
Fast Threshold ECDSA with Honest Majority

Ivan Damg̊ard1, Thomas Pelle Jakobsen2, Jesper Buus Nielsen1, Jakob Illeborg
Pagter2, and Michael Bæksvang Østergaard2

1 Aarhus University, Denmark
{ivan,jb}@cs.au.dk

2 Sepior
{tpj,jip,mbo}@sepior.com

Abstract. ECDSA is a widely adopted digital signature standard. A
number of threshold protocols for ECDSA have been developed that
let a set of parties jointly generate the secret signing key and compute
signatures, without ever revealing the signing key. Threshold protocols
for ECDSA have seen recent interest, in particular due to the need for
additional security in cryptocurrency wallets where leakage of the signing
key is equivalent to an immediate loss of money.
We propose a threshold ECDSA protocol secure against an active adver-
sary in the honest majority model with abort. Our protocol is efficient
in terms of both computation and bandwidth usage, and it allows the
parties to pre-process parts of the signature, such that once the message
to sign becomes known, the they can compute a secret sharing of the sig-
nature very efficiently, using only local operations. We also show how to
obtain fairness in the online phase at the cost of some additional work in
the pre-processing, i.e., such that it either aborts during pre-processing
phase, in which case nothing is revealed, or the signature is guaranteed
to be delivered to all honest parties.

1 Introduction

A hot topic of the 80s was threshold cryptography [10, 11]. This notion covers
encryption and signature schemes where the key is secret shared among a number
of parties in a way that lets the parties sign or decrypt messages despite the fact
that the key remains secret shared. The key remains protected as long as at most
a certain threshold t of the parties are corrupted.

Threshold cryptography, being a special kind of secure multiparty compu-
tation, is stronger than simply secret sharing the key, since it allows to sign
or encrypt without any one party reconstructing the key. Threshold cryptogra-
phy therefore increases security by ensuring that an attacker must compromise
t points instead of a single point. It is also well-suited in cases with multiple
owners of the key and where it should be enforced that signing or decryption
only occur when a certain threshold of the owners agree.

The elliptic curve digital signature standard ECDSA [22, 20] has recently
become very popular. It has for example been adopted by TLS and popular
cryptocurrencies such as Bitcoin and Ethereum. This has caused a growing need

2 Damg̊ard, et al.

for a threshold version of ECDSA. In particular, its use in cryptocurrencies
implies that loss of the secret signing key immediately translates to a loss of
money.3

However, while efficient threshold versions of e.g. RSA and ElGamal encryp-
tion and Schnorr signatures have been proposed early [30, 32], efficient threshold
variants of DSA/ECDSA have proved hard to achieve.

1.1 Related Work and Our Contribution

Gennaro et al. proposed one of the first threshold protocol for DSA signa-
tures [17–19]. The authors give a simulation-based proof that the protocol is
secure and robust against a static, malicious adversary corrupting at most t out
of n parties for n ≥ 4t + 1. (A solution for n ≥ 3t + 1 is also sketched with no
proof.) The protocol assumes a consistent and reliable broadcast channel and
uses Pedersen’s verifiable secret sharing [27].

Another line of work has focused on DSA/ECDSA threshold signatures in the
case of a dishonest majority, i.e., with full threshold t = n−1. This was initiated
by MacKenzie and Reiter [26] who proposed a two-party protocol. Gennaro et
al. later followed up with ECDSA schemes for more than two parties [16, 3].
Common to these protocols were that they were not really practical, especially
due to the work required by the distributed key generation.

Lindell and others [23, 12, 6] later improved on this in the two-party setting.
Finally, recent results [25, 15, 13] provide full threshold ECDSA for any number
of parties.

Recent results [31, 9] show how to do threshold ECDSA based on schemes
for general MPC. As shown by Dalskov et al. [9] this can lead to very practical
protocols when instantiating the MPC with protocols for honest majority with
abort.

Our protocol compared to existing dishonest majority protocols The ECDSA pro-
tocols for dishonest majority [26, 16, 3, 23, 12, 25, 15, 6, 13] all rely on computa-
tionally heavy primitives such as Paillier encryption and zero-knowledge proofs,
or they are based on oblivious transfer [12, 13] which incurs high bandwith. In
comparison, our protocol is considerably simpler and efficient in terms of both
computation and bandwidth usage.

In addition, except from Doerner et al. [13], these protocols somehow relax
security, either by relying on assumptions not implied by ECDSA itself, such as
decisional Diffie-Hellman [25] or the quadratic residuosity assumption [23, 15], or
they implement relaxed versions of the ECDSA functionality [12]. In contrast,
we prove a proof in the UC model that our protocol (perfectly) implements the
standard ECDSA functionality without additional assumptions.

Finally, most of these protocols are restricted to the two-party setting and/or
require one or more rounds of interaction between the parties in the online phase,

3 For this reason Bitcoin uses multisignatures [1]. But as discussed in length in e.g.
Gennaro et al. [16] threshold signatures are in several ways more suited.

Fast Threshold ECDSA with Honest Majority 3

i.e., after the message to be signed is known. Contrary to this, our protocol
allows the parties to locally compute a sharing of the final signature without
interaction, given suitable preprocessing prior to knowing the message. The only
other protocol comparable to ours in this regard is Doerner et al. [13] which, as
mentioned, has a higher bandwith consumption than our protocol.

That said, all of these protocols of course achieve stronger security in the
sense that they can tolerate up to n− 1 corruptions.

Our protocol compared to the GJKR protocol [17–19] The protocol of Gennaro
et al. [17–19] was designed for the honest majority setting and, like ours, avoids
additional cryptographic assumptions and has a non-interactive online phase.
Assuming a reliable broadcast channel, Gennaro et al. provides full security
(including both termination guarantee and fairness) as long as n ≥ 4t+ 1.

From a practical perspective the n ≥ 4t + 1 constraint can be problematic.
It means that one has to find at least five parties that are willing to run the
protocol, and even if found, only one corrupt party can be handled.

Another practical problem is the network model used by Gennaro et al.
The fairness and termination guarantees they provide rely on the existence of
a broadcast channel with guaranteed consistency and message delivery. As the
internet lacks both of these properties, one has to implement them. This can
be done, but it leads to additional rounds of communication, something that
negatively affects the performance, especially when running the protocol in a
WAN setting.

Moreover, to simulate guaranteed message delivery on the internet where
message delivery is inherently unreliable, one has to resort to using timeouts: If
an expected message is not received within a given timeout, the receiver con-
tinues, treating the sender as corrupt. A practical problem with this is that if
the timeouts are too small, then otherwise honest parties will soon be deemed
corrupt due to the message delays that naturally occur on the internet, and soon
enough parties are corrupt to exceed the security threshold. To avoid this, large
timeouts must be used. But using large timeouts lets a single malicious party
cause the protocol to run exceptionally slow.

In many practical cases, the termination and fairness guarantees as provided
by Gennaro et al. [17] may not be required.4 We instead follow a recent trend
also seen in the construction of general honest majority MPC protocols [14, 24,
7] of giving up on these guarantees to achieve faster, more practical protocols.
Doing so, the above issues are avoided. If for example a message is lost, the
parties can simply abort after a short timeout and retry later.

As a result of this, where Gennaro et al. [17] require 12t+ 8n+ 1 long curve
multiplications per party, primarily due to the use of computationally heavy
Pedersen commitments, we manage to reduce this to only 5. Consequently, with
parties connected on a local network, under the reasonable assumption that long

4 In fact, in the case of a dishonest majority these guarantees are generally impossible
to achieve, and therefore usually not addressed. This is the case for all the dishonest
majority ECDSA protocols above [26, 16, 3, 23, 12, 25, 15, 13].

4 Damg̊ard, et al.

curve multiplications in this setting are the performance bottleneck, our protocol
will have a signature throughput 7.4 times than of Gennaro et al. [17–19] for
n = 3, and 13 times Gennaro et al. for n = 5, etc.

Sometimes, however, fairness is important. To address this, we show how to
achieve fairness in our online phase, at the cost of some additional work which can
be pre-processed. This means that the protocol may abort during pre-processing,
in which case nothing leaks, but if it does not, then it is guaranteed to deliver
the signature to all honest parties in the online phase.

Importantly, both versions of our protocol achieve a better security threshold
of n ≥ 2t + 1, which means that it can run with only three parties and only
requires pairwise authentic and private channels.

Our Contribution

– We provide a practical and efficient threshold protocol for DSA and ECDSA
signatures in the honest majority model with abort. It is secure against
an active adversary and works for any number of parties n and security
thresholds t as long as n ≥ 2t+ 1.

– The protocol is accompanied by a full proof in the UC model [5]. The proof
shows that our protocol (perfectly) realizes the standard ECDSA function-
ality, and it relies on no additional assumptions.

– The protocol is well-suited for pre-processing: Most of the work can be done
before the message to be signed is known, and if doing so, the protocol
achieves excellent online performance. In the basic variant, when the parties
receive the message to be signed, they can compute a sharing of the signature
using only local operations, without interacting with each other.

– We show how to extend our basic protocol to ensure fairness and termination
in the online phase.

– We demonstrate practicality by benchmarking in the LAN as well as the
WAN setting. Using a close-to-real-world deployment with load balancers
and authenticated channels we show that our protocol achieves both low
latency and high throughput.

2 Our Threshold ECDSA Protocol

In this section we describe our basic protocol and the overall strategy for its
simulation. To keep the description simple, we focus on the basic protocol and
consider pre-processing and fairness later.

We assume familiarity with the DSA/ECDSA signature scheme and Shamir
sharing. We will use F (R) to denote the mapping of a point R to Zq, i.e., for
ECDSA F (R) will output the x-coordinate of R, for DSA F (R) = R mod q. We
will use [x] ← RSS(t) to denote joint random secret sharing where the parties
obtain a sharing of a random value x ∈ Zq over a random polynomial of degree t.
It is done simply by having each party create a random sharing, and then adding
up the shares. Similarly, we use [x]← ZSS(t) for a random sharing of zero. Given
shares xi over a polynomial f , corresponding points yi = gxi for a generator g,

Fast Threshold ECDSA with Honest Majority 5

and x0 ∈ Zq we use ExpInt(yi;x0) = gf(x0) to denote Lagrange interpolation
”in the exponent”. A more detailed recap of ECDSA, joint random sharing, and
interpolation in the exponent can be found in Appendix A.

2.1 Technical Overview

At a high level, we follow the scheme of Gennaro et al. [19]. The parties first
generate the private key [x] using joint random secret sharing. Then they run
a protocol to reveal the public key y = gx. To avoid certain subtleties related
to joint random secret sharing with guaranteed termination [18], and to avoid
additional assumptions, Gennaro et al. use a rather complicated protocol based
on Pedersen verifiable secret sharing. Since we allow abort, we can use plain
Shamir secret sharing along with a simpler protocol for revealing gx. Our protocol
for revealing gx works despite malicious parties and is designed to abort also if
[x] is not a consistent sharing.

