
Issue, Trade, Redeem:
Crossing Systems Bounds with Cryptocurrency-Backed Tokens?

Alexei Zamyatin1,2, Dominik Harz1, and William J. Knottenbelt1

1 IC3RE, Imperial College London
2 SBA Research

Abstract. The ecosystem of cryptocurrencies has been steadily growing since the introduction of Bit-
coin, the first decentralised digital currency. While the notion of trustless asset exchange lies at the core
of most blockchain-based systems, existing cross-chain communication techniques expose limitations
regarding security, performance, and usability. As a result, centralised liquidity providers remain the
preferred way for cross-chain transactions.
We systematise the notion of cryptocurrency-backed tokens, an approach towards trustless blockchain
interoperability. We then propose a protocol for issuing, trading, and redeeming Bitcoin-backed tokens
on Ethereum. Consequently, we provide an overview of system requirements, discuss open challenges
regarding performance and security, and give an outlook on possible extensions. Our protocol, which
requires no modifications to Bitcoin’s consensus rules, can thereby be generalised to also support other
cryptocurrencies.

1 Introduction

Scalability is perhaps the most commonly cited challenge of decentralised systems and has received a sub-
stantial amount of attention from the research community throughout the past years. Apart from parameter
optimisations and research into novel and more scalable consensus mechanisms, there have recently been
attempts to move away from the concept of isolated chains towards an ecosystem of interconnected and
potentially heterogeneous systems [14,80,45]. However, this presumes efficient communication between
systems that differ in purpose and structure, perhaps an even more complex problem than achieving scala-
bility in isolated systems.

Today, there exist over 1600 different cryptocurrencies1 of different design and purpose. Centralized
exchanges have taken the leading role of trading cryptocurrencies, both against fiat and other digital assets.
Hence, the primary way to obtain a trustless currency is through trusted intermediaries. While the first
concept of trustless atomic swaps was introduced as early as 2013 [3], the push towards decentralised
exchanges occurred only recently. Thereby, however, the focus mostly lies on facilitating trades within a
single blockchain offering multiple tokens, as in the case of the 0xProtocol [1]. As such, the only way to
achieve cross-chain trades today is by using atomic swaps, which are slow, interactive, and moreover, rely
on censorship resistant channel detection.

Tokens in the field of cryptocurrencies refer to digital assets built on top of an existing blockchain, such
as Ethereum [26]. Often, they quantify value and represent trust in a particular system or asset. As such,
there exist tokens backed by “real-world assets” including fiat currency and natural resources. Thereby, in
contrast to the initial idea of cryptocurrencies, the value stems from external, mostly physical, sources and
requires verification by some trusted oracle. However, we can use this concept to introduce tokens issued on
distributed ledgers backed by other cryptocurrencies, i.e. infer trust from an already existing decentralised
asset. This in turn potentially allows executing trustless cross-chain transfers using existing decentralised
token exchange protocols.

Our contribution is three-fold: We formulate three base protocols for issuing, exchanging, and redeem-
ing of Bitcoin-backed tokens on Ethereum, leveraging on threshold signatures, cross-chain state validation
and incentive mechanisms. Thereby, we require no modifications to Bitcoin or Ethereum for our base pro-
tocol. Furthermore, our scheme can be extended to other cryptocurrencies, e.g., to issue Litecoin [52] or
Zcash [15] tokens on Ethereum Classic [7]. We provide an overview of system requirements and discuss
challenges regarding performance and security. Finally, we outline possible extensions to our protocol im-
proving liveness and safety properties, also discussing such that would require alterations to Bitcoin.

? This is a draft (revision July 6, 2018)
1 As of June 2018 according to http://coinmarketcap.com.

http://coinmarketcap.com

2 Alexei Zamyatin, Dominik Harz, and William J. Knottenbelt

The rest of this paper is structured as follows. In Section 2 we provide the necessary background infor-
mation, while Section 3 gives an overview of related work. We discuss our system model and requirements
in Section 4 and proceed to give a detailed step-by-step description of the protocol’s design in Section 5.
The final protocol is formulated in Section 6 and extensions are outlined in Section 7. We discuss challenges
and give an outlook on future work in Section 8, while concluding our paper in Section 9.

2 Background

In the following, we provide the necessary background information on cryptocurrency tokens and cross-
chain communication protocols. While we do not offer an introduction to Bitcoin and permissionless
blockchains, we direct the interested reader to [59,60,78].

2.1 Overlay Protocols and Tokens

The first approach to store meta-information in cryptocurrencies was by using coloured coins [68], followed
by overlay protocols, i.e. velvet forks in Bitcoin [42,82]. Such protocols can be used to add functionality
to the existing chain while ideally providing the same or similar security guarantees. A further increase in
protocols built on top of existing chains occurred after the introduction of Ethereum [26]. Ethereum provides
a Turing-complete programming language, which allows creating so-called smart contracts executed within
its replicated state machine, the Ethereum Virtual Machine (EVM). Specifically, new cryptocurrencies or
tokens can be created directly within Ethereum, without the need to bootstrap a dedicated and separate
blockchain.

Tokens can be used to quantify both fungible and non-fungible assets. Ethereum thereby specifies mul-
tiple standards for the simple creation of fungible (e.g. ERC20 [32], ERC223 [33]) and non-fungible tokens
(e.g. ERC721 [34], ERC994 [35]). Of the top 100 cryptocurrencies according to their market capitalisation,
more than 90% are rooted as tokens in the Ethereum blockchain1.

2.2 Cross-Chain Communication

An overview of cross-chain communication can be found in a technical report by Buterin [27], which
outlines three bases strategies approaches namely notary schemes, chain relays and atomic swaps via hashed
time-lock contracts.

Base Techniques In the following, we provide a brief overview of the current state of research in the three
base techniques used to enable cross-chain communication.

Hashed Time-Lock Contracts Hashed Time-Lock Contracts (HTLC) [4] allows payments based on a hashed
input and a time constraint additional to the required signatures. The receiver must provide a pre-image
to the hash function within a specified time-frame to claim the payment. If the receiver fails to make a
claim, the sender of the payment can return the funds after the expiry of the time-lock. This technique
is used for example by the Lightning Network and can also be applied to achieve atomic cross-chain
swaps [77,3,14,40,13,76,54]. Atomic swaps allow to conduct a single token exchange atomically, i.e., either
both parties receive the agreed upon tokens of value, or no trade is executed at all. A formalisation of the
concept is provided in [40]. While HTCLs provide a simple mechanism to facilitate cross-chain communi-
cation, the timing constraints require both users to be online throughout the trade and expose the scheme to
race conditions. Furthermore, the necessity to exchange data off-chain requires an out of band channel to
be established between users in a censorship-resistant manner.

Chain Relays A chain relay can informally be defined as a program executed on one chain capable of
interpreting the state of another (permissionless) chain. Thereby, similar to a SPV client [2], the chain relay
can verify if transactions or blocks of the other chain have been included in the underlying data structure.
For example, BTC Relay [5] allows to prove to Ethereum clients that a transaction has been included in
Bitcoin. However, chain relays require a sufficient set of operations to be available on the chain hosting the
program. As such, we cannot yet implement such programs using Bitcoin’s limited Script. Moreover, these
programs must be kept up to date with the state of the verified blockchain, i.e., users must continuously
submit updates, accounting for the related computation costs. While active use and a working incentive

Issue, Trade, Redeem: Crossing Systems Bounds with Cryptocurrency-Backed Tokens 3

scheme could motivate participants to maintain a chain relay, we observe that this is currently not the
case in practice: BTC Relay has fallen 25.000 blocks behind Bitcoin. Recent work is trying to cope and
eliminate these shortcomings by providing more efficient proofing mechanisms, e.g., NiPoPoWs [42], or
executing the verification off-chain [75,6]. Other notable chain relay projects include PeaceRelay [9],
Project Alchemy [11], Cosmos “Peggy” [28] and Parity Bridge [8].

