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Abstract—Proof-of-work (PoW) mechanisms secure
about 80% of the $250B cryptocurrency market. PoW
requires system participants to expend computational
resources, and protects the system from attackers
who cannot expend resources at an equivalent rate.
These systems operate in the permissionless setting and
compensate their users with cryptocurrency, having a
monetary value. As cryptocurrency prices sore so do
the invested resources, and Bitcoin expenditures alone
are 0.24% of the global electricity consumption. Ar-
guably, this is superfluous, and lowering the ecological
footprint justifies settling for a lower attack threshold.

We present novel protocols that allow the system
designer to accurately trade off security for expenditure
reduction. To the best of our knowledge, this is the first
work to do so without adding qualitatively stronger
model assumptions. Moreover, our protocols reduce
PoW resource expenditure significantly, but with only
limited security degradation.

To analyze these protocols We refine the common
blockchain model to take into account the cryptocur-
rency value in real terms, expenditure, and security
metrics, distinguishing common revenue-seeking at-
tacks from sabotage. Our analysis of game-theoretic
and economical properties of the protocols can be used
to tune blockchain security to its required level and
limit its ecological damage.

I. INTRODUCTION

Recent years, since Nakamoto’s introduction of the

Nakamoto’s blockchain and Bitcoin [1], have seen a

renaissance of cryptocurrencies, with a market cap

estimated at $250B [2], [3], [4]. Cryptocurrencies

enable minting and transacting of tokens among the

system clients. Unlike pre-Bitcoin systems, they are

decentralized, with no privileged entities, allowing

agents, named miners, to join the system without

permission from existing participants.

Over 80% [2] of the cryptocurrency market

cap comprises systems such as Bitcoin [1] and

Ethereum [5] utilizing PoW [6], [7] for security. PoW
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protocols require computational resources expendi-

ture for participation, and reward participants with

cryptocurrency for their efforts. Thus, higher cryp-

tocurrency prices imply higher rewards for miners,

leading to more mining power joining the system,

and better security.

However, with the rise of cryptocurrency prices,

resource consumption has become excessive [8], [9],

[10], [11], [12], [13]. The amount of resources spent

on PoW mining has been exponentially growing [14],

[15], with Bitcoin consuming 0.24% of the global

electricity usage [16], [17], surpassing countries like

Austria and Colombia. The required computational

resources [18], [19], [20] imply a significant, ar-

guably superfluous, ecological impact.

Previous work (§II) explored less environmentally-

damaging alternatives, including wasting different

resources [21], owning, but not spending, the cryp-

tocurrency tokens instead of external resources [22],

[23], and advanced versions of classical centralized

solutions [24]. However, these approaches require

making qualitatively stronger assumptions.

In this work we present two alternative PoW

cryptocurrency protocols that reduce external expen-

diture compared to existing protocols, but with only

a limited security reduction. We start by modeling

a cryptocurrency system as a game (§III), similar

to previous work [25], [26], [27], [28], [29]. The

participants strive to maximize their profits from

mining. Unlike previous work, we explicitly define

the relation between the cryptocurrency and exter-

nal expenses, and how minting affects that relation:

We assume that the monetary value of the entire

cryptocurrency (market cap) is determined by factors

outside the scope of this work (adoption, regulation,

etc.), and the external monetary value of each in-

ternal coin is its fraction out of the entire supply.

Nakamoto [1] naturally fits in our model (§IV).

Note that the trivial solution of reducing the
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rewards, e.g., by half, is ineffective. Suppose, for

example, the Bitcoin system would have minted coins

at half the rate. Everything else being equal, the value

of each token in this system would be twice that

of the actual system. Miners would receive half the

nominal cryptocurrency amount compared to Bitcoin,

but spend the same resources as in Bitcoin.

To evaluate our protocols we consider six met-

rics (§V). Our goal is to reduce the amount spent

by the miner on PoW. We also consider commonly

used metrics such as coalition resistance and the

system’s tendency to encourage coalitions (and cen-

tralization). We define a metric of permissiveness,

which describes the resources necessary for a new

participant to join. Finally, we refine security metrics

to consider the threshold cost of safety-violating

attacks in general and free attacks in particular.

Both of the protocols we present mint rewards at

the same rate as a pure PoW algorithm, implying

the same coin value and inflation rate, and allowing

a direct comparison. Both of them are parametrized

generalizations of the Nakamoto blockchain.

The first protocol, (ℓ, α) -PR, awards a miner who

generates a block only α of the block reward, and

distributes the remaining (1 − α) among the other

participants of the system (§VI). The protocol thus

fractioning the miners’ incentive for external expen-

diture by α, achieving our primary goal. However, all

attacks on the system security now become cheaper

by α as well. This protocol therefore provides an

additional knob for the system designer, to trade off

security for environmental friendliness.

The second protocol, (ℓ, α, F ) -IIE, aims to im-

prove on (ℓ, α) -PR by reducing its security degra-

dation compared to pure PoW. (ℓ, α, F ) -IIE allows

miners to give away an amount of cryptocurrency

in advance, in order to increase their block re-

wards (§VII). This incentivizes miners to allocate and

spend a portion of their resources internally, keeping

the miner expenses at the same level as pure PoW, but

reducing the external expenditure. This mechanism

introduces a new trade off: Joining miners who do not

yet own cryptocurrency cannot obtain it without the

permission of the existing miners, and participating

as such will result in lower revenues. Therefore, this

protocol is less permissive, monetary wise, than the

pure PoW one, or (ℓ, α) -PR. Its advantage is that it

deters adversaries who seek to increase their revenue

rather than to sabotage the system. Such revenue-

seeking adversaries are, arguably, the main threat to

cryptocurrencies, whereas sabotage is less common

due to the requirement for sustained effort and lack

of direct motive.
Implementing these protocols raise several prac-

tical considerations (§VIII). The shift to reduced

external expenditure should follow a ramp-up period

where pure PoW is used, until sufficient mining

power secures the system. To perform the cryptocur-

rency allocation of (ℓ, α, F ) -IIE, miners can pay to

a dedicated address, and the system can disperse this

amount homogeneously among the participants, or to

a random subset.

In summary, we make the following contributions:

1) A model for PoW blockchains that relates

internal and external currencies

2) Refined metrics for cryptocurrency security

3) Protocol with tunable expenditure and security

4) A more centralized protocol with tunable ex-

penditure, and only somewhat reduced security

II. RELATED WORK

Many previous work focus on alternatives to the

wastefulness of PoW. One type of work assumes a

known and static set of participants, and lets them run

a byzantine fault tolerant [30], [31], [32], [33], [34]

algorithm to determine system state. These systems

are permissioned, as participants require authoriza-

tion to join them. Such solutions are common in

the enterprise market [35], [24] but are impertinent

for permissionless cryptocurrency systems, where the

participant set is inherently unknown and dynamic.

Contrarily, we operate in the permissionless setting,

allowing a dynamic participation set.
An alternative solution is in the form of proof-

of-stake, instantiating systems such as Algorand [22]

and Ouroboros [23], [36]. On the intuitive level, these

system implement a reduction from permissionless to

permissioned networks — out of a possibly infinite

set of potential participants, only those who have

stake in the system (i.e., own tokens) can participate.

As in with the previous approach, the participants run

an agreement protocol to determine the system state.

However, proof-of-stake systems have an inherent

drawback. To participate in the agreement protocol,

one must obtain tokens first, requiring the permis-

sion of current system participants. Essentially, new

willing users can be prevented from joining the

system. Variously, one of our suggested protocols

is completely free of such predicament, while in

another new users lacking the permission of others

will be able to participate but their expected rewards

will be lower compared to if they had permission.

Our third protocol suffer the same impasse.



Furthermore, these systems prove security under

various assumptions. Namely, Algorand [23] does

not consider participation incentives and assumes the

stake majority is held by altruistic parties. Contrarily,

Ouroboros [22] considers stake-holder rewards and

shows incentive-compatibility for certain scenarios.

However, to combat long-range attacks [37], [38] it

has to either trust its users to willingly delete their

private keys once used, or assume network synchrony

and user availability since its inauguration.

A different suggestion for PoW replacement

is proof-of-burn [39], [40], in which miners prove

the depletion of another cryptocurrency, typically

PoW-based, to create blocks. This scheme hence

outsources external expenditures, maintaining the

negative environmental impact. Alternatively, our

protocols focus on the reduction of expended com-

putational resources, without effectively outsourcing

the minting issue.

Another line of previous work focuses on incentive

compatibility analysis of classical Nakamoto sys-

tems [25], [26], [41], [27], [28], [42], [43], [44],

[45], [29]. These work typically consider a set of

specific protocols, which they analyze in the follow-

ing manner. First, they introduce a model capturing

the main properties of said PoW systems. Then,

they formulate the system as a game, where the

system participants are the players, their strategies

are the way they interact with the system and among

each other, and the system state implies player util-

ities. They follow up with analysis of said strate-

gies utilizing both analytical game-theory methods

as well as heuristic and numeric search methods.

