
Fully Bideniable Public-Key Encryption

Marcel Šebek
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Abstract

Bideniable encryption allows both sender and receiver in a public-key setting to si-
multaneously claim that a different message of their choice was transmitted, and support
this claim by a good-looking encryption and key-generation randomness, respectively. A
weaker version with two variants of algorithms is called flexible or multi-distributional
deniability, a stronger one-algorithm version is called full deniability. Bendlin et al. (ASI-
ACRYPT 2011) showed that certain kinds of fully-deniable schemes are constructible
using corresponding flexible schemes. In this paper, we show that their construction in
the bideniable case has a flaw, and we provide a fixed scheme. Our construction relies
on a deterministic subset matching algorithm that assigns to each nonempty subset of a
finite set its proper subset reduced by exactly one element. Although this algorithm is
crucial in our construction, it may also be of independent interest.

Keywords: deniable encryption, plausible deniability, fully bideniable PKE, subset match-
ing.

1 Introduction

Security guarantees of encryption schemes largely depend on the adversarial model. Al-
though some basic requirements like semantic security are common for most models, there
is a plenty of extensions, some of which are contradictory. An example is the commitment
property – does the sender commit to her inputs, or are there alternative inputs that produce
the same ciphertext? In certain applications, commitment property is desirable to obtain
non-repudiation, while sometimes we need a non-committing scheme, such as to construct
adaptively secure multi-party computation [CFGN96]. Non-committing encryption does not
provide a procedure to obtain alternative inputs in general. Instead, a special algorithm is
given that simultaneously samples a set of inputs for the regular encryption and key generation
algorithm, each of which leads to the same ciphertext and public key, respectively.

Deniable encryption offers exactly the missing part. Given a ciphertext, public-key, all
secret knowledge, and an alternative message, the sender and/or receiver is able to compute
alternative secret knowledge (i.e., encryption algorithm randomness or secret key). The al-
ternative secrets are required to be indistinguishable from honest secrets while delivering the
alternative message.
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The main motivation of deniable encryption is coercion resistance. A powerful adversary
may demand secret key and encryption randomness for the intercepted communication. In
various countries, this power is given to the government, but we can find a few other exam-
ples. When users run deniable scheme, they can provide a different message and alternative
secrets that correspond exactly to this message. The adversary cannot distinguish honest and
computed secrets.

We briefly overview basic kinds of deniable encryption. If the alternative message can be
chosen after ciphertext generation, the scheme is called ad-hoc. Otherwise, if the possible
alternative messages are inputs of encryption algorithm, we call the scheme plan-ahead. In
this paper, we consider ad-hoc schemes only. An orthogonal property is the set of coerced
parties – we distinguish sender-deniability, receiver-deniability and bideniability.

Just for ah-doc schemes, we consider full and flexible (also known as multi-distributional)
deniability. Fully-deniable schemes have only one key generation and encryption algorithm.
Flexible schemes have two algorithms for the coerced parties (e.g., fully sender-deniable
scheme has two encryption algorithms). One algorithm is honest, and its run cannot be
later faked to an alternative message. The other algorithm is dishonest, and its run can later
be faked as a run of the honest algorithm with any alternative message.

The last property is the indistinguishability level. We consider two cases, negligible
and inverse-polynomial distinguishability. In this work, we construct an inverse-polynomial
scheme.

1.1 Related Work

A concept similar to deniable encryption called plausible deniability was studied by Beaver [Bea96].
However, all subsequent texts are based on the work by Canetti et al. [CDNO97]. They in-
troduced fully and flexibly deniable encryption in both public and shared key setting, and
sketched the idea of plan-ahead schemes. They focused on sender deniability and constructed
fully 1/κ-sender-deniable and flexibly sender-deniable public-key scheme, as well as a bide-
niable shared-key scheme. Finally, they proposed interaction as a way how to transform
sender-deniability to receiver-deniability and vice versa.

Since the initial proposal of the concept, one direction of research has focused on feasibil-
ity results. O’Neill et al. [OPW11] proposed two constructions of flexibly bideniable scheme,
one built from simulatable encryption [DN00] and the other from a lattice-based cryptosys-
tem [GPV08]. Additionally, a straightforward modification of the first construction yields a
flexible receiver-deniable scheme. Bendlin et al. [BNNO11] showed that fully receiver- and
bideniable scheme may be obtained with inverse-polynomial distinguishability only. They also
provided constructions of fully deniable schemes from flexible schemes. For sender deniability,
this construction repeats the one by Canetti et al., while for receiver and bideniability, the
reduction is new. Unfortunately, for bideniability, the reduction is incorrect, as we show in
this paper. An unsuccessful attempt to construct interactive fully sender-deniable scheme was
due to Dürmuth and Freeman [DF11], but a mistake have been found by Peikert and Waters,
rendering the scheme to be inverse-polynomially indistinguishable only, like the previously
known scheme. The details of the flaw can be found in the updated version of the original pa-
per [DF11]. Dachman-Soled [DS12] showed that no black-box construction of sender-deniable
scheme from simulatable encryption is possible on the negligible level. However, Sahai and
Waters [SW13] leveraged indistinguishability obfuscation to obtain a non-interactive fully
sender-deniable scheme.
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To complete our picture, we mention some works that target efficiency and practical as-
pects of deniability. Klonowski et al. [KKK08] considered nested constructions, embedding of
secret message into ElGamal encryption randomness, and various other things. Deniable en-
cryption also motivated the study of deniable and steganographic filesystems [ANS98, MK99,
HKX03, XHK04].

1.2 Our Contributions and Open Problems

We provide a fixed construction of fully 1/κ-bideniable scheme from a flexible scheme. Since
the main open problem of existence of sender-deniable scheme has recently been positively
resolved [SW13], the study of feasibility of non-interactive full deniability is finished. For
flexible deniability, sender [CDNO97] and bideniable [OPW11] schemes are known, while for
receiver deniability, we need to slightly modify simulatable encryption based scheme [OPW11,
Šeb12].

