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Abstract. In this paper we present a new type of signature for a group of persons, called a group signature, 
which has the following propertjes: 
(i) only members of the group can sign messages; 
(ii) the receiver can verify that it is a valid group signaa~e, but cannot discover which gr~up member made 

( i )  if necessary, the signature can be "opened", so that the person who signed the message is revealed. 
it; 

T h e  group signatures are a "generalization" of the credential/ membership authentication schemes, in which 
one person ppves that he belongs to a &n group. 
We present four schemes that satisfy the properties above. Not all these schemes arc based on the same 
cryptographic assumption. In some of the schemes a busted cenm is only needed during the setup; and in 
o tha  schemes, each pason can create the group he belongs to. 

1. Introduction 

In this paper we present a new type of signature, which will be illustrated with the following example: 
A company has several computers, each connected to the local network. Each department of that 

company has its own printer (also connected to the network) and only persons of that department ate 
allowed to use their department's printer. Before printing, therefore. the printer must be convinced that 
the user is working in that department. At the same time, the company wants privacy: the user's name 
may not be revealed. If, however, someone discovers at the end of the day that a printer has been used too 
often, the director must be able to discover who misused that printer, to send him a bill. 

More formally: a group of persons wants to create a signature scheme, which we will call a group 
signature scheme, that has the following thrce properties: 

(i) only members of the group can sign messages; 
(ii) the receiver of the signature can verify that it is a valid signature of that p u p ,  but cannot discover 

(iii) in case of dispute later on, the signature can be "opened" (with or without the help of the group 
which member of the group made it; 

members) to reveal the identity of the signer. 

Group signatures are a "generalization" of credential mechanisms ([ChSS]) and of membership 
(authentication) schemes (cf. [OOK90], [SIUW]), in which a group member can convince a v d i e r  that 
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he belongs to a certain group, without revealing his identity. In [00K90] and [SKI90], several of these 
schemes are proposed in which the same secret key is given to each group member. We define the 
following assumptions, 

Assumption 1. For each person ir is unfeasible to compute RSA roots (hence ir is unfeasible to split 
numbers thar are rhe product of some large primes; and it is unfeasible to compute discrere logarithms 
modulo a large composite number). 

Assumption 2. For each person i r  is unfeasible to compute the discrete logarithm modulo a large prime 
nwnber. 

In this paper, only one group of persons will be considered (the hierarchical situation will not be 
treated here); and four different group signature schemes are presented. These schemes are compared. 

Cryptographic assumption. In the first scheme every public key system can be used, the other schemes 
are based on Assumption 1 or 2. In all schemes (except in some modifications of the first scheme), the 
privacy of the signer is protected computationally. Not even a person from the group can determine who 
made a certain signature (except of course for the person who made that signature). Care must of course 
be taken in the selection of the exponents used in order to protect the anonymity of the signer. See Section 
6. 

Trusted authorio. Let 2 be a trusted authority, which sets the group signature scheme ( it may be 
possible to distribute the power of 2). Except for the first scheme, 2 is no longer needed after the setup. 
In the last scheme, a group signature scheme can be created from a “normal” setup, without a trusted 
authority. 

Creation of the group. In the first two schemes the group of persons is fixed in advance. In the last two 
schemes, it is assumed that there is already a setup, based on RSA or discrete logarithm. If in these 
schemes someone wants to sign a message without revealing his name, then at rhat moment he creates 
some group of persons (for instance by picking them from a Trusted Public Directory of public keys) and 
proves that he belongs to that group. In case of dispute later on, the other ‘‘group members” are able to 
deny that signature. 

Type of signamre. In the last three schemes, the signatures made by the group members are undeniable 
signatures, but it is possible to make digital signatures. This can be realized as in [FSM], by doing the k 
iterations of the confinnation protocol in parallel and let the recipient choose the challenge vector not 
randomly, but as the outcome of a one-way-function on the received numbers. Because this protocol is no 
longer zero-knowledge, the signature and the confirnation protocol together will be a digital signature. 
Still to be proven is that this parallel protocol gives “no useful knowledge” to the recipient. 

Costs. In all schemes the length of the public key (i.e., the number of bits of the group’s public key) is 
linear in the number of group members. The numbers of bits and of computations are only compared in 
the case of the confirmation protocol, because in one disavowal protocol, these numbers are independent 
of the number of group members. We have not taken into account the looking-up of some public keys in a 
Trusted Public Directory. 
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Fig. 1. Comparison of the four group signature schemes presented in this paper. ‘7ndependent 
linear” means that the number is independent respectively linear in the number of group 
members. 