Namely, Sapirshtein et al. [26], Gervais et al. [29] and

Zhang et al. [45] all utilize Markov-Decision-Process

to derive plausible attack vectors. By the analysis

they draw their results, bettering the understanding

of these system incentive mechanisms. Similarly, we

also define a cryptocurrency model with which we

analyze our protocols. We also utilize game theoretic

analysis and MDP, both to reason about plausible

user strategies. Differently, we also engage in mech-

anism design, presenting new protocols. We also

define evaluation metrics, with which we compare

and contrast our proposed protocols with NC.

Chen et al. [46] defines properties of reward alloca-

tion rules in a PoW system. It focuses on theoretical

proofs for a family of reward allocation rules for a

single block, and does not consider environmental

impact nor plausible attack vectors. Contrarily, we

present system-level evaluation metrics, aiming to

quantify monetary costs of attacks and electricity

consumption. We assert that our proposed protocols

all match their presented axioms.

III. MODEL

We now present a model for an abstract blockchain

system, instantiated with a cryptocurrency mecha-

nism. We clearly distinguish the blockchain from

the cryptocurrency, allowing us to mull over several

designed cryptocurrency mechanism.

We denote the cryptocurrency protocol as Π, and

begin by modeling how the value of cryptocurrency

is determined by external participants (§III-A). We

then detail the system state (§III-B), participating

entities (§III-C), and the execution (§III-D). We fol-

low with formalizing the cryptocurrency system as

a game, to be used in our game-theoretic analy-

sis (§III-E). We emphasize generality of the model,

and that participating player plausible strategies and

utilities derive from the particular cryptocurrency

protocol instance.

A. Internal and External Currencies

The cryptocurrency system facilitates an internal

currency ic (e.g., Ether [5]). Let there be some exter-

nal currency ec (e.g., EUR, USD, RMB). We assume

the external currency has a market cap order of mag-

nitudes larger than that of the cryptocurrency [47],

and possible minting of new ec is negligible.

We make the following observation — cryptocur-

rencies derive their value from their sparsity, and

purchasing a cryptocurrency token is essentially own-

ing a portion of a scarce resource. As with every

economy, an increase in inflation means a decrease

in the purchasing power of a single token, That

is, the value of a single token derives from the

total market cap of the cryptocurrency, divided by

number of present tokens. We assume such market

cap is a function of the currency’s adoption, usability,

legislation and other considerations out of the scope

of this work [48], [49], [50], [51], [52], [53].

Throughout this work when we compare two

different cryptocurrency systems we assume their

market caps are equal, regardless of their coin gran-

ularities. It immediately follows that if two such

systems mints the same number of coins at the same

period of time, then the monetary value in ec of each

of these coins is equal.

We assume there is an instantaneous, frictionless,

and unlimited exchange service of ec and ic currency,

where the exchange rate is in accordance with the



coin granularity and market cap. For ease of writing

we set that rate to be exactly 1.

B. System State

The system comprises a shared global storage Sg

and a dynamic set of users.

The global storage is an append-only set con-

taining elements called blocks. Each block includes

a reference to another block, with the only a so-

called genesis block that does not reference any

block. The global storage Sg initially contains only

the genesis block. Hence, blocks define a directed

tree data structure.

We refer to paths in the data structure starting with

the genesis block and ending at a leaf block as chains.

We denote for any chain C its last block and length

as last (C) and length (C), respectively. We say a

block’s height is h ∈ N if it is exactly h blocks apart

on a path from the genesis block.

Let there be the function LC (Sg), returning an

arbitrarily-yet-deterministically ordered set of the

longest chains in Sg . We refer to the j’th element of

LC (Sg) as LCj (S
g). Also let there be the function

CP (Sg), returning the longest common chain prefix

of the longest chains in Sg . Note that if there is a

single longest chain (|LC (Sg)| = 1) then that chain

is also the longest common prefix of the longest

chains, meaning LC1 (S
g) = CP (Sg), and we often

refer to it as the main chain.

The system implements a state machine, and users

derive the current system state by parsing the content

of Sg. The cryptocurrency protocol Π is defined by

a parameter ℓ and a function Bal (CP (Sg)). Specif-

ically, for any user i the function Bali (CP (Sg))
returns a value in R>0, denoted as the cryptocur-

rency possession in ic of that user. We omit the user

index i when referring to the entirety of users.

Function Bal (CP (Sg)) also implements the mint-

ing of new currency. It divides CP (Sg) to epochs of

ℓ blocks. For any k ∈ N, epoch k includes the series

of blocks [ℓk + 1, ℓ (k + 1)] in CP (Sg). We denote

by Nk
i (C) the number of blocks in epoch k created

by agent i on chain C.

The protocol distributes the newly minted currency

at the concluding block of every epoch. That is,

the overall cryptocurrency possessions grow at epoch

conclusion by the minted amount, and Bal (CP (Sg))
details how these coins were shared among the sys-

tem users. The number of generated coins in epoch

k is ℓrk, averaging rk coins per block. The protocol

may set different rk for every epoch.

Note. One can consider an implementation of

Bal () taking as input one of the longest chains

LC (Sg), however different users may consider dif-

ferent chains, resulting with inconsistent local state.

To avoid that protocols often make the new coins

available only after sufficiently many other blocks are

created. For example, Bitcoin [1] makes available

coins minted in block x only after block x + 100 is

created. We could have incorporated such a mecha-

nism as well, but opted not to for ease of writing.

C. System Users

For every epoch k we distinguish two comple-

mentary user sets. First, we consider agents, users

actively participating in the system maintaining the

system. Contrarily, we denote passively-present users

that do not support system sustenance as clients. We

denote the set of all agents and clients of epoch k

as A (k) and C (k), respectively. Agents are the main

system actors, while clients are of no interest to us

except their aggregated cryptocurrency holdings. We

assume that A (k) and C (k) are fixed throughout the

epoch, and denote n (k) , |A (k)|. We often omit

the epoch index when clear from context.
Similarly to their ic possessions, agents also own

ec. We use the terms external and internal to dis-

tinguish the different currency holdings, and budget

to describe the overall currency value owned by

agents. Agent budgets are set exogenously (in another

game theory phrasing – by nature) at every epoch

beginning. This includes possibly exchanging any

previous ic holdings for ec, and adding or removing

ec to fit the set budget.
For every epoch k we denote Bec

i (k) and Bic
i (k)

as the external and internal currency value of each

agent i ∈ A (k), both measured in ec, respectively.

Ergo, the budget of each agent i is Bi (k) ,

Bec
i (k)+Bic

i (k), and her relative budget is bi (k) ,
Bi(k)

∑

n
j=1 B

j
(k) . We denote Bic

A (k) ,
∑n

j=1 B
ic
j (k)

and Bec
A (k) ,

∑n

j=1 B
ec
j (k) the accumulated value

of internal and external currency all agents own,

respectively. Similarly, we denote the external and

internal relative budgets of agent i as bec
i (k) ,

Bec
i (k)

Bec
A
(k)

and bic
i (k) ,

Bic
i (k)

Bic
A
(k)

, respectively. We also denote

BA (k) , Bic
A (k) + Bec

A (k). We denote by Bic
C (k)

the cryptocurrency value of all system clients.
Agents can exchange their owned internal and

external currency with the exchange service. We use

the term apportion to describe agents balancing their

internal and external currency holdings to a specific

ratio. Agent i apportions her budget Bi (k) with



the invocation of function Apportioni (S
g, Bi (k)),

returning a tuple of her set internal and external

budgets
〈

Bic
i (k) , Bec

i (k)
〉

.
Agents maintain the cryptocurrency system

through the expenditure of their budgets. The

cryptocurrency protocol Π may require agents to

explicitly spend resources either internally, externally

or a combination of both. Hence, the way an agent

apportions her budget affects the way she can act

within the protocol. We consider agents that expend

the entirety of their budgets per epoch.
Each agent i has a local storage Sl

i accessible

only to her. Like the global storage, the local storage

is also an append-only block set. Agent i creates

a block locally when invoked with the function

Generate
Π
i

(

Sg, Sl
i

)

, returning a newly generated

block. The cryptocurrency protocol Π states validity

rules of which blocks must abide, and invalid blocks

do not affect the system state. Creating invalid blocks

is futile and we consider agents who avoid doing so.
Agent i may add any of her previously-private

local blocks to Sg when invoked with function

Publishi

(

Sg, Sl
i

)

, returning a set of local blocks

for publication. The cryptocurrency protocol Π
states prescribed implementations for any agent i of

Apportioni (S
g, Bi (k)), Generate

Π
i

(

Sg, Sl
i

)

, and

Publishi

(

Sg, Sl
i

)

, which we refer to as prescribed

equilibrium strategy and denote as σdesired. Note that

Π cannot oblige agents to follow σdesired, and each

agent may choose her own function implementations.
We assume that monetary-wise the total mainte-

nance expenses of the system for a single epoch k are

negligible compared to the monetary value it serves,

that is BA (k) ≪ Bic
C (k).

Note. In the time of writing these lines creating a

Bitcoin block costs (and rewards) the miner $100K,

while Bitcoin has a total market of $150B (USD).

Ethereum market cap is of $20B while the block

reward is roughly $10k (USD).

D. Execution

Initially the global storage Sg contains only the

genesis block, and each agent i has an empty local

storage Sl
i = ∅.

The system progresses in epochs as detailed in

Algorithm 1. Each epoch k with its agent set A (k)
begins when length (CP (Sg) ) = ℓk.