In the interactive case, sender and receiver deniability is equivalent. So, the only question
that remains open is the existence of interactive fully bideniable scheme.

1.3 Organization

Section 2 fixes the notation and recalls basic facts and definitions from the theory of com-
putational complexity, probability, and from other related fields. Section 3 introduces main
types of deniable encryption, defines translucent sets, and provides a generic construction of
fully bideniable scheme based on a flexible scheme or, more generally, on bitranslucent sets.
Section 4 contains a construction of bideniable scheme based on a subset matching algorithm,
which is the topic of Sect. 5. Finally, Appendix A shows that the original scheme [BNNO11]
admits a constant advantage distinguisher.

2 Preliminaries and Notation

In the following, κ ∈ N will be the main security parameter. By an algorithm we mean a
probabilistic Turing machine. An algorithm is feasible if its running time is polynomial in
the input length. If not specified otherwise, all algorithms are required to be feasible. We use
the notation o1, . . . , ok ← A(i1, . . . , ij ; r) to describe interface of an algorithm A, the variables
i1, . . . , ij are inputs, o1, . . . , ok are outputs and r is the randomness which may be omitted if
we need not refer to it explicitly. The same notation is also used for algorithm invocation.

A function ν : N → R is negligible if it vanishes faster than inverse of any polynomial,
i.e., for any n ∈ N there is k0 ∈ N so that for k ≥ k0 we have ν(k) < k−n. A function f is
overwhelming if 1− f is negligible.

2.1 Probability and Statistics

The terms random variable and probability distribution are closely related and we will often
interchange them. Let A be a discrete random variable. Instead of Pra←A[a ∈ S] we will
often write A(S), and when S = {s}, then we will use A(s).

For discrete distributions A and B with domain D and for X ⊆ D, we define (somewhat
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non-standard) X-statistical distance of A and B as

∆X(A,B) =
1

2

∑
x∈X
|A(x)−B(x)| .

We write ∆(A,B) instead of ∆D(A,B) and call the number just statistical distance of A and
B. For continuous distributions, analogy of the previous definition exists – it uses integral
and density function instead of sum and probability mass function.

Let A = {Aκ}κ∈N and B = {Bκ}κ∈N be two ensembles of probability distributions.
Let ε : N → R be a function. We say that A and B are ε-statistically indistinguishable if
∆(Aκ, Bκ) ≤ ε(κ) for all sufficiently large values of κ. If ε is negligible, we say that A and B
are just statistically indistinguishable.

For discrete distributions A and B, and for an algorithm D called distinguisher that
outputs values from {0, 1}, let the advantage of D with respect to A and B be

AdvD(A,B) =

∣∣∣∣ Pr
a←A

[D(a) = 1]− Pr
b←B

[D(b) = 1]

∣∣∣∣ .
Probabilities are computed over the randomness of D, and over the choice of a or b, respec-
tively. The advantage is bounded from above by the statistical distance of A and B.

Now let us again consider the ensemblesA and B. We say thatA and B are ε-computationally

indistinguishable and denote it by A
c
≈ε B if for any feasible distinguisher D we have

AdvD(Aκ, Bκ) ≤ ε(κ) for sufficiently large values of κ. If ε is negligible, we say that A
and B are just computationally indistinguishable and write A

c
≈ B.

In the rest of the paper, the ensembles are parameterized by κ implicitly. For simplicity, we
will just speak about computational indistinguishability of probability distributions instead
of their ensembles, and so on.

2.2 Subsets

For n ∈ N let [n] = {1, . . . , n} and let the set of its subset be denoted by P([n]). A subset
x ⊆ [n] is identified with an n-bit string x1x2 . . . xn ∈ {0, 1}n such that xk = 1 iff k ∈ x,
and we call this string binary representation of x. For k = 1, . . . , n, let ek = {k} be the k-th
singleton. For i = 0, . . . , n let Li = {x ∈ P([n]) | |x| = i} be the i-th layer of P([n]). Clearly,
the binary representation of an element in the i-th layer contains i ones and n− i zeros, and
cardinality of the i-th layer is

(
n
i

)
.

For convenience, we introduce an artificial layer L−1 = {⊥}, and we put P∗([n]) = P([n])∪
L−1. To make things consistent, we set |⊥| = −1 and

(
n
−1
)

= 1.

3 Deniable Encryption

For simplicity, we consider the message space M = {0, 1}. A public-key encryption (PKE)
scheme consists of algorithms G, E, D such that

1. pk ← G(1κ; sk) is the key-generation algorithm (randomness is identified with the secret
key),

2. c← E(pk,m; rE) is the encryption algorithm,
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3. m′ ← D(sk, c) is the decryption algorithm,

4. correctness condition holds: for any m ∈ M , we have m = m′ with overwhelming
probability (over algorithms randomness).

A PKE scheme is IND-CPA-secure if (pk, c0)
c
≈ (pk, c1) for cm ← E(pk,m).

Let ε = ε(κ) be a parameter. A flexibly ε-bideniable scheme consists of algorithms GH,
GD, EH, ED, D, FS, FR such that

1. (G,E,D) is an IND-CPA-secure PKE scheme for G ∈ {GH,GD} and E ∈ {EH,ED},

2. r̃E ← FS(pk, rE,m,mf) is the sender faking algorithm that, given inputs of dishonest
encryption c← ED(pk,m; rE), produces an alternative randomness r̃E such that c “looks
like” it was produced honestly using EH(pk,mf ; r̃E),

3. s̃k ← FR(sk, c,mf) is the receiver faking algorithm that, given pk ← GD(1κ; sk) and
c← ED(pk,m), produces an alternative secret key s̃k “consistent” with pk such that c
“should decrypt” to mf ,

4. quoted phrases above mean: for anym,mf ∈M , we have (pk, c, sk, rE)
c
≈ε (pkD, cD, s̃k, r̃E)

where

pk ← GH(1κ; sk) pkD ← GD(1κ; skD)

c← EH(pk,mf ; rE) cD ← ED(pkD,m; rE)

r̃E ← FS(pkD, rE,m,mf)

s̃k ← FR(skD, cD,mf).

