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ABSTRACT
A threshold signature scheme enables distributed signing among n
players such that any subgroup of size t + 1 can sign, whereas any

group with t or fewer players cannot. While there exist previous

threshold schemes for the ECDSA signature scheme, we are the

first protocol that supports multiparty signatures for any t ≤ n with

an efficient dealerless key generation. Our protocol is faster than

previous solutions and significantly reduces the communication

complexity as well. We prove our scheme secure against malicious

adversaries with a dishonest majority. We implemented our proto-

col, demonstrating its efficiency and suitability to be deployed in

practice.
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1 INTRODUCTION
A threshold signature scheme enables n parties to share the power

to issue digital signatures under a single public key. A threshold t
is specified such that any subset of t + 1 players can jointly sign,

but any smaller subset cannot. Generally, the goal is to produce

signatures that are compatible with an existing centralized. In a

threshold scheme the key generation and signature algorithm are

replaced by a communication protocol between the parties, but the

signatures produces are compatible with the centralized scheme

and the verification algorithm is therefore unchanged.

In recent years there has been renewed attention to this topic, in

particular to the threshold generation of ECDSA signatures, mostly

due to the use of ECDSA in Bitcoin and other digital currencies.

Cryptocurrency transactions are authorized by digital signatures,

and thus proper key storage is critical for security. With a (t ,n)
threshold signature scheme, control of a cryptocurrency wallet can

be distributed among n servers (or players) such that t + 1 of them
are required to produce a signature. Crucially, the funds will remain

secure even if up to t of these servers are compromised.

The study of DSA/ECDSA threshold signature schemes predates

Bitcoin. Gennaro et al. [18, 19] present a threshold scheme for DSA,

but their scheme assumes an honest majority and thus requires
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that t < n/2. Moreover, their scheme requires 2t + 1 players to

participate to generate a signature. This is not ideal for several

reasons. Firstly, it rules out the possibility of an n-of-n threshold

signing scheme. Secondly, it provides an attacker with additional

targets: while an attacker only needs to compromise t + 1 servers,
the scheme requires 2t + 1 servers to generate a signature.

AsGennaro et al.’s scheme did not suport then-of-n case,Macken-

zie and Reiter built a scheme specifically for the 2-of-2 case (i.e.

t = 1 and n = 2) [27]. Recently much improved 2-out-of-2 schemes

have been presented [12, 26]. However 2-out-of-2 sharing is very

limited and can’t express more flexible sharing policies that might

be required in certain applications.

Gennaro and others in [17] (improved in [4]) address the more

general (t ,n) case in the threshold optimal case, meaning n ≥ t + 1
and that only t+1 players are needed to sign. However, their scheme

too has a setback in that the distributed key generation protocol is

very costly and impractical.

Our Result: We present a new threshold-optimal protocol for

ECDSA that improves in many significant ways over [4, 17]. Our

protocol supports a highly efficient distributed key generation; it

also supports faster signing than [4, 17], and requires far less data

to be transmitted between the parties (details of the comparison

appear below).

1.1 Overview of our solution
Consider a "generic" DSA signature algorithm that works over any

cyclic groupG of prime order q generated by an element д. It uses a
hash functionH defined from arbitrary strings into Zq , and another
hash function H ′ defined from G to Zq . The secret key is x chosen

uniformly at random in Zq , with a matching public key y = дx . To
sign a message M , the signer computesm = H (M) ∈ Zq , chooses

k uniformly at random in Zq and computes R = дk
−1

in G and

r = H ′(R) ∈ Zq . Then she computes s = k(m + xr ) mod q. The
signature onM is the pair (r , s) which is verified by computing

R′ = дms−1 mod qyr s
−1

mod q
in G

and accepting if H ′(R′) = r .
The technical complication with sharing DSA signatures comes

from having to jointly compute R (which requires raising д to

the inverse of a secret value k) and to compute s which requires

multiplying two secret values k,x . As shown in [18] it is sufficient

to show how to compute two multiplication over secret values that

are shared among the players. In [18] the values are shared via

Shamir’s secret sharing, i.e. as points on a polynomial of degree t
with free term the secret. The effect of multiplication is that the

degree of the polynomial is doubled, which explains why the [18]

solution requires at least 2t + 1 players to participate. To address

this problem [27] use a multiplicative sharing of the secret key x as
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x = x1 · x2 (an approach taken also in [12, 26]) which is however

hard to generalize to t > 2.