First, the nature exogenously sets the budget

for each agent i in A (k), upholding BA (k) ≪
Bic
C (k) (line 1). Then, the scheduler invokes

Apportioni (S
g, Bi (k)) for each agent i, apportion-

ing their budgets (lines 3 – 4).

Algorithm 1: Scheduler in epoch k

/* Initial storage state */
input : Sg such that length (CP (Sg) ) = ℓk

/* Budget distribution */
1 for i← 1 to n do
2 Bi (k) ← v ∈ R>0, chosen by nature such that

BA (k)≪ Bic
C
(k)

/* Apportion */
3 for i← 1 to n do

4
〈

Bic
i (k) , Bec

i (k)
〉

← Apportioni (S
g, Bi (k))

/* Extention */
5 while length (CP (Sg) ) < ℓ (k + 1) do

// Generation
6 i← agent index chosen at random,

∀ j ∈ 1, ..., n : Pr (i = j) = bec
j (k)

7 Sl
i ← Sl

i ∪
{

GenerateΠ
i

(

Sg , Sl
i

)}

// Publication
8 blocks to publish← ∅
9 do

10 Sg ← Sg ∪ blocks to publish
11 blocks to publish← ∅
12 for i← 1 to n do
13 blocks to publish←

blocks to publish ∪ Publishi

(

Sg , Sl
i

)

14 while blocks to publish 6= ∅

The rest of the epoch execution progresses in steps,

until longest common prefix chain is extended by

ℓ blocks (lines 5 – 14). Each step begins with the

scheduler probabilistically selecting a single agent i

according her relative external expenditure, that is

∀ j ∈ 1, ..., n : Pr (i = j) = bec
j (k) (line 6). It then

invokes the agent i’s Generate
Π
i

(

Sg, Sl
i

)

function

and adds the returned block to her local storage

Sl
i (line 7). Then, the scheduler lets all agents publish

their local blocks via invoking Publish
(

Sg, Sl
)

,

until all agents do not wish to publish any more

blocks (lines 7 – 14).

Note. Similarly to the work by Eyal and Sirer [25]

and Arnosti and Weinberg [54], the model rounds

represent logical state changes, contrary to time-

based rounds [55], [22]. Block publication includes

the publication loop (lines 9 – 14) to facilitate

strategic-block-release behaviors [25], [26], [41].

As in Eyal and Sirer [25], Sapirshtein et al. [26]

and Nayak et al. [41], our model does not include

spontaneous forks.

E. Block Creation as a Game

The model gives rise to a game, played for the

duration of a single epoch k. The players are the

agents, with their available budgets as inputs.

We define the expected income of player i in

epoch ℓ as her expected cryptocurrency holdings

with the conclusion of said epoch (i.e., when



length (CP (Sg)) = ℓ (k + 1)):

ExpInci (k) = E [Bali (CP (Sg))] . (1)

We model the expected income as the utility of player

i, which she tries to maximize.

We analyze the system in equilibrium, where all

players participate and the total profit is zero [25],

[27], [56], [28], [57]. Accordingly, the sum of all

agent expected incomes is as the total agent expenses:

BA (k) =

n
∑

j=1

ExpIncj (k) , (2)

and we normalize such that

ℓrk = 1 . (3)

The player strategy space includes choosing the

budget apportion ratio, what blocks to generate,

and when to publish them. Strategy implementa-

tions are instantiations of Apportion (Sg, B (k)),
Generate

Π (

Sg, Sl
)

and Publish
(

Sg, Sl
)

.

IV. NAKAMOTO PROTOCOL

To make those definitions concrete, we now instan-

tiate a classical Nakamoto blockchain protocol like

Bitcoin [1], denoted ℓ-NB, in our model. Note that

specifically Bitcoin utilizes a single-block epochs,

that is 1-NB.

This definition both exemplifies our model and

used throughout the work for comparison with our

proposed protocols. The balance function of ℓ-NB

awards each agent i with a relative reward equal

to her relative contributed blocks in the epoch k.

Hence, the balance of each agent i ∈ 1, ..., n with

the conclusion of epoch k is Balℓ-NB
i (CP (Sg)) =

Nk
i (CP(Sg))

∑

n
j=1 Nk

j
(CP(Sg))

ℓrk coins, and the total number of

minted coins in the epoch is exactly ℓrk.

The prescribed equilibrium strategy σℓ-NB
desired (Algo-

rithm 2) is such that each agent i apportions her

budget Bec
i (k) = Bi (k) and Bic

i (k) = 0, points

created blocks to last (CP (Sg) ), and publish them

immediately. In case of conflicting longest chains,

σℓ-NB
desired states that the agent points her next block to

either of them picked uniformly-at-random.

Note. Bitcoin [1] defines a different tie-breaking

rule — pick the first chain that the agent became

aware of. That variation assures different security

guarantees based on the underlying network as-

sumptions. As in previous work [58], [59] we avoid

such assumptions by using the uniformly-at-random

variation.

Algorithm 2: σℓ-NB
desired of agent i

1 Function Apportion(Sg, Bi (k)):
2 return 〈0, Bi (k)〉

3 Function Generate(Sg, Sl
i):

4 C ← uniformly at random from LC (Sg)
5 pointer← last (C)
6 return NewBlock(pointer)

7 Function Publish(Sg , Sl
i):

8 return All previously unpublished blocks

Assume all agents follow σℓ-NB
desired. It follows that

there is a single longest chain (|LC (Sg)| = 1) that

is also its longest common prefix, which we denote

as C = CP (Sg). By the design of the scheduler the

number of blocks an agent i creates in an epoch k

follows the binomial distribution parameterized with

the epoch length and her relative external budget, that

is Nk
i (C) ∼ Bin (ℓ, bi (k)). Consequently, it holds

that E
[

Nk
i (C)

]

= ℓbec
i (k), and based on Eq. 3 and 1

we get

ExpIncℓ-NB
i (k) = bec

i (k) , (4)

and by Eq. 2 we get BA (k) = Bec
A (k) = 1.

V. CRYPTOCURRENCY EVALUATION METRICS

We now define metrics for evaluating cryptocur-

rency systems. We then use these metrics to reason

about our proposed protocols, namely with contrast

to ℓ-NB. Typically, we assume that for a protocol

Π all agents follow the prescribed strategy σΠ
desired,

and examine different system aspects derived from

that. We can classify our metrics under the following

categories.

First, we consider the incentive compatibility of a

system. We evaluate profit from coalescing (§V-A),

and assess profitable deviations from σΠ
desired (§V-B).

Both of these properties are in the center of a major

research effort [25], [26], [41], [28], [42], [43], [44],

[45], [29], [46], [60], [61].

We move to quantify the required attack costs

for succeeding in such operation. Namely, we fo-

cus on double-spend attacks [62], [63], [64], [65],

[66], where the attacker requires (§V-C) and for-

feits (§V-D) her block reward in case of a successful

attack.

We conclude by evaluating the permissive-

ness (§V-E) and the environmental impact (§V-F) of

the system.

A. size-indifference

Cryptocurrency systems rely their security on the

assumption that there are multiple distinctive agents



whom none has a substantial control over the sys-

tem. For that, these systems strive to distribute their

rewards in a way that is size-indifferent, meaning

that agents do not increase their relative gainings

disproportionately by coalescing.

The metric size-indifference measures how a

protocol satisfies this desideratum. Formally, as-

sume each agent i ∈ 1, ..., n with relative bud-

get bi (k) follows σΠ
desired. The expected income of

such player is ExpIncΠi (k), and we denote δi ,
∣

∣

∣
bi (k)−

ExpIncΠi (k)
∑

n
j=1 ExpIncΠ

i
(k)

∣

∣

∣
. Then we define

size-indifference = max
i∈1,...,n

δi . (5)

We want size-indifference to minimal, for as it

grows agents get less than their proportional share.

Preferably, size-indifference = 0 indicates all agents

get reward proportional to their budget, suggesting

that coalescing does not yield an increase in the

expected reward.

Example. For ℓ-NB it holds that size-indifference =
0 as shown in [1]. Eq. 4 also yields this result.

B. coalition-resistance

Recall protocol Π provides a prescribed strategy

σΠ
desired that agents individually choose whether to

follow or not. The metric coalition-resistance bounds

from above the required relative budget bi (k) of an

agent i such that σΠ
desired is her best-response strategy.

Formally, let σΠ
br denote the best-response strat-

egy of agent i with relative budget bi (k) when all

other agents follow σΠ
desired. coalition-resistance is the

maximal value bi (k) such that σΠ
br = σΠ

desired. It

follows that σΠ
desired is a Nash-equilibrium strategy

if all agent relative budgets are not greater than

coalition-resistance.

Example. Sapirshtein et al. [26] showed that this

bound relies on network assumptions, and in the

comparable case of uniform tie-breaking values as

coalition-resistance = 0.232.

C. free-safety-violation-threshold

In a double-spend attack [62], [63], [64], [65],

[66] the attacker tries to create an alternative longest

chain, nullifying a payment on the original chain,

presumably after she already received the goods for

that payment. To mount this attack in a ℓ-NB cryp-

tocurrency the attacker is required to spend resources

to create the alternative chain, yet she is compensated

for these expense with her earned block rewards if

the attack is successful. As such, there is a required

resources threshold to mount this attack, but once

met, the attack fully compensates the attacker for the

said expended resources.