If ε is negligible, we call the scheme just flexibly bideniable. In addition, if the last requirement
is stated just for m = 1 and mf = 0, we call the scheme bitranslucent set scheme (BTS). If
ε, m, and mf are arbitrary, GH = GD, and EH = ED, then (GD,ED,D,FS,FR) is called fully
ε-bideniable or just ε-bideniable.

Remark 1. If we distinguish between key-generation algorithm randomness and secret key,
we can give somewhat weaker definition of deniable encryption, such that the receiver faking
algorithm produces just the fake secret key. As we are interested in feasibility results, we
decided to primarily state the stronger and simpler variant of the definition.

Remark 2. We modified the original definition of BTS [OPW11] slightly by dropping the
support of identity-based setting. It is easy to see that a BTS fulfilling the original definition
is a BTS by our definition.

We will be interested in black-box constructions of a fully 1/κ-bideniable scheme from a
BTS (or from a flexible scheme since it is also a BTS) that follow a general structure described
below.

Construction 1. Let n be a suitable polynomial in κ.

1. Key generation algorithm samples b ∈ P([n]) from a given distribution Bκ. It then
invokes the underlying key-generation algorithms in parallel, one for each bit in the
binary representation of b, GH for bi = 0 and GD for bi = 1.
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2. There exists a deterministic algorithm computing V : P([n])→M .

3. Encryption algorithm samples a ∈ P([n]) from a given distribution Aκ. For each bit
of a, the underlying encryption algorithm is called, EH(pki, 0) for ai = 0 and ED(pki, 1)
for ai = 1. The resulting ciphertext is a concatenation of the underlying ciphertexts,
followed by a bit b = m⊕ V (a).

4. Decryption algorithm calls underlying decryption algorithm for all ciphertexts parts to
obtain a, and calls V (a)⊕ b to get the result.

5. Faking algorithms return honest randomness when opening true message. To fake ci-
phertext to the opposite message, they leverage a function F : P([n]) → P([n]) to
compute a subset f = F (a). Sender faking algorithm invoke underlying faking algo-
rithm for positions given by f ∩ a, while receiver invoke faking for positions given by
f ∩ b.

We summarize construction correctness in the following proposition. We retain the same
notation as above.

Proposition 1. Let f ∩a ⊆ f ∩b with probability at least 1− ε1, and V (a\ f) = 1−V (a) with

probability at least 1− ε2. Let (a,b)
c
≈ε3 (a\ f ,b\ f) where the distributions on the right-hand

side are conditioned on f ∩a ⊆ f ∩b and V (a\ f) = 1−V (a). Let ε1+ε2+ε3 ≤ 1/κ−negl(κ).
Let ∆(V (Aκ),Ber(1/2)) = negl(κ). Then the Construction 1 provides a fully 1/κ-bideniable
scheme.

Proof. Correctness and security follow easily from the corresponding properties of the under-
lying scheme, and from the fact that the padding bit V (Aκ) is close to uniform.

Let us prove 1/κ-deniability, that is, (pk, c, sk, rE)
c
≈1/κ (pkD, cD, s̃k, r̃E) for any m and

mf . By definition, the distributions are identical for m = mf , so let us assume that m 6= mf .
We construct a simulator that, given the sets a and b, produces T = (pk, c, sk, rE) in the
same way as these values would be obtained in Construction 1 when invoked for message mf

and when the values a and b are provided on input instead of their sampling. When a← Aκ
and b ← Bκ, the simulator produces T of the honest game. On the other hand, when the
simulator is supplied with (a \ f ,b \ f), it produces a distribution close to (pkD, cD, s̃k, r̃E)
with the only difference that for the coordinates f honest algorithms are used. We proceed by
a sequence of hybrids by faking first i coordinates from f , for i = 0, . . . , |f |. By assumptions
on the underlying scheme, adjacent hybrids are computationally indistinguishable. The last
hybrid is equivalent to dishonest game.

4 Our Construction

We leverage generic Construction 1. One of the building blocks is a special matching algorithm
provided by the following theorem. The proof is postponed to Sect. 5.

Theorem 1. There exists a feasible deterministic algorithm M that assigns to each subset
∅ 6= x ⊆ [n] a singleton ek ⊆ x with the following properties. Let M̃(x) = x \ M(x), and
M̃(∅) = ⊥. For y ∈ P∗([n]) let p(y) be the number of preimages of y in the mapping M̃.
Then p(y1)− p(y2) ≤ 1 for any y1,y2 ∈ P∗([n]), |y1| = |y2|.
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For 0 ≤ i ≤ n, let us define W (i) = (n − i)/(i + 1), and let W (−1) = 1. Moreover, let
W (i) = bW (i)c and W (i) = dW (i)e. Given that Theorem 1 holds, we can show by a simple
counting argument that p(y) ∈ {W (i),W (i)} for −1 ≤ i ≤ n and y ∈ Li .

Next, we define a few distributions over P∗([n]) for 0 ≤ ρ ≤ 1.

• Let Hn(ρ) (honest) be a distribution which samples n bits independently from Ber(ρ),
i.e., the bit is 1 with probability ρ. Probability of ⊥ is 0.

• Let PDn(ρ) (probabilistic dishonest) be a distribution which samples x ← Hn(ρ) and
subtracts uniformly chosen element from the result, or outputs ⊥ for x = ∅.

• Let DDn(ρ) (deterministic dishonest) be the distribution M̃(Hn(ρ)).

We proceed with the scheme description based on generic Construction 1.