When signing a message M , the parties generate a sharing of the nonce [k]
using joint random secret sharing and reveal gk using the same protocol as for
revealing the public key gx. They then use Beaver’s inversion trick to compute
[k−1]: They first generate a random sharing [a], then multiply and and open
w = [a][k]. This is done using a simple passively secure protocol where the
parties just reveal the product of their shares. Since this is a degree 2t sharing of
ak they can recover ak as long as all parties participate honestly. With malicious
parties the result is not necessarily correct. Gennaro et al. used error correcting
codes to handle this. We tolerate abort and can instead use the same protocol
as before to correctly open an authenticator W = gak that lets the parties verify
the correctness by checking that gw = W .

If ok, the parties compute [a] · w−1 = [k−1] and m = H(M), and they can
now compute and open [s] = [k−1](m+ r[x]) as they opened [a][k] before. This
time, however, since we tolerate abort, it suffices to check correctness of s by
validating the resulting signature (r, s) on M using the public key y.

2.2 Computing Powers of a Point

A central building block in our protocol is a subprotocol that given a sharing
[x] and a generator g ∈ G (on which all honest parties agree) reveals the value
y = gx. We let y ← POWOPEN(g, [x]) denote this protocol.

The protocol works as follows:

1. Each party Pi sends yi = gxi to all the other parties. Let f be the unique
degree t polynomial defined by the t+1 (or more) honest parties’ shares, i.e.
f(0) = x.

2. When Pi receives all gxj for each yj ∈ {yt+2, yt+3, . . . , yn} it verifies that yj
is consistent with the degree t polynomial defined by the first t + 1 values
y1, y2, . . . , yt+1. It does so by doing Lagrange interpolation “in the expo-
nent”.

6 Damg̊ard, et al.

3. If so, Pi knows that y1, ..., yt+1 are valid points on f , and Pi then uses again
Lagrange interpolation “in the exponent” on y1, y2, . . . , yt+1 to compute y =
gx = gf(0).

Since n ≥ 2t+ 1 there are at least t+ 1 honest parties. This means that each
honest party will receive at least t+ 1 correct shares “in the exponent”, enough
to uniquely define f . Hence, if any of the t corrupted parties cheat, all honest
parties will abort in Step 2.

Intuitively, seeing the values gxi reveals nothing on the shares xi since com-
puting discrete logarithms in G is assumed to be hard. As we will later see, our
simulation does in fact not rely on this property. The simulation works even for
computationally unbounded adversaries.

A notable feature of POWOPEN is that for n ≥ 2t+1 all honest parties will abort
if the input sharing defined by the honest parties is inconsistent, i.e., if these
shares are not points on a degree t polynomial, no matter what the corrupted
parties do.

Simulation Consider how to simulate POWOPEN. The simulator does not know
the value x and so must use random shares xj for the corrupted parties. During
simulation each party Pi reveals gxi to all other parties. The challenge is that the
simulator only knows t points on the polynomial f , namely f(j) for the corrupted
parties Pj . (This follows from the context in which POWOPEN is used, see e.g. next
section on key generation.) But the simulated adversary sees all yi = gxi . So
in order to succeed, the simulator must make these values consistent with the
environment’s view (which includes y = gx). In other words, the simulator must
use values y′i such that ExpInt(y′i; 0) = y = gx, but without knowing x.

Simulation is possible since the simulator knows an additional point on f
“in the exponent”, namely y = gx = gf(0) (this requires that y is leaked to the
adversary/simulator at the beginning of the protocol). So “in the exponent” the
simulator knows t + 1 points on f , enough to fully determine f . Thus, using
Lagrange interpolation “in the exponent” with y and the t random shares of the
corrupted parties, the simulator can compute points to use for the honest parties
in the simulation that are consistent with the adversary’s view that includes
y = gx.

2.3 Key Generation

The aim of key generation is to have the parties generate a sharing [x] of a
uniformly random value x ∈ Zq and reveal to each party y = gx. To generate
[x] the parties run [x] ← RSS(t) to obtain a sharing of a random value x ∈ Zq
over a random polynomial. To obtain y = gx we let the parties run the protocol
y ← POWOPEN(g, [x]).

Regarding correctness: We use plain Shamir sharing and not verifiable secret
sharing (VSS). This means that a single malicious party Pi may cause [x] to be
an inconsistent sharing, by dealing inconsistently for x(i). As discussed above,
this will cause POWOPEN to abort, which is enough in our case, as we allow abort.

Fast Threshold ECDSA with Honest Majority 7

Also, at least one party Pj will correctly choose uniform shares x
(i)
j , which is

enough to ensure that [x] is random and that all honest parties’ shares of x are
random.

An important part of the protocol is that no honest party Pi reveals his
value gxi until he has received shares xj from all other parties Pj . This forces
the corrupt parties Pj to “commit” to their values x(j) before they see y. Without
this, a corrupt party Pj could let x(j) depend on y.

The protocol guarantees that if two parties output a public key, they output
the same public key y. In addition, all subsets of t+1 honest parties that receive
output, will receive shares of the same private key x satisfying gx = y. The
protocol also ensures that each share xi and the private key x (and hence also
the public key) is uniformly distributed.

By having all parties send an ACK message to the others once they have
succeeded, and require that parties only continue once an ACK have been re-
ceived from all other parties, we get the property that the adversary can decide
to abort or not, but if an honest party delivers output then so do all honest
parties.

Regarding simulation, RSS is information-theoretically secure so the simulator
can just simulate the protocol using random values x′i, and we already described
how to simulate POWOPEN.

2.4 Signature Generation

Assume that key generation has been done without abort, such that the parties
hold a consistent sharing of a random key [x] and each party holds the corre-
sponding public key y = gx. Assume also that the parties agree on the (hashed)
message m ∈ Zq to be signed. Then the signature protocol proceeds as follows.

First a random sharing [k] is generated and R = gk is revealed, using the
RSS and POWOPEN protocols. We then compute [k−1] using Beaver’s inversion
protocol. The idea is to compute a random [a] and open [a][k] (a is used to blind
k). Then [k−1] can be computed locally as [a] · w−1.

So we let the parties generate [a] using RSS and then compute [w] = [a][k]
and open [w]. The multiplication is done as follows: The parties simply compute
their shares wi = aiki. This results in shares on a polynomial fw of degree
2t with fw(0) = w. But since n ≥ 2t + 1 there are enough parties (2t + 1)
to interpolate w if they all reveal their shares. To avoid that their shares leak
unintended information, they first compute a random degree 2t zero sharing
[b] ← ZSS(2t) and then reveal instead shares aiki + bi. We denote this protocol
w ← WMULOPEN([a], [k]; [b]). The “w” is for “weak”, since a single malicious party
can cause the protocol to output anything. The only guarantee provided by the
protocol is that it reveals no information about a and k, except of course the
product ak.

Recall that [a] and [b], being generated using RSS and ZSS, are not known to
be consistent sharings at this point. But at least each share bi is known to be a
random value that blinds the share aiki, which is not necessarily random.

8 Damg̊ard, et al.

Note that there is not enough shares for any error detection on w: A single
corrupt party could reveal a bad share wi resulting in the parties ending up
with a wrong value of w. To deal with this we use a trick in order to compute
an authenticator W = gak. This allows each party to check that gw = W and
abort if not. W is computed as follows: Recall that gk was correctly computed
by POWOPEN. The parties then invoke POWOPEN again, this time using gk as the
base, i.e. they compute gak ← POWOPEN(gk, [a]). Since correctness of POWOPEN

is ensured as explained above, even if [a] is not a consistent sharing, all honest
parties will abort at this point unless w = ak.

Finally, given [x], [k−1], r = F (gk) and the message m to sign, the parties
compute the value

[s] = [k−1](m+ r[x]) .

Note that this boils down to another multiplication of two degree t sharings,
which can be done locally since n ≥ 2t+1, resulting in a degree 2t sharing, Again,
to avoid that the shares leak information, a random degree 2t zero sharing [c] is
created using ZSS and each party reveals si = hi(m+ rxi) + ci where hi is party
Pi’s share of k−1.

As before when opening ak, the resulting value s can be recovered from 2t+1
shares, but when n = 2t+1 there is not enough shares to do any error detection.
So a single party can introduce any error on s. Before, we detected this by
computing correctly the authenticator gak. This time we instead just lets the
parties verify the resulting signature (r, s) on the message m using the public
key y. Our analysis below shows that the only way the adversary can make the
protocol succeed is by not introducing any fault on s.

Coping with message disagreement To obtain a practical protocol we must make
sure that the protocol aborts and no information leaks even if the honest parties
do not agree on the message m to sign. Suppose that honest party P1 got message
m + ∆ while the other honest parties used m. Then P1 would reveal s1 =
h1(m + ∆ + rx1) + c1. Anyone receiving all shares could then compute s′ =∑
λisi = s+λ1h1∆ (where λi are the Lagrange coefficients). This shows that if

an adversary could introduce an error on the message used by an honest party
and somehow obtain the correct signature s then that party’s share of k would
have leaked.

To avoid this, the parties could of course send the message to each other and
abort if there is any mismatch, and then proceed by opening s. But for efficiency,
we would like a protocol that only requires one round once the message is known.
To achieve this, we do as follows: During the initial rounds, we generate not just
one zero-sharing [c], but two degree 2t sharings of zero, [d], [e], using ZSS(2t).
When signing we then compute

[s] = [k−1](m+ r[x]) + [d] +m[e] .

If all parties are honest and agree on m then [d]+m[e] = [0]. If not, then [d]+m[e]
turns into a random pad that completely hides the honest parties shares si and
ensures that the verification will fail. Note that [d] and [e] may not be zero, or

Fast Threshold ECDSA with Honest Majority 9

may even be inconsistent, but it is guaranteed that each share of d and e are at
least random, which is all that we need here.

Simulation The simulator uses the same simulation strategy when simulating
R ← POWOPEN(g, [k]) as when simulating y ← POWOPEN(g, [x]), i.e., where La-
grange interpolation “in the coefficient” allows to patch the honest parties’ val-
ues gki . The use of a uniformly random [a] to blind [k] means that the simulator
can run W ← POWOPEN(R, [a]) and w ← WMULOPEN([a], [k]; [b]) without patching.
Finally, s ← WMULOPEN([k−1], [m + rx]; [c]) can be simulated because the simu-
lator knows the correct value s as well as the corrupted parties’ shares sj of s
(these are defined by the simulators choice of the corrupted parties’s shares of
k, a, b, d, e). This fixes t+ 1 points on the a degree 2t polynomial fs over which s
is shared, and because [s] includes the random zero sharing [c] which effectively
randomizes the polynomial, the simulator can simulate by picking a random
degree 2t polynomial as long as it is consistent with these t+ 1 points.

We emphasize that the simulation is in fact perfect as it relies on no compu-
tational assumptions and works even when Zq and G are small.

Security This completes our informal description of the protocol. A full listing
of the protocol can be found in Figure 3 (key generation) and Figure 4 (signing)
in Appendix B

Theorem 1. (informal) The described protocol for ECDSA signatures achieves
perfect UC-security with abort against a static, malicious adversary corrupting
at most t parties if the total number of parties n satisfies n ≥ 2t+ 1.

Proof. A full UC-proof can be found in Appendix B. For completeness we also
formally prove in Appendix B that re-running the protocol a reasonable number
of times if it aborts is secure.