Notary Schemes Notary schemes replace trust in a single entity by trust in a set of different entities, i.e., a
committee also referred to as validators. Validators employ a consensus algorithm such as Tendermint [25]
or HoneyBadger [57] to reach agreement over a set of transactions which transfer tokens of value be-
tween chains. Safety and liveness thereby depend on the availability and honest behavior of the majority
of validators (exact requirements regarding the trust models may differ). A range of PoS algorithms use
such notary schemes to achieve consensus with an additional layer of incentives to promote honest be-
haviour [56,43,30,19]. This principle can, however, also be used for cross-chain communication. Thereby,
the validators can be responsible to actively signing cross-chain transactions, as in Liquid [31], or attest
to exchange partners that the trading conditions have been met, as in the case of Interledger [76]. Notary
schemes, however, typically make the assumption that a pre-defined set of validators is available. Without
pre-defined validators, the election of leaders can be subject to a range of attacks as described in [18].

Second-Layer Protocols Second-layer protocols for cross-chain communication aim at providing a base
synchronization layer between heterogeneous blockchains, abstracting the technical details of the inter-
connected systems. Thereby, these approaches usually rely on existing consensus protocols and introduce
incentive structures to promote honest behavior. Connections between different chains are typically estab-
lished using the techniques described in the previous section and are often referred to as bridges. Thereby,
liveness and security are to be maintained through the second layer protocol. Examples include Polka-
dot [80], Cosmos [45], and AION [74], which require a permissioned set-up and rely on two-phase commit
protocols for cross-chain transactions.

3 Related Work

The notion of cryptocurrencies and tokens of value backed by real word assets, such as gold and fiat cur-
rency, can be described as an attempt to minimise the price fluctuations and stabilise the market. Thereby,
the underlying principle is simple: each cryptocurrency unit is backed by a corresponding unit of a real-
world asset, notarized and held in custody by some trusted third party. However, the centralised approach
and lack of transparency of such schemes are arguably in conflict with the principles of decentralised sys-
tems and potentially allow for manipulations, as suspected in the case of Tether, a cryptocurrency pegged
to the US Dollar [39].

A similar principle can, however, be utilised to create tokens backed by cryptocurrencies in a publicly
verifiable manner. Instead of relying on a central party, the process of locking funds and releasing the
corresponding amount of asset-backed tokens can be handled by publicly verifiable programs, or smart
contracts, built on top of decentralised ledgers such as Ethereum. This concept is already being utilised on
Ethereum to “wrap” the native cryptocurrency ETH in a standardised token format [32,67], which allows
trading on decentralised on-chain token exchange platforms [1,12].

PeaceRelay represents one of the first projects discussing how cryptocurrency-backed tokens can be
exchanged between two distributed ledgers supporting Turing complete programming languages, namely
Ethereum and Ethereum Classic [9]. Bentov et al. describe the how Bitcoin-backed tokens can be issued on
Ethereum by an exchange built on top of trusted execution environments (IntelSGX) [17]. Other projects
attempt to use cryptocurrency-backed tokens for value transfers between Ethereum and permissioned sys-
tems [28,10]. However, in contrast to our scheme, the latter proposals assume Turing complete programming
capabilities on both source and received chains, or rely on external validation through some trusted third
party.

4 Setting and Notation

In this section, we provide an overview of the system, network and threat models for our protocol for
Bitcoin-backed tokens on Ethereum and formulate the main goals of this approach. Note, while we specif-
ically use Bitcoin and Ethereum to describe our protocol, it is generally applicable to other cryptocurrency

4 Alexei Zamyatin, Dominik Harz, and William J. Knottenbelt

pairs with similar system properties, such as Litecoin [52] and Ethereum Classic [7]. The main requirement
is that the chain on which the tokens are created must provide a sufficient set of operations2.

4.1 System Model

We assume a user Alice owns units of Bitcoin, denoted as btc, linked to her public/private key pair (pkbtc
A , skbtc

A)
and wishes to create the corresponding amount of Bitcoin-backed tokens on Ethereum btceth . Bob owns
units of Ethereum, denoted as eth , linked to his public/private key pair (pketh

B , sketh
B) and wishes to ac-

quire Bitcoin, without necessarily creating a wallet, i.e., public/private key pair, on Bitcoin. Transactions
created in Bitcoin are denoted as T btc , while transactions on Ethereum are referred to as T eth . We recall,
while Bitcoin’s Script provides only limited expressiveness, Ethereum offers Turing complete programming
capabilities, allowing the creation of publicly verifiable programs or smart contracts.

As such, we assume a smart contract used to manage the issuing, trading and redeeming of the tokens
is deployed on Ethereum. This contract, which we shall refer to as treasury, provides the following
functionality:

1) Create Tokens. Given proof that some amount of btc has been correctly locked in Bitcoin by a user
controlling an Ethereum public key pketh, the contract creates and after some pre-defined contesta-
tion period tcontest allocates the corresponding amount of btceth to the Ethereum account associated
with pketh.

2) Cancel Creation. Provided with a proof that a previously claimed lock of some btc is no longer
part of the global state / transaction history of Bitcoin, e.g. due to a chain reorganization, within a
pre-defined contestation period tcontest, the contract aborts the issuing process.

3) Transfer Tokens. Provided with the digital signature sig(sketh) of the current token owner and a
receiver identified by pketh′

, the contract reassigns the ownership of the tokens to the new Ethereum
account associated with pketh′

.
4) Redeem Tokens. If a user controlling units of btceth signals the wish to redeem the corresponding

amount of btc on Bitcoin, the contract emits a publicly visible “unlock” event, signaling that the
lock-in Bitcoin is to be lifted, and burns the returned tokens.

4.2 Network and Threat Model

Garay et al. formalised security properties of Bitcoin in synchronous and partially synchronous settings [37].
Within their analysis, they refer to three properties of a blockchain: common prefix, chain quality, and chain
growth. Based on these properties they analysed Bitcoin as an example of a Byzantine consensus protocol.

We make some restricting assumptions with regards to the networks underlying Bitcoin and Ethereum.
Where not stated otherwise, we assume the trust models of Bitcoin and Ethereum hold, i.e., the portion of
the overall computing power controlled by a computationally bounded adversary is less than 50%. More-
over, we assume that the network synchronises faster than the PoW rate, and the current blocks including
transactions are available to honest minders. We further assume the cryptographic primitives used in Bit-
coin and Ethereum are secure. Under these assumptions, an honest majority suffices to allow for consensus
under Byzantine conditions.

We assume communication between participants in both networks is asynchronous. While honest par-
ticipants adhere to protocol rules, an adversary can behave arbitrarily. Thereby, we make the assumption
that the adversary is economically rational and possesses bounded resources. Our protocol has to take into
account that an adversary might censor transactions and/or delay delivery of such. Hence, the protocol needs
to take atomicity of trades into account to prevent the partial execution of trades. As we assume that the
trust model of the underlying chains holds, tampering with the smart contract issuing tokens is not possible.
We have three different actors in our protocol: a sender of a token, a receiver, and an entity moderating the
protocol being active on both chains. Ideally, no entity in the system should need to trust any other entity
even under the assumption that they will not become malicious.

