’ Track at the RSA Conference, 2017, pp. 277–292.

[14] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. (2016) SPECTRE: Seri-
alization of proof-of-work events: Confirming transactions via recursive
elections. [Online]. Available: https://eprint.iacr.org/2016/1159.pdf

[15] I. Bentov, P. Hubácek, T. Moran, and A. Nadler, “Tortoise and Hares
consensus: the Meshcash framework for incentive-compatible, scalable
cryptocurrencies,” IACR Cryptology ePrint Archive, 2017.

[16] Y. Sompolinsky and A. Zohar, “PHANTOM: A scalable blockdag
protocol,” IACR Cryptology ePrint Archive, 2018. [Online]. Available:
https://eprint.iacr.org/2018/104.pdf

[17] S. D. Lerner. (2015) RSK white paper overview. [Online]. Available:
https://zh.scribd.com/document/371006520/RSK-White-Paper-Overview

[18] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing Bitcoin security and performance with strong consistency
via collective signing,” in Proc. 25th conference on USENIX Security
Symposium, 2016.

[19] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” Proc. 38th IEEE Symposium on Security and Privacy, 2018.

[20] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in Proceedings
of the ACM Symposium on Principles of Distributed Computing,
ser. PODC ’17. ACM, 2017, pp. 315–324. [Online]. Available:
http://doi.acm.org/10.1145/3087801.3087809

[21] P. Camacho and S. D. Lerner. (2016) DECOR+LAMI: A scalable
blockchain protocol. [Online]. Available:
https://scalingbitcoin.org/papers/DECOR-LAMI.pdf

[22] G. Bissias and B. N. Levine, “Bobtail: A proof-of-work target that min-
imizes blockchain mining variance (draft),” CoRR, vol. abs/1709.08750,
2017. [Online]. Available: http://arxiv.org/abs/1709.08750

[23] W. Martino, M. Quaintance, and S. Popejoy. (2018) Chainweb:
A proof-of-work parallel-chain architecture for massive throughput.
[Online]. Available: http://kadena.io/docs/chainweb-v15.pdf

[24] C. Natoli and V. Gramoli, “The balance attack against proof-of-work
blockchains: The R3 testbed as an example,” 2016.

[25] A. Kiayias and G. Panagiotakos, “On trees, chains and fast transactions
in the blockchain.” IACR Cryptology ePrint Archive, vol. 2016, p. 545,
2016.

[26] R. Zhang and B. Preneel, “On the necessity of a prescribed block
validity consensus: Analyzing bitcoin unlimited mining protocol,” in
Proceedings of the 13th International Conference on emerging Network-
ing EXperiments and Technologies. ACM, 2017, pp. 108–119.

[27] H. Nguyen. (2018) Proof-of-stake & the wrong engineering mindset.
[Online]. Available: https://medium.com/@hugonguyen/proof-of-stake-
the-wrong-engineering-mindset-15e641ab65a2

[28] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry,
S. Meiklejohn, and G. Danezis, “Consensus in the age of
blockchains,” CoRR, vol. abs/1711.03936, 2017. [Online]. Available:
http://arxiv.org/abs/1711.03936

[29] J. Brown-Cohen, A. Narayanan, C.-A. Psomas, and S. M. Wein-
berg, “Formal barriers to longest-chain proof-of-stake protocols,” arXiv
preprint arXiv:1809.06528, 2018.

[30] A. Miller. (2013) Feather-forks: enforcing a blacklist with sub-
50[Online]. Available: https://bitcointalk.org/index.php?topic=312668.0

[31] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proc. the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. ACM, 2016, pp. 3–16.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978341

[32] Y. Sompolinsky and A. Zohar, “Bitcoin’s security model revisited,” arXiv
preprint arXiv:1605.09193, 2016.

[33] ——, “Secure high-rate transaction processing in Bitcoin,” in Financial
Cryptography and Data Security, 2015, pp. 507–527.

[34] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for Bitcoin and
cryptocurrencies,” in IEEE Symposium on Security and Privacy (S&P).
IEEE, 2015, pp. 104–121.