3 Fairness in the Online Phase

Unlike Gennaro et al. [17] (but like the ECDSA protocols for dishonest ma-
jority [26, 23, 12, 25, 15]) our basic protocol described above has no fairness or
termination guarantee. So the adversary gets to see the signature r, s and may
then abort the protocol before any honest party receives the signature. In prac-
tice, parties will retry on abort and the adversary may therefore end up with
several valid signatures (r1, s1), . . . (rL, sL) on message M without any of the
honest parties knowing any of these signatures.

This is of course not a forgery, since it can only happen with messages that
the honest parties actually intended to sign. But it may nevertheless be unac-
ceptable in some applications. For example if presenting a fresh signature allows
to transfer a certain additional amount of money from someone’s bank account.

Since we assume an honest majority it is indeed possible to achieve fairness. In
fact, our basic protocol can be extended with just two additional pre-processing
rounds in order to achieve fairness. The main idea is that in addition to R and

10 Damg̊ard, et al.

[k−1] the parties also prepare a sharing of [x · k−1] in the pre-processing. Doing
so, [s] can be computed as [s] = m[k−1] + r[xk−1], using only linear operations.
Taking this one step further, by reducing the degree of [x · k−1] to t and turning
both [k−1] and [xk−1] into suitable verifiable secret sharings [27], we achieve the
property that online, when M is known, the signature can be computed given
only t+ 1 correct shares and the correctness of each share can be validated.

The extended protocol works as follows. Let [[a]]t denote a verifiable secret
sharing (VSS) of a, that is, every party is committed to his share of a via
a Pedersen commitment, and shares are guaranteed to be consistent with a
polynomial of degree at most t. Such sharings are additive, we have [[a]]+[[x]] =
[[a+x]], where addition denotes local addition of shares and commitment opening
data [27].

To create a verifiable secret sharing [[s]]t, a party P commits to the coeffi-
cients of a polynomial f of degree at most t, including a commitment to s that
plays the role of the degree 0 coefficient. Now anyone can compute a commit-
ment to f(i) for i = 1 . . . n using the homomorphic property of commitments.
P sends privately opening information for this commitment to Pi. In the next
round, Pi will complain if what he gets does not match his commitment. In the
same way, we can get a pair [[s]]t, [[s]]2t if P uses the same commitment to s in
both VSSs. If each party Pj creates [[sj]]t, [[sj]]2t in this way, we can add them
all and get [[s]]t, [[s]]2t where s is random and unknown to the adversary.

Using this in the context of our threshold signature protocol, we can assume
that we have [[x]]t once and for all from the key generation phase. Using our
protocol as described before, we can create r and [k−1]. Now, the goal of the
following subprotocol is to start from [[x]]t and [k−1] and obtain [[k−1x]]t.

So we do the following:

1. At the start of the entire protocol, each party will send his contribution to
creating a pair [[s]]t, [[s]]2t and one VSS [[b]]t as described above, to all other
parties. In the following round, the objects [[s]]t, [[s]]2t, [[b]]t can be computed
(or we abort). Therefore we can assume that when [k−1] is ready, the VSSs
are also ready. We can also assume that each party Pi has committed to his
share ki in k−1, as he can do this as soon as he knows this share.

2. Now, each Pi opens the difference between ki and his share of b to all parties.
3. If the set of opened differences are consistent with a degree t polynomial, we

continue, else we abort. Adjust the commitments to shares in [[b]]t using the
opened differences to get [[k−1]]t (only local computation). Now each party
commits to the product of his share in k−1 and in x and does a standard ZK
proof that this was done correctly. This implicitly forms [[k−1x]]2t. He also
opens the difference between his share in k−1x and in [[s]]2t.

4. Using the differences just opened, all parties reconstruct k−1x − s and add
this [[s]]t so we now have [[k−1x]]t.

5. Finally, each party broadcasts a hash of his public view of the protocol so
far (i.e., all the messages that he received and which were supposed to be
sent to all parties) together with ”OK” if he thinks the protocol went well so
far. Each party aborts unless he gets an ”OK” from all other parties and the

Fast Threshold ECDSA with Honest Majority 11

hash of his own public view matches the hashes he receives from all other
parties.

Given this, once the message M is known, the parties can compute m =
H(M) and [[s]]t = m · [[k−1]]t + r · [[k−1x]]t using only local operations. To
output the signature (r, s) each party sends r along with its share of s and the
corresponding commitment opening to the receiver. Since the degree of [[s]]t is
t the receiver only needs t+ 1 correct shares, and by verifying the commitment
of each share, the receiver knows which shares are correct. Since we assume
n ≥ 2t+ 1 we know that at least t+ 1 parties are honest, and thus the receiver
is guaranteed to get the signature.

In other words, we get the desired property that either the protocol aborts
during pre-processing and neither the adversary nor any other party gets the
signature, or intended receiver(s) are guaranteed to get the signature.5

4 Performance

In this section we elaborate the performance of our basic protocol (with abort).
The protocol requires four rounds of interaction between the servers to gen-

erate a signature. But the first three rounds can be processed before the message
to be signed is known. We let a presignature denote the value R and the shar-
ings [k−1], [e], [d] produced during the first three rounds. Each party can save R
and its shares of k−1, e, d under a unique presignature id (such as R). When the
message M is known, the parties need only then agree on a presignature id in
order to complete the signature protocol in one round.

The protocol is designed to run with any number of n ≥ 2t + 1 parties.
Recall that a random element r ∈ Zq can be represented using log2 q bits and
an element in G ⊂ Zp × Zp using log2 p bits (roughly) using point compression.
The protocol is constant-round and the communication complexity is O(κn2)
assuming that both log p and log q are proportional to a security parameter κ.

For a small number of parties, unless special hardware acceleration is avail-
able, the computational bottleneck is likely to be the “long” curve exponentia-
tions, i.e., computing gr for random values r ∈ Zq.6 However, each party only
needs to do a constant number of these operations. The constants are quite small
as shown in Table 1.

For large n, since the protocol is constant round, the O(n2) amount of arith-
metics in Zq that each does, will eventually become the bottleneck. In this case,

5 It still holds that no interaction is required among the parties in the online phase.
But the trick used in our basic protocol of blinding [s] with m[d] + [e] only works
for degree 2t sharings. So unlike our basic protocol, we here require that the honest
parties agree on M .

6 This is especially the case with an implementation resistant to timing attacks. For
high security we recommend using a timing attack resistant implementation for all
long curve multiplications, except for computing gw for w = ak when signing since
w is not a secret value.

12 Damg̊ard, et al.

Table 1. Concrete Performance

Protocol Bits sent per party Long curve multiplications
per party

KEYGEN n log q + n log p 1
PRESIG 6n log q + 2n log p 3
SIGN n log q 2

a more efficient protocol can be obtained by using hyperinvertible matrices [2]
to improve performance of RSS and the (passively secure) multiplication of w
and s. Note however, that O(n2) communication is still required for POWOPEN.

For small n we can save bandwidth and one round by computing the sharings
[k], [a], [b], [e], [d] using pseudo-random secret sharing [8].

4.1 Benchmarks

In order to determine the actual performance of our protocol we have imple-
mented it and run a number of benchmarks. We have done several things to
ensure that our benchmarks best reflect a real deployment scenario.

First, we benchmark the client-server setting where we include the time
it takes for an external client to initiate the protocol by sending a request to
the parties and receive a response when the operation is done. Also, we ensure
that the parties are connected with secure channels. Note that this requires
an additional round trip and computation for key agreement using mechanisms
from the Noise Protocol framework [28]. We also let each party store its key
shares in encrypted form in a PostgreSQL database. For elliptic curve operations
we use OpenSSL v1.1.1b which provides the required timing attack resistant
implementation for long curve multiplications. However when no secret values
are involved we use the faster version also provided by OpenSSL. In the latter
case we use precomputation to speed up the curve multiplication when using the
default generator for the given elliptic curve.

Finally, as mentioned above, we split the protocol up in pre-processing and
online processing. Hence we benchmark the individual operations (1) keygen, (2)
presig, and (3) sign.

Latency For a threshold signature scheme to be useful in practice it is important
that a user should not be forced to wait for minutes before his key is generated
or before he receives the signature that he requested.

To measure the latency we deploy each party on a separate m5.xlarge Ama-
zon EC2 instance. Each instance runs CoreOS with two Docker containers: One
with the actual implementation of the threshold protocol party, implemented
in Java, and another container with a PostgreSQL instance for storing key and
presignature shares.

We then let a single client issue a single requests to the servers, causing the
servers to generate a single key, presignature or signature. In this benchmark,

Fast Threshold ECDSA with Honest Majority 13

the servers are configured to use a single worker thread, i.e., each server uses
only one CPU core for executing the protocol (including computing the long
curve multiplications).

We run this benchmark for various combinations of parties and security
thresholds, in both the LAN setting and the WAN setting. In the LAN setting
all servers are located in the same Amazon region, where the network latency is
usually less than 1 ms, whereas in the WAN setting the servers are located in
different regions (Frankfurt, California, Tokyo) where package latency is often
in the order of 50-200 ms.7

Table 2 shows the average time it takes for the keygen, presig and sign re-
quests to finish in these settings after a number of warm-up requests. In the
keygen operation, a client sends a keygen request to the servers, which run the
keygen protocol and return a key id to the client. In the presig operation, a client
sends a presig request to the servers which then generate the presignature and
return a presignature id to the client. In the sign operation, the client sends a
key id and a presignature id to the servers (for a key and a presignature that
have previously been generated), and the servers then compute and return their
signature shares to the client who recombines and verifies the signature.

It can be seen that in the LAN setting the latency increases with the number
of parties and the security threshold. This is because the amount of work, espe-
cially the number of long curve multiplications that each party must compute,
increases (quadratically) with the number of parties, and with low network la-
tency, this is significant for the overall latency. In the WAN setting, however, the
network latency is high enough that it almost completely dominates the overall
latency. (At least for up to 9 parties. Adding parties, the latency caused by local
computation will eventually dominate also in the WAN setting.)

Table 2. Latency per operation

LAN WAN
n, t keygen presig sign keygen presig sign

3, 1 28.2 ms 34.2 ms 19.9 ms 1.22 s 1.47 s 0.73 s
5, 2 39.9 ms 44.8 ms 25.0 ms 1.47 s 1.71 s 0.98 s
7, 3 54.6 ms 60.0 ms 30.8 ms 1.48 s 1.72 s 0.98 s
9, 4 66.4 ms 74.0 ms 34.8 ms 1.48 s 1.72 s 1.00 s

Throughput In realistic deployments, as mentioned above, a threshold signature
scheme like ours will often run in the client-server setting with many concurrent
key generation and signature protocol instances on behalf of clients. We therefore

7 In the WAN setting, since we use only three different regions, with n > 3 this means
that some of the parties run in the same region. However, since the overall latency
of the protocol is determined by the pair-wise connection with the largest latency,
this makes no difference.

14 Damg̊ard, et al.

measure the throughput, that is, the number of operations that the servers can
handle per second in this setting.

It is likely that signing will happen more often than key generation. If for
example BIP-32 key derivation [33] is used, key generation is only run once to
obtain a sharing of the master key whereas subsequent keys are derived in an
efficient non-interactive manner.