2. First group signature scheme 

2 chooses a public key system, gives each person a list of secret keys (these lists are all disjunct) and 
publishes the complete list of corresponding public keys (in random order) in a Trusted Public Directory. 

Each person can sign a message with a secret key from his list, and the recipient can verify this 
signature with the corresponding public key from the public list. Each key will be used only once, 
otherwise signatures created with that key are linked. 2 knows all the lists of secret keys, so that in case 
of dispute, he knows who made the disputed signature. Hence Z i s  needed for the setup and for “opening” 
a signature. 

If each person gets the same number of secret keys, then the length of the public key of this group 
signature scheme (i.e. the length of the Trusted Public Directory) is linear in the number of persons; but 
the number of messages a person can sign is futed. 

A problem with this scheme is that 2 knows all the secret keys of the group members and can 
therefore also create signatures. This can be prevented by using blinded public keys. Let the public key 
system used be based on Assumption 2: for instance the ElGamal scheme [ElG85] or the undeniable 
signature scheme [CvA89]. Let g be a generator of the multiplicative group Z;, where p is a prime. 
Group member i creates his own secret key si and gives gsi (modp) to 2. Thus 2 has a list of all these 
public keys together with the group member’s name. Each week 2 gives each group member i a 
randomly chosen number r i E  (1, . . . ,p- 1) and publishes the list of all the blinded public keys (gsi )r i .  
During this week group member i will use siq (modp - 1) as secret key. 

The advantages of this modification are that 2 cannot fake signatures, and that each group member 
only has to have one “really secret key” (for instance in a smart card), which can be blinded in order to 
make other secret keys. Only the one week’s signatures can be linked, so that each group member can 
have only a few secret keys in his smart card to prevent this linking. If an ri is accidentally revealed, still 
no more information about the secret key si is revealed. 

In another modification, no trusted authority is needed: each user untraceably sends one (or more) 
public keys to a public list, which will be the public key of the group. But only group members must be 
able to send public keys to that list. 

3. Second group signature scheme 

Zchooses two different large primes p , q  together with a one-way-functionfof which the outcome may 
be assumed to be coprime with N=pq. Z gives person i of the group a secret key si .  which is a large 
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prime randomly chosen from the set (O=( r f i l ,  ..., L2f iJ-  l), computes v = nsi, and publishes N,v 
and$ If group member i wants to sign messagen, his signature will be 

( j ( n ) ) s i  mod N . 
and he has to prove to the recipient that silv and that sic@, without revealing anything more about si 
(see Section 3.1). In case of dispute later on, the recipient can perform a confirmatioddisavowal protocol 
with each group member, without the help of 2 (see Section 3.2). To prove the security of these schemes 
we need Assumption 1. 

3.1. Confirmation protocol 

We first consider the following instance, which is solved by [BCDvdG87] by using Protocol 1, which 
uses computationally secure blobs B. 

PS secret : c. 
public : N,x,Y,R; x , y c  Z ' , , R = ( a  ,..., a+p]cIN. 
proveto?/ : x '=y(modN)  A C E R .  

Instance 1. 

If this protocol is iterated k times. ?/ will be convinced (with probability l-2-k) that 
ccfi=(a- p,..., a+2P),  but 2/ will receive no knowledge other than the fact that CER 
= { a,. . . ,a+p)  +. 

Protocol 1. (for Instance 1) 
(1) T chooses r E  [O, ...$). He computes blobs on z1 i x '  (modN) and z2 I X ' - ~  (modN), and 

( 2 )  z/chooses randomly be (0.1 ] and sends it to T. 
(3) T sends ?/in case 

sends the unorderedpair (2?(zl), 'E(z2)) to 2! 

b=O: r and opens both blobs. 
b=l: 7 which is (c+r) or (c+r-p), whichever is in the set R, and opens respectively the 

blob on z1 or 22 (which is called i). 
(4) ?/verifies in case 

b=O: that r~ (0,. . .,p) and that the blobs contain x r  and x ' - ~  in some order. 
b=l: that FE R, that one of the blobs contains I and that Z sati.$es xi I I>). 

If CE R, then the distribution of F is uniform over R and is thus independent of c. With this protocol 
we will create a confirmation protocol, so let T be a fixed group member who wants to convince the 
recipient (verifier @ that he gave him a valid signature S. So the following instance (in which we write 

rn in stead off(n)) has to be solved: 

t Hence, by using Cl= ( 1 ,...A), one can prove that he knows a discrete logarithm modulo N, without knowing NN). 
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Pssecret : s. 
public : N,v,m,S,e m,SE Z;. 