Construction 2. Let 0 < α < 1/3 be a parameter, β = α/(α + 2), and n = n(κ) be a
suitable polynomial specified later.

1. The mapping V returns parity of the input.

2. The distribution Bκ is Hn(1− 1/nβ).

3. The distribution Aκ is Hn(1/nα).

4. Faking mapping F coincides with the algorithm M from Theorem 1.

In order to prove desired security properties, we need a few lemmas.

Lemma 1. Let X and Y be distributions on A×B, let XA and YA be corresponding marginals.
Let S ⊆ A be such that XA(S), YA(S) ≥ 1 − τ for some τ , and XA(a), YA(a) > 0 for any
a ∈ S. Let X|a and Y |a be conditional distributions for any a ∈ S. Then ∆(X,Y ) ≤
∆S(XA, YA) + maxa∈S ∆(X|a, Y |a) + τ .

Proof. We split the distance into two parts to treat them separately:

∆(X,Y ) = ∆S×B(X,Y ) + ∆(A\S)×B(X,Y ).

By assumption, we have

∆(A\S)×B(X,Y ) ≤ 1

2

∑
a∈A\S

(XA(a) + YA(a)) ≤ τ .

For a ∈ S and b ∈ B, we have

|X(a, b)− Y (a, b)| = |(X|a)(b)XA(a)− (Y |a)(b)YA(a)|
≤ (X|a)(b) |XA(a)− YA(a)|+ YA(a) |(X|a)(b)− (Y |a)(b)| .

Therefore,

∆S×B(X,Y ) =
1

2

∑
a∈S

∑
b∈B
|X(a, b)− Y (a, b)|

≤ ∆S(XA, YA) + max
a∈S

∆(X|a, Y |a).
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Lemma 2. Let 1 > α > 0. Let ρ = 1/nα, X = V (Hn(ρ)), and Y = Ber(1/2). Then
∆(X,Y ) = negl(κ).

Proof. By definition, we have

∆(X,Y ) =
1

2
(|X(0)− Y (0)|+ |X(1)− Y (1)|) =

1

2
|X(0)−X(1)|

=
1

2

∣∣∣∣∣∣
bn/2c∑
i=0

(
n

2i

)
ρ2i (1− ρ)n−2i −

dn/2e−1∑
i=0

(
n

2i+ 1

)
ρ2i+1 (1− ρ)n−2i−1

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣
n∑
i=0

(
n

i

)
(−1)iρi (1− ρ)n−i

∣∣∣∣∣ =
1

2
(1− 2ρ)n

=
1

2

(
1− 1

nα/2

)nα/2·2n1−α

≤ 1

2
e−2n

1−α
= negl(κ).

Lemma 3. Let 1/3 > α > 0. There exists ε > 0, such that whenever x ∈ Li for n1−α − δ <
i < n1−α + δ and δ = n(1−α)/2+ε, then the number of preimages p(x) lies between nα − c and
nα + c for some constant c. For further reference, let Iα = {i ∈ N | n1−α− δ < i < n1−α + δ}
and Lα =

⋃
i∈Iα Li.

Proof. We can assume that i 6= −1, then W (i) = (n− i)/(i+ 1) = (n+ 1)/(i+ 1)− 1. Since
we can ignore constants, it suffices to analyze n/(i + 1). Let ε = (1 − 3α)/2. Then by our
assumptions, we obtain

nα

1 + n−(1−α)/2+ε + nα−1
<

n

i+ 1
<

nα

1− n−(1−α)/2+ε + nα−1
,

which can be rewritten as

nα − nε−(1−3α)/2 + n2α−1

1 + n−(1−α)/2+ε + nα−1
<

n

i+ 1
< nα +

nε−(1−3α)/2 − n2α−1

1− n−(1−α)/2+ε + nα−1
.

Since α < 1, both denominators tend to 1. Moreover, by α < 1/2, we have n2α−1 → 0, and
by the choice of ε, we have nε−(1−3α)/2 = O(1).

Lemma 4. Let 1/3 > α > 0. Let x ← Hn(1/nα) or x ← DDn(1/nα). Then x ∈ Lα with
overwhelming probability.

Proof. For the honest distribution, we get the result by Chernoff bound. For dishonest distri-
bution, we need to make sure that subtraction of 1 does not change anything for large values
of n. That is true, because n1−α →∞, and the constant shifting can be hidden into nε.

We need to get more insight into our distributions, so let us investigate their probability
mass functions in more detail. We introduce notation for probabilities in which the parameters
ρ and n are implicit (clear from the context). Let i ∈ Z. Then we define

H(i) =

{
ρi(1− ρ)n−i 0 ≤ i ≤ n
0 otherwise

D(i) = H(i+ 1)W (i)

D(i) = H(i+ 1)W (i)

D(i) = H(i+ 1)W (i).

8



We can see that all above defined values are 0 whenever i is outside [−1, n]. Let −1 ≤ i ≤ n
and x ∈ Li. Then, probability of x in Hn(ρ) is H(i), probability of x in PDn(ρ) is D(i). If
p(x) = W (i), then probability of x in DDn(ρ) is D(i), otherwise it equals D(i).

Proposition 2. Let 1/3 > α > 0. Then ∆Lα(Hn(n−α),DDn(n−α)) = O(n−α) where Lα is
defined in Lemma 3.