[35] M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan,
“On the instability of Bitcoin without the block reward,” in Proc.
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. ACM, 2016, pp. 154–167. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978408

[36] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder,
Bitcoin and Cryptocurrency Technologies. Princeton University Pres,
2016.

[37] Decred Developers. (2018) Decred - autonomous digital currency.
[Online]. Available: https://www.decred.org/

[38] J. Bonneau, “Why buy when you can rent? bribery attacks on Bitcoin-
style consensus,” in BITCOIN workshop, Financial Cryptography and
Data Security. Springer, 2016.

[39] D. Meshkov, A. Chepurnoy, and M. Jansen, “Revisiting difficulty
control for blockchain systems,” in DPM/CBT@ESORICS 2017, 2017.
[Online]. Available: https://eprint.iacr.org/2017/731.pdf

[40] I. Eyal, “The miner’s dilemma,” in IEEE Symposium on Security and
Privacy (S&P). IEEE, 2015, pp. 89–103.

[41] Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim, “Be selfish and
avoid dilemmas: Fork after withholding (faw) attacks on bitcoin,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 195–209.

[42] I. Tsabary and I. Eyal, “The gap game,” in Proceedings of the 11th ACM
International Systems and Storage Conference. ACM, 2018.

[43] R. Pass and E. Shi, “Thunderella: Blockchains with optimistic in-
stant confirmation,” in Advances in Cryptology – EUROCRYPT 2018.
Springer International Publishing, 2018, pp. 3–33.

[44] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of activity:
Extending bitcoin’s proof of work via proof of stake [extended abstract],”
ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 3, pp.
34–37, 2014.

[45] T. Duong, A. Chepurnoy, L. Fan, and H.-S. Zhou, “Twinscoin: A
cryptocurrency via proof-of-work and proof-of-stake,” in Proceedings
of the 2Nd ACM Workshop on Blockchains, Cryptocurrencies, and
Contracts, ser. BCC ’18. ACM, 2018, pp. 1–13. [Online]. Available:
http://doi.acm.org/10.1145/3205230.3205233

[46] V. Buterin. (2014) Ethereum: A next-generation smart contract and
decentralized application platform. [Online]. Available:
https://github.com/ethereum/wiki/wiki/White-Paper

[47] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, “Bitcoin-
NG: A scalable blockchain protocol,” in 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16).
Santa Clara, CA: USENIX Association, 2016, pp. 45–59. [On-
line]. Available: https://www.usenix.org/conference/nsdi16/technical-
sessions/presentation/eyal

[48] (2018) Waves platform. [Online]. Available: https://wavesplatform.com/
[49] (2018) Aeternity blockchain. [Online]. Available: https://aeternity.com/
[50] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,

A. Miller, A. Poelstra, J. Timón, and P. Wuille, “Enabling

blockchain innovations with pegged sidechains,” URL: http://www.
opensciencereview. com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains, 2014.

[51] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2017,
pp. 643–673.

[52] A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselekounis,
“Blockchain mining games,” in Proceedings of the 2016 ACM Con-
ference on Economics and Computation. ACM, 2016, pp. 365–382.

[53] K. Liao and J. Katz, “Incentivizing blockchain forks via whale trans-
actions,” in Financial Cryptography and Data Security. Springer
International Publishing, 2017, pp. 264–279.

[54] Wolfram Research, Inc. (2018) Newton-Pepys problem. [Online].
Available: http://mathworld.wolfram.com/Newton-PepysProblem.html

[55] C. Decker and R. Wattenhofer, “Information propagation in the Bitcoin
network,” in 13th IEEE International Conference on Peer-to-Peer Com-
puting (P2P), 2013.

[56] Bitcoin stats - data propagation. [Online]. Available:
http://bitcoinstats.com/network/propagation/

[57] T. Ruffing, A. Kate, and D. Schröder, “Liar, liar, coins on fire!:
Penalizing equivocation by loss of Bitcoins,” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 219–230.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813686

[58] J. Poon and T. Dryja, “The Bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

[59] J. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin backbone protocol
with chains of variable difficulty,” in Annual International Cryptology
Conference. Springer, 2017, pp. 291–323.