2 As the EVM offers a Turing-complete set of operations, it is possible there. We note that Turing-completeness,
however, is not necessarily a requirement, as we could also implement the system in other non-Turing-complete
languages such as Scilla [71]. The instruction set currently available in Bitcoin, on the other hand, is not sufficient to
issue and track new tokens. We leave a thorough analysis of the required operations to future work.

Issue, Trade, Redeem: Crossing Systems Bounds with Cryptocurrency-Backed Tokens 5

4.3 Protocol Goals

The goal of our protocol is to enable the issuing, exchange and redeeming of Bitcoin-backed tokens on
Ethereum, without necessitating trust between involved parties. As such, ideally, we do not want to re-
quire the safety of the protocol to depend on the availability and honest behaviour of a (trusted) third party.
However, if a third party is necessary, then deviations from the protocol must be penalised, while potential
financial damage to users reimbursed, so as to minimise the incentive for malicious behaviour by economi-
cally rational adversaries.

The desirable properties for Bitcoin-backed tokens on Ethereum can, in turn, be formulated as follows:

– Fungibility. Alice must be able to lock any portion of her btc to create the corresponding amount of
btceth tokens on Ethereum. In turn, she must be able to trade these tokens to Bob against eth or some
other ERC20 or ERC223 token on Ethereum.

– Divisibility. Alice must be able to trade any fraction of btceth , as long as it exceeds the minimal possible
unit in Bitcoin, i.e., a Satoshi (10−8 BTC). We note this requirement must only hold for the token itself
- services used to execute token exchanges may impose restrictions with regards to the minimal amount
or value of transferred tokens.

– Redeemability. Any user on Ethereum, i.e., both Alice herself or Bob, when in possession of btceth

must be able to redeem the equivalent amount of btc (less potential transaction fees) on Bitcoin by
destroying or burning the tokens on Ethereum.

– Atomicity. By transferring btceth Alice implicitly transfers ownership of the corresponding amount of
btc to Bob, i.e., Alice is no longer able to access the locked units of btc. As such, transfer of ownership
occurs atomically both on Bitcoin and Ethereum, or not at all.

– Consistency. At any given point in time, the existence of btceth tokens and the availability of the
corresponding units of btc are mutually exclusive. That is, btceth tokens can only be generated on
Ethereum if the respective amount of btc is locked in Bitcoin, while the lock can be released only if the
corresponding tokens have been destroyed on Ethereum.

5 Protocol Design

We propose how Bitcoin-backed tokens can be created in Ethereum. Thereby, we define three main proto-
cols: Issue, Trade and Redeem. We start by describing a naive centralised approach to describe the intuition
behind the protocols and then reduce the trust requirements step by step to achieve the desirable properties
described in Section 4. The final protocols are presented in Section 6. Note: while none of the mechanisms
described here requires changes to the underlying base protocols, we outline more intrusive but potentially
more secure and efficient approaches in Section 7.

5.1 Centralised Issuing: A Strawman Scheme

We now present a strawman scheme outlining the general idea of Bitcoin-backed tokens on Ethereum.
Thereby, we make use of a central entity to process the issuing and redeeming of tokens, i.e., the locking
and unlocking of btc and btceth tokens respectively. We refer to this entity as “Issuer” and assume it controls
the public/private key pair (pkbtc

I , skbtc
I) on Bitcoin and (pketh

I , sketh
I) on Ethereum. Initially, we assume

the Issuer is the owner of the treasury contract and it is publicly verifiable that he is responsible for the
issuing and redeeming of tokens.

Issue

1. Alice as the initiator of the protocol verifies the treasury contract is available and creates a new
account on Ethereum, i.e., a public/private key pair (pketh

A , sketh
A).

2. Next, she locks her funds on Bitcoin in a publicly verifiable manner, such that this event can, in theory,
be checked by any Bitcoin client. That is, in the naive centralised scenario, Alice creates a transaction
T btc

lock signed with skbtc
A by which she transfers the to-be-locked btc to the Issuer. In this transaction

she also includes pketh
A (or a hash-based “address” thereof) so as to inform the Issuer, where the tokens

shall be issued to3.
3 This can be achieved by using the OP RETURN opcode in Bitcoin [22], which allows to push up to 80 bytes of

arbitrary data onto the Script stack.

6 Alexei Zamyatin, Dominik Harz, and William J. Knottenbelt

3. Once T btc
lock has been included in the underlying blockchain and has received sufficient confirmations

(e.g. six), the Issuer, providing his digital signature sig(sketh
I), instructs the treasury contract to

issue btceth to Alice on Ethereum, such that |btceth | = |btc|.

Trade

1. When Alice trades some amount of btceth tokens to Bob, she appoints him as the new owner via the
treasury contract.

2. From this moment on, the Issuer will no longer allow Alice to withdraw the associated amount of locked
btc in Bitcoin. That is, the transfer of ownership occurs atomically on both chains. The process for any
further transfers is analogous.

Redeem

1. Once Bob decides to redeem his btceth for the corresponding amount btc, he first creates a new pub-
lic/private key pair (pkbtc

B , skbtc
B) on Bitcoin.

2. Next, he signals to the treasury contract that he wishes to initiate the redeem procedure (e.g., with
a function call).

3. In turn, the contract burns the btceth tokens and emits an “unlock” event verifiable by any Ethereum
client.

4. The Issuer becomes aware of this and sends the corresponding amount of btc to Bob on Bitcoin by
publishing a transaction T btc

redeem .

While the naive centralised case is simple to implement and it is easy to see that the Issuer can enforce
the correct behaviour of the protocol, full trust in the availability and honest behaviour of the Issuer is
required. As such, neither safety nor liveness are guaranteed if an economically rational Issuer becomes
malicious and decides to steal Alice’s btc, generate fake btceth or not send btc to Bob despite btceth
having been burnt. However, this approach is nevertheless arguably more transparent than tokens backed
by real-world assets, since any user on Bitcoin and Ethereum can at least trace the actions of the Issuer. As
such, the users of both systems would quickly become aware of the malicious behaviour and cease to use
the protocol. While the presence of a well-defined fee model may theoretically be sufficient to incentivise
honest behaviour of the Issuer, this approach is no different from relying on centralised liquidity providers,
i.e., exchanges.

5.2 2-of-2 Multisig Escrows: Improving Safety

We now proceed to improve the safety properties of our scheme by making use of Bitcoin multisigna-
tures [21], short multisigs, to reduce trust put in the Issuer. During Issue, instead of directly sending btc
to the Issuer, Alice creates a transaction with a 2-of-2 multisig output in Bitcoin, which requires both her
and the Issuer’s digital signatures for spending. This prevents the Issuer from withdrawing the locked btc
without Alice’s consent (i.e., stealing), while it is easy to see Alice still cannot withdraw the funds before
locking btceth in the treasury contract, as enforced by the Issuer. We denote the corresponding transaction
as T btc

lock(AI).
This modification, however, in turn, requires a change to the Trade protocol: when transferring own-

ership of btceth to Bob, Alice must now also replace herself by Bob in the multisig lock. To this end,
she creates and signs a new Bitcoin transaction T btc

lock(BI), which spends the output(s) of T btc
lock(AI) and

creates a new 2-of-2 multisig output, conditioned on the existence of Bob’s and the Issuer’s signatures.
Note: T btc

lock(BI) can only be included in the underlying blockchain after T btc
lock(AI), that it is the complete

transaction chain must be published.