The metric free-safety-violation-threshold mea-

sures the minimal required resources for an external

party in ec to deploy such a double-spend attack

on the system, assuming all current agents follow

the prescribed strategy. Note the attacker may rent

vast computational resources for a short period of

time [64] or a moderate amount for longer periods.

We instead measure the cost to create a single block.
Formally, assume all agents follow σΠ

desired and

let d be the number of blocks an external at-

tacker needs to create to surpass the original chain.

free-safety-violation-threshold is the minimal cost in

ec to create d blocks that guarantee the agent with

block reward of at least drk coins.

Example. In ℓ-NB the reward for each block is

rk = 1
ℓ

in ec, and in equilibrium that is also

the cost to create a block. To create d blocks the

attacker is required to spend that amount d times,

hence free-safety-violation-threshold = d
ℓ
.

D. safety-violation-threshold

The metric safety-violation-threshold highly re-

sembles free-safety-violation-threshold, but differs

regarding the requirement for compensation via the

block reward. That is, safety-violation-threshold is

the required cost to mount a double-spend attack on

the system where the attacker does not expect to be

fully rewarded for her blocks. Note such attacks are

less likely with the absence of an explicit motive,

especially compared to the self-sustaining alternative.
Formally, assume all agents follow σΠ

desired and

let d be the number of blocks the attacker

needs to create to surpass the original chain.

safety-violation-threshold is the minimal cost in ec

to create d blocks, regardless of the expected block

reward the attacker might receive due to these blocks.

Example. In ℓ-NB all blocks produce the same

reward, hence an agent cannot reduce the cost

for a double-spend attack by opting for cre-

ating less-rewarding blocks, yielding, similarly,

safety-violation-threshold = d
ℓ

.

E. permissiveness

Cryptocurrency systems may require agents to

own ic as a condition to create blocks. That is,

for instance, the core principal of proof-of-stake

systems [22], [23], [36].

As these systems operate in the permissionless

setting, supposedly any agent should be able to

join the system without the consent of other agents.



However, obtaining ic requires updating the new

coin ownership in the system state, which requires

the authorization of already-present system agents.

Therefore, the existing agents can prevent new agents

from obtaining ic, depriving the permissionless stip-

ulation. Note that different systems that require ic

possessions may opt in a middle ground where agents

that do not own ic get relatively lower reward.

Therefore, permissiveness measures the permis-

siveness of the system through its reward ratios when

agents fail to obtain ic.

Formally, assume an agent i with budget Bi (k),
and that all other agents follow σΠ

desired. De-

note σΠ
no-ic as σΠ

desired with the exception that her

chosen implementation of Apportioni (S
g, Bi (k))

returns 〈0, Bi (k)〉. Denote ExpIncno-ic
i (k) and

ExpIncdesired
i (k) the expected income of agent i

should she follow σΠ
no-ic and σΠ

desired, respectively. We

define permissiveness as

permissiveness =
ExpIncno-ic

i (k)

ExpIncdesired
i (k)

. (6)

When permissiveness = 1 it follows that an agent’s

expected income is not effected by her inability to ob-

tain ic, thus Π achieves its permissionless objective.

However, permissiveness = 0 indicates that agents

unable to obtain ic are completely prevented from

participation.

Example. In ℓ-NB the strategies σΠ
no-ic and

σΠ
desired are the same, hence ExpIncno-ic

i (k) =
ExpIncdesired

i (k) and permissiveness = 1.

F. external-expenses

external-expenses evaluates the environmental

impact of a protocol Π. Lower values of

external-expenses indicate a desired lower impact.

Formally, external-expenses measures in ec the

external expenses of all agents in an epoch when all

of them follow σdesired. That is, external-expenses =
Bec
A (k).

Example. For ℓ-NB it holds that Bec
A (k) = 1 and as

such external-expenses = 1.

VI. (ℓ, α) -PR PROTOCOL

We now present (ℓ, α) -PR, standing for Partial

Reward, a cryptocurrency protocol achieving lower

environmental impact of ℓ-NB. In a nutshell, it mints

coins as ℓ-NB, but distributes some of these coins

among all system users, and not just the block-

creating miners. As the coin minting rate is identical

so is the monetary value of each, resulting in lower

monetary reward for the participating agents. Conse-

quently, in an equilibrium the external expenditure is

desirably lower as well. Defectively, it renders safety

violations less requiring.

The rest of this section is organized as follows. We

start by presenting the (ℓ, α) -PR specifics (§VI-A),

and analyzing it assuming all agents follow the pre-

scribed strategy (§VI-B). We then use our metrics to

evaluate (ℓ, α) -PR, contrasting it with ℓ-NB (§VI-C).

A. (ℓ, α) -PR Description

(ℓ, α) -PR mints ℓrk new coins with each epoch

conclusion. Set with a parameter α ∈ [0, 1), it dis-

tributes only (1− α) ℓrk of the newly-minted coins

to agents, while the rest of αℓrk are distributed

among all system participants (i.e., including the

passive clients) based on their ic holdings at the

epoch beginning. The prescribed equilibrium strategy

σ
(ℓ, α) -PR

desired is as of ℓ-NB (Algorithm 2).

The balance of each agent i ∈ 1, ..., n with epoch

k conclusion is

Bal
(ℓ,α)-PR

i (CP (Sg)) =

(1− α)
Nk

i (CP (Sg) )
∑n

j=1 N
k
j (CP (Sg) )

ℓrk+

α
Bic

i (k)

Bic
A (k) +Bic

C (k)
ℓrk . (7)

Note that in (ℓ, α) -PR the passive clients also

increase their internal currency possessions by

α
Bic

C(k)

Bic
A
(k)+Bic

C
(k)

ℓrk coins, and as stated, the number

of minted coins in the epoch is exactly ℓrk. Note

that (ℓ, 0) -PR is exactly ℓ-NB, as agents expend all

their budgets externaly and receive the entirety of the

reward with the epoch conclusion.

B. (ℓ, α) -PR prescribed strategy analysis

Assume all agents follow σ
(ℓ, α) -PR

desired . Hence agents

extend only the longest chain, which is also the

longest common prefix. We denote this chain C =
CP (Sg).

By σ
(ℓ, α) -PR

desired each agent i ∈ 1, ..., n apportions

such that Bic
i (k) = 0, hence her expected income

is ExpInc
(ℓ,α)-PR

i (k) = (1− α)
E[Nk

i (C)]
∑

n
j=1 E[Nk

j
(C)]

ℓrk +

α
Bic

i (k)

Bic
A
(k)+Bic

C
(k)

ℓrk. Summing for all agents and ap-

plying Eq. 2 and 3 yields BA (k) = 1 − α +
αBA(k)

BA(k)+Bic
C
(k)

. However, recall that BA (k) ≪ Bic
C (k)

and α < 1, and as such
αBA(k)

BA(k)+Bic
C
(k)

is negligible.

We conclude that BA (k) = Bec
A (k) = 1 − α and

the cost to create each single block is 1−α
ℓ

.



C. (ℓ, α) -PR Evaluation

We now use our metrics (§V) to evaluate

(ℓ, α) -PR, detailed throughout the following section.

The decreased block rewards agent receive leads to

the desired decrease in the system external expenses.

However, it also decreases the required costs for

performing both indicated types of safety violations.

ℓ-NB and (ℓ, α) -PR equal at the other metrics.

1) size-indifference: For each agent i ∈ 1, ..., n
it holds that E

[

Nk
i (C)

]

= ℓbec
i (k) and there-

fore the expected income of each player is

ExpInc
(ℓ,α)-PR

i (k) = (1− α) bec
i (k). It also holds

that bec
i (k) = bi (k) and

ExpInci(k)
∑

n
j=1 ExpIncj(k)

= bec
i (k),

resulting with size-indifference = 0.

2) coalition-resistance: An agent i may decide

to apportion her budget such that Bic
i (k) > 0 and

Bec
i (k) < Bi (k). A reason for that would be to in-

crease her expected income with the αℓrk component

distributed among all system participants. However,

recall that Bic
i (k) < BA (k) and BA (k) ≪ Bic

C (k),
rendering any potential reward negligible. Moreover,

by apportioning Bec
i (k) < Bi (k) agent i decreases

her expected number of blocks E
[

Nk
i (C)

]

, decreas-

ing her expected income.

Therefore, any possible strategy deviations of

(ℓ, α) -PR are as of (ℓ, α) -PR, resulting with

coalition-resistance = 0.232 [26].

3) free-safety-violation-threshold: The attacker

is required to create d blocks, and the cost

to create each block is 1−α
ℓ

, and therefore

safety-violation-threshold = (1−α)d
ℓ

.

4) safety-violation-threshold: For the same con-

siderations as free-safety-violation-threshold it holds

that safety-violation-threshold = (1−α)d
ℓ

.

5) permissiveness: In (ℓ, α) -PR new agents do

not necessitate internal currency to participate, and

expected income is practically unaffected by it. We

conclude that ExpIncno-ic
i (k) = ExpIncdesired

i (k) and

as such permissiveness = 1.