[60] J. A. Garay, A. Kiayias, and G. Panagiotakos, “Proofs of work for
blockchain protocols,” Cryptology ePrint Archive, Report 2017/775,
Tech. Rep., 2017.

[61] P. Wei, Q. Yuan, and Y. Zheng, “Security of the blockchain against long
delay attack,” in Advances in Cryptology–ASIACRYPT 2018, 2018.

[62] T. Duong, A. Chepurnoy, and H.-S. Zhou, “Multi-mode cryptocurrency
systems,” in Proceedings of the 2nd ACM Workshop on Blockchains,
Cryptocurrencies, and Contracts. ACM, 2018, pp. 35–46.

[63] R. Pass and E. Shi, “Rethinking large-scale consensus,” in Computer
Security Foundations Symposium (CSF), 2017 IEEE 30th. IEEE, 2017,
pp. 115–129.

[64] L. Kiffer, R. Rajaraman et al., “A better method to analyze blockchain
consistency,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 729–744.

APPENDIX A
SHTB MDP DESIGN

A. Properties of Deterministic Tie-Breaking Protocols

We can simplify the state representation in these protocols
by omitting two kinds of information that do not affect the
miners’ choices of parent blocks. First, we do not need to
encode the mining history, as “latecomer” blocks can still win
a tie. Second, we do not need to explicitly encode how many
attacker chain blocks are published, as it can be deduced from
the public chain length lc. As compliant miners always work
on the same chain in deterministic tie-breaking protocols, if the
attacker publishes enough blocks so that the compliant miners
switch to the attacker chain, the public chain is abandoned
and lc is updated to zero; otherwise as long as lc > 0 we
can safely assume the compliant miners are working on the
public chain, thus different numbers of published attacker
chain blocks make no difference to all miners. This analysis
also shows that compliant miners always work on the public
chain in deterministic tie-breaking protocols.

B. State Space

We use la and lc to denote the lengths of the attacker chain
and the public chain, respectively, excluding their common
blocks. The hash region of the public chain tip is denoted as
Hashc. If we normalize the space of valid block hash to [0, 1)
and split it into 10 regions, Hashc = h means the hash resides
in [0.1h, 0.1(h+1)), where h is the region number, an integer
ranges from 0 to 9. Hash1a and Hash2a represent the hash
regions of the last and the second last attacker chain blocks,
respectively. When la ≥ lc > 0, tie denotes whether the
public chain tip is smaller than its attacker chain competitor.
It has two possible values: aWin, meaning the attacker chain
competitor is smaller, and aLose, meaning the public chain tip
is smaller.

The state representation differs according to the length dif-
ference of the chains: (1) When la < lc, a state is represented
as a 3-tuple (la, lc, Hashc). As the public chain is longer,
the compliant miners will not mine on the attacker chain, thus
there is no need to encode Hash1a and Hash2a. Hashc is encoded
in case the attacker catches up from behind. (2) When la = lc,
a state is a 3-tuple (la, lc, tie). When tie = aWin, the attacker
can orphan the public chain by publishing the entire attacker
chain. (3) When la = lc + 1, a state is a 4-tuple (la, lc, tie,
Hash1a). When tie = aWin, the attacker can orphan the public
chain by publishing until the lc-th attacker block; otherwise the
attacker needs to publish the entire chain to win the race. When
lc = 0, tie is undefined, denoted as ∅. (4) When la > lc +1, a
state is a 4-tuple (la, lc, Hash1a, Hash2a). Instead of encoding
the hash regions of all attacker blocks in the leading part, we
only encode the last two. The attacker is not allowed to orphan
the public chain by winning a tie when more than one block
ahead, which favors the compliant miners.

C. Actions

The attacker can choose from four actions:
Adopt. Give up the attacker chain and mine on the public

chain. This action is always available.
OverrideWithTie. Publish until the lc-th attacker block to

orphan the public chain, and keep mining on the attacker chain
after publication. Available when tie = aWin.

OverrideWithMore. Publish until the (lc + 1)-th attacker
block to orphan the public chain, and keep mining on the
attacker chain. Available when la > lc.

Wait. Do not publish anything and keep mining on the
attacker chain. Always available.