Reducing Waiting Times In a naive and slow implementation, Alice and Bob would wait for the Issuer’s
signature before finalising the transfer. However, since the transaction malleability fix introduced in Bitcoin
with BIP141 (Segregated Witness) [53], we can get rid of this requirement. Specifically, since the signature
data is no longer part of the transaction identification, we can require the Issuer to sign both transactions
only when Bob decides to redeem his btceth , i.e., at the end of the token’s lifespan after all transfers have
been completed. To this end, P2WSH outputs [49] must be used instead of P2SH [23], when creating the
multisig.

Issue, Trade, Redeem: Crossing Systems Bounds with Cryptocurrency-Backed Tokens 7

The improved performance, however, comes at the cost of increased storage requirements: the creation
and signing of T btc

lock(BI) by Alice must be handled such that it is publicly verifiable, most importantly by
the Issuer. Otherwise, if the transaction were to be given to Bob via an out of band channel, Alice could
attempt to double spend, e.g., by creating a conflicting transaction T btc

lock(CI) moving funds to Carol. Neither
Bob, nor Carol, nor the Issuer would know which transaction was created first, while Alice would receive
funds from both trading partners. Hence, we require Alice to store T btc

lock(BI) in the treasury contract4 and
Bob only accepts the trade once he is sure the data is included in the Ethereum blockchain, i.e., that the
Issuer can be expected to have become aware of the trade. This is essential when introducing fraud proofs
and penalising of service level agreement failures (crash or Byzantine failures) of the Issuer in Section 5.4.

Privacy Privacy can be improved by requiring Alice to encrypt the uploaded transaction data with a new
key k (symmetric or asymmetric, depending on further use cases) and provide k to the Issuer and Bob. The
latter can be achieved by encrypting k with pketh

I and pketh
B respectively and attaching the resulting outputs

to the data included in the contract.

UTXO Grouping A further disadvantage of this scheme is that in the worst case, each token trade on
Ethereum results in a transaction in Bitcoin, even if published at a later point in time. An improvement can
be achieved by compressing the multisig outputs into a single transaction, which is the optimal scenario
will only be published at the end of the token’s lifespan, i.e., when it is redeemed for units of Bitcoin.

To this end, a UTXO grouping scheme can be implemented, whereby transaction chains are replaced
with a single transaction with multiple outputs. If Alice sends half of her tokens to Bob and later sends
a part of her remaining tokens to Carol, this would result in two separate transactions being created in
Bitcoin during the Redeem protocol. The resulting outputs can, however, be grouped into a single grouping
transaction, sending the corresponding amount of Bitcoin directly to Bob and Carol (and the remainders to
Alice or back to the multisig lock).

However, this would require the active participation of Alice in creating or at least signing the new
transaction. The contract on Ethereum can automate the creation of the UTXO-grouping transactions. An
incentive scheme can be introduced, whereby Alice receives some fees for being online and signing group-
ing transactions, e.g., a fraction of the fees which would be charged by miners for including the transaction
chain in Bitcoin.

Optimistically, this approach allows to compress n trades into a single Bitcoin transaction. In the worst
case, however, the number of Bitcoin transactions is equal to the number of token trades, i.e., worst-case
complexity remainsO(n). We note that the provided high-level description does not cover many edge cases
and possible optimisations. However, while a more detailed and formal analysis goes beyond the scope of
this first proposal, we shall extend upon this in future work.

Liveness and Safety While the 2-of-2 multisig prevents the escrow from stealing the user’s funds in
Bitcoin, it does not prevent (or even incentivise) the Issuer to abstain from signing transactions at all,
locking up funds indefinitely. Furthermore, since the tokens are still issued centrally in Ethereum, there is
no guarantee that the escrow will release the locked Bitcoin once the users burn Bitcoin-backed tokens in
the contract during the redeem phase. In the following sections, we proceed to loosen these constraints.

5.3 Chain Relays: Non-interactive/Automated Token Issuance

Until now, the treasury contract only issued tokens upon presentation of the Issuer’s digital signature.
We now proceed to remove this requirement by adding Bitcoin transaction verification logic to the contract,
that is, we make the contract capable of verifying the inclusion of transactions in the Bitcoin main chain,
comparable to a Bitcoin SPV-Client [2]. We achieve this functionality by deploying a chain relay [27] con-
tract for Bitcoin on Ethereum. In fact, such contract is already available in the form of BTC Relay [5]. For
simplicity, in the following we assume the chain relay is directly incorporated in the treasury contract,
extending it by the following functionality:

4 Storage costs in Ethereum can be reduced by only persisting the transaction hash in the contract, while storing the
full transaction data externally, e.g., on IPFS [16].

8 Alexei Zamyatin, Dominik Harz, and William J. Knottenbelt

5) Verify Bitcoin Transactions. Given a chain of Bitcoin block headers starting with the genesis block,
a transaction and a Merkle Tree proof [55], the contract is capable of verifying that the transaction
has been included in the Bitcoin blockchain.

In the rest of this paper, we make the simplified assumption that the contract always receives and stores
the most recent Bitcoin block headers. In reality, we observe BTC Relay is currently non-functional due to
its high operating costs and lack of incentive for users to submit Bitcoin block header.

By enabling verification of Bitcoin transactions by the treasury contract, we achieve the following
improvements to our scheme:

– During the Issue protocol, Alice can now directly prove to the contract that she has correctly locked up
her funds with T btc

lock(AI). This eliminates the requirement for the Issuer to be online during the issuance
process, making this part of the scheme non-interactive.

– Users can now prove a Byzantine failure of the Issuer to the contract, i.e. if he signed conflicting
transactions redeeming the same btc. Furthermore, they can accuse the Issuer of not releasing locked
btc within some grace period tgrace despite the corresponding btceth having been burnt. In the latter
case, the Issuer can, however, object to the accusations by proving to the contract that he had published
T btc

redeem on time. We discuss the details of such accusations, fraud proofs and resulting penalties in the
next sections.

5.4 Collateral: Introducing Incentives

Now that we have enabled users to prove misbehaviour of the Issuer, or accuse him thereof, we consider
penalties for scenarios where the Issuer indeed fails to adhere to the protocol rules. To this end, we introduce
the notion of collateral to our scheme.

The Issuer acts as service provider, even if by now in a non-custodial manner, and will be earning
fees on token issuance/trade/redeeming. As such, we argue the Issuer can be required to lock up funds on
Bitcoin and/or Ethereum as collateral, to ensure users are reimbursed in case of human-made (by the Issuer)
protocol failures. We thereby identify two possible ways to implement collateral payments in our scheme:

– Collateral on Bitcoin. A simple approach is to require the Issuer to match the amount of btc locked
by Alice in the multisig, i.e., btccol = btc. While it does not allow for penalising malicious behavior,
this measure provides a disincentive for the Issuer to permanently freeze Alice’s funds, as this would
prevent him from accessing his funds as well.

– Collateral on Ethereum. The more expressive programming capabilities of Ethereum allow defining
more complex collateral schemes, than on Bitcoin. As such, the Issuer can be required to lock up
sufficient collateral in eth to match the value of issued btceth tokens plus an amount to cover potential
penalty payments. A significant difficulty of this approach is the often volatile exchange rate between
cryptocurrencies. As such, the collateral locked in the treasury contract must account for potential
price drops/surges.

For the first version of our scheme, we opt to introduce only collateral on Ethereum. Thereby, we
assume for simplicity that the Bitcoin-Ethereum exchange rate can be retrieved from some oracle and all
participants agree on it. As such, we add the following functionality to the treasury contract:

6) Lock/Release Collateral. The contract can accept collateral payments from the Issuer and will hold
these funds locked until all associated btceth are redeemed.