6) external-expenses: In (ℓ, α) -PR, agents are

only rewarded 1 − α of the block rewards, and in

equilibrium these are their expenses. All these ex-

penses are external, thus external-expenses = 1− α.

VII. (ℓ, α, F ) -IIE PROTOCOL

We now present (ℓ, α, F ) -IIE, standing for Incen-

tivized Internal Expenses, our second protocol de-

signed to achieve lower external-expenses compared

to ℓ-NB. It is also designed to maintain the required

resource threshold for free safety violations. How-

ever, its parameter values includes inherent trade-

offs, where perfecting by one metric comes at the

expense of another.

Recall (ℓ, α) -PR worsened its resiliency as it low-

ered the required resources to create a single block.

Hence, to uphold the original level, a key principal

of (ℓ, α, F ) -IIE is to keep said resources at their

original level. Considering the prerequisite for lower

external expenses leads to the primary design concept

of (ℓ, α, F ) -IIE — get agents to internally, rather

than externally, spend their budgets.

We begin by presenting a straw-man protocol,

forcing agents to do just that (§VII-A). We briefly

state its evident shortcomings, paving the way for

detailing (ℓ, α, F ) -IIE (§VII-B). We then analyze

(ℓ, α, F ) -IIE when all agents follow the desired

strategy (§VII-C), and evaluate by the presented

metrics (§VII-D). We conclude by summarizing

(ℓ, α, F ) -IIE.

A. Straw-man Protocol

We suggest the following straw-man proto-

col, forcing agents to internally spend. As in ℓ-NB,

it mints ℓrk coins with each epoch and distributes

them solely among the agents, based on their relative

block contributions to the main chain. Resembling

(ℓ, α) -PR, the straw-man protocol also includes a

parameter α ∈ [0, 1). However, it requires that for

each block in epoch k an agent i creates on CP (Sg)
she must have expended αrk of ic at the epoch

beginning. The straw-man protocol distributes the

expended ic among all system participants based on

their ic holdings at the epoch beginning.

The balance of each agent i with the epoch con-

clusion is Balstraw-man
i (CP (Sg)) =

Nk
i (C)

∑

n
j=1 Nk

j
(C)

ℓrk +

Bic
i (k)

Bic
A
(k)+Bic

C
(k)

Bic
A (k). The second summed ele-

ment resembles that of (ℓ, α) -PR’s Balance func-

tion (Eq. 7), however, their sources are fundamentally

different. For the straw-man protocol it originates

from the internal resource redistribution of all agents,

while in (ℓ, α) -PR it is the relevant portion of the

newly-minted currency.

This protocol utilizes epochs to force agents to

spend their ic in advance, and for long periods of

time. If that was not the case, then agents could

spend αrk coins per block they were hoping to

create. Aside any potential practical overhead of such

excessive commits, this scheme also highly favors

agents with greater relative budgets, as they commit

lower percentile of their budget, increasing their

chance to create blocks unevenly.



Algorithm 3: σstraw-man
desired of agent i

1 Function Apportion(Sg , Bi (k)):
2 return 〈αBi (k) , (1− α)Bi (k)〉

3 Function Generate(Sg
, Sl

i):
4 C ← uniformly at random from LC (Sg)
5 pointer← last (C)
6 return NewBlock(pointer)

7 Function Publish(Sg , Sl
i):

8 return All previously unpublished blocks

The desired strategy σstraw-man
desired resembles that of

σℓ-NB
desired, aside from suggesting an agent i should

apportion her budget 〈αBi (k) , (1− α)Bi (k)〉. We

present σstraw-man
desired in Algorithm 3.

However, this protocol suffer from two inherent,

intolerable shortcomings. First, agents entail to obtain

ic for block creation, rendering the protocol permis-

sioned. Moreover, in equilibrium, agents are expected

to commit ic sufficient to enable the creation of

exactly the number of blocks they expect. Now,

assume an agent becomes absent, either maliciously

or unintentionally. Other agents cannot create new

blocks exceeding their quota, and the system halts.

These problems arise as the protocol conditions

block creation on early ic expenditure. Hence, we

present (ℓ, α, F ) -IIE, incentivizing, but not forcing,

agents to internally spend.

B. (ℓ, α, F ) -IIE Description

We now lay out the specifics of (ℓ, α, F ) -IIE. It

includes two types of blocks, regular and factored,

and the creating agent determines the block’s type at

block generation. Block types are immutable, that is,

to alter a block’s type an agent needs to re-create the

block. An agent i can always create a regular block

when invoked with Generate
Π
i

(

Sg, Sl
i

)

. Contrarily,

an agent may create up to
⌊

Bic
i (k)
αrk

⌋

factored blocks

in an epoch on chain C. (ℓ, α, F ) -IIE assigns a score

to each block, and factored and regular blocks have

scores of F ∈ R>1 and 1, respectively.

a) Reward distribution: (ℓ, α, F ) -IIE mints ℓrk
coins in epoch k, and shares them among solely

among the agents.

Denote by Nk
i (C) the number of factored blocks

in the current epoch created by agent i on chain C.

Denote by Si (C) the total score of blocks created in

the current epoch by agent i on chain C.

(ℓ, α, F ) -IIE distributes the newly-minted ℓrk
coins among all agents, based on their total block

score in the epoch. (ℓ, α, F ) -IIE distributes the in-

ternal expenses Bic
A (k) among all system participants

based on their ic possessions at the epoch beginning.

Algorithm 4: σ
(ℓ, α, F ) -IIE

desired of agent i

1 Function Apportion(Sg, Bi (k)):
2 return 〈αBi (k) , (1− α)Bi (k)〉

3 Function Generate(Sg, Sl
i):

4 C ← uniformly at random from LC (Sg)
5 pointer← last (C)

6 if Nk
i (C) <

⌊

Bic
i
(k)

αrk

⌋

then

7 factored ← true
8 else
9 factored ← false

10 return NewBlock(pointer, factored)

11 Function Publish(Sg , Sl
i):

12 return All previously unpublished blocks

Therefore, the balance of each agent i ∈ 1, ..., n with

the epoch conclusion is

Bal
(ℓ,α,F )-IIE
i (CP (Sg)) =

Si (CP (Sg) )
∑n

j=1 Sj (CP (Sg) )
ℓrk+

Bic
i (k)

Bic
A (k) +Bic

C (k)
Bic
A (k) . (8)

Note. When F=1 or α=0 there is no incentive to

spend ic, and thus (ℓ, 0, 1) -IIE identifies with ℓ-NB.

b) Prescribed strategy: The prescribed strat-

egy σ
(ℓ, α, F ) -IIE

desired defines that an agent i apportions

her budget such that Bec
i (k) = (1− α)Bi (k) and

Bic
i (k) = αBi (k), points her created blocks to a

uniformly-at-random selected chain from LC (Sg)

and sets the first
⌊

Bic
i (k)
αrk

⌋

created blocks as factored.

In addition, agent i publishes any block she creates

immediately. Algorithm 4 presents σ
(ℓ, α, F ) -IIE

desired .

C. (ℓ, α, F ) -IIE prescribed strategy analysis

We now derive the expected score E [Si] of agent

i assuming all agents follow σ
(ℓ, α, F ) -IIE

desired . As before,

agents extend only the longest chain, resulting with

it being the longest common prefix, denoted C.

By σ
(ℓ, α, F ) -IIE

desired it holds for all i ∈ 1, ..., n :
Bec

i (k) = (1− α)Bi (k) and therefore bec
i (k) =

Bec
i (k)

Bec
A
(k) =

(1−α)Bi(k)
(1−α)BA(k) = bi (k).

By definition of Nk
i (C), we get that it is a

random variable indicating the number of blocks

agent i creates on chain C. As the scheduler picks

an agent based on their relative external budgets,

it follows that Nk
i (C) ∼ Bin (ℓ, bi (k)). Therefore,

Pr
(

Nk
i (C) = m

)

=
(

ℓ

m

)

·(bi (k))
m ·(1− bi (k))

ℓ−m

and E
[

Nk
i (C)

]

= ℓbi (k).

According to σ
(ℓ, α, F ) -IIE

desired , agent i sets Bic
i (k) =

αBi (k) and therefore can create at most
⌊

Bi(k)
rk

⌋

=



⌊ℓBi (k)⌋ factored blocks. For better readability,

from this point onward we assume that ℓbi (k) ∈ N.
Agent i’s score assuming Nk

i (C) = m blocks is

Si

(

C|Nk
i (C) = m

)

=
{

mF, 0 ≤ m ≤ ℓBi (k)

ℓBi (k)F +m− ℓBi (k) ℓBi (k) < m ≤ ℓ
,

and hence her expected score is E [Si (C)] =
∑ℓ

m=0 Pr
(

Nk
i (C) = m

)

Si

(

C|Nk
i (C) = m

)

,

resulting with ExpInc
(ℓ,α,F )-IIE

i (k) =
E[Si(C)]

∑

n
j=1 E[Sj(C)]ℓrk +

αBi(k)

αBA(k)+Bic
C
(k)

αBA (k).