We do not claim that this action set covers all optimal
actions. It is possible that in certain states, the optimal action
is to publish more than lc+1 blocks, which is not in our action
set. This constrained attacker action set favors the compliant
miners.

An interesting implication from this action set definition is
that we can assume the attacker always mines on the attacker
chain. Adopt can be considered as working on an empty
attacker chain. Note that this does not exclude the compliant
strategy from the strategy space. The compliant strategy is
equivalent to choosing Adopt when the last block is honest

and choosing OverrideWithMore when the last block is the
attacker’s. This implication applies to all our MDPs.

D. Reward Allocation and State Transition

The compliant miners get Rc = lc only after Adopt. The
attacker gets Ra = lc or lc + 1 after OverrideWithTie or
OverrideWithMore, respectively. After each of these three
actions, information regarding blocks that are permanently
abandoned or accepted by both miners will be cleared in the
new temporary state. No reward is allocated after Wait.

When a new block is mined, it has equal probability to
reside in every hash region. For example, when there are 10
valid hash regions, the probability that the compliant miners
find the next block in region 3 is (1 − α)/10. Assuming the
new block’s hash region is Hashnew, if the new block’s chain
is longer than its competitor, Hashnew will be encoded in
the next state as Hash1a or Hashc, depending on the miner.
Before replacing a non-empty Hash1a, the old Hash1a is stored
as the new Hash2a: Hash2,newa = Hash1a. If la = lc − 1 in the
post-publishing temporary state and the new block is mined
by the attacker, we have tie = aWin in the new state if
Hashnew is smaller than the previous Hashc or tie = aLose
if Hashnew is equal to or bigger than the previous Hashc.
As an example, if la = lc − 1 and Hashc = 3 in the
post-publishing state, the probability that the next state is
(la+1, lc, tienew = aWin) is α×3/10, as the attacker can only
win the tie with Hashnew = 0, 1, or 2; the probability that the
next state is (la + 1, lc, tienew = aLose) is α × (10 − 3)/10.
The same rule is followed for updating tie when the public
chain is catching up from behind the attacker chain.

APPENDIX B
UDTB MDP DESIGN

A. State Space

As the probability of winning a tie is fixed to 50%, there is
no need to encode the hashes of the latest blocks. Therefore,
we can simplify the state representation of the previous MDP
as follows. (1) When la < lc or lc = 0, a state is a two-tuple
(la, lc). (2) When la ≥ lc > 0, a state is a 3-tuple (la, lc, tie).

B. Actions

The action set is the same with the previous MDP. Ac-
cording to the action set completeness proof in Appendix
A of [4], this set covers all rational actions. Note that the
proof is not applicable to SHTB as blocks in SHTB are not
interchangeable: a block with smaller hash is more likely to
win a tie.

C. Reward Allocation and State Transition

The reward allocation mechanism is identical to that of the
previous MDP. The state transition rules for updating la and lc
are straightforward, hence we only highlight the updating rule
for tie here. The new tie is different from the previous one in
three occasions. First, when la = lc− 1 in the post-publishing
temporary state and the new block is mined by the attacker,
the transition probability to the new state (la+1, lc, aWin) is

α/2 and the same to (la+1, lc, aLose). Second, when la > lc
in the post-publishing state and the new block is mined by
the compliant miners, the transition probability to the new
state (la, lc +1, aWin) is (1−α)/2 and the same to (la, lc +
1, aLose). At last, when la = lc in the post-publishing state
and the new block is mined by the compliant miners, tie is
cleared and the transition probability to the new state (la, lc+
1) is 1− α. In all other situations, tie remains unchanged.

APPENDIX C
THE FRUITCHAINS MDP DESIGN

Unlike in previous MDPs where a block is found at the end
of each step, in the Fruitchains MDP, each step ends with the
discovery of a unit, which might be a fruit or a block.