7 

provetov  : Srm'(rnodN)AsEOAsIv. 
Instance 2. 

Protocol 2. (for Instance 2) 
Step 1. Prove the knowledge of s such that S m" ( rnodN)  and that sea with Protocol 1, iterated k 

Step 2. Prove that sIv as follows 
times (take Q=O, x=m, y== and c=s) . 

Prover T Verifier V 
~ ad' choosesrc (1, ..., N }  

verifiesa + 
open blob verifies opening 

' andthatbimvr I 
Note that for all x the probability distributions of xr  (modN) where r e  (1, ..., @PI)) or 

r E  (1, ...,ZV} are polynomially indistinguishable [CEvdG87]. Step 1 of this protocol was already proven 
to be sound, complete, and zero-knowledge. Step 2 is trivially complete and mknowledge  (the blobs B 
are computationally secure zero-knowledge). Because in Step 1 it is proved that S 1 m', one can easily 
see that it is feasible to compute b=(rn')" from ( ~ , v , a = ( d ) ~  ] if and only if sIv (under the 
assumption that it is unfeasible to compute RSA roots. so here we use that N is not a prime). Hence Step 
2 is also sound. 0 

3.2. Disavowal protocol 

If !€'wants to prove to ?.'that S is not his signature on m. the following instance has to be solved 

N,v,m,S,4 m,SE Zk. 

Instance 3. 

There are no zero-knowledge disavowal protocols to prove that ax 3jY (modN), for given 
[N,a,p,a"), where cp(N) is unknown. Therefore we use the following modification of [Ch90] to solve 
Instance 3. 2 publishes c g, i  >, which generates the whole group Z$ (see the next section how to 
construct g and i), together with a Trusted Public Directory containing (name p u p  mernber,g',~'). Let 
1 be a very s m a l l  constant such that exhaustive search over [O,. . . . I ]  is feasib.e. Note that if S = ms, then 
Tcan not compute a from ($)a, because (g)' = 1. So he has to guess a. 
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Prover !.? Verifier 'I/ 

computes u from (3)" BC.4 
by exhaustive search 
verifies numbers 

> 

< ., .rt 

verifies opening blob 

Protocol 3. (for Instance 3) 

3.3. Some remarks on this group signature scheme 

If all group members except one conspire, the secret key of that one person is revealed. This threat can be 
easily eliminated if the authority 2 makes himself a member of the group, i.e., if 2 computes v as 
v = sz . nsi , where sz is a secret key only known to 2. With this mck, the group can also consist of two 
members. 

The number of bits of the public key v is linear in the number of persons, so raising a number to the 
power v will take a time linear in the number of group members. 

The set @ can also be chosen in other ways, but it must satisfy the following conditions. If 
@=[rp, ...., cpl+rp2)cIN,then l,N,cp:e4,=(qr,-% ,..., ~ + 2 % ) . T h e  first conditionisnecessary to 
avoid the use of s=l. According to the last condition the following conspiracy attack is avoided if two 
group members, say i and j ,  conspire, they can create signatures S I msisi, which they can both disavow 
later. But six, Q 6, so this signature will not be accepted in Step 1 of Protocol 2. Hence also the choice of 
v/s or v as exponent in the signature is avoided. 

The blob 'B can be implemented in the following way: 2 chooses generators g, and h,  of n; and 

Z i  respectively, and constructs with the use of the Chinese Remainder Theorem g 1 1' modg and 

h = ih, modq . So <g,h> generates ZL uniformly, but it reveals the factorization of N .  Therefore he 

chooses integers ul,u2,bl satisfying gcd(u1,q.p - l)=gcd(*,h.q - l)=gcd(q& - + q . ~ ( ~ ) ) = l  
and publishes g = gqha2 and = g4hb2. It is not difficult to see also that < g , i  > generates the whole 
group Z; uniformly, if the exponents are chosen from (1, ..., (C(N)). Hence, in order for T to make 
m), he chooses rl,r2E (1, ...A) andcreates m) as ygrlhr* (mod N). 

Another method of implementation is the following: T chooses randomly k numbers g, ,. . .& from 
{ 1, ..., N ) .  Then with high probability <gl, ..&> generates Zk nearly uniformly. for k sufficiently 
large. In this case no trusted centre is needed [Ch87]. 