Summing for all agents and applying Eq. 2 and 3

yields BA (k) = 1 + (αBA(k))2

αBA(k)+Bic
C
(k)

, leading to

BA (k)
(

1− α2BA(k)
αBA(k)+Bic

C
(k)

)

= 1. Recall that α < 1

and BA (k) ≪ Bic
C (k), therefore α2BA (k) ≪

Bic
C (k) and

α2BA(k)

αBA(k)+Bic
C
(k)

is negligible. We get that

BA (k) = 1 and a single block’s creation cost is 1
ℓ
.

D. (ℓ, α, F ) -IIE Evaluation

In this section we analyze (ℓ, α, F ) -IIE with re-

spect to the evaluation metrics. A summary is given

below and a more detailed analysis follows.
We show how size-indifference improves with

longer epochs ℓ and lower factored blocks score F .

It evaluates the same for any α value, yet is affected

by the budget distribution among agents.
We use MDP to analyze coalition-resistance,

showing that sufficiently-large F values approximate

the evaluation results of ℓ-NB. We also show analyt-

ically that 1−α
2−α upper-bounds coalition-resistance.

We show that the resources threshold for free

safety violations, free-safety-violation-threshold, is as

of (ℓ, α) -PR, successfully meeting a design goal of

(ℓ, α, F ) -IIE. However, safety-violation-threshold is

as of (ℓ, α) -PR, which is sub-optimal, but tolerable.
The analysis also shows that permissiveness im-

proves with lower F values, and external-expenses

is desirably as of (ℓ, α) -PR.
1) size-indifference: We devote this section to

evaluate size-indifference of (ℓ, α, F ) -IIE. We begin

by analytically analyzing how the system parameters,

namely ℓ and F affect size-indifference. We note that

α has negligible effect on the expected income of an

agent (Eq. 8). We show that for sufficiently large

values of ℓ the protocol achieves size-indifference =
0, and that lower values of F also result in lower

size-indifference (§VII-D1a).
We then present the affect of agent budget distribu-

tion on size-indifference. This is a unique phenomena

for (ℓ, α, F ) -IIE that we discuss and quantify with

numerical examples (§VII-D1b).

a) ℓ and F values: For ease of writing we

define the normalized expected score of player i to

be nesi = E[Si]
ℓb

i
(k)F . We begin with presenting two

lemmas, stating necessary and sufficient conditions

for size-indifference = 0:

Lemma 1. Iff ∀i, j ∈ 1, ..., n : nesi = nesj 6= 0 then

size-indifference = 0.

Lemma 2. For each agent i : limℓ→∞ nesi
a.s.
−−→ 1 .

We bring both proofs in Appendix A. Both lemmas

lead to the following corollary:

Corollary. If limℓ→∞ then size-indifference = 0.

That is, for sufficiently large values of ℓ, (i.e.,

sufficiently long epochs) (ℓ, α, F ) -IIE achieves

size-indifference = 0.

b) Budget Distribution: We now evaluate

size-indifference for different values of ℓ, F and

b (k). For fixed F and b (k) values, we numerically

calculate and plot nesi as a function of ℓ. We present

our results in Fig. 1.
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(c) F = 20.

Fig. 1: nesi as a function of an epoch block count ℓ.

Fig. 1 confirms Lemma 2 — for all values of

F, bi (k), nesi approaches 1 as ℓ grows. It also shows



Agent Relative Budgets
δ1 δ2

b
2
(k) b

3
(k) b

4
(k) b

5
(k)

0.4 0.4 - - 0.001 0.000
0.8 - - - 0.002 0.002
0.6 0.2 - - 0.001 0.002

0.3 0.2 0.3 - 0.000 0.000
0.2 0.2 0.2 0.2 0.000 0.000

TABLE I: Budget distribution and size-indifference

for b1 (k) = 0.2, ℓ = 2500, α = 0.5 and F = 5.

the effect of F value. As expected, when F = 1
then E [Si] = ℓbi (k) and nesi = 1 for all ℓ values

(Fig. 1a). However, increasing the values of F and

bi (k) decrease nesi (Figures 1b,1c).

However, Fig. 1 presents an undesired effect that

(ℓ, α, F ) -IIE bares — for fixed ℓ, F agents with

different relative budgets have different nes, which

by Lemma 1 leads to size-indifference > 0.

This phenomena does not occur in ℓ-NB nor

(ℓ, α) -PR, and its origin is the possibly-different

score each block has. Intuitively, agents with lower

b (k) suffer a greater decrease in their score when

not creating exactly their expected number of blocks,

resulting in a lower nes.

We dedicate the rest of this section to discuss

how different relative budgets affect agent expected

incomes and size-indifference. We consider follow-

ing arbitrarily-constructed setting of n = 5 agents,

with epochs of ℓ = 2500 blocks and F = 5.

We fix b1 (k) = 0.2 and consider different budget

distributions of agents 2 to 5, detailed in Table I.

For each such budget distribution we numerically

calculate ∀ i ∈ 1, ..., n : δi, and present those

values for i = 1, 2. We also present the maximal

value indicating size-indifference.

Table I shows that higher variance in budget

distribution results in higher size-indifference. For

instance, consider the setting with only two players

where b1 (k) = 0.2 and b2 (k) = 0.8. That is, agent

2 has a budget four times greater than that of player

1 This setting leads to the highest size-indifference =
0.002. Contrarily, the setting of five agents, all with

equal relative budgets of b (k) = 0.2 results in

size-indifference = 0.

Note. The setting where b1 (k) = 0.2 and b2 (k) =
0.8 is unrealistic, presented only as an example for

a highly-uneven budget distribution. Consider that

even in that extreme scenario agent 1 has a relative

expected income of 0.198, which is 99% of her

relative budget.

We summarize these results in an informal man-

ner — unbalanced budget distribution increases de-

viation from optimal reward distribution, although

such deviations are considerably minor even in the

most extreme scenario examined. By increasing ℓ and

decreasing F the system designer tune the system to

nullify these deviations.

2) coalition-resistance: We search for sufficient

conditions to assure that σ
(ℓ, α, F ) -IIE

br identifies with

σ
(ℓ, α, F ) -IIE

desired .

The strategy space of (ℓ, α, F ) -IIE grows exceed-

ingly with the introduction of block scores, and we

utilize MDP [26], [29] to find σ
(ℓ, α, F ) -IIE

br .

Our analysis shows that increasing F val-

ues or lowering α increases coalition-resistance.

Specifically,ℓ = 10, F = 20 and α = 0.5 suffice

to obtain coalition-resistance = 0.2. We differ the

details to Appendix B.

We also present the close-form upper bound

of 1−α
2−α for coalition-resistance. This is a loose

bound, stating the susceptibility threshold to a %51-

attack [1], [67]. We bring the analysis in Ap-

pendix B-A. Both of the analyses stand with the

comparable cases of previous work [26].

3) free-safety-violation-threshold: In equilibria

the total external expenses are 1−α of total budgets,

that is Bec
A (k) = (1− α)BA (k). As BA (k) =

ℓrk = 1 it follows that the required external expenses

to (expectedly) create a single block is 1−α
ℓ

. An agent

has to create factored blocks to be fully rewarded

for them, and therefore each block requires spending

additional α
ℓ

in ic. Hence, the cost to create a single

block is 1
ℓ
. The cost to create d blocks is just a

multiplication of the cost of a single block, and

therefore free-safety-violation-threshold = d
ℓ
.

4) safety-violation-threshold: We deduced the re-

quired external expenses to create a single block is
1−α
ℓ

. As an agent can choose not to create factored

blocks, she bares no additional internal expenses for

block creation. The cost to create d blocks is just

a multiplication of the cost of a single block, and

therefore safety-violation-threshold = (1−α)d
ℓ

.

5) permissiveness: We now evaluate

permissiveness of (ℓ, α, F ) -IIE. The number

of agents and their budget distribution heavily

affects the expected income of players, and thus

permissiveness as well. We exemplify an analysis

for an arbitrarily-set system.

Assume there are two agents 1, 2 with budgets

B1 (k) , B2 (k), respectively. Assume agent 1 is can-

not obtain ic due to lack of other agents’ permission

(and in this particular case, agent 2), and hence

apportions her budget Bic
1 (k) = 0, Bec

1 (k) = B1 (k).



Agent 2 apportions according to σ
(ℓ, α, F ) -IIE

desired , that is

Bic
2 (k) = αB2 (k) , B

ec
2 (k) = (1− α)B2 (k).

It follows that bec
1 (k) =

B1(k)
B1(k)+(1−α)B2(k)

and

bec
2 (k) =

(1−α)B2(k)
B1(k)+(1−α)B2(k)

. For simplicity we as-

sume ℓ is sufficiently large and thus the agents create

their expected number of blocks (see Lemma 2).

We now derive the expected score of both of the

agents. Agent 1 can create normal blocks, and her ex-

pected number of blocks is
B1(k)

B1(k)+(1−α)B2(k)
, there-

fore E [S1] = ℓ
B1(k)

B1(k)+(1−α)B2(k)
. For agent 2 it holds

that bec
2 (k) < Bec

2 (k), and therefore she will create

less factored blocks than her internal budget suffices,

resulting in E [S2] = ℓF
(1−α)B2(k)

B1(k)+(1−α)B2(k)
. By the

expected income definition we get ExpIncno-ic
1 (k) =

B1(k)
B1(k)+FB2(k)

.

Note. This analysis does not consider a permission-

withholding agent who alters her own apportion

ratio, which we leave such analysis for future work.