Proof. For −1 ≤ i ≤ n, let N(i) and N(i) be the number of elements in Li having W (i) or
W (i) M̃-preimages, respectively. Then

N(i) +N(i) = |Li| =
(
n

i

)
. (1)

Moreover, for 0 ≤ i ≤ n we have

H(i) =

(
1

nα

)i(
1− 1

nα

)n−i
=

(
1

nα

)n
(nα − 1)n−i ,

so we get H(i) = H(i + 1)(nα − 1) for 0 ≤ i ≤ n − 1. By definition and by the previous
equality, our statistical distance equals

∆ =
∑
i∈Iα

N(i) |D(i)−H(i)|+N(i)
∣∣D(i)−H(i)

∣∣
=
∑
i∈Iα

N(i)H(i+ 1) |W (i)− (nα − 1)|+N(i)H(i+ 1)
∣∣W (i)− (nα − 1)

∣∣ .
By Lemma 3, both absolute values can be bounded by a constant, say C. Hence, by (1),
∆ can be bounded by∑

i∈Iα

(
n

i

)
H(i+ 1)C =

C

nα − 1

∑
i∈Iα

(
n

i

)
H(i) = O(n−α).

Lemma 5. For n ∈ N, i ∈ {0, 1, . . . }, and β > 0, we have(
n

i

)
≥ (nβ − 1)

(
n

i+ 1

)
iff i ≥ n− n1−β − n−β. (2)

For −1 ≤ i ≤ n, we have (
n

i

)
W (i) =

(
n

i+ 1

)
. (3)

Proof. The second statement is an immediate consequence of binomial coefficient definition.
For the first one, we handle the trivial case i ≥ n separately. To prove the remaining case,
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we proceed by a sequence of equivalent conditions(
n

i

)
≥ (nβ − 1)

(
n

i+ 1

)
i+ 1

n− i
≥ nβ − 1

1

nβ − 1
≥ n+ 1

i+ 1
− 1

nβ

nβ − 1
≥ n+ 1

i+ 1

i+ 1

n+ 1
≥ nβ − 1

nβ

i ≥ (nβ − 1)(n+ 1)− nβ

nβ

i ≥ nβ+1 − n− 1

nβ

i ≥ n− n1−β − n−β.

Lemma 6. Let i be a function of n ∈ N, i→∞ as n→∞, 0 < i < n. Then(
n

i

)
∼
√

1

2π
· nn

ii(n− i)n−i
·
√

n

i(n− i)
.

Proof. Follows immediately from Stirling’s approximation.

Lemma 7. Let 1 > β > 0, σ = n− n1−β − n−β, θ = bσc, and

B(n) =
(nβ − 1)θ+1nn

nnβ(θ + 1)θ+1(n− θ − 1)n−θ−1
.

Then B(n) = O(1).

Proof. It is easy to see that

B(n) =

(
n− n1−β

θ + 1

)θ+1(
n1−β

n− θ − 1

)n−θ−1
≤
(
n− n1−β

σ

)n(
n1−β

n− σ − 2

)n1−β

.

We bound the factors separately. For the first, we have(
n− n1−β

n− n1−β − n−β

)n
=

(
1 +

1

n1+β − n− 1

)(n1+β−n−1) n

n1+β−n−1

≤ exp

(
n

n1+β − n− 1

)
→ 1.
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Since n− σ − 2 = n1−β − 2 + n−β, the second factor equals

(
n1−β

n1−β − 2 + n−β

)n1−β

=

(
1 +

2− n−β

n1−β − 2 + n−β

)n1−β−2+n−β

2−n−β
·
n1−β(2−n−β)
n1−β−2+n−β

≤ exp

(
n1−β · 2− n−β

n1−β − 2 + n−β

)
→ e2.

Proposition 3. Let 1 > β > 0. Then ∆(Hn(1− 1/nβ),PDn(1− 1/nβ)) = O(1/n(1−β)/2).

Proof. In this case, for 0 ≤ i ≤ n we have

H(i) =

(
1− 1

nβ

)i( 1

nβ

)n−i
=

(
1

nβ

)n (
nβ − 1

)i
,

so we obtain H(i + 1) = H(i)(nβ − 1) for 0 ≤ i ≤ n − 1. By (3) and by using the fact that
H(n+ 1) = 0, the analyzed statistical distance equals to

∆ =
n∑

i=−1

(
n

i

)
|H(i)−D(i)|

=
n∑

i=−1

∣∣∣∣(ni
)
H(i)−

(
n

i

)
H(i+ 1)W (i)

∣∣∣∣
=

n∑
i=−1

∣∣∣∣(ni
)
H(i)−

(
n

i+ 1

)
H(i+ 1)

∣∣∣∣
= H(0) +

n∑
i=0

∣∣∣∣(ni
)
H(i)−

(
n

i+ 1

)
H(i)(nβ − 1)

∣∣∣∣
= H(0) +

n∑
i=0

H(i)

∣∣∣∣(ni
)
−
(

n

i+ 1

)
(nβ − 1)

∣∣∣∣ .
Let σ = n− n1−β − n−β and θ = bσc. Then by (2), we get

θ∑
i=−1

((
n

i+ 1

)
H(i+ 1)−

(
n

i

)
H(i)

)
+

n∑
i=θ+1

((
n

i

)
H(i)−

(
n

i+ 1

)
H(i+ 1)

)
= 2

(
n

θ + 1

)
H(θ + 1).

Stirling’s approximation of binomial coefficient (Lemma 6) gives us

∆ ∼
√

2

π
·
√

n

(θ + 1)(n− θ − 1)
· (nβ − 1)θ+1nn

nnβ(θ + 1)θ+1(n− θ − 1)n−θ−1
.

Finally, by Lemma 7, we have

∆ = O

(√
n

θ + 1
·

√
1

dn1−β + n−βe

)
= O(n(β−1)/2).
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Theorem 2. There exists a suitable polynomial n = n(κ) = O(κ1/β), so that the scheme
described in Construction 2 is fully 1/κ-bideniable.

Proof. We use Proposition 1. It is immediately seen that ε2 = negl(κ). By Lemma 2, we
have ∆(V (Hn(ρ)),Ber(1/2)) = negl(κ). We show that ε1 + negl(κ) < 1/(2κ) for sufficiently
large values of κ. Since f ⊆ a holds always, the condition f ∩a ⊆ f ∩b is equivalent to f ⊆ b.
By definition, |f | = 1 with overwhelming probability, and f is sampled independently on b.
Therefore f 6⊆ b with probability n−β = O(κ−1) which can be bounded by 1/(2κ) − negl(κ)
by a wise choice of coefficient in n = O(κ1/β).