I" 
1 mcdp 

4. Third group signature scheme 

For the security of this scheme we need Assumption 1, and we assume that there is a Trusted Public 
Directory in which each person's RSA modulus is listed (the public RSA exponent is not needed in this 
group signature scheme). 

The secret key of group member i will be the factorization of his own RSA modulus Ni = piqi. 
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During the setup, 2 chooses an RSA-modulus N ,  which is independent of all the N i l s .  Let M be a 
public integer such that p i~a=(r l l ; i ? l , . . . ,L2~1-1)  and qi>4& (for all 0. If person i wants to 
sign message n,  he chooses randomly some set r of persons (including himself); his signature will be 

and he has to give a zero knowledge proof that the used exponent p ie@ and that pi is a divisor of the 
product of the RSA moduli of the persons of r. This can be done with Protocol 2 (with *a), because 
N i > q i > 4 m  and thus all moduli, every product of two prime divisors of different moduli and each qi 

are no elements of &=(r&d, ..., L3ll;i?jl. Hence the exponent used in the signature must be p i .  If a 
group member wants to deny a signature, he can use Protocol 3. 

5. Fourth group signature scheme 

The fourth group signature scheme is based on Assumption 2. Let p be a large public prime and let g,h 
be public generators of Zi. Person i has a secret key si and a public key ki 3 gsi (modp). If person i 
wants to sign message m=An), he randomly chooses some set r of persons (including himself); and his 
signature will be 

and he has to give a zero-knowledge proof that the secret exponent used in that signature is also used in 
the public key of somebody of the group r, i.e. the protocol has to solve the following instance: 

P s  secret : si. 

toproveto V : Sam", ( m o d p ) ~ g ' *  ~ ( k , l j e r ] .  
Instance 4. 

public : p,g ,w, r .  

To prove this, T uses the following protocol, which gives no additional information about i and si. 
We have compressed the proofs that S is of the correct form, that the exponents used in S and in some 
public key are the same, and that the public key is used by somebody in r into one protocol. 

Protocol 4. (for Instance 4) 
(1) !P chooses numbers r l ,  ... ,rIr I,tl,b,f3€ (1, ..., p-1) and a permutation z of r. He sends "the 

4 numbers: x 9 (i) hrz (modp), y mr3 (modp) and z,(~) I kjh'j (modp) (for afl j E r ) .  

( 2 )  'I/chooses bc (0 ,  1 and sen& b to T. 
(3) !Psen& "in case 

b=O: 
b=l:  

b=O: 
b=l: 

r l .  .. .,rln,t1.t2,t3 and Z. 
rI+si, r2+ri, 4+si  and index qi). 

that the numbers x,y,zl ,. . .,zn are formed correctly. 
that yS E mr3''' (modp) and thur xz,(,) 1 Sh"+'; (g/m)'""' (modp). 

(4) "verifies in cuse 
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If P can answer both questions, then he knows si; it is easy to see that this s i  satisfies S i rnsi  and 
ki = gsn. Hence if this protocol is iterated k times, then 2/will be convinced with confidence 1-2-&. This 
protocol is also zero-knowledge because it can be simulated (with the same probability distributions) by: 

(1) Choose apemutarion ~ o f r ,  numbers rl ,... ,rln,fl.~Z,t3~ ( 1  ,..., p-I) andee (0.1). 

Compute and send the numbers: z s ( j )  =k,hrj (modp) &I-), y=m'J / S c  (modp) a n d 

x a (,,,), s ' h'2 ( s / z r ( i ) ) e  (modp). 

( 2 )  Receive b~ [ 0.1 ] . 
(3) Send in case 

e=b=O : rl  ,..., rl,,,t1,r2,f3 and T. 

e=b=l : index fli) and tl,  r2, t3. 
e& : restart this algorithm. 

If a person wants to deny a group signature, he can for instance use the disavowal protocol of [Ch90]. 

6. Some open problems 

We have presented several group signature schemes, in which to open a signature the recipient asks 2 or 
he performs a disavowal protocol with each group member. Is it possible to create other situations, such 
as: a majority of the group members can open a signature? 

Is it possible to make digital group signatures other than by using [FS86] on undeniable signatures? 
Can the results of [SSW] and [Per851 be applied to show that specific choices of the exponents in the 

schemes of Sections 2-4 and 5 ,  respectively, protect anonymity in ways equivalent to known 
computational problems? 

Is it possible to modify the fourth group signature system in such a way that the number of transmitted 
bits during the confirmation protocol is independent of the number of group members? 
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