A. State Space

Encoding each fruit’s pointer block in a state is compu-
tationally infeasible due to the potentially large number of
fruits. Therefore, we split all fruits into three groups and
deal with them separately: (1) attacker fruits mined before
the To-th attacker block; (2) attacker fruits mined after the
To-th attacker block; (3) honest fruits. As the attacker knows
which block is the consensus block, it is rational that fruits
in group (1) point to the consensus block, so that they can
be published before expiration and embedded in both chains.
As these fruits always receive rewards, we can issue their
rewards the moment they are found, and forget them in the
next state. Fruits in group (2) gain rewards if and only if the
attacker wins the block race, because otherwise the pointer
blocks of these fruits are invalidated. Fruits in group (3) lose
the rewards when the attacker wins the block race with at least
To blocks, either because their pointer blocks are invalidated or
because their gaps exceed To. For all other scenarios, either the
attacker loses or wins with less than To blocks, we assume all
honest fruits receive rewards. This setting favors the compliant
miners, as the attacker may still invalidate some honest fruits
when winning with less than To blocks: either the honest fruits
expire after the current block race, as their pointers are before
the consensus block; or the attacker wins the following block
races and obtains To consecutive main chain blocks eventually,
causing the honest fruits mined in the first block race to expire.

A state is represented as a 4-tuple (la, lc, fc, isLastHB)
when la < To, or a 5-tuple (la, lc, fc, fafterTo

a , isLastHB)
when la ≥ To, where fc denotes the number of honest fruits,
fafterTo
a denotes the number of attacker fruits mined after the
To-th attacker block. A Boolean value isLastHB stores whether
the last unit is an honest block.

B. Actions

The attacker can choose from three actions:
Adopt. Give up the attacker chain. Same as previous MDPs.
Override. Publish all fruits and blocks to orphan the public

chain. When γ = 0, this action is only available when la ≥
lc + 1; when γ = 1, this action is also available when la = lc
and isLastHB = true. Due to the complexity of Fruitchains,
we do not consider other γ values.

Wait. Keep mining on the attacker chain. Same as previous
MDPs.

This limited set of actions does not allow pre-mining.
Namely, the attacker cannot publish some blocks and fruits,
and carry other secret units to the next block race.

C. Reward Allocation and State Transition

A valid fruit receives 1/Ratiof2b so that on average one
unit of reward is issued per block. The attacker receives one
fruit reward for each fruit mined before the To-th attacker
block. If the attacker chooses Override when la < To or Adopt,
the compliant miners receive fc fruit rewards. If the attacker
chooses Override when la ≥ To, the compliant miners receive
nothing and the attacker receives fafterTo

a fruit rewards. All
settled fruits and blocks are cleared in the new temporary state.

The new unit found at the end of a step can be an attacker
block, an attacker fruit, an honest block or an honest fruit,
with probability α/(1+Ratiof2b), α ·Ratiof2b/(1+Ratiof2b),
(1 − α)/(1 + Ratiof2b), (1 − α) · Ratiof2b/(1 + Ratiof2b),
respectively. For example, when α = 1/3 and Ratiof2b = 2,
the probabilities of finding an attacker block, an attacker fruit,
an honest block and an honest fruit are 2/9, 1/9, 4/9 and
2/9, respectively. When the latest unit is an honest block,
isLastHB = true, otherwise isLastHB = false.

APPENDIX D
REWARD-SPLITTING PROTOCOL MDP DESIGN

It is never optimal for the attacker to hide a block forever,
as a late publication still gains at least half of a block reward.
Similarly, the attacker blocks never embed honest uncles,
hoping that they could be rendered invisible.

A. State Space

An honest block of height h becomes invisible when the
main chain blocks between height h and h + To − 1 are
all mined by the attacker. Therefore, our state representation
needs to encode previous consecutive block races won by the
attacker up to To − 1 height values. We encode this history
information as history, a binary string of at most To − 1 bits.
The length of history represents the number of consecutive
attacker main chain blocks. Each bit indicates whether the
attacker block has an honest competitor: 0 means no, 1 means
yes. The least significant bit represents the blockchain status at
the consensus block’s height, denoted as hcon, and the second
least significant bit represents that of height hcon − 1. Other
bits follow similar definitions. A substring from height h1 to
h2 where h1 ≤ h2 is denoted as history[h1 : h2], thus history
is equivalent to history[hcon−To+2 : hcon]. When h1 > h2 the
substring is empty. We do not need to encode blocks at height
hcon−To+1 and lower, as their rewards are settled along with
the current consensus block. Neither do we need to encode
whether a leading zero is an attacker block without an honest
competitor or a block race won by the compliant miners, as
in both cases the rewards are settled already, which will be
further explained when describing the reward allocation. The
number of 1s in the substring is denoted as

∑
history[h1 : h2].