7) Slash Collateral. If provided with proof that the Issuer causes financial damage to users by failing
to adhere to protocol rules, the contract slashes the Issuer’s collateral fund and reimburses users
accordingly.

Note: while not discussed further in the protocol description, Issuers can leave the scheme by finding
a replacement ready to purchase the their locked funds, and passing on the private keys. More reliable
pass-over schemes will be discussed in future work.

Issue, Trade, Redeem: Crossing Systems Bounds with Cryptocurrency-Backed Tokens 9

5.5 The Tribunal: Fraud Proofs and Accusations

We now proceed to describe how our scheme handles fraud proofs and accusations by users. As mentioned,
while the Issuer cannot directly steal from the multisig, he can ignore redeem requests from Bob. In the
following we assume the Issuer did not send btc to Bob within grace period tgrace after the burning of
btceth .

1. Accusation. As a reaction, Bob publicly accuses the Issuer via the contract. Thereby, Bob must lock
some pre-defined amount of eth in the contract, which serves as collateral in case Bob made a false
accusation. The provided collateral must thereby exceed the costs faced by the Issuer to disprove the
accusation, to prevent griefing.

2. Rebuttal Period. The accused Issuer can react to the accusation within some rebuttal period trebuttal.
That is, the Issuer is given a chance to prove he did transfer the correct amount of eth within the grace
period.

3. Verdict. This accusation procedure has two possible outcomes:

(a) Correct Accusation. The Issuer fails to provide the necessary proof of correct behaviour within
trebuttal. As a result, the Issuer is penalised and the user reimbursed for the incurred financial loss.
Alternatively, Bob can decide to retry the redeem process, without incurring penalties yet.

(b) False Accusation. The Issuer provides a transaction inclusion proof to the treasury contract
using the chain relay functionality and shows that Bob has made a false accusation. As a result,
Bob’s collateral is confiscated and paid to the Issuer as reimbursement for the costs of the provided
proof.

6 Detailed Protocol Description

In this section we now provide a detailed formulation of the three discussed protocols Issue, Trade and Re-
deem. Accompanying visualizations are given in Figures 1 - 3. Note: for simplification, we do not consider
the fees incurred by the Issuer.

6.1 Issue

Protocol 1 Issue
Precondition. Alice controls units of btc on Bitcoin: btc → pkbtc

A

The protocol:

(1) Alice generates (pketh
A , sketh

A)

(2) Alice publishes T btc
lock(AI): pk

btc
A

btc−−→ 〈pkbtc
A ∧ pkbtc

I 〉 | cond.: ∃sig(skbtcA ∧ skbtcI)

(3) Alice publishes T eth
proof , calling verifyBtcTx(T btc

lock(AI)) in treasury

(4) IF verifyBtcTx(T btc
lock(AI)) = >

(a) treasury contract waits until tcurrent ≥ tcontest

(b) The contract declares btceth → pketh
A

(4’) ELSE: treasury contract aborts the process

Result. Alice and the Issuer have locked btc in a multisig output: btc → 〈pkbtc
A ∧ pkbtc

I 〉, Alice controls
units of btceth on Ethereum: btceth → pketh

A

10 Alexei Zamyatin, Dominik Harz, and William J. Knottenbelt

Fig. 1. Visualization of the Issue protocol. The chain relay and the rest of the contract functions are separated for better
readability.

6.2 Trade

Protocol 2 Trade
Precondition. btc → 〈pkbtc

A ∧ pkbtc
I 〉, btceth → pketh

A , eth → pketh
B

The protocol:

(1) Alice creates and signs T btc
lock(BI): 〈pk

btc
A ∧ pkbtc

I 〉
btc−−→ 〈pkbtc

B ∧ pkbtc
I 〉 | cond.: ∃sig(skbtcB ∧ skbtcI)

(2) Alice publishes T eth
offer , calling transferTokens(pketh

B ,T btc
lock(BI)) in treasury

(3) Bob publishes T eth
trade : pketh

B
eth−−→ treasury

(4) treasury contract declares pketh
A

btceth−−−→ pketh
B

(5) Alice publishes T eth
withdraw : treasury eth−−→ pketh

A

Result. btc → 〈pkbtc
B ∧ pkbtc

I 〉, btceth → pketh
B , eth → pketh

A

6.3 Redeem

Protocol 3 Redeem
Precondition. btc → 〈pkbtc

B ∧ pkbtc
I 〉, btceth → pketh

B

The protocol:

(1) Bob generates (pkbtc
B , skbtc

B)
(2) Bob creates and signs T btc

redeem(BI)

(3) Bob publishes T eth
burn , calling redeemTokens(T btc

redeem(BI), btceth) in treasury

(4) treasury contract burns tokens: pketh
B

btceth−−−→ X
(5) treasury contract emits Event(“unlock btc to pkbtc

B ”)
(6) Before tcurrent ≥ tgrace the Issuer:

(a) Signs T btc
lock(BI)

(b) Signs T btc
redeem(BI)

(c) Publishes T btc
lock(BI)

spends←−−− T btc
redeem(BI)

Result. btc → pkbtc
B , btceth → X

Issue, Trade, Redeem: Crossing Systems Bounds with Cryptocurrency-Backed Tokens 11

Fig. 2. Visualization of the Trade protocol. The chain relay and the rest of the contract functions are separated for better
readability.

Fig. 3. Visualization of the Redeem protocol. The chain relay and the rest of the contract functions are separated for
better readability.

7 Extensions

We discuss possible extensions to improve further the liveness and safety properties of the scheme, which
either require modifications to Bitcoin or rely on external resources, i.e. trusted hardware.

7.1 Issuer Committee: Disseminating Availability (and Trust)

A final improvement to the scheme can be made by introducing issuer committees, instead of relying on
a single entity. The assumption here is simple: the probability of a single issuer facing a crash failure is
lower than n issuers crashing simultaneously for n > 1. Furthermore, if the multisig were to require the
signatures of n

2 or 2n
3 issuers, the safety properties can be improved as well.

Committee election schemes have been described for PoS protocols [56,43,30,19]; however it is also
possible to facilitate election protocols on top of PoW blockchains. Concepts including Byzcoin [44] and
HybridConsensus [64] describe how a committee can be sampled from PoW solutions over some period.
Thereby, the committee leverages on the same trust model, as the underlying consensus mechanism. How-

12 Alexei Zamyatin, Dominik Harz, and William J. Knottenbelt

ever, Pass and Shi emphasise the need for selfish mining attack prevention [64], as otherwise, the commit-
tee constellation could be biased to benefit an attacker. To this end, it is possible to utilise schemes like
Fruitchains [63], Bobtail [20] and potentially the DAG-based proposal PHANTOM [73].

However, some of these protocols require substantial modifications to Bitcoin can only be deployed as
soft or hard forks. Furthermore, multisig outputs in Bitcoin currently can only include up to 20 signatures.
While this constraint could potentially be resolved by the concept of Merkelized Abstract Syntax Trees
(MAST) [69,46,36], it is unclear if and when this mechanism will be deployed in Bitcoin.

Velvet Committee Election In theory, if the committee participation were to be made optional, it could
be implemented as a velvet fork in Bitcoin, avoiding the risk of chain splits. However, as the rules in such
case are non-enforceable for the majority of the consensus participants, we can no longer assume the same
trust model as Bitcoin. That is, if only 10% of consensus participants employ a committee election scheme
via PoW, we cannot be sure that a single entity is not controlling the committee. Hence, while both liveness
and safety are only improved optimistically for voluntary committee schemes. With adoption rates > 50%,
however, the improvements are notable. A more detailed analysis of possible committee-based protocols
will be studied in future work.