Also, given already computed presignatures, generating the final signature is
a lightweight operation for the servers, since signing for the servers then only
imply a few local operations in Zq and sending a share of s to the client who
verifies it. For these reasons, in a real deployment, we expect that presigna-
ture generation will be the overall bottleneck with respect to throughput. We
therefore focus on presignature generation in this benchmark.

We run this benchmark with tree servers (n = 3) and security threshold t = 1.
To best reflect an actual real-world deployment, each server consists of a load
balancer (haproxy), a database server (PostgreSQL), and a number of worker
hosts. Clients contact the load balancer using a secure channel. The load balancer
ensures that the workload is distributed evenly among the workers based on the
key id. All workers connect to the database server where the key shares are
stored in encrypted form. Load balancer, database server and workers as well as
all clients run on separate m5.xlarge Amazon EC2 instances (4 vCPUs, 16 GiB
memory) in the same Amazon region.

Figure 1 illustrates this deployment: A client requests a presignature by con-
tacting the three servers. Based on the given key id, one worker at each server
is assigned the task (marked with bold lines). These workers then execute the
presignature generation protocol and returns the presignature id to the client.

Fig. 1. A deployment in the client-server setting with three servers and two workers
per server.

Fast Threshold ECDSA with Honest Majority 15

To benchmark, once the servers are ready, we spin up enough clients, each
client sending a lot of presig requests to the server, such that the servers are com-
pletely busy and no increase in throughput is achieved by adding more clients.
Table 3 shows the resulting throughput in the case where each client requests a
single presignature per request as well as in the case where each client requests
100 presignatures in per request.

As expected, throughput scales almost linearly with the number of workers
used by each server.

On m5.xlarge we have benchmarked that each (timing attack resistant) long
curve multiplication occupies a core (i.e., 2 vCPU) for roughly 0.5ms. Since each
presig requires three multiplication, if these were the only thing to compute, we
would expect 2 multiplications per ms or 666 presig/s.

In the batched setting where 100 presignatures are computed per client re-
quest, we are close to this limit and the bottleneck clearly is the CPU required to
do the long curve multiplications, getting a throughput of roughly 600 presig/s.
Thus, for each additional m5.xlarge worker, the system can handle roughly 600
extra presignatures per second.

In the case where only a single presignature is computed per request, the
throughput is lower, since the servers must spend a larger fraction of their re-
sources by handling the many active sessions. In this case each worker can handle
roughly 150 additional presigs per second.

Table 3. Throughput for Presignature Generation

Workers per server 1 presig per request 100 presigs per request

2 347 presig/s 1,249 presig/s
4 649 presig/s 2,464 presig/s
6 919 presig/s 3,606 presig/s

References

1. Andresen, G.: BIP-11: M-of-n standard transactions.
https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki, accessed:
2020-04-15

2. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communi-
cation complexity. In: Canetti, R. (ed.) Theory of Cryptography, Fifth Theory
of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008.
Lecture Notes in Computer Science, vol. 4948, pp. 213–230. Springer (2008).
https://doi.org/10.1007/978-3-540-78524-8 13, https://doi.org/10.1007/978-3-
540-78524-8 13

3. Boneh, D., Gennaro, R., Goldfeder, S.: Using level-1 homomorphic encryption to
improve threshold dsa signatures for bitcoin wallet security (2017)

16 Damg̊ard, et al.

4. Brown, D.R.L.: Generic groups, collision resistance, and
ECDSA. Des. Codes Cryptography 35(1), 119–152 (2005),
http://www.springerlink.com/index/10.1007/s10623-003-6154-z

5. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J.
(ed.) Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 19-23, 2001, Pro-
ceedings. Lecture Notes in Computer Science, vol. 2139, pp. 19–40. Springer
(2001). https://doi.org/10.1007/3-540-44647-8 2, https://doi.org/10.1007/3-540-
44647-8 2

6. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-
party ECDSA from hash proof systems and efficient instantiations. In: Boldyreva,
A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019 - 39th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2019, Proceedings, Part III. Lecture Notes in Computer Science, vol.
11694, pp. 191–221. Springer (2019). https://doi.org/10.1007/978-3-030-26954-8 7,
https://doi.org/10.1007/978-3-030-26954-8 7

7. Chida, K., Genkin, D., Hamada, K., Ikarashi, D., Kikuchi, R., Lindell, Y., Nof,
A.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham,
H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018 - 38th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part III. Lecture Notes in Computer Science, vol.
10993, pp. 34–64. Springer (2018). https://doi.org/10.1007/978-3-319-96878-0 2,
https://doi.org/10.1007/978-3-319-96878-0 2

8. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) Theory of Cryptogra-
phy, Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA,
USA, February 10-12, 2005, Proceedings. Lecture Notes in Computer Science,
vol. 3378, pp. 342–362. Springer (2005). https://doi.org/10.1007/978-3-540-30576-
7 19, https://doi.org/10.1007/978-3-540-30576-7 19

9. Dalskov, A.P.K., Keller, M., Orlandi, C., Shrishak, K., Shulman, H.: Securing
DNSSEC keys via threshold ECDSA from generic MPC. IACR Cryptology ePrint
Archive 2019, 889 (2019), https://eprint.iacr.org/2019/889

10. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomer-
ance, C. (ed.) Advances in Cryptology - CRYPTO ’87, A Conference on the
Theory and Applications of Cryptographic Techniques, Santa Barbara, Califor-
nia, USA, August 16-20, 1987, Proceedings. Lecture Notes in Computer Science,
vol. 293, pp. 120–127. Springer (1987). https://doi.org/10.1007/3-540-48184-2 8,
https://doi.org/10.1007/3-540-48184-2 8

11. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 20-24, 1989, Pro-
ceedings. Lecture Notes in Computer Science, vol. 435, pp. 307–315. Springer
(1989). https://doi.org/10.1007/0-387-34805-0 28, https://doi.org/10.1007/0-387-
34805-0 28

12. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy,
SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA. pp.
980–997. IEEE Computer Society (2018). https://doi.org/10.1109/SP.2018.00036,
https://doi.org/10.1109/SP.2018.00036

Fast Threshold ECDSA with Honest Majority 17

13. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from
ECDSA assumptions: The multiparty case. In: 2019 IEEE Symposium
on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-
23, 2019. pp. 1051–1066. IEEE (2019). https://doi.org/10.1109/SP.2019.00024,
https://doi.org/10.1109/SP.2019.00024

14. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron, J.,
Nielsen, J.B. (eds.) Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 10211, pp. 225–255 (2017). https://doi.org/10.1007/978-
3-319-56614-6 8, https://doi.org/10.1007/978-3-319-56614-6 8

15. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trust-
less setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018. pp. 1179–1194. ACM (2018). https://doi.org/10.1145/3243734.3243859,
https://doi.org/10.1145/3243734.3243859

16. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi,
A., Schneider, S. (eds.) Applied Cryptography and Network Security - 14th In-
ternational Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceed-
ings. Lecture Notes in Computer Science, vol. 9696, pp. 156–174. Springer (2016).
https://doi.org/10.1007/978-3-319-39555-5 9, https://doi.org/10.1007/978-3-319-
39555-5 9

17. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS sig-
natures. In: Maurer, U.M. (ed.) Advances in Cryptology - EUROCRYPT ’96,
International Conference on the Theory and Application of Cryptographic Tech-
niques, Saragossa, Spain, May 12-16, 1996, Proceeding. Lecture Notes in Computer
Science, vol. 1070, pp. 354–371. Springer (1996). https://doi.org/10.1007/3-540-
68339-9 31, https://doi.org/10.1007/3-540-68339-9 31

18. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) Advances in Cryp-
tology - EUROCRYPT ’99, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999,
Proceeding. Lecture Notes in Computer Science, vol. 1592, pp. 295–310. Springer
(1999). https://doi.org/10.1007/3-540-48910-X 21, https://doi.org/10.1007/3-540-
48910-X 21

19. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. Inf. Comput. 164(1), 54–84 (2001). https://doi.org/10.1006/inco.2000.2881,
https://doi.org/10.1006/inco.2000.2881

20. Johnson, D., Menezes, A., Vanstone, S.A.: The elliptic curve digi-
tal signature algorithm (ECDSA). Int. J. Inf. Sec. 1(1), 36–63 (2001).
https://doi.org/10.1007/s102070100002, https://doi.org/10.1007/s102070100002

21. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. CRC
Press (2014)

22. Kerry, C.F., Secretary, A., Director, C.R.: Fips pub 186-4 federal information pro-
cessing standards publication: Digital signature standard (dss) (2013)

23. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham,
H. (eds.) Advances in Cryptology - CRYPTO 2017 - 37th Annual In-

18 Damg̊ard, et al.

ternational Cryptology Conference, Santa Barbara, CA, USA, August 20-
24, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol.
10402, pp. 613–644. Springer (2017). https://doi.org/10.1007/978-3-319-63715-
0 21, https://doi.org/10.1007/978-3-319-63715-0 21

24. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arith-
metic circuits with malicious adversaries and an honest-majority. In: Thu-
raisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017. pp. 259–276. ACM (2017). https://doi.org/10.1145/3133956.3133999,
https://doi.org/10.1145/3133956.3133999

25. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018.
pp. 1837–1854. ACM (2018). https://doi.org/10.1145/3243734.3243788,
https://doi.org/10.1145/3243734.3243788

26. MacKenzie, P.D., Reiter, M.K.: Two-party generation of DSA signatures. Int.
J. Inf. Sec. 2(3-4), 218–239 (2004). https://doi.org/10.1007/s10207-004-0041-0,
https://doi.org/10.1007/s10207-004-0041-0

27. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable se-
cret sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO ’91,
11th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1991, Proceedings. Lecture Notes in Computer Science,
vol. 576, pp. 129–140. Springer (1991). https://doi.org/10.1007/3-540-46766-1 9,
https://doi.org/10.1007/3-540-46766-1 9

28. Perrin, T.: The noise protocol framework. http://www.noiseprotocol.org (2015)

29. Shamir, A.: How to share a secret. Commun. ACM
22(11), 612–613 (1979). https://doi.org/10.1145/359168.359176,
http://doi.acm.org/10.1145/359168.359176

30. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) Advances in Cryp-
tology - EUROCRYPT 2000, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Pro-
ceeding. Lecture Notes in Computer Science, vol. 1807, pp. 207–220. Springer
(2000). https://doi.org/10.1007/3-540-45539-6 15, https://doi.org/10.1007/3-540-
45539-6 15

31. Smart, N.P., Alaoui, Y.T.: Distributing any elliptic curve based protocol.
In: Albrecht, M. (ed.) Cryptography and Coding - 17th IMA International
Conference, IMACC 2019, Oxford, UK, December 16-18, 2019, Proceedings.
Lecture Notes in Computer Science, vol. 11929, pp. 342–366. Springer (2019).
https://doi.org/10.1007/978-3-030-35199-1 17, https://doi.org/10.1007/978-3-
030-35199-1 17

32. Stinson, D.R., Strobl, R.: Provably secure distributed schnorr signatures and a (t,
n) threshold scheme for implicit certificates. In: Varadharajan, V., Mu, Y. (eds.)
Information Security and Privacy, 6th Australasian Conference, ACISP 2001, Syd-
ney, Australia, July 11-13, 2001, Proceedings. Lecture Notes in Computer Science,
vol. 2119, pp. 417–434. Springer (2001). https://doi.org/10.1007/3-540-47719-5 33,
https://doi.org/10.1007/3-540-47719-5 33

Fast Threshold ECDSA with Honest Majority 19

33. Wuille, P.: BIP-32: Hierarchical deterministic wallets.
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki, accessed:
2020-04-15

A Basic Tools and Definitions

A.1 Signature Schemes

Recall that a signature scheme is defined by three efficient algorithms: pk, sk ←
Gen(1κ); σ ← Signsk(M); b← Verifypk(M,σ) [21]. A signature scheme satisfies
two properties:

– Correctness. With overwhelmingly high probability (in the security param-
eter κ) it must hold that all valid signatures must verify.