Following the same analysis for a system

where agent 1 manages to obtain ic yields

ExpIncdesired
1 (k) =

B1(k)
B1(k)+B2(k)

. Recall that B1 (k)+

B2 (k) = 1 and bi (k) = Bi (k), leading to

permissiveness = 1
b1(k)+F(1−b1(k))

.
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Fig. 2: permissiveness of (ℓ, α, F ) -IIE.

We present permissiveness as a function of F

in Fig. 2, for different values of b1 (k). It shows

that higher factor values F lead to lower values

of permissiveness, tending the system towards being

permissioned. It also shows that agents with higher

relative budgets are less susceptible to these effects.

These results settle with intuition — higher values

of F increase the reward of creating factored blocks,

and failing to create such results in lower income.

Higher relative budget enables creating more blocks,

decreasing the overall score of the other agents,

increasing her income despite the lack of ic.

6) external-expenses: As agents follow

σ
(ℓ, α, F ) -IIE

desired then Bec
A (k) = (1− α)BA (k)

and external-expenses = 1− α.

VIII. PRACTICAL IMPLEMENTATION

CONSIDERATIONS

We present a few implementation suggestions for

(ℓ, α) -PR and (ℓ, α, F ) -IIE. We suggest to include

a ramp up period, in which the protocols perform

as a classical Nakamoto protocol [1]. That allows

enough currency to accumulate, justifying the negli-

gible maintenance assumption.

We suggest using the transaction mechanism to

make coins unavailable, by letting agents transact

them to a null address, conceptually similar to proof-

of-burn schemes [39], [40].

An implementation for the redistribution mech-

anism over a Turing-complete smart contracts

blockchain [5] is more intuitive, for a simpler

Bitcoin-like [1] blockchain we suggest utilizing

the blockchain parsing mechanism, as follows. The

agents derive the system state by parsing the main

chain, updating their perceived balances of all sys-

tem participants. When parsing an epoch concluding

block, the system can include in the updated fol-

lowing state the redistributed coins as required. This

resembles the way the Ethereum network nullified

the DAO attack [68].

To avoid coin fragmentations due to precision

errors we suggest the system enforcing a coin thresh-

old, required for being included in the coin distribu-

tion. The system can also select a random subset of

users to whom she distributes the coins. As in [1]

we suggest using a difficulty mechanism, moderating

block creation rate.

IX. CONCLUSION

We introduce a cryptocurrency model detailing in-

ternal and external currency relations, and formalize

security, permissiveness, and environmental impact

metrics. We generalize Nakamoto’s blockchain de-

sign, allowing to accurately trade off security and

ecological footprint reduction. We introduce two new

protocols, both achieving reduced ecological foot-

print. The first reduces the monetary reward agents

receive for block generation, while the other incen-

tivizes agents to spend resources internally.

Reasoning about system security and ecological

damage is an important step in widening the usability

of cryptocurrency systems, and this work makes a

step in that direction. These protocols may serve as

the base for an update and design of both current and

future cryptocurrency systems.
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APPENDIX A

LEMMA PROOFS

We now bring the proofs for Lemma 1 and

Lemma 2. We begin with Lemma 1:

Proof. Assume ∀i, j ∈ 1, ..., n : nesi = nesj .

It follows ∀i ∈ 1, ..., n : E [Si] = nes1 ·
ℓbi (k)F . Therefore the expected income of agent

i is ExpInc
(ℓ,α,F )-IIE

i (k) =
nes1·ℓbi(k)F

∑

n
j=1 nes1·ℓbj(k)F

ℓrk =

bi (k) ℓrk, leading to
ExpInc

(ℓ,α,F )-IIE

i
(k)

∑

n
j=1 ExpInc

(ℓ,α,F )-IIE

j
(k)

= bi (k),

resulting in size-indifference = 0.

Now assume size-indifference = 0. By definition

of size-indifference it holds that ∀i ∈ 1, ..., n :
ExpInc

(ℓ,α,F )-IIE

i
(k)

∑

n
j=1 ExpInc

(ℓ,α,F )-IIE

j (k)
= bi (k). Substituting in the

utility E [Si] = nesi · ℓbi (k)F , that is ∀i ∈ 1, ..., n :
nesi·bi(k)

∑

n
j=1 nesj ·bj(k)

= bi (k) or ∀i ∈ 1, ..., n : nesi =
∑n

j=1 nesj · bj (k). As ∀i ∈ 1, ..., n : E [Si] >

0, bi (k) > 0 then it immediately follows that ∀i, j ∈
1, ..., n : nesi = nesj 6= 0.

Lemma 2:

Proof. By the strong law of large numbers it holds

that Nk
i (C)

a.s.
−−→ E

[

Nk
i (C)

]

as ℓ → ∞. As

E
[

Nk
i (C)

]

= ℓbi (k) then Si
a.s.
−−→ ℓbi (k)F and

nesi
a.s.
−−→ 1.

APPENDIX B

(ℓ, α, F ) -IIE - coalition-resistance ANALYSIS

1) coalition-resistance: We devote this section to

reason about σ
(ℓ, α, F ) -IIE

br for various parameter val-

ues. Unlike presenting a strategy that triumphs over

a what-to-be-believed a best-response strategy [25],

[41], [27], [28], we face a different challenge —

https://github.com/slimcoin-project/slimcoin-project.github.io/raw/master/whitepaperSLM.pdf
https://fiatmarketcap.com/
https://hackernoon.com/factors-influencing-bitcoin-price-cfabdf634894
https://en.wikipedia.org/wiki/Cryptocurrency_bubble
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https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/


finding the best-response strategy for a given pro-

tocol. The wide parameter range and strategy space

complicate finding a close-form bound, and we take

the following approach instead.

We follow the path of previous work [26], [29]

and analyze σ
(ℓ, α, F ) -IIE

br using a Markov-Decision-

Process (MDP), returning said strategy for a fixed

set of system parameters. We detail the suitable

MDP for (ℓ, α, F ) -IIE, including the participating

agents, action and state spaces, and the reward func-

tion. We present several parameter settings and their

manifested best-response strategies, indicating how

parameter choices affect coalition-resistance.

a) MDP best-response strategy search: As in

previous work [1], [25], [26], [41], [43], [27], [28],

[29], [55], [69], [29] we analyze the system from a

perspective of a rational coalition of agents, modeled

as a single rational agent, controlling a budget Br (k)
striving to maximize her utility. We model all the

other agents as a single naive agent, controlling a

budget Bn (k), following a predetermined strategy.

Note that σ
(ℓ, α, F ) -IIE

br is specific

implementations of Apportionr (S
g, Br (k)),

Generate
(ℓ,α,F )-IIE
r

(

Sg, Sl
r

)

and Publishr

(

Sg, Sl
r

)

,

which we find in the following manner. First, we fix

ℓ, F, α,Br (k) , Bn (k). We then consider all possible

instances of Apportionr (S
g, Br (k)) — recall that

agent r can apportion her budget at will, however

we can discretize and consider only implementations

such that Bic
r (k) = 0, . . . ,

⌊

Br(k)
αrk

⌋

. For each

Apportionr (S
g, Br (k)) instance we use the MDP

to find the optimal Generate
(ℓ,α,F )-IIE
r

(

Sg, Sl
r

)

and Publishr

(

Sg, Sl
r

)

implementations. For each

such combination we let the agents play for 5000
games, denoting the most-rewarding combination as

σ
(ℓ, α, F ) -IIE

br .

Throughout the rest of this section we detail the

MDP implementation and its results.

b) Rational agent: The rational

strategy space includes all implemen-

tations of Apportionr (S
g, Br (k)),

Generate
(ℓ,α,F )-IIE
r

(

Sg, Sl
r

)

and Publishr

(

Sg, Sl
r

)

functions.

The implementation of Apportionr (S
g, Br (k))

stated by σ
(ℓ, α, F ) -IIE

desired is that the agent ap-

portioning her budget such that Bec
r (k) =

(1− α)Br (k) , B
ic
r (k) = αBr (k). The rational

agent might increase her expected income by allocat-

ing more external budget (and less internal), enabling

her to create more blocks overall, at the expense

of the number of factored blocks. Contrarily, higher

Algorithm 5: σ
(ℓ, α, F ) -IIE
pc of agent i

1 Function Apportion(Sg, Bi (k)):
2 return (1− α)Bi (k)

3 Function Generate(Sg, Sl
i):

4 C ← a uniformly-at-random chain from the longest chains
with minimal score.

5 pointer← last (C)

6 if Nk
i (C) <

⌊

Bic
i
(k)

αrk

⌋

then

7 factored ← true
8 else
9 factored ← false

10

11 return NewBlock(pointer, factored)

12 Function Publish(Sg , Sl
i):

13 return All previously unpublished blocks

internal budget will allow more factored blocks at the

expense of expectedly creating less blocks overall.

The rational agent might also gain by using differ-

ent implementations of Generate
(ℓ,α,F )-IIE
r

(

Sg, Sl
r

)

and Publishr

(

Sg, Sl
r

)

. For instance, Selfish-mining

strategies [25], [26], [41], [43], [27], [29], [29] might

prove profitable as they decrease the blocks and thus

score of the opposing naive agent, yielding higher

expected income for the rational agent.

c) Naive agent: As in [25], [27] the naive

agent comprises infinitely-many, non-colluding

infinitely-small budget agents. She follows a petty-

compliant [27] strategy σ
(ℓ, α, F ) -IIE
pc that is a variant

of σ
(ℓ, α, F ) -IIE

desired , detailed in Algorithm 5.