Finally, we show that ε3 + negl(κ) < 1/(2κ). We are going to apply Lemma 1 with
A = B = [n]. The distributions X and Y are those of (a,b) and (a \ f ,b \ f), respectively.
We put S = Lα. By Lemma 4, both a ∈ S and a \ f ∈ S with overwhelming probability. By
Proposition 2, we have ∆(a,a \ f) = O(n−α). Conditioning on the value of a (or a \ f in the
second case), we can split the set of coordinates [n] into two groups based on the preimages
of a. The first group Q contains coordinates not used for M̃-preimages, i.e., i ∈ Q whenever
M̃(a ∪ ei) 6= a or M̃((a \ f) ∪ ei) 6= a \ f , respectively. The second group R contains the
remaining coordinates. It is easy to see that conditioning on a, the distribution of b is the
product of distributions of substrings bQ and bR, and the same decomposition works for b\ f
(when conditioning on a \ f). Moreover, we see that the distributions of bQ and (b \ f)Q
are exactly the same since no preimages use coordinates in Q. By Lemma 4 and Lemma 3,
|R| ≥ nα−c for some constant c. Then, we apply Proposition 3 to bR and (b\f)R to compute

distance of these substrings as |R|(β−1)/2 ≤ (nα − c)(β−1)/2 = O(nα(β−1)/2) = O(n−β), which
can again be bounded by 1/(2κ)− negl(κ) by a wise choice of n(κ).

5 Subset Matching Algorithm

In this section, we prove Theorem 1. To do that, we construct the algorithm M and prove its
properties.

Let Li be the destination layer, i.e., we map an element x ∈ Li+1 to an element y ∈ Li.
We start with an informal description of the algorithm for the case W (i) = W (i), i.e., when
the size of upper (source) layer is divisible by the size of lower (target) layer. We assign
to each coordinate its weight, −1 for coordinate containing bit 0 and W (i) for bit 1. We
define weight of a range of coordinates to be sum of weights of individual coordinates. Then,
we define min-weight of a coordinate as the minimum of weights of ranges starting by the
given coordinate and ending on some higher coordinate. The algorithm outputs the lowest
coordinate with min-weight at least 1.

The situation is slightly more complicated when W (i) = W (i) + 1. Then, some 1-
coordinates get W (i) weight and some W (i), so that the weight of the whole string is 1.
The ordering of weights is fixed, e.g., some number of lower 1-coordinates always get W (i)
and the remaining 1-coordinates get W (i). We remark that our choice of weight ordering is
arbitrary, but it is sufficient to prove just one case for our purposes.

Now we proceed with a rigorous treatment of the algorithm. Let 1 ≤ k ≤ n be a coor-
dinate. For x ∈ P([n]), let us denote the number of ones on lower positions by ρ(x, k) =
|{m < k | xm = 1}|. For i ≥ 0, let

C(i) = (n− i)− (i+ 1)W (i)

C(i) = (i+ 1)− C(i).

12



For k ≤ l ≤ n, we define k, l-weight of x to be

w(i)(x, k, l) =


−1 k = l ∧ xk = 0

W (i) k = l ∧ xk = 1 ∧ ρ(x, k) < C(i)

W (i) k = l ∧ xk = 1 ∧ ρ(x, k) ≥ C(i)∑l
j=k w(i)(x, j, j) k < l,

and we define k-th min-weight of x as µ(i)(x, k) = minnl=k w(i)(x, k, l).

Lemma 8. Let y ⊆ x, 1 ≤ k ≤ l ≤ n, and x ∩ [k − 1] = y ∩ [k − 1]. Then w(i)(y, k, l) ≤
w(i)(x, k, l).

Proof. The assumption x∩ [k−1] = y∩ [k−1] implies that ρ(x, k) = ρ(y, k). The rest follows
immediately from the definition.

Lemma 9. For i ≥ 0 we have W (i)C(i) +W (i)C(i) = n− i.

Proof. By definition, W (i)C(i) + W (i)C(i) = C(i)(W (i) −W (i)) + (i + 1)W (i). The result
then follows by considering the cases W (i) = W (i) and W (i) = W (i) + 1 separately.

Lemma 10. For any x ∈ Li+1, we have w(i)(x, 1, n) = 1.

Proof. By definition, w(i)(x, 1, n) = (−1)(n − i − 1) + C(i)W (i) + C(i)W (i), which equals 1
by Lemma 9.

Definition 1. Let M be an algorithm that for input x ∈ P([n]) does the following:

1. Finds i such that x ∈ Li+1.

2. If i = −1, fails.

3. Finds the lowest coordinate k such that µ(i)(x, k) ≥ 1.

4. Returns ek.

We claim that the algorithm M is the desired one from Theorem 1.

Lemma 11. Let x ∈ Li+1 for i ≥ 0. Then M(x) is well-defined, i.e., there is a coordinate k
for which µ(i)(x, k) ≥ 1.

Proof. We know that w(i)(x, 1, n) ≥ 1, by Lemma 10. If µ(i)(x, 1) ≥ 1, we are done. Other-
wise, there is a coordinate l1 ≥ 1 such that w(i)(x, 1, l1) < 1. If µ(i)(x, l1 + 1) ≥ 1, we are
done, in the other case, we repeat the previous step to obtain a coordinate l2 > l1, and so on.
Eventually, this process stops with a coordinate lj such that µ(i)(x, lj + 1) ≥ 1.

Definition 2. Let y ∈ Li and let k be a coordinate for which yk = 0. Then k is called
suitable for y if for any lower coordinate l < k we have w(i)(y, l, k − 1) < 1. Otherwise, k is
called unsuitable for y.