– Existential unforgeability . This is modeled with the following game GFORGE:

• Run pk, sk ← Gen(1κ); input pk to the adversary A.
• On (SIGN,M) from A:

Return σ ← Signsk(M) to A and add M to a set Q.
• On (FORGE,M ′, σ′) from A:

If M ′ /∈ Q and Verifypk(M ′, σ′) = >, output > and halt; else output ⊥
and halt.

The signature scheme is existentially unforgeable if for any PPT A the prob-
ability Pr[GFORGE = >] is negligible in κ. That is, even with access to a signing
oracle, no adversary can produce a valid signature.

A correct and existentially unforgeable signature scheme is simply called
secure.

A.2 The DSA/ECDSA Standard

An instance of the DSA signature scheme [22, 20] has the parameters

(G, q, g,H, F)← Gen(1κ)

where G is a cyclic group of order q with generator g ∈ G, H a hash function
H : {0, 1}∗ 7→ Zq and F a function F : G 7→ Zq.

For a, b ∈ G we will let ab denote the group operation (multiplicative nota-
tion). For c ∈ Zq and g ∈ G we let gc denote gg · · · g, i.e., the group operation
applied c times on g.

A key pair is generated by sampling uniformly the private key x ∈ Zq and
computing the public key as y = gx. Given a message M ∈ {0, 1}∗ a signature
is computed as follows: Let m = H(M). Pick a random k ∈ Zq, set R = gk,
r = F (R), s = k−1(m + rx). The resulting signature is r, s. Given a public key
y, a message M and signature r, s, one can verify the signature by computing
m = H(M) and checking that r = F (gms

−1

yrs
−1

).

20 Damg̊ard, et al.

In DSA G is Zp for some prime p > q. In ECDSA G is generated by a point
g on an elliptic curve over Zp for some p > q. In this case F : G 7→ Zq is the
function that given R = (Rx, Ry) ∈ G ⊂ Zp × Zp outputs Rx mod q.

ECDSA has been proved secure in the Generic Group Model assuming that
computing the discrete log in G is hard, and assuming that H is collision resistant
and uniform [4].

Our protocol works for both DSA and ECDSA. In particular, it is suitable for
ECDSA with the “Bitcoin” curve secp256k1 that is believed to have a 128-bit
security level.

A.3 Shamir’s Secret Sharing

Recall that in Shamir’s secret sharing scheme [29] a dealer can secret share a
value m ∈ Zq (for a prime number q) among n parties by choosing a random
degree t polynomial f(x) over Zq subject to f(0) = m. The dealer then sends a
share mi = f(i) to each party Pi. This reveals no information about m as long
as at most t parties are corrupted. We will use [m] to denote such a sharing
where each party Pi holds a share mi.

If the dealer is honest, any subset of t+ 1 parties can reconstruct the secret
using Lagrange interpolation. More generally, one can compute the value f(j)
for any value j ∈ Zq on a degree t polynomial f() using Lagrange interpolation
given values yi = f(xi) for any t + 1 distinct values xi. For the specific values
f(1), f(2), . . . , f(t+ 1) we can efficiently compute f(j) for any j ∈ Zq as

f(j) = λ1f(1) + λ2f(2) + · · ·+ λt+1f(t+ 1)

where the Lagrange coefficients are defined as

λi :=
∏

1<m<t+1,m 6=i

j −m
i−m

.

For example, for n = 3, t = 1 and j = 3 we have λ1 = (3− 2)/(1− 2) = −1 and
λ2 = (3 − 1)/(2 − 1) = 2 so for any degree-1 polynomial f(x) = ax + b we can
compute f(3) = −1 · f(1) + 2 · f(2).

For g ∈ G we will sometimes do Lagrange interpolation in “the exponent” as
follows: For Y1 = gf(1), Y2 = gf(2), . . . , Yt+1 = gf(t+1) define

ExpInt(Y1, Y2, . . . Yt+1; j) :=

t+1∏
i=1

Y λi
i = g

∑t+1
i=1 λiyi = gf(j) .

We will also need to interpolate the value p(0) on a degree 2t polynomial
p(x) from the 2t+ 1 values p(1), p(2), . . . , p(2t+ 1). We denote this function

Int2t(p(1), p(2), . . . , p(2t+ 1)) .

Recall that Shamir’s secret sharing scheme is linear. This means that once
sharings [m1] and [m2] are established, and if the parties agree on a public
constant a ∈ Zq then they can compute [a ·m1] and [m1+m2] efficiently, without
communicating. We use a · [m1] and [m1] + [m2] to denote these operations.

Fast Threshold ECDSA with Honest Majority 21

A.4 Joint Random Secret Sharing

We will need a protocol [r]← RSS(t) to generate a Shamir sharing of a random
value r over a random degree-t polynomial fr such that no party learns the value
r. For this we use the common technique where each party Pi acts as dealer for a
random degree t polynomial f (i) of his choice. Using that secret sharing is linear,

each party can then compute its share ri of [r] as r
(1)
i + r

(2)
i + · · ·+ r

(n)
i .

If one or more parties are malicious, the resulting sharing [r] may be incon-
sistent, meaning that the shares held by the honest parties are not points on any
degree t polynomial. But in this case, the shares held by the honest parties are
still uniformly random, since at least some of the values r(j) are random.

Similarly, a random Shamir sharing of zero can be created if each party Pi
chooses f (i) at random, but subject to f (i) = 0. We denote this by [0]← ZSS(t).
In this case, however, if there is a malicious party, it is not guaranteed that the
sharing is in fact a sharing of zero.

B Security Analysis

B.1 The Formal Ideal Functionality and Protocol

We here describe formally our basic protocol (with abort) and the ideal func-
tionality that it realizes in the UC model [5].

To complement the formal protocol given here we include in Appendix ?? a
concrete instantiation of our protocol for three parties, that shows how it works
with both pre-processing and BIP-32 key derivation [33].

For simplicity we consider the case where the parties generate a single key
pair and use this for multiple signatures. Security in the case with multiple keys
follows immediately by the UC composition theorem [5]. Also, we will not divide
the protocol into pre-processing and online parts. Extending the proof to handle
this is straight-forward, but tedious. Finally, we will implicitly assume standard
UC bookkeeping. We e.g. assume that session ids and party ids are sent along
with the messages so that the ideal functionality knows to which instance a
message belongs, and we assume that the functionality aborts if a party tries to
reuse session ids or sends messages out of order. We also leave implicit that the
functionality and the protocol are both parameterized by a single DSA/ECDSA
instance (G, g, q,H, F) and concrete values n and t.

We use a subscript I (as in xI , yI) for values in the ideal functionality to
emphasize that these values are correct by definition.

The ideal functionality for ECDSA, FTDSA, is defined in Figure 2. In addition
to the keygen and sign messages it receives from the parties Pi, it interacts with
the adversary A in what defines the ”allowed” adversarial influence and leakage.
Note how abort and the lack of fairness is modeled: FTDSA leaks the full signature
RI , sI at the beginning of sign, before any honest parties receive the output, and
the adversary can abort the protocol on behalf of any of the parties Pi at any
time by sending (ABORT, Pi) to the functionality. Note also that RI and not rI
is output by FTDSA. This simplifies the proof a bit and does not reveal anything

22 Damg̊ard, et al.

extra, since RI is uniquely determined by the values m, yI , rI , sI . It is of course
ok for a given application using FTDSA to compute rI = F (RI) and use rI , sI
instead of RI , sI as the signature.

Fig. 2. The ideal functionality FTDSA

Abort
On (ABORT, Pi) from A: Output (ABORT) to Pi

KeyGen
On (KEYGEN) from Pi:

Output (KEYGEN-START, Pi) to A
On input KEYGEN from t+ 1 parties:

Choose random xI ∈ Zq
If x = 0: Output (ABORT, id) to all Pi and halt
Let yI = gxI

Send (KEYGEN-LEAK, yI) to A
On (KEYGEN-END, Pi) from A:

If undef xI : ignore
Else: output (KEYGEN-END, yI) to Pi
If all parties have received KEYGEN-END: Store (READY)

Sign
On (SIGN, id,Mi) from Pi:

If not (READY) or (USED, id): ignore
Output (SIGN-START, id, Pi,Mi) to A
On input (SIGN, id, ·) to t+ 1 parties:

Store (USED, id)
Choose random kI ∈ Zq
If kI = 0: Output (ABORT, id) to all Pi and return
Let RI = gkI , rI = F (RI)
Send (SIGN-LEAK-1, id, RI) to A
If any two Mi 6= Mj :

Output (ABORT, id) to all Pi and return
Let m = H(M), sI := k−1

I (m+ rIxI)
If sI = 0: Output (ABORT, id) to all Pi and return
Store (id,RI , sI)
Send (SIGN-LEAK-2, id, sI) to A

On (SIGN-END, id, Pi) from A:
If (id,RI , sI) stored:

Output (SIGN-END, id, RI , sI) to Pi
(only the first time this message arrives)

We continue to describe the protocol ΠTDSA depicted in Figure 3 and 4. Here
the parties receive input from the environment E and communicate with each
other. Formally, ΠTDSA works in the FCOM-hybrid model, where FCOM is an ideal
functionality for pairwise authentic and private channels. For simplicity we will
not mention FCOM, but just say that a message is sent to another party. In Figure 4

Fast Threshold ECDSA with Honest Majority 23

the we use PRESIG to emphasize that the first rounds do not depend on the
message to be signed. In the last round the signature is opened up to all parties.

Fig. 3. The protocol ΠTDSA (keygen)

Pi on input (KEYGEN) from E:
Choose random degree t polynomial fXi ∈ Zq[z]
Let xi,j = fXi (j)
Send (KEYGEN-R1, xi,j) to Pj for j = 1, 2, . . . , n

Pi on (KEYGEN-R1, xj,i) from all Pj :
Let xi = x1,i + x2,i + · · ·+ xn,i
Let yi = gxi

Send (KEYGEN-R2, yi) to Pj for j = 1, 2, . . . , n
Pi on (KEYGEN-R2, yj) from all Pj :

For j = t+ 2, . . . , n do:
If not ExpInt(y1, y2, ..., yt+1; j) = yj :

Output (ABORT) to E and halt [Check1]
Let y = ExpInt(y1, y2, . . . , yt+1; 0)
If y = 1: Output (ABORT) to E and halt [Check2]
Send (KEYGEN-R3, ok) to Pj for j = 1, 2, . . . , n

Theorem 2. ΠTDSA securely realizes FTDSA in the FCOM-hybrid model against a
static, malicious adversary corrupting at most t parties if the total number of
parties n satisfies n ≥ 2t+ 1.