In principal, σ
(ℓ, α, F ) -IIE
pc identifies with

σ
(ℓ, α, F ) -IIE

desired except at the tie-breaking decision

regarding conflicting longest chains. The

implementation of Generate
(ℓ,α,F )-IIE
n

(

Sg, Sl
n

)

by σ
(ℓ, α, F ) -IIE

desired states the agent tie breaks uniformly-

at-random from the multiple longest chains, and by

σ
(ℓ, α, F ) -IIE
pc the agent chooses uniformly-at-random

from the longest chains that with the minimum

accumulated score.

Such strategy is more logical from an agent’s

perspective as it is expected to increase her expected

income. On a chain with lower score the relative

reward of future blocks is higher, hence increasing

her expected income. As in [27], the petty-compliant

strategy by itself is not harmful (even if we did con-

sider spontaneous forks), yet it enables the rational

agent to utilize a wider range of strategies.

As in [27], [25], [26], [41] we limit the analysis

to strategies considering at most two chains at any

given time. The first is the public chain Cn, followed

by the naive player, while the other is known only

to the rational player, named the secret chain Cr.

By modeling the naive player to comprise



infinitely-many, non-colluding infinitely-small bud-

get agents, and to follow σ
(ℓ, α, F ) -IIE
pc we only in-

crease the ability of the rational player to increase

her expected income by deviating from σ
(ℓ, α, F ) -IIE

desired .

We illustrate that with the following example.

Example. Assume the last block last (Cn) on the

public chain Cn is a factored block created by the

naive player. According to σ
(ℓ, α, F ) -IIE

desired the next block

should point to last (Cn) and extend Cn. Assume the

scheduler picks the rational agent to create the next

block, and she creates a regular block that point to

the same block as last (Cn).
Also assume the rational agent publishes her

created blocks immediately. That is, the rational

agent has created a conflicting longest chain, so

LC (Sg) = {Cn, Cr}. Assume that by the rational

agent’s strategy she will point her next created block

to last (Cr).
Note that S (Cn) − S (Cr) = F − 1 > 0 and

that the naive player follows σ
(ℓ, α, F ) -IIE
pc , therefore

if she is picked to create the next block she will

deterministically choose to point it to last (Cr).
That means that independently of which agent gets

to create the next block, last (Cn) will not be pointed

by following blocks, effectively removing it from any

future longest chain. That means the rational player

had managed to replace a factored block of the naive

agent with her own regular block on the main chain,

increasing her score while decreasing that of the

naive agent, both effectively increasing her expected

income.

If the naive player had followed σ
(ℓ, α, F ) -IIE

desired then

she would have pointed her next block to last (r) with

probability of only 1
2 , as both Cn and are Cr are

of the same length. That means that block last (Cn)
might still end on the concluding main chain (as a

function of the future decisions of both agents), which

will eventually decrease the rational agent’s expected

income.

In a running system it is less likely that an agent

will prefer to extend a chain excluding a previous

block she already created, as that lowers her score

and expected income. Moreover, different agents may

pick randomly different chains. By modeling all the

other agents in the system as infinitely-small budget

agents we can neglect the effect of any single agent

with different incentives than that of the others.

d) Action space: Agent r actions are elements

in the form {chain manipulation, block type}. The

field chain manipulation describes how the rational

player interacts with the secret and public chains, and

may contain either one of the three values — pub-

lish, adopt and wait. The value of publish indicates

the agent publishes the blocks of the secret chain, a

value of adopt indicates the agent abandons the secret

chain and adopts the public chain, and wait indicates

the agent does neither the former nor the latter.

The field block type has a binary value, describing

whether the next block the agent creates is factored.

e) State space: States are elements in the

form of {attack chain,main chain, fork}. The fields

attack chain and main chain represent the content

of the secret and public chains. Note these fields

may have a common prefix. The field fork has a

binary value indicating whether the naive player is

partitioned with regards to which of the two chains

to extend. Note that fork is true only if the rational

player had previously published her chain.

f) Reward function: Rewarding states are those

where either the secret or the public chain are

of ℓ blocks, that is length (attack chain) = ℓ or

length (main chain) = ℓ. Note that this restricts the

rational agents to strategies bounded by the creation

of ℓ blocks, which are assumed to be feasible only

with negligible probability [29]. These states indicate

the epoch conclusion and hence the reward distribu-

tion of (ℓ, α, F ) -IIE.

Note. In [26], [29] the authors analyze an infi-

nite game and introduce a truncation parameter T ,

capping the length of the secret and public chains.

In their system the publication (adoption) of the

secret (public) chain leads to the initial state, and it

accumulates rewards at state-transitions rather than

at a set of final states. Their state space includes

counters of the blocks in the secret and public chains,

resulting in a state space complexity of O
(

T 2
)

.

Such an analysis is inapplicable in our system as

it is described by a finite game, and the reward is

distributed at the final concluding states. However,

we cannot simply count blocks on the two chains

but have to maintain their order, resulting in a state

space complexity of O
(

2ℓ
)

.

As an example, consider the situation where the

rational agent has created a factored and a regular

blocks on the secret chain, and then the naive agent

creates a factored block on the public chain. If the

honest block precedes the factored block on the secret

chain, then the naive agent can publish the regular

block, resulting in the naive agent deterministically

adopting it and forfeiting her recently found factored

block. However, if the factored block precedes the

regular one, then publishing the first block will result



in a fork, resembling Lead-Stubborn Mining [41].

g) Search results: We conduct the following

experiment. We fix ℓ = 10 and for various values

of α,Br (k) , Bn (k) we use binary-search for the

minimal F such that σ
(ℓ, α, F ) -IIE

br identifies with

σ
(ℓ, α, F ) -IIE

desired . We search range is F ∈
[

1, 108
]

with a

stopping criteria of 1e− 6.
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Fig. 3: Minimal F for obtaining σ
(ℓ, α, F ) -IIE

br =

σ
(ℓ, α, F ) -IIE

desired when ℓ = 10. Missing data points

indicate σ
(ℓ, α, F ) -IIE

br 6= σ
(ℓ, α, F ) -IIE

desired for the search

upper bound
(

F = 108
)

.

Fig. 3 brings the results of the mentioned search.

A missing point indicates that no F is sufficient to

ensure σ
(ℓ, α, F ) -IIE

br = σ
(ℓ, α, F ) -IIE

desired .
The results show lower α values require smaller F

values to ensure σ
(ℓ, α, F ) -IIE

br = σ
(ℓ, α, F ) -IIE

desired . We note

that F grows exponentially with α up to α = 0.6,

and from there even the maximal F values do not

accommodate the desired behavior.
We also note that lower br (k) requires lower

F values. This settles with intuition, as an agent

with lower relative budget is expected to gain less

from selfish-mining-like strategies, hence they do not

require higher F values to decrease their profitability.

Note that for br (k) = 0.3 there is no F achieving the

desired behavior, settling with with previous results.

That is expected as the profitability threshold for

selfish-mining is br (k) = 0.232 [26].
We conclude that coalition-resistance relies on ℓ,

F and α, and we can obtain coalition-resistance =
0.2 even for α = 0.5 by setting F appropriately.

A. Mounting a %51 Attack

Consider the following strategy of the rational

agent. The agent creates blocks on her secret chain

and ignores the public chain. When the secret chain is

extended by ℓ the agent publishes it. This essentially

embarks a race between the public and secret chains,

in which the secret chain is expected to win should

Bec
r (k) > Bec

n (k). If in fact the secret chain grows

faster then the rational agent gets the entirety of the

block reward, as only she created blocks on that

chain. This is known as a %51 attack [1], [67].

We explore the ability of the rational agent to

mount such an attack. We therefore seek the minimal

br (k) for which this attack is feasible, that is the

minimal br (k) for which Bec
r (k) > Bec

n (k).

As the naive agent follows σ
(ℓ, α, F ) -IIE
pc and there-

fore Bec
n (k) = (1− α)Bn (k).

As the rational player expects to create a chain

with only her blocks, she will receive the entirety

of the reward as the sole block contributor anyhow,

regardless of the score of her blocks. Hence, she can

apportion her budget such that Bec
r (k) = Br (k).

We get that the condition for this attack is

Br (k) > (1− α)Bn (k). Recall that Bn (k) +
Br (k) = 1 and br (k) = Br (k), land-

ing the aforementioned inequation to br (k) >

(1− α) (1− br (k)) or br (k) > 1−α
2−α . We present

this lower bound pictorially in Fig. 4.
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Fig. 4: Lower bound for br (k) for %51 attack.

As expected, higher α values render the bound

lower, as now the rational agent requires to surpass

a lesser amount of ec. This result correlates with

ℓ-NB, as when α = 0 then 1−α
2−α = 0.5, yielding

the traditional bound [1], [67].

Trivially, if br (k) >
1−α
2−α then the rational agent

maximizes her utility by performing this attack, and

we therefore conclude coalition-resistance < 1−α
2−α .
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