Merge-Mined Election The treasury contract on Ethereum must be informed about the committee
elected in Bitcoin. This can be achieved by submitting the necessary data to the chain relay and mirror-
ing the committee election algorithm to the smart contract.

An alternative solution has been discussed in Rootstock [48], a sidechain proposal for Bitcoin equipped
with a version of the Ethereum Virtual Machine. Rootstock is merge-mined with Bitcoin, that is, it uses
the same PoW algorithm and accepts PoW solution found by Bitcoin miners. Thereby, solutions are only
accepted if they exceed Rootstock’s required difficulty target and contain a reference to the current Root-
stock block header. Merged mining can, however, also be used to make clients on Rootstock aware of the
committee election in Bitcoin [66,65]. As such, by natively supporting the propagation of the committee
election process, a committee issuer scheme could potentially be implemented with fewer costs compared to
Ethereum. Furthermore, while classical merged mining only verifies the PoW of Bitcoin, it can be extended
to allow transaction verification. That is, the chain relay functionality can also be implemented directly
in the Rootstock client, reducing the costs associated with the chain relay functionality in our protocol.
Once Bitcoin-backed tokens are issued on Rootstock, they are transferred to Ethereum using approaches
described by, for example, PeaceRelay [9]. We note, however, the deployment of Rootstock requires a soft
fork in Bitcoin.

7.2 Trusted Hardware

An approach which would significantly simplify our scheme for Bitcoin-backed tokens on Ethereum is the
use of trusted execution environments (TEEs). The idea of this concept is that a secure hardware enclave
can attest it executed precisely the code which was deployed by a user - a mechanism referred to as remote
attestation. In theory, users can hence trust TEEs, even if they are located outside of their reach, e.g., in
a data centre rather than on their local machine. The most popular TEE implementation today is arguable
Intel SGX [41].

Existing research work already describes how Intel SGX can act as a “semi-trusted” third party in
blockchain protocols, including payment channels [50,51], useful mining [83] and cryptocurrency ex-
changes [17]. The latter research work by Bentov et al. is specifically relevant for our scheme, as it mentions
how cryptocurrency-backed could be implemented using Intel SGX. Applied to our protocol, the Issuer
would be replaced by an Intel SGX enclave, which could then, in theory, be trusted. We note, however,
that recent attacks [81,72,29,79,38,70,24,47,58] have shown that more research into the security of trusted
hardware may be necessary before it becomes suitable for large-scale deployment in cryptocurrencies.

8 Discussion and Future Work

We now proceed to discuss challenges faced by our approach and perspectives for future work.

Issue, Trade, Redeem: Crossing Systems Bounds with Cryptocurrency-Backed Tokens 13

8.1 Incentives

Enabling liveness of the protocol requires finding Issuers willing to facilitate the protocol. These parties
must have both Bitcoin and Ethereum accounts with sufficient funds to provide the potentially necessary
collateral. Hence, the incentives provided to Issuers must outweigh any cost occurring. At the same time,
the fees for the protocol must be reasonable otherwise users would not execute such a service. One of the
main challenges of our approach is therefore handling a potentially unstable exchange rate between Bitcoin
and Ethereum, which could in extreme cases could shift the incentives of economically rational Issuers
towards acting maliciously.

Formally, the protocols incentive structure can be described as a mechanism M = (Σ, g) [61]. Σ is
a set of possible actions of agents and g the resulting function of those actions. Actors in the system are
rational agents P = {1..n} that want to optimize their utility ui. Sender and receiver wish to exchange
currency while likely trying to minimise cost under specific requirements of transaction times and security
assumptions. Issuers, on the other hand, wish to optimise their income by facilitating the trades. The idea
of the mechanism is to be incentive aligned [62]. The dominant strategy of each agent results in g, which
is ideally close or precisely the desired function f , the social welfare of the protocol. We leave a thorough
analysis of the mechanism and especially an incentive alignment for future work.

8.2 Isolation of Failures

Bitcoin Failure Assuming Bitcoin or any other source chain suffers from a liveness failure, issuing or
redeeming tokens will come to a stop. Hence, the tokens currently in circulation on any connected receiver
chain might become “untrusted”. If the liveness failure is only of short duration, issuing and redeeming
can continue as before without affecting any tokens. However, if liveness failures persist, receiving parties
might stop accepting such backed tokens.

Should the trust model of Bitcoin be corrupted, i.e., if a single entity controls more that 50% of the
overall hash rate, fake cryptocurrency backed tokens could be generated by an adversary. While there is no
real defense against a such attack, we believe this would be visible in Ethereum and users would cease to
use the token issuing and trading schemes.

Ethereum Failure With our proposed protocol it is possible to lock btc and issue the corresponding amount
of btceth tokens. However, we depend on the assumption that Ethereum or any other receiver chain is secure.
When trading the tokens back, malicious parties might be able to receive locked initially btc that were not
intended to them. Assuming tokens are issued on a chain where, for example, majority attacks are practical,
malicious parties could insert heir public keys as receiver of btcerc . They might even duplicate btcerc and
claim back the original btc. This would result in a hard-fork since other nodes would not validate the blocks
as correct. We argue that this does not impact the security of Bitcoin.

However, one could imagine an issue with “trust” in cryptocurrency-backed tokens in cases where
consensus protocol of a receiver chain breaks or the coin issuing contract is implemented defectively (i.e.
does not enforce the mapping btc). Assume an attacker can redeem the initially intended coins, while still
having coins that seem valid (i.e. backed by btc) on the receiver chain. In this case, the attacker could use
the btcerc without other parties noticing that failed backing.

The current version of the protocol proposes to store collateral only in the receiver chain due to limited
scripting possibilities in Bitcoin. However, this relies on a partially stable exchange rate between the source
an receiver chain. We leave the design of a collateral scheme on Bitcoin as future work.

8.3 High Cost of Chain relays

Current chain relays like BTC Relay are not actively used due to high fees for storing and validating block
headers and transaction inclusion proofs. However, new proposals leveraging concepts like Non-Interactive
Proofs of Proof of Works (NiPoPoWs) [42], capable of reducing validation costs, are actively being de-
veloped. There also exist alternatives to using a chain relay. TrueBit [75] offers relatively cheap execution
of arbitrary computations in eWASM [75]. This enables the building of bridges between Ethereum and
cryptocurrencies, where the validation of proof-of-work and consensus rules is infeasible on-chain, e.g.,
Litecoin or Dogecoin. We leave the integration of such proposals to future work.

14 Alexei Zamyatin, Dominik Harz, and William J. Knottenbelt

8.4 Outlook

The concept could further be applied to permissioned chains. Permissioned chains would not necessarily
need to issue their tokens but could use established currencies such as Bitcoin to conduct trades on its
platform. This could be a reasonable trade-off for user acceptance: while permissioned chains can allow
higher transaction throughput and faster confirmation rates, users have to trust the native currency. If a
decentralised currency backs the native currency, users can leave the native chain without worrying about
dealing with yet another native currency.

The proposed concept, however, is for now only applicable to currencies. As part of future work, state
synchronization of smart contracts is still left open. This would allow deployment of a smart contract for
example in RSK and Ethereum with a consistent state.