A state is represented as a 4-tuple (la, lc, fork, history),
where fork has three possible values. If there is an ongoing
tie, namely the attacker chain is published until the lc-th block
and this block is published along with the latest honest block,
fork = active. Otherwise if the latest block is mined by the
compliant miners, fork = cLast; fork = aLast if the attacker
finds the last block.

B. Actions

There are To + 2 possible optimal actions:
Adopt. Give up the attacker chain. Same as previous MDPs.
Wait. Keep mining on the attacker chain. Same as previous

MDPs.
Match. Publish until the lc-th attacker block to cause a tie,

then keep mining on the attacker chain. Feasible when la ≥ lc
and fork = cLast, namely the attacker has enough blocks to
match the newly-mined honest block.

Overridek. Publish until the (lc + k)-th attacker block to
orphan the public chain, then keep mining on the attacker
chain, where 1 ≤ k ≤ To − 1. Feasible when the attacker has
enough blocks.

This action set covers all optimal actions. It is never optimal
to publish the (lc + To)-th attacker block, as the attacker can
invalidate one more honest block without risking any block
reward by deferring this attacker block’s publication until the
next honest block is mined.

C. Reward Allocation and State Transition

An attacker block is certain to receive the full reward if it
has no competing honest block when published. Therefore, we
issue block rewards to these “no competitor” attacker blocks
the moment they are published. Consequently, the rewards of
all 0s in history are settled before they enter history.

When choosing Adopt, the compliant miners receive lc −
la full rewards for honest blocks without a competitor, and
(
∑

history + la)/2 for honest blocks with a competitor. The
attacker receives (

∑
history + la)/2 for the attacker blocks.

We assume la ≤ lc here, as otherwise Override1 is clearly
more profitable than Adopt. After Adopt, historynew is empty.

When choosing Overridek, the attacker receives two kinds
of rewards. The first kind are for attacker blocks that have
competitors but the competitors are pushed out of history after
this action. We first append 1lc ||0k, a string denotes the current
block race, to the end of history, then truncate the resulted
string to To − 1 least significant bits. When To − 1 ≥ lc + k,
historynew = history[hcon−To+2+lc+k : hcon]||1lc ||0k. The
attacker receives

∑
history[hcon−To+2 : hcon−To+1+lc+k]

for all 1s in the discarded history bits. Otherwise when To −
1 < lc+k, the attacker receives

∑
history+lc+k−(To−1) for

all 1s in history and the first lc + k− (To− 1) attacker blocks
in the current block race, as their competitors are invalidated,
and historynew = 1To−1−k||0k. The second kind of rewards
are for the last k published attacker blocks, as they have no
honest competitor.

No reward is allocated after Wait if fork 6= active. There
are two possible states after Wait if fork 6= active, Adopt and

Overridek: either the next block is mined by the attacker on the
attacker chain with probability α, or the next block is mined
by the compliant miners on the public chain with probability
1−α. In the former case, forknew = aLast; in the latter case,
forknew = cLast.

Unlike the previous actions, there are three possible states
after Wait if fork = active or Match. First, the attacker mines
a block on the attacker chain with probability α. This is the
only transition in the entire MDP where forknew = active.
Second, the compliant miners mine on the public chain with
probability (1 − α)(1 − γ), forknew = cLast. In the first
two cases, no reward is allocated and historynew = history.
Third, the compliant miners mine on the attacker chain with
probability (1−α)γ. In this case, history is appended with 1lc

and truncated until at most To − 1 bits. The attacker receives
rewards for all 1s in the discarded history bits. The new state
is (la − lc, 1, cLast, historynew).