To prove Theorem 2 we must prove that for any adversary A there exists a
simulator S such that for any environment E the value

|Pr [REALΠTDSA,A,E(κ) = 1]− Pr [IDEALFTDSA,S,E(κ) = 1]|

goes to zero faster than any inverse polynomial in the security parameter κ,
where REALΠTDSA,A,E(κ) and IDEALFTDSA,S,E(κ) are the real and ideal executions in
the UC framework [5].

We will in fact prove that ΠTDSA realizes FTDSA perfectly. This means that
the probability that E outputs 1 is the same in the real and the ideal execution.
This means that Theorem 2 does not depend on any computational assumptions,
and security does not rely on e.g. the size of q. As we will later see, this means
that the only assumption is the unforgeability of the standard DSA/ECDSA
signature scheme itself.

Consider first an execution REALΠTDSA,E,A(κ). Recall that we say that a degree
t sharing [x] is inconsistent if the shares of the honest parties do not uniquely
define a degree t polynomial and that we have no error correction on the final

WMULOPEN producing the signature. Let ∆
(i)
s be the error that A introduces on

the signature output to Pi, i.e., Pi receives the value s + ∆
(i)
s where s is the

value that would be output with no malicious behavior. Then we can define the
following events in the execution:

24 Damg̊ard, et al.

Fig. 4. The protocol ΠTDSA (sign)

Pi on (SIGN, id,M) from E:
If undef y or (USED, id): ignore
Store (USED, id)
Choose random degree t polynomials fKi , f

A
i ∈ Zq[z]

Choose random degree 2t polynomials fBi , f
D
i , f

E
i ∈ Zq[z]

subject to fBi (0) = fDi (0) = fEi (0) = 0
Let ai,j = fAi (j), ki,j = fKi (j)
Let bi,j = fBi (j), di,j = fDi (j), ei,j = fEi (j)
Send (PRESIG-R1, ki,j , ai,j , bi,j , di,j , ei,j)

to Pj for j = 1, 2, . . . , n
Pi on (PRESIG-R1, kj,i, aj,i, bj,i, dj,i, ej,i) from all Pj :

Let ki = k1,i + k2,i + · · ·+ kn,i
Let ai = a1,i + a2,i + · · ·+ an,i
Let bi = b1,i + b2,i + · · ·+ bn,i
Let di = d1,i + d2,i + · · ·+ dn,i
Let ei = e1,i + e2,i + · · ·+ en,i
Let Ri = gki , wi = kiai + bi
Send (PRESIG-R2, Ri, wi) to Pj for j = 1, 2, . . . , n

Pi on (PRESIG-R2, Rj , wj) from all Pj :
For j = t+ 2, . . . , n do:

If not ExpInt(R1, R2, . . . , Rt+ 1; j) = Rj :
Output (ABORT) to E and halt [Check3]

Let R = ExpInt(R1, R2, . . . , Rt+1; 0)
If R = 1: Output (ABORT) to E and halt [Check4]
Let Wi = Rai

Send (PRESIG-R3,Wi) to Pj for j = 1, 2, . . . , n
Pi on (PRESIG-R3,Wj) from all Pj

For j = t+ 2, . . . , n do:
If not ExpInt(W1,W2, . . . ,Wt+1; j) = Wj :

Output (ABORT) to E and halt [Check5]
Let W = ExpInt(W1,W2, . . . ,Wt+1; 0)
Let w = Int2t(w1, w2, . . . , w2t+1)
If w = 0: Output (ABORT) to E and halt [Check6]
If gw 6= W : Output (ABORT) to E and halt [Check7]
Let r = F (R);hi = ai · w−1

Let m = H(M); ci = mdi + ei; si = hi(m+ rxi) + ci
Send (SIGN-R1, si) to Pj for j = 1, 2, . . . , n

Pi on (SIGN-R1, si) from all Pj :
Let s = Int2t(s1, s2, . . . , s2t+1)
If s = 0: Output (ABORT) to E and halt [Check8]
If Rs 6= gmyr: Output (ABORT) to E and halt [Check9]
Output (SIGN-END, r, s) to E

Fast Threshold ECDSA with Honest Majority 25

– B1: Some honest party P passes Check1 (Figure 3) without abort and either
[x] is inconsistent or P receives y′ 6= gx.

– B2: Some honest party P passes Check3 (Figure 4) without abort and either
[k] is inconsistent or P receives R′ 6= gk.

– B3: Some honest party P passes Check5 (Figure 4) without abort and either
[a] is inconsistent or P receives W ′ 6= gak.

– B4: Some honest party Pi passes Check9 (final signature verification, Fig-

ure 4), but ∆
(i)
s 6= 0.

For example, ¬B1 is the “good” event that either all honest parties abort
(due to Check1 when computing POWOPEN(g, [x])) or one or more honest parties
continue past Check1, but then the sharing [x] is consistent and all honest parties
that do get by Check1 without aborting agree on y = gx. Let B be the event
that “something” bad happens, i.e., B = B1 ∧B2 ∧B3 ∧B4.

Proposition 1. For any A, E it holds that Pr [B] = 0 in the probability space
over the random coins of E, A and the honest parties in the real execution
REALΠTDSA,E,A(κ).

Proof. The events B1, B2, B3, B4 are not independent. However, it follows from
the argumentation in the previous section about POWOPEN that Pr [¬B1] = 1.
(There is no way, even for an all-powerful adversary to make an honest party
proceed if the honest parties’ shares of x are inconsistent. And if consistent,
every honest party will either abort or output y = gx.) For the same reasons,
Pr [¬B2 | ¬B1] = 1. Given that all honest parties’s shares [k] are consistent and
they all agree on R = gk, the same arguments apply for the final call to POWOPEN,
namely POWOPEN(gk, [a]), so we conclude that Pr [¬B3 | ¬B1 ∧ ¬B2] = 1.

Assuming none of the events B1, B2, B3 happen we continue to analyze the
probability of B4 via the following game GS-ERR for an adversary AS-ERR:

1. x, a, k,∆s,m← AS-ERR()
2. If ak = 0 then halt
3. Let r = F (gk), s′ = a(ak)−1(m+ rx) +∆s.

8

4. If s′ = 0, s′ = k−1(m+ rx) or gks
′

= gmyr then halt
5. Output >

This models that AS-ERR wins if he can provoke a “false” signature s′ /∈ {0, s}
such that the protocol does not abort when the signature is validated by a party
in the protocol.

Note that we make the (realistic) assumption that AS-ERR can choose the
message m. In the actual protocol x, a, k ∈ Zq are guaranteed to be uniformly
random and hidden from A (assuming that computing discrete logs is hard).
Here, however, we allow AS-ERR to choose these values as he likes, only subject to
ak 6= 0. This only makes our argument stronger.

8 Assuming correctness of POWOPEN (i.e., ¬B1,¬B2,¬B3), this is how s is actually
computed in the protocol.

26 Damg̊ard, et al.

AS-ERR cannot win if ak = 0 or s′ = 0. This is because the honest parties
can check this and abort if so. Finally, to win, AS-ERR must produce a value s′

different from the correct s, but still such that gks
′

= gmyr, i.e. such that the
validation of (R, s′) = (gk, s′) succeeds, where the correct values gk and y are
used and s′ = a(ak)−1(m + rx) + ∆s. The latter models our assumption that
neither B1,B2 nor B3 happen. Hence

Pr [¬B4 | ¬B1 ∧ ¬B2 ∧ ¬B3] ≤ Pr
[
GS-ERR

AS-ERR(κ) = 0
]
.

We claim that for any adversary AS-ERR it holds that

Pr
[
GS-ERR

AS-ERR = >
]

= 0 .

To see this, assume that some AS-ERR wins the game. Since ak 6= 0 it must hold
that k 6= 0 and a 6= 0. It follows that

Rs
′

= gmyr ⇐⇒ gks
′

= gm+rx

⇐⇒ ks′ = m+ rx

⇐⇒ k(a(ak)−1(m+ rx) +∆s) = m+ rx (since ak 6= 0)

⇐⇒ k(k−1(m+ rx) +∆s) = m+ rx (since k 6= 0)

⇐⇒ m+ rx+ k∆s = m+ rx

⇐⇒ k∆s = 0

But this contradicts the fact that k 6= 0 and s 6= 0. We conclude that
Pr [¬B4 | ¬B1 ∧ ¬B2 ∧ ¬B3] = 1 and hence, by the chain rule, that

Pr [¬B1 ∧ ¬B2 ∧ ¬B3 ∧ ¬B4] = Pr [¬B] = 1

.

Let A be an adversary. Recall that our goal is to prove that there exists a
simulator S such that for any environment E the value

|Pr [REALΠTDSA,A,E(κ) = 1]− Pr [IDEALFTDSA,S,E(κ) = 1]|

goes to zero faster than any inverse polynomial in the security parameter κ. Note
that

Pr [REALΠTDSA,A,E(κ) = 1] =

Pr [B] Pr [REALΠTDSA,A,E(κ) = 1 |B] +

(1− Pr [B])Pr [REALΠTDSA,A,E(κ) = 1|¬B] .

From Proposition 1 we know that Pr [B] = 0 so it suffices to construct a
simulator S such that for every E it holds that

Pr [REALΠTDSA,A,E(κ) = 1 |B] = Pr [IDEALFTDSA,S,E(κ) = 1] .

In the following we construct the simulator and argue that the simulation works,
given that none of the events B1, B2, B3, B4 happen.

Fast Threshold ECDSA with Honest Majority 27

B.2 The Simulator

Assume w.l.o.g. that n = 2t + 1. Recall that the adversary is static, so the
simulator knows from the beginning which parties are corrupted. Assume w.l.o.g.
that Good = {1, 2, . . . , t+ 1} are the honest parties and Bad = {t+ 2, . . . , n} are
the corrupted parties.9

Recall that we use subscript I for values within FTDSA. We will use a mark
(like A′ and x′, y′) for the adversary, parties, and values in the simulation to
help distinguish them from values in the real execution and FTDSA. We will also
use a star, like y∗, to denote patched values in the simulation.

The simulator S works as follows: It runs internally an instance of the real
execution consisting of A and the parties (and FCOM). During simulation the
simulator relays any messages between the environment E and the simulated
adversary A’. The task of the simulator is to make the view of A’ indistinguish-
able from the view of A in the real execution, and to ensure that the A′’s view of
the simulated execution remains consistent with the values that the environment
inputs to and receives from the parties. To ensure the consistency, the simulator
will need to patch some of the values in the simulation.

When S receives (KEYGEN-START, Pi), or (SIGN-START, Pi,Mi) from FTDSA

it inputs (KEYGEN) or (SIGN,Mi) accordingly to P ′i in its simulation. When-
ever one of the parties P ′i in the simulation aborts, S aborts on behalf of
that party by sending (ABORT, Pi) to FTDSA. When a simulated party P ′i out-
puts (KEYGEN-END, y′) S sends (KEYGEN-END, Pi) to FTDSA which in turn makes
FTDSA output yI to E. When a simulated party P ′i outputs (SIGN-END, R′, s′) it
sends (SIGN-END, Pi) to FTDSA, making it output (RI , sI) to E.