9 Conclusion

We presented a scheme towards Bitcoin-backed tokens in Ethereum, consisting of three base protocols for
issuing, trading and redeeming tokens. The protocols leverage on a 2-of-2 multisig escrow scheme, chain
relays, and incentive mechanisms. Our scheme can be easily generalised to allow tokens backed by other
cryptocurrencies and requires no changes to the underlying consensus rules. In fact, cryptocurrencies such
as Litecoin, which in many aspects resemble the design of Bitcoin, are already supported. We discussed
system requirements and open challenges regarding security and performance. We then elaborated on ex-
tensions to improve the liveness and safety features of our protocol, including issuer committees, merged
mining, and trusted hardware.

References

1. 0xproject whitepaper. https://0xproject.com/pdfs/0x white paper.pdf. Accessed: 2018-05-23.
2. Bitcoin Developer Guide: Simplified Payment Verification (SPV). https:/ /bitcoin.org/en/developer- guide#

simplified-payment-verification-spv. Accessed: 2018-05-16.
3. Bitcoin Wiki: Atomic cross-chain trading. https://en.bitcoin.it/wiki/Atomic cross-chain trading. Accessed: 2018-

05-16.
4. Bitcoin Wiki: Hashed Time-Lock Contracts. https://en.bitcoin.it/wiki/Hashed Timelock Contracts. Accessed:

2018-05-16.
5. Btc relay. https://github.com/ethereum/btcrelay. Accessed 2018-04-17.
6. Dogethereum. https://github.com/dogethereum/dogerelay. Accessed 2018-04-17.
7. Ethereum Classic. https://github.com/ethereumproject. Accessed: 2018-05-23.
8. Parity-Bridge. https://github.com/paritytech/parity-bridge. Accessed: 2018-05-21.
9. Peace relay. https://github.com/loiluu/peacerelay. Accessed 2018-04-17.

10. Poa bridge. https://github.com/poanetwork/poa-bridge. Accessed: 2018-05-23.
11. Project alchemy. https://github.com/ConsenSys/Project-Alchemy. Accessed 2018-04-17.
12. Radar relay. https://radarrelay.com/. Accessed: 2018-05-23.
13. BIP199: Hashed Time-Locked Contract transactions. https://github.com/bitcoin/bips/blob/master/bip-0199.

mediawiki, 2017. Accessed: 2018-05-16.
14. A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra, J. Timón, and P. Wuille.

Enabling blockchain innovations with pegged sidechains. https://blockstream.com/sidechains.pdf, 2014. Accessed:
2016-07-05.

15. E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium on, pages 459–474.
IEEE, 2014.

16. J. Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561, 2014.
17. I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian, and A. Juels. Tesseract: Real-time cryptocur-

rency exchange using trusted hardware. Cryptology ePrint Archive, Report 2017/1153, 2017. Accessed:2017-12-
04.

18. I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld. Proof of activity: Extending bitcoin’s proof of work via proof of
stake [extended abstract] y. ACM SIGMETRICS Performance Evaluation Review, 42(3):34–37, 2014.

19. I. Bentov, R. Pass, and E. Shi. Snow white: Provably secure proofs of stake. https://eprint.iacr.org/2016/919.pdf,
2016. Accessed: 2016-11-08.

20. G. Bissias and B. N. Levine. Bobtail: A proof-of-work target that minimizes blockchain mining variance.
arXiv:1709.08750, 2017. Accessed:2017-11-10.

21. Bitcoin community. Multisignature. https://en.bitcoin.it/wiki/Multisignature. Accessed: 2018-05-23.

https://0xproject.com/pdfs/0x_white_paper.pdf
https://bitcoin.org/en/developer-guide#simplified-payment-verification-spv
https://bitcoin.org/en/developer-guide#simplified-payment-verification-spv
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://github.com/ethereum/btcrelay
https://github.com/dogethereum/dogerelay
https://github.com/ethereumproject
https://github.com/paritytech/parity-bridge
https://github.com/loiluu/peacerelay
https://github.com/poanetwork/poa-bridge
https://github.com/ConsenSys/Project-Alchemy
https://radarrelay.com/
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://blockstream.com/sidechains.pdf
https://en.bitcoin.it/wiki/Multisignature

Issue, Trade, Redeem: Crossing Systems Bounds with Cryptocurrency-Backed Tokens 15

22. Bitcoin community. OP RETURN. https://en.bitcoin.it/wiki/OP RETURN. Accessed: 2018-05-23.
23. Bitcoin community. Pay to script hash. https://en.bitcoin.it/wiki/Pay to script hash. Accessed: 2018-05-23.
24. F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi. Software grand exposure: Sgx

cache attacks are practical. arXiv preprint arXiv:1702.07521, page 33, 2017.
25. E. Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. http://atrium.lib.uoguelph.ca/xmlui/

bitstream/handle/10214/9769/Buchman Ethan 201606 MAsc.pdf, Jun 2016. Accessed: 2017-02-06.
26. V. Buterin. Ethereum: A next-generation smart contract and decentralized application platform. https://github.

com/ethereum/wiki/wiki/White-Paper, 2014. Accessed: 2016-08-22.
27. V. Buterin. Chain interoperability. https : / / static1 . squarespace .com/static /55f73743e4b051cfcc0b02cf / t /

5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdfi, 2016. Accessed: 2017-03-25.
28. Cosmos Developer Team. Peggy. https://github.com/cosmos/peggy. Accessed: 2018-05-23.
29. V. Costan and S. Devadas. Intel sgx explained. IACR Cryptology ePrint Archive, 2016:86, 2016.
30. B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-secure, semi-synchronous proof-

of-stake protocol. Cryptology ePrint Archive, Report 2017/573, 2017. Accessed: 2017-06-29.
31. J. Dilley, A. Poelstra, J. Wilkins, M. Piekarska, B. Gorlick, and M. Friedenbach. Strong federations: An interoper-

able blockchain solution to centralized third party risks. arXiv preprint arXiv:1612.05491, 2016.
32. Ethereum community. Erc20: Token standard. https://github.com/ethereum/EIPs/issues/20. Accessed 2018-06-27.
33. Ethereum community. Erc223: Token standard. https://github.com/ethereum/EIPs/issues/223. Accessed 2018-06-

27.
34. Ethereum community. Erc721: Non-fungible token standard. https://github.com/namecoin/namecoin. Accessed

2018-06-27.
35. Ethereum community. Erc994: Delegated non-fungible token standard. https://github.com/ethereum/EIPs/issues/

994. Accessed 2018-06-27.
36. M. Friedenbach, K. Alm, and B. (Pseudonym).
37. J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and applications. In Advances in

Cryptology-EUROCRYPT 2015, pages 281–310. Springer, 2015.
38. J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache attacks on intel sgx. In Proceedings of the 10th European

Workshop on Systems Security, page 2. ACM, 2017.
39. J. M. Griffin and A. Shams. Is bitcoin really un-tethered? 2018.
40. M. Herlihy. Atomic cross-chain swaps. arXiv:1801.09515, 2018. Accessed:2018-01-31.
41. Intel. Intel software guard extensions (intel sgx) sdk. https://software.intel.com/sgx-sdk. Accessed: 2018-05-23.
42. A. Kiayias, A. Miller, and D. Zindros. Non-interactive proofs of proof-of-work. Cryptology ePrint Archive, Report

2017/963, 2017. Accessed:2017-10-03.
43. A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain

protocol. https://pdfs.semanticscholar.org/1c14/549f7ba7d6a000d79a7d12255eb11113e6fa.pdf, 2016. Accessed:
2017-02-20.

44. E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhancing bitcoin security and performance
with strong consistency via collective signing. In 25th USENIX Security Symposium (USENIX Security 16), Austin,
TX, Aug. 2016. USENIX Association.

45. J. Kwon and E. Buchman. Cosmos: A network of distributed ledgers. https://github.com/cosmos/cosmos/blob/
master/WHITEPAPER.md, 2015.