Lemma 12. Let k be unsuitable for y and let x = y ∪ ek. Then M(x) 6= ek.

13



Proof. By assumption, there is a coordinate l < k for which w(i)(y, l, k − 1) ≥ 1. Take l
to be maximal. We claim that w(i)(y, l,m) ≥ 1 whenever l ≤ m < k − 1. If not, then
w(i)(y, l,m) < 1 for some m < k − 1, and the assumption implies w(i)(y,m + 1, k − 1) ≥ 1.
But that contradicts the maximality of l.

By Lemma 8, we have w(i)(x, l,m) ≥ w(i)(y, l,m) for m ≥ l. In combination with the
previous inequalities, we get w(i)(x, l,m) ≥ 1 for l ≤ m < k. Now, if µ(i)(x, k) ≥ 1 (so x is
a possible preimage), then it is also µ(i)(x, l) ≥ 1, and there is a lower coordinate that could
be used instead.

Lemma 13. Let y ∈ Li. Then the number of suitable coordinates for y is bounded from below
by W (i).

Proof. Each coordinate containing one makes unsuitable at most W (i) or W (i) zero coordi-
nates, depending on the position. We have C(i) coordinates of the first type and C(i) − 1
coordinates of the second type. The number of zero coordinates is n − i. Thus, the number
of suitable coordinates is bounded from below by

n− i− C(i)W (i)− (C(i)− 1)W (i) = n− i− C(i)W (i)− C(i)W (i) +W (i)

which equals W (i) by Lemma 9.

Lemma 14. Let k be one of the W (i) uppermost suitable coordinates for y ∈ Li. Then for
x = y ∪ ek, we have M(x) = ek.

Proof. Since k is suitable, it suffices to show that µ(i)(x, k) ≥ 1. To obtain a contradiction,
let us assume that for some m ≥ k we have w(i)(x, k,m) < 1. Since xk = 1 and yk = 0, we
have w(i)(x, k, k) ≥ W (i) and w(i)(y, k,m) < −W (i). Take the lowest possible coordinates
k = k0 < k1 < · · · < kW (i) ≤ m such that w(i)(y, k, kj) < −j. Clearly, such coordinates exist.
We will show that each kj is suitable for y, yielding a contradiction with lemma assumption.
By the minimality of kj , we have w(i)(y, k, l) ≥ −j for k ≤ l < kj , so w(i)(y, l + 1, kj) < 0.
But that means w(i)(y, r, kj − 1) < 1 for any k < r < kj . The inequality also holds for r = k,
by assumption, and for r < k, by suitability of k. Thus, each kj is suitable for y.

Lemma 15. Let k be a suitable coordinate for y ∈ Li, so that there are at least W (i) higher
suitable coordinates. Let x = y ∪ ek. Then M(x) 6= ek.

Proof. Let k = k0 < k1 < · · · < kW (i) be suitable coordinates for y. Since ykj = 0 for all j, we

have w(i)(y, kj , kj) = −1. Whenever kj−1 < kj − 1, we know that w(i)(y, kj−1 + 1, kj − 1) < 1
by suitability of kj . To put everything together, we have w(i)(y, k, kW (i)) ≤ −W (i) − 1. By

definition, that implies w(i)(x, k, kW (i)) ≤ 0, so µ(i)(x, k) < 1.

Proof of Theorem 1. Let y ∈ Li and we count the number of preimages in M̃. Each preim-
age uses distinct coordinate k for which yk = 0. By Lemma 12, we can ignore unsuitable
coordinates. By Lemma 13 and Lemma 14, the number of preimages is at least W (i). By
Lemma 15, we cannot have more than W (i) preimages.

6 Conclusion

This work fixes an important part of the study of deniable encryption feasibility. However,
some problems in this areas still remain open, as well as the question of efficiency of the
existing schemes.

14



Acknowledgements The author would like to thank to Michal Hojśık for review of the
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for discussions about various aspects of deniable encryption.

References

[ANS98] Ross J. Anderson, Roger M. Needham, and Adi Shamir. The steganographic file
system. In Information Hiding, pages 73–82, Portland, Oregon, April 1998.

[Bea96] Donald Rozinak Beaver. Plausible deniability. In PRAGOCRYPT, pages 272–288,
Prague, Czech Republic, September 1996.

[BNNO11] Rikke Bendlin, Jesper Buus Nielsen, Peter Sebastian Nordholt, and Claudio Or-
landi. Lower and upper bounds for deniable public-key encryption. In ASI-
ACRYPT, pages 125–142, Seoul, Korea, December 2011.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryp-
tion. In CRYPTO, pages 90–104, Santa Barbara, California, August 1997.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure
multi-party computation. In STOC, pages 639–648, Philadelphia, Pennsylvania,
May 1996.
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2008.

[MK99] Andrew D. McDonald and Markus G. Kuhn. StegFS: A steganographic file system
for Linux. In Information Hiding, pages 462–477, Dresden, Germany, September
1999.

15

http://eprint.iacr.org/
http://eprint.iacr.org/


[OPW11] Adam O’Neill, Chris Peikert, and Brent Waters. Bi-deniable public-key encryp-
tion. In CRYPTO, pages 525–542, Santa Barbara, California, August 2011.
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A Failure of the Original Scheme

In this section, we describe the scheme proposed by Bendlin et al. [BNNO11], and we show
that it admits a constant-advantage distinguisher. We made a few non-substantial changes
so that the description fits generic Construction 1.

Construction 3. Let n = κ5 and r = κ4. Let us consider the following algorithms.

1. For 0 ≤ γ ≤ 1, let us define an auxiliary sampling algorithm Nγ : P([r]) → P([n]),
x 7→ y, so that if j /∈ x, then {(j − 1)κ + 1, . . . , jκ} ∩ y = ∅, and if j ∈ x, then for
i = 1, . . . , κ, the relation (j − 1)κ + i ∈ y holds with probability γ, and this value is
sampled independently for each j and i.