During the simulation the simulator acts as follows: In KEYGEN-R1 S just
follows the protocol. For each honest Pi, i ∈ Good the adversary sees only the t
shares x′i,j for j ∈ Bad. These are uniformly distributed and can be consistent
with any value x (shared via a degree t polynomial). Also, since A′ does not
learn xi for i ∈ Good the secret x = x1 + x2 + · · ·+ xn remains hidden from A′,
making this a perfect simulation.

In KEYGEN-R2 S simulates POWOPEN(g, [x]) as explained earlier: A′ has already
seen t + 1 points on a (random) degree t polynomial fX , namely fX(j) = x′j
for j ∈ Bad and fX(0) = xI . The last point is unknown to S and hence it
cannot determine fX . But in order to simulate consistently, it must somehow
compute the patched values y∗i = gfX(i), i ∈ Good sent from the honest to the
corrupted parties in the simulation. This can be done by Lagrange interpolation
“in the exponent” since S knows yI = gxI = gfX(0), i.e., the (t+ 1)’th point “in
the exponent”. So for i = 1, 2, . . . , t + 1 the simulator computes the Lagrange
coefficients λi0, λ

i
t+2, ..., λ

i
n that given the t+1 points fX(0), fX(t+2), . . . , fX(n)

interpolates the point f(i). S then sets

y∗i := (yI)
λi
0

n∏
j=t+2

gλ
i
jxI,j = gxI,i .

9 We assume t corrupted parties. If less, the simulator can simply choose to corrupt
additional parties in the simulation.

28 Damg̊ard, et al.

This ensures that the view of the adversary is consistent, in other words, logg y
∗
i , i =

1, 2, . . . , t+ 1 are points on a uniformly random degree t polynomial fX subject
only to fX(0) = xI and fX(j) = x′j for j ∈ Bad.

In PRESIG-R1 the simulator follows the protocol, using random polynomi-
als f ′K , f

′
A, f

′
B , f

′
D, f

′
E . This simulation is perfect for the same reasons as in

KEYGEN-R1 above.
In PRESIG-R2 S must ensure that A′’s view remains consistent with the values

RI , sI . It receives RI from FTDSAand as before, for i = 1, 2, . . . , t, it defines

R∗i := (RI)
λi
0

n∏
j=t+2

gλ
i
jkI,j = gkI,i .

and uses R∗i to patch the values sent from the honest parties Pi to the corrupted
parties.

Consider the simulation of WMULOPEN([a], [k]; [b]). Here the simulator just fol-
lows the protocol such that A′ sees shares w′i = k′ia

′
i + b′i. At this point the

honest parties’ shares of [a], [k] and [b] are not guaranteed to be consistent and
even if [b] is a consistent degree 2t polynomial it might not be a sharing of zero.
But we know that the honest parties’ shares ai and bi are uniformly random.
This is enough to ensure that the shares w′i are also uniformly random and if
consistent, will interpolate to something uniformly random (if inconsistent, any
subset of t+ 1 honest parties’ shares wi will interpolate to something random).
This is enough to make the simulation perfectly indistinguishable from the real
execution.

In PRESIG-R3, assuming ¬B2, all honest parties reaching this step agree on
gk. When computing POWOPEN(gk, [a]) the simulator this time just follows the
protocol, with no patching of the values W ′i = (gk

′
)a′i. A

′ then learns RI = gkI ,

w′ = k′a′ and W ′ = gk
′a′ , which is indistinguishable from the real view gk, w =

ka,W = gka since a is uniformly random and completely unknown to A. Since
the protocol aborts if R = 1 we know that k 6= 0, hence these views are in fact
perfectly indistinguishable. If [a] is inconsistent any subset of t+1 honest parties
will send shares W ′i that interpolate (in the exponent) to something uniformly
random as in the real execution.

Regarding the distribution of the individual shares kai, note again that the
protocol requires the honest parties to abort if R = 1, i.e., if k = 0. So at this
point kai and hence Wi = gkai is uniformly random and therefore perfectly
simulated by W ′i .

In SIGN-R1 the simulator must simulate the shares si, i ∈ Good that the
honest parties send to the corrupted parties. The simulation of si is different
from the simulation of wi above, since w was a uniformly random value internal
to the protocol and no patching was needed. In contrast, the result of WMULOPEN
in SIGN-R1 has to match sI provided by FTDSA, so the simulator cannot just use
s′i but must do some patching as described here:

Assume for a moment that all honest parties agree on the message M to sign
(and recall that we proved ¬B). A then expects to see shares si = hi(m+ rxi) +
mdi + ei from the honest parties. In the worst case, the corrupted parties Pj do

Fast Threshold ECDSA with Honest Majority 29

not send out their shares sj until they have received shares si from all the honest
parties. The simulator must be able to simulate si. Since the shares ei of the
honest parties are guaranteed to be uniformly random, the shares si, i ∈ Good

are shares of a uniformly random degree 2t polynomial fs subject to fs(0) = sI
and fs(j) = s′j , j ∈ Bad.

Recall that when the honest parties agree on M , S receives sI from FTDSA. In
the special case t = 1 the simulator then knows 2t+ 1 shares of fs, namely the
t+ 1 honest shares and sI , and this is enough shares to uniquely determine fs,
so it can use fs(i), i ∈ Good as the honest parties’ shares in the simulation.

But if t > 1 (for example in the case n = 5, t = 2) s′i, i ∈ Good and sI are not
enough points to determine fs. In this case the simulation relies on the fact that
S can compute the shares s′j , j ∈ Bad that the corrupted parties would send to
the honest parties in the simulation if they were honest. So S chooses a uniformly
random degree 2t polynomial fs subject to fs(0) = sI and fs(j) = sj , j ∈ Bad

and patches the simulation such that the honest parties send s∗i = fs(i), i ∈ Good

to the corrupted parties.

In fact, since it is not guaranteed at this point that [e] and [d] are sharings
of zero, or even consistent sharings, S chooses instead a random fs subject to
fs(0) = sI and fs(j) = (a′k′)−1a′j(m + rx′j), j ∈ Bad (note that a′ and k′ are
well-defined at this point since ¬B2 and ¬B3 and a′k′ 6= 0 due to Check6 and
Check7) and then uses s∗i = fs(i) + d′im + e′i, i ∈ Good in the simulation. This
ensures that any errors on [d] and [e] are simulated as well.

Consider then the case where the honest parties do not agree on the message
to sign. We claim that in this case S can simply use uniformly random values
si in the simulation. Assume w.l.o.g. that n = 3, t = 1 and that P1, P2, P3 use
different messages m1 6= m2 6= m3. Since ci = dimi + ei are used to blind
the shares in the real execution it suffices to show that these the values ci are
uniformly random, mutually independent values. Note that we can write

(c1, c2, c3) = (d1m1 + e1, d2m1 + e2, d3m1 + e3)

+ (0, d2(m2 −m1), d3(m3 −m1)) .

The values e1, e2 are uniformly random and independent (unlike e1, e2, e3
which are shares in a degree 2t sharing if zero, so the third share is determined by
the two others). So c1, c2 are uniform and independent. Since d2, d3 are uniformly
random and mutually independent (also regarding ei,mi) the values d2(m2 −
m1), d3(m3 − m1) ensure that all three values ci are uniformly random and
mutually independent. Generally, with different messages, [e] ensures that all
but one of the shares ci are uniform and mutually independent, while [d] ensures
that the last share is also uniform and independent of the others.

The success of the simulation in SIGN-R1 finally depends on ¬B4, i.e., that
the only possible value of s that can pass the final signature validation (Check9)
is indeed the value s computed by the protocol. Otherwise A could use the error
∆s to let the protocol output valid signatures with a distribution unknown to
the simulator, which would make the simulation fail.

30 Damg̊ard, et al.

Finally, consider how to simulate abort. FTDSA gives S the power to abort on
behalf of any party at any time in the ideal execution. So we simply let S abort
on behalf of a party Pi if P ′i aborts in the simulation. We have already argued
that everything else is perfectly simulated, so we just need to argue that any
abort in the real execution happens based on information that is available to the
simulator. This ensures that abort is perfectly simulated.

To see this, note that honest parties only abort in these cases:

– If FCOM aborts
– If Check1 (Figure 3) fails in KEYGEN (validating y)
– If Check2 (Figure 3) fails in KEYGEN (if y = 1)
– If Check3 (Figure 4) fails in PRESIG-R2 (validating R)
– If Check4 (Figure 4) fails in PRESIG-R2 (if R = 1)
– If Check5 (Figure 4) fails in PRESIG-R3 (validating W)
– If Check6 (Figure 4) fails in PRESIG-R3 (if w = 0)
– If Check7 (Figure 4) fails in PRESIG-R3 (if not gw = W)
– If Check8 (Figure 4) fails in SIGN-R1 (if s = 0)
– If Check9 (Figure 4) fails in SIGN-R1 (if R, s is an invalid signature of Mi

with respect to y)

In all of these cases the values are known to the simulator (such as y,R),
or unknown to the environment and the distribution of the value known to the
simulator (such as w and W). Hence abort can be perfectly simulated. (This is
in contrast to a setting where the abort of an honest party may depend on some
private input that the honest parties receive from the environment and which is
therefore unknown to the simulator.)

The simulator is summarized in Figure 5. Note that its running time is poly-
nomial in the running time of the adversary A′ that it simulates.

This completes our argument that

Pr [REALΠTDSA,A,E(κ) = 1 | ¬B] = Pr [IDEALFTDSA,S,E(κ) = 1]

and hence the proof of Theorem 2. Note that the simulation is indeed per-
fect in the sense that nothing in the proof depends on computational assump-
tions and Pr [REALΠTDSA,A,E(κ) = 1] is not just close to, but in fact equal to
Pr [IDEALFTDSA,S,E(κ) = 1]. QED.

B.3 Unforgeability in the Threshold Case

Theorem 2 states that the protocol ΠTDSA emulates FTDSA in a strong sense. Even
an all-powerful adversary that can solve discrete logs or forge signatures cannot
gain any other information or do any other harm than what is explicitly defined
by FTDSA, not even when many instances of the protocol run concurrently. This
means that when analyzing the security we can safely forget about the protocol
and instead focus on FTDSA. In other words, given Theorem 2 it is sufficient to
prove that no adversary with oracle access to FTDSA can forge signatures. The

Fast Threshold ECDSA with Honest Majority 31

Fig. 5. The simulator for ΠTDSA

On (KEYGEN-LEAK, yI) from FTDSA: Store yI for later use
On (KEYGEN-END, y′)from P ′i : Send (KEYGEN-END, Pi) to FTDSA

On (ABORT) from P ′i : Input (ABORT, Pi) to FTDSA

On (SIGN-START, Pi,m) from FTDSA: Input (SIGN-START,m) to P ′i
On (SIGN-LEAK-1, RI) from FTDSA: Store RI for later use
On (SIGN-LEAK-2, sI) from FTDSA: Store sI for later use
On (SIGN-END, r′, s′) from P ′i : Send (SIGN-END, Pi, rI , sI) to FTDSA

Patching [KEYGEN-R2]: Let x′t+2, x
′
t+3, . . . , x

′
n be the corrupted parties’ shares

of x′ in the simulation. For each honest party P1, P2, . . . , Pt+1 the simulator
computes the Lagrange coefficients λi0, λ

i
t+2, . . . , λ

i
n that given the t + 1 points

f(0), f(t + 2), . . . , f(n) interpolate the point f(i). S then patches the share y′i sent
by P ′i to the other parties, replacing it by

y∗i := y
λi
0
I

n∏
j=t+2

gλ
i
jx
′
j = gλ

i
0xI+λ

i
t+2x

′
t+2+···+λ

i
n = gxI,j .