APPENDIX E
SUBCHAINS MDP DESIGN

A. State Space

Similar to Fruitchains MDP, in Subchains MDP, each step
ends with the discovery of a unit—either a block or a weak
block. Based on our key observation in Sect. V-C, of the
two mining sequences, only the leading unit sequence of the
attacker chain, i.e., the units whose heights are larger than the
public chain tip, needs to be encoded, as other bits are either
adopted or abandoned as a whole. Therefore, we introduce
two extra fields to facilitate state representation compression.
First, lead denotes the attacker chain’s leading unit sequence.
Each bit in a string indicates whether the unit is a block or a
weak block: 0 means a weak block, 1 means a block. The most
significant bit represents the oldest unit in the chain, while the
least significant bit presents the latest. Second, we encode the
length difference between two chains as diffu.

The state representation differs according to the length
difference of the chains. (1) When diffu < 0, a state is a
3-tuple (ba, bc, diffu), where ba and bc denote the number
of blocks in the attacker and the public chain, respectively.
(2) When diffu = 0, a state is a 4-tuple (ba, bc, diffu, fork).
Similar to fork in RS MDP, fork here denotes whether there
is an ongoing tie, and if not, the miner of the last unit.
There is no need to encode fork in the previous case as
it is infeasible for the attacker to cause a tie. (3) When
diffu > 0, a state is a 5-tuple (ba, bc, diffu, lead, fork). For
example, (1, 3, 2, “01”, aLast) means: the attacker chain and
the public chain have one and three blocks, respectively; the
attacker chain is two units longer than the public chain, of
which the penultimate unit is a weak block, the last unit is a
block mined in the last round.

B. Actions

The attacker can choose from four actions: Adopt, Override,
Match and Wait. Adopt and Wait are the same with previous
MDPs.

Match. Publish until the published attacker chain is of the
same length with the public chain to cause a tie, then keep
mining on the attacker chain. Feasible when fork = cLast and
diffu = 0, 1, 2, or 3. The requirement on diffu is because we
set the maximum length of lead to three in order to further
compress the state space. When diffu > 3, lead only encodes
the last three attacker units.

Override. When diffu = 1, 2 or 3, publish until the published
attacker chain is one unit longer than the public chain; when
diffu > 3, publish all attacker units except the last three.

This limited action set favors the compliant miners.

C. Reward Allocation and State Transition

We issue each block Ratiow2b units of rewards, so that
on average each block or weak block receives one unit of
reward. As both weak blocks and blocks contribute to the
transaction confirmation, this “one reward per confirmation”
rule is consistent with the reward allocation mechanisms of
NC, Fruitchains and RS.

The compliant miners get Rc = bc × Ratiow2b only after
Adopt. After Override, the attacker gets rewards for all pub-
lished attacker blocks, which is Ra = (ba −

∑
lead)Ratiow2b

when diffu > 3 or diffu ≤ 3 and the highest order bit of
lead is zero, or Ra = (ba −

∑
lead + 1)Ratiow2b when

diffu ≤ 3 and the highest order bit of lead is 1. If the
next unit is mined by the compliant miner on the attacker
chain after Wait when fork = active or Match, the attacker
gets Ra = (ba −

∑
lead)Ratiow2b. After each of these

actions, information regarding blocks and weak blocks that
are permanently abandoned or accepted by both miners will
be cleared in the new temporary state. No reward is allocated
after Wait when fork 6= active.

There are four outcome states after Wait when fork 6=
active, Adopt or Override, depending on the next unit. The
new mining product can be an attacker block, an attacker weak
block, an honest block or an honest weak block, with probabil-
ity α/Ratiow2b, α·(Ratiow2b−1)/Ratiow2b, (1−α)/Ratiow2b,
(1 − α) · (Ratiow2b − 1)/Ratiow2b, respectively. Meanwhile,
after Wait when fork = active or Match, the new honest unit
might be mined on either chains, resulting in six outcome
states. For example, the probability of an honest block mined
on the attacker chain is (1− α)γ/Ratiow2b.

We now describe how to get the new state from the
temporary state after publication and the new unit. The rule
for updating fork is identical to that of RS. If the next unit is
honest, diffu decreases by one, otherwise it increases by one.
If the next unit is a block, ba or bc increases by one according
to the miner.