46. J. Lau.
47. S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring fine-grained control flow inside sgx

enclaves with branch shadowing. In 26th USENIX Security Symposium, USENIX Security, pages 16–18, 2017.
48. S. D. Lerner. Rootstock: Bitcoin powered smart contracts. https://www.rsk.co/, 2015.
49. Libbitcoin developers. P2WSH Transactions. https://github.com/libbitcoin/libbitcoin/wiki/P2WSH-Transactions.

Accessed: 2018-05-23.
50. J. Lind, I. Eyal, F. Kelbert, O. Naor, P. Pietzuch, and E. G. Sirer. Teechain: Scalable blockchain payments using

trusted execution environments. arXiv preprint arXiv:1707.05454, 2017.
51. J. Lind, I. Eyal, P. R. Pietzuch, and E. G. Sirer. Teechan: Payment channels using trusted execution environments.

https://arxiv.org/abs/1612.07766, 2016. Accessed: 2017-03-09.
52. Litecoin community. Litecoin reference implementation. github.com/litecoin-project/litecoin. Accessed: 2017-

06-30.
53. E. Lombrozo, J. Lau, and P. Wuille.
54. P. McCorry, E. Heilman, and A. Miller. Atomically trading with roger: Gambling on the success of a hardfork. In

CBT’17: Proceedings of the International Workshop on Cryptocurrencies and Blockchain Technology, Sep 2017.
55. R. C. Merkle. A digital signature based on a conventional encryption function. In Conference on the Theory and

Application of Cryptographic Techniques, pages 369–378. Springer, 1987.
56. S. Micali. Algorand: The efficient and democratic ledger. http://arxiv.org/abs/1607.01341, 2016. Accessed: 2017-

02-09.
57. A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger of bft protocols. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, pages 31–42. ACM, 2016.

https://en.bitcoin.it/wiki/OP_RETURN
https://en.bitcoin.it/wiki/Pay_to_script_hash
http://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf
http://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdfi
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdfi
https://github.com/cosmos/peggy
https://github.com/ethereum/EIPs/issues/20
https://github.com/ethereum/EIPs/issues/223
https://github.com/namecoin/namecoin
https://github.com/ethereum/EIPs/issues/994
https://github.com/ethereum/EIPs/issues/994
https://software.intel.com/sgx-sdk
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
https://www.rsk.co/
https://github.com/libbitcoin/libbitcoin/wiki/P2WSH-Transactions
https://arxiv.org/abs/1612.07766
github.com/litecoin-project/litecoin

16 Alexei Zamyatin, Dominik Harz, and William J. Knottenbelt

58. A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How sgx amplifies the power of cache attacks. In
International Conference on Cryptographic Hardware and Embedded Systems, pages 69–90. Springer, 2017.

59. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf, Dec 2008. Accessed:
2015-07-01.

60. A. Narayanan and J. Clark. Bitcoin’s academic pedigree. volume 15, pages 20:20–20:49, New York, NY, USA,
aug 2017. ACM.

61. N. Nisan and A. Ronen. Algorithmic Mechanism Design. Games and Economic Behavior, 35(1-2):166–196, apr
2001.

62. N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory, volume 1. Cambridge
University Press, Cambridge, jul 2007.

63. R. Pass and E. Shi. Fruitchains: A fair blockchain. http://eprint.iacr.org/2016/916.pdf, 2016. Accessed: 2016-11-
08.

64. R. Pass and E. Shi. Hybrid consensus: Scalable permissionless consensus. https://eprint.iacr.org/2016/917.pdf,
Sep 2016. Accessed: 2016-10-17.

65. C. Paul Sztorc. Drivechains BIP1: hashrate-escrow. https://github.com/drivechain-project/docs/blob/master/bip1-
hashrate-escrow.md. Accessed: 2018-05-21.

66. C. S. Paul Sztorc, CryptAxe (Pseudonym). Drivechains BIP2: blind-merged-mining. https://github.com/drivechain-
project/docs/blob/master/bip1-hashrate-escrow.md. Accessed: 2018-05-21.

67. Radar Relay Inc. W-eth: Wrapped eth. https://weth.io/. Accessed: 2018-05-23.
68. M. Rosenfeld. Overview of colored coins. https://bitcoil.co.il/BitcoinX.pdf, 2012. Accessed: 2016-03-09.
69. J. Rubin, M. Naik, and N. Subramanian. Merkelized abstract syntax trees. http://www.mit.edu/∼jlrubin/public/

pdfs/858report.pdf, 2014.
70. M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware guard extension: Using sgx to conceal

cache attacks. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 3–24. Springer, 2017.

71. I. Sergey, A. Kumar, and A. Hobor. Scilla: a smart contract intermediate-level language. arXiv:1801.00687, 2018.
Accessed:2018-01-08.

72. S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing your faults from telling your secrets: Defenses
against pigeonhole attacks. arXiv preprint arXiv:1506.04832, 2015.

73. Y. Sompolinsky and A. Zohar. Phantom: A scalable blockdag protocol. Cryptology ePrint Archive, Report
2018/104, 2018. Accessed:2018-01-31.

74. M. Spoke and Nuco Engineering Team.
75. J. Teutsch and C. Reitwießner. A scalable verification solution for blockchains. https://truebit.io/, March 2017.

Accessed:2017-10-06.
76. S. Thomas and E. Schwartz. A protocol for interledger payments. URL https://interledger.org/interledger.pdf,

2015.
77. TierNolan. Atomic swaps using cur and choose. https://bitcointalk.org/index.php?topic=1364951, 2016. Accessed:

2018-05-16.
78. F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical survey on decentralized digital currencies.

IEEE Communications Surveys & Tutorials, 18(3):2084–2123, 2016.
79. N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza. Asyncshock: Exploiting synchronisation bugs in intel sgx

enclaves. In European Symposium on Research in Computer Security, pages 440–457. Springer, 2016.
80. G. Wood. Polkadot: Vision for a heterogeneous multi-chain framework. White Paper, 2015.
81. Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side channels for untrusted operating

systems. In Security and Privacy (SP), 2015 IEEE Symposium on, pages 640–656. IEEE, 2015.
82. A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and W. J. Knottebelt. (Short Paper) A Wild Velvet

Fork Appears! Inclusive Blockchain Protocol Changes in Practice. In 5th Workshop on Bitcoin and Blockchain
Research, Financial Cryptography and Data Security 18 (FC). Springer, 2018.

83. F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. van Renesse. Rem: Resource-efficient mining for blockchains.
http://eprint.iacr.org/2017/179, 2017. Accessed: 2017-03-24.

https://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2016/916.pdf
https://eprint.iacr.org/2016/917.pdf
https://github.com/drivechain-project/docs/blob/master/bip1-hashrate-escrow.md
https://github.com/drivechain-project/docs/blob/master/bip1-hashrate-escrow.md
https://github.com/drivechain-project/docs/blob/master/bip1-hashrate-escrow.md
https://github.com/drivechain-project/docs/blob/master/bip1-hashrate-escrow.md
https://weth.io/
https://bitcoil.co.il/BitcoinX.pdf
http://www.mit.edu/~jlrubin/public/pdfs/858report.pdf
http://www.mit.edu/~jlrubin/public/pdfs/858report.pdf
https://truebit.io/
https://bitcointalk.org/index.php?topic=1364951
http://eprint.iacr.org/2017/179

	Issue, Trade, Redeem:Crossing Systems Bounds with Cryptocurrency-Backed Tokens