Patching [PRESIG-R2]: Let k′t+2, k
′
t+3, . . . , k

′
n be the corrupted parties’ shares

of k′ in the simulation. For each honest party P1, P2, . . . , Pt+1 the simulator
computes the Lagrange coefficients λi0, λ

i
t+2, . . . , λ

i
n that given the t + 1 points

f(0), f(t+ 2), . . . , f(n) interpolate the point f(i). S then patches the share R′i sent
by P ′i to the other parties, replacing it by

R∗i := R
λi
0
I

n∏
j=t+2

gλ
i
jk
′
j = gλ

i
0kI+λ

i
t+2k

′
t+2+···+λ

i
n = gkI,j .

Patching [SIGN-R1]: Let fs be a uniformly random degree 2t polynomial sub-
ject to fs(0) = sI and fs(j) = (a′k′)−1a′j(m+ rx′j), j ∈ Bad. Note that at this point
a′ and k′ are well-defined and a′k′ 6= 0. Patch the simulation by replacing the shares
s′i sent by the honest parties with the values s∗i = fs(i) + d′imi + e′i.

32 Damg̊ard, et al.

proof is a straight-forward reduction to the standard unforgeability game for
signature schemes, but we include it here for completeness.

Consider the following game GT-FORGE:

1. Run an instance of FTDSA where A is allowed to

(a) Provide input to and receive output from the parties

(b) Provide the allowed adversarial input (such as KEYGEN-END) and receive
the adversarial output (such as SIGN-LEAK) as defined by FTDSA

2. Let xI , yI be the key pair generated by FTDSA. Let Q be the set of messages
that is signed by FTDSA (i.e., where at least one party Pi receives the signature)

3. On (FORGE,M, r′, s′) from A

(a) If M /∈ Q and Verifyy(M, r′, s′) = > output > and halt;

(b) else, output ⊥ and halt

We say that FTDSA is existentially unforgeable if no A can make GT-FORGE output
> except with probability negligible in κ. Note that this models the realistic
setting where the adversary can influence also the messages of the honest parties.

Proposition 2. Assuming that the ECDSA signature scheme used by FTDSA is
existentially unforgeable, then FTDSA is existentially unforgeable.

Proof. Proposition 2 is proved by the following simple reduction. Assume that
FTDSA is not unforgeable. This means that some AT-FORGE wins GT-FORGE with non-
negligible probability p. We construct an adversary AFORGE for the standard un-
forgeability game GFORGE (see previous section on signature schemes) as follows:

– AFORGE runs internally an instance of AT-FORGE while playing the role of GT-FORGE.

– When AFORGE receives the public key yI from GFORGE, it saves it for later. If
AT-FORGE at some point inputs (KEYGEN) to t+ 1 honest parties, AFORGE inputs
the message (KEYGEN-LEAK, yI) to AT-FORGE.

– Whenever AT-FORGE inputs (SIGN, sid, ·) to all parties for some session sid, if
the messages differ, just input the message (SIGN-LEAK-1, sid,R′) for a ran-
dom value R′ ∈ G. If the messages are all equal (call this message M), AFORGE
inputs (SIGN,M) to GFORGE and receives r, s. It then computes m = H(M),

R = gms
−1

yrs
−1

and inputs (SIGN-LEAK-1, sid,R) and (SIGN-LEAK-2, sid, s)
to AT-FORGE.

– On (FORGE,M ′, r′, s′) from AT-FORGE, the adversary AFORGE outputs the message
(FORGE,M ′, r′, s′) to GFORGE.

It is clear from this construction that the running time of AFORGE is polynomial
in the running time of AT-FORGE and that AFORGE wins GFORGE with the same non-
negligible probability p. (If the messages to the signing session differ, gk is leaked,
but this is perfectly simulated by R′.) This contradicts the assumption that the
underlying ECDSA scheme is unforgeable.

Fast Threshold ECDSA with Honest Majority 33

B.4 On the Lack of Termination Guarantee

Recall that contrary to Gennaro et al. [17, 19] we allow a single corrupt party to
abort the protocol at any time, and that this ability is also built into FTDSA.

In practice, when key generation aborts, the parties will usually start from
scratch, trying to generate a new key. And if signing aborts, they will usually
retry signing with the same key, but with a fresh randomizer k. Only after
retrying a reasonable number of times will the protocol be aborted totally. In
this sense, FTDSA does not fully model real usage, since it allows only “one shot”
at generating the key and doing a signature.

Recall that the adversary learns gx and gk and may abort on these values.
Intuitively, allowing the protocol to rerun L times on abort is therefore equivalent
to letting the adversary “decide” log2 L bits of gx and gk. This is different from
the basic DSA/ECDSA standard that states that x and k should be chosen
uniformly at random.

However, it can be shown that retrying a reasonable number of times on
abort, thereby allowing the adversary to decide a few bits of gx and gy, does not
harm security. We include the proof here for completeness.

Consider the game GR that works as GT-FORGE, but where the adversary in addi-
tion can request that the signature generation is rerun with the same key xI but
a new randomizer k′I (and a new message), and hence (SIGN-LEAK-1, gk

′I) and
(SIGN-LEAK-2, s′I) is output to the adversary. This models the realistic setting
where the adversary causes the sign protocol rerun on abort. But intuitively,
this gives the adversary no additional power since it already has the power to
request a new signature generation by inputting (SIGN, ·) to the parties.

Proposition 3. For any AR with running time t there exists an adversary AT-FORGE
with running time polynomial in t such that Pr [GT-FORGE

AT-FORGE = >] = Pr [GR
AR = >].

Proof. The reduction is simple: Given AR that wins GR with non-negligible prob-
ability pR we can construct AT-FORGE as follows: AT-FORGE runs internally AR. If AR
requests that signature generation is rerun, AT-FORGE instead inputs (SIGN, sid,M)
to the parties in GT-FORGE using a fresh session identifier. It then receives the mes-
sage (SIGN-LEAK-1, gk) and (SIGN-LEAK-2, s) from FTDSA in GT-FORGE and forwards
these messages to AR. From this construction it is clear that AT-FORGE wins GT-FORGE
with exactly the same probability pR.

We finally consider the even more realistic setting where the protocol may also
be rerun up to M times during key generation. We model this by the following
game GYR against an adversary AYR:

– As GR the game GYR runs internally an instance of FTDSA. AYR gets to decide
the input to the parties and the adversarial input to FTDSA, and AYR gets to
see the parties’ output and the adversarial leakage from FTDSA. It can also
cause the signing phase to be re-run as in GR.

34 Damg̊ard, et al.

– GYR accepts an additional message RESET-KEYGEN from AYR:
10 If more than

L of these messages have been received, GYR halts; If any honest party have
already output (KEYGEN-END, ·) in the current instance of FTDSA then GYR
outputs ⊥ and halts;11 Otherwise, GYR deletes the current instance of FTDSA

and starts a completely new FTDSA instance using fresh randomness.
– As in GR the adversary AYR is allowed to send the message (FORGE,M ′, r′, s′).

For i = 1, 2, . . . , L let y
(i)
I be the (up to) L public keys produced by the L

instances of FTDSA and let Q(i) be the set of messages for which a signature

was output to a party using y
(i)
I . GYR outputs > on (FORGE,M ′, r′, s′) only

if there is an i such that M ′ /∈ Q(i) ∧ Verifyy(i)I (M ′, r′, s′) = >. (That is,
to win GYR it is enough to be able to forge with respect to any of the public
keys.)

We say that FTDSA is unforgeable with retries if no adversary AYR wins GYR
except with negligible probability.

Proposition 4. For any AYR with running time t there exists an adversary AR
with running time polynomial in t such that

Pr
[
GR

AR = >
]
≥ 1

L
· Pr

[
GYR

AYR = >
]
.

Proof. Let AYR be an adversary for GYR, i.e. AYR can interact with GYR and then
output M ′, r′, s′ such that r′, s′ is a valid signature on M ′ relative to one of the
keys generated internally in GYR.

We construct an AR as follows:

– AR runs internally an instance of AYR. Recall that AR can only interact with
AYR via the interface defined by GYR.

– AR forwards any adversarial influence (such as KEYGEN-END, SIGN-END) and
any input to the parties (such as messages to sign) from AYR to GR. Any
adversarial leakage from GR is forwarded to AR.

– The only situation where AR cannot naturally forward messages is when
AYR sends the KEYGEN-RESET message. To handle this, when AR receives the
message (KEYGEN-LEAK, yI) from GR (this happens at most once), AR creates
a set of public keys PK consisting of yI and L − 1 random dummy keys
y′1, . . . , y

′
L−1. When receiving (KEYGEN-RESET) AR removes a random key y

from PK and sends (KEYGEN-LEAK, y) to AYR.

Let E be the event that AYR does not send another KEYGEN-RESET message
after receiving (KEYGEN-LEAK, yI). That is, E is the event that AYR “accepts” the

10 We could also have defined this game such that it restarted keygen on abort (as in
the real setting), but it is just as powerful to simply allow the adversary to reset the
functionality using an explicit command.

11 At this point in the real execution, each honest party knows that the key generation
was successful and that all honest parties holds the correct public key, so they can
safely refuse any rerun of keygen at this point.

Fast Threshold ECDSA with Honest Majority 35

real public key yI and not one of the dummy keys for signing. Then, it is clear
that by construction we have Pr [GR

AR = > | E] = Pr [GYR
AYR]. Also, since there are

L keys in PR and AR removes keys from PK at random, Pr [E] = 1/L. Hence

Pr
[
GR

AR = > | E
]

= Pr
[
GR

AR = > ∩ E
]
/Pr [E]

= L · Pr
[
GR

AR = > ∩ E
]

≤ L · Pr
[
GR

AR = >
]
.

Theorem 3. If the DSA/ECDSA signature scheme used by FTDSA is existentially
unforgeable then FTDSA is unforgeable with retries.

Proof. Assume that some adversary AYR wins GYR with non-negligible probability
p. Then by Proposition 3 and Proposition 4 there exists an adversary AT-FORGE
that runs in polynomial time in the running time of AYR and that wins GT-FORGE
with probability at least p/L. Then, by Proposition 2 there exists an adversary
AFORGE with running time polynomial in the running time of AT-FORGE that wins
GFORGE with probability p/L. This contradicts the unforgeability of the signature
scheme used by FTDSA.

Since by Theorem 2 the ideal execution with FTDSA perfectly emulates the real
protocol execution, we conclude that no adversary for our threshold protocol
can succeed in forging signatures with more than probability L · p where p is the
probability that an adversary can forge signatures in the standard DSA/ECDSA
signature scheme.