2. To sample b ← Bκ, one first samples b′ ∈ P([r]), so that bits of b′ are sampled
independently, and each equals 1 with probability 1− 1/κ2. Then b← N1(b

′).

3. To sample a← Aκ, one first samples a′ ∈ P([r]) uniformly, so that |a′| mod 2 = m, and
puts a← N1/2(a

′).

4. The mapping V splits the input string into κ-bit blocks, let C ∈ {0, . . . , κ4} be the
number of non-zero ones. Then V returns C mod 2, i.e., V calculates parity of non-zero
κ-blocks in the input string.

5. Faking mapping F splits the input into κ-bit blocks, finds the block with lexicographi-
cally lowest non-zero value, and outputs the set containing all coordinates determining
this block. Note that this block is determined uniquely with overwhelming probability.

The failing assumption of Proposition 1 is that (a,b)
c
≈ε3 (a \ f ,b \ f). In fact, this indis-

tinguishability condition would pass if the adversary is given just (a′,b) (or its corresponding
fake counterpart). However, that would disallow sender and receiver to agree on the common
faking block index.

We claim that the distributions of a and a \ f are distinguishable with advantage that
tends to 1/e, and there is an efficient distinguisher. We sketch the main ideas first. We can
convert each κ-bit block of the bitstring into a real number belonging to the interval [0, 1].
Then, we forget about order of these numbers. Thus, the distinguisher is asked to tell apart
the following cases:
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• A uniformly random set of n real numbers from [0, 1] is returned.

• A uniformly random set of n + 1 real numbers from [0, 1] is sampled, the smallest one
is dropped, and the resulting set is returned.

By means of order statistics, it can be shown that a maximum-likelihood distinguisher com-
pares the smallest number with 1/(n+ 1), and if it is smaller, it answers that the first case is
true.

We proceed by a formal argument. Let us split a into κ-bit strings and convert each of
these strings into its corresponding natural number. Denote the set of these numbers by N0

and let N = N0 \ {0}. Similarly, a \ f corresponds to the set N ′ which can be obtained from
N by dropping the lowest element (in the natural ordering).

Up to a negligible statistical distance, N can be equivalently produced by first sampling
the number of non-zero elements k from binomial distribution of length r and parameter 1/2,
and then sampling k natural numbers uniformly independently from the set {1, . . . , κ}. By
Chernoff bound, m = |N | ≥ λr for some constant λ > 0. Let us condition on the value of m.

To simplify our analysis, we describe the situation using continuous distributions and real
numbers. Let Rm be a set of m numbers sampled uniformly from the unit interval [0, 1]. Let
R′m be a set of r numbers obtained by sampling from Rm+1 and dropping the lowest value.
Since the probability that two elements of Rm are equal is zero, we can consider the following
probability space:

Mm = {x1, . . . , xm | 0 < x1 < · · · < xm < 1}.

Its volume is∫
Mm

1 dx1 . . . dxm =

∫ 1

0

(
· · ·
(∫ x3

0

(∫ x2

0
1 dx1

)
dx2

)
· · ·
)

dxm =
1

m!
.

Therefore, density of the distribution of Rm is m!, and cumulative distribution function is

Hm(y1, . . . , ym) =

∫
([0,y1]×···×[0,ym])∩Mm

m! dx1 . . . dxm.

It is easy to see that CDF of the distribution of R′m is

Dm(y1, . . . , ym) = Hm+1(1, y1, . . . , ym)

=

∫
([0,1]×[0,y1]×···×[0,ym])∩Mm+1

(m+ 1)! dx1 . . . dxm+1

=

∫
([0,y1]×···×[0,ym])∩Mm

(m+ 1)!

(∫ x2

0
1 dx1

)
dx2 . . . dxm+1

=

∫
([0,y1]×···×[0,ym])∩Mm

x2(m+ 1)! dx2 . . . dxm+1,

so its density is x1(m+ 1)! (when we shift down the variables back to x1, . . . , xm). Before we
state the main result, we need a lemma.

Lemma 16. Let F be the set of all measurable functions f : [0, 1] → [0, 1], and let σ be a
mapping on this set that assigns to a function f ∈ F the function

∫ 1
x f(y) dy. Then for any

j ∈ N0, we have σj(1) = (1− x)j/j!.
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Proof. For j = 0, that is just the definition. By induction, we have∫ 1

x

(1− y)j

j!
dy = −(1− y)j+1

(j + 1)!

∣∣∣∣1
x

=
(1− x)j+1

(j + 1)!
.

Theorem 3. Statistical distance ∆ of distributions given by cumulative distribution functions
Hm and Dm tends to 1/e as m grows to infinity. A distinguisher realizing this distance
compares first coordinate of the sample with 1/(m+1), and if the value is lower, answers that
the distribution is Hm.

Proof. We compute the statistical distance. In the last equality, we use Lemma 16:

2∆ =

∫
Mm

m! · |1− x1(m+ 1)| dx1 . . . dxm =

=

∫ 1

0
m! · |1− x1(m+ 1)|

(∫
[x1,1]m−1∩Mm−1

1 dx2 . . . dxm

)
dx1

=

∫ 1

0
m! · |1− x1(m+ 1)| (1− x1)

m−1

(m− 1)!
dx1.

We put δ(x1) = m(1− x1(m+ 1))(1− x1)m−1 to obtain

2∆ =

∫ 1/(m+1)

0
δ(x1) dx1 −

∫ 1

1/(m+1)
δ(x1) dx1

= mx1(1− x1)m|1/(m+1)
0 − mx1(1− x1)m|11/(m+1)

= 2

(
1− 1

m+ 1

)m+1

→ 2/e.

The statement about distinguisher is clear from the fact that δ(x) > 0 if and only if x <
1/(m+ 1).
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