A different approach was taken in [17]: the secret key x is en-

crypted under a public key encryption scheme E, and it is the secret
key of E that is shared among the players, effectively providing a

secret sharing of x . If E is an additively homomorphic encryption

scheme (e.g. Paillier’s [29]) they show that it is possible to construct

a reasonably efficient protocol, with a few troubling bottlenecks.

The major one is that the protocol requires a joint generation of

the public key/secret key pair for the additively homomorphic en-

cryption E by the parties. When E is instantiated using Paillier, this

requires the distributed generation of an RSA modulus. Although

solutions are known for this problem (e.g. [22]), they are far from

scalable and efficient. To our knowledge the protocol from [22] has

never been implemented for the malicious multiparty case. The

only benchmark we are aware of for this protocol is that for the

two-party semi-honest case it takes 15 minutes [26], and we can

extrapolate that it would take significantly longer in the multiparty

malicious setting. Moreover the signature generation protocols in

[4, 17] require long messages and complicated ZK proofs.

In this paper we take a different path inspired by the SPDZ

approach to multiparty computation [9]. Given two secrets a,b
shared additively among the players, i.e. a = a1 + . . . + an and b =
b1 + . . .+bn where Pi holds ai ,bi , we want to generate an additive

sharing of c = ab. We note that ab =
∑
i, j aibj and therefore to

get an additive sharing of ab, it is sufficient to obtain an additive

sharing of each individual term aibj . To that extent we use a 2-party
protocol that allows two parties to transform multiplicative shares

of a secret to additive shares of the same secret. The players engage

in this protocol in a pairwise fashion to obtain an additive sharing

of the product ab.
Using this approach, we build a simple and elegant threshold

ECDSA protocol for the general multiparty setting. The players

start with a (t ,n) Shamir sharing of the secret key x . When t + 1
players want to sign, they generate an additive sharing of two

random values k =
∑
i ki and γ =

∑
i γi and they use the above

idea to compute additive sharings of the products δ = kγ (which

is reconstructed in the clear) and σ = kx =
∑
i wi (which is kept

shared). By multiplying the local shares of γ by the public value δ−1

the players end up with an additive sharing
1
of k−1. The value R

is then easily computed in the exponent R =
∏

i д
γiδ−1

. The value

s is shared additively among the players since each player holds

si = kim +wir and s =
∑
i si .

1.2 Avoid expensive ZK Proofs in case of a
Malicious Adversary

Following [26] we make minimal use of ZK proofs to detect mali-

cious behavior by the players.

Instead we take an "optimistic" approach and run the protocol

assuming everybody is honest. We then check the validity of the

resulting signature to detect if there were players who deviated

from the protocol (if the signature does not verify then obviously

at least one player did not follow the instructions).

At that point, because we possibly have a dishonest majority

among the players, there is no guarantee that we can generate a

1
This is the famous Bar-Ilan and Beaver inversion trick [1].

correct signature so the protocol stops and aborts. This creates a

technical complication in the proof as we have to make sure that

the values revealed by the good players do not leak any valuable

information, not only in the case of good executions, but also in

the case of aborting executions. As we will see, this will require

us to "distributively" check that the shares si reconstruct a valid
signature before revealing them. This check is somewhat reminis-

cent of the way Canetti and Goldwasser solve a similar problem

in [7] to construct threshold CCA secure encryption based on the

Cramer-Shoup scheme.

Range Proofs. Even when using the signature verification step to

detect cheating, we have to run two relatively expensive ZK proofs

during the share conversion protocol:

• a "range proof" that a value a encrypted under Paillier’s

encryption scheme is "small";

• a proof that a party knows x such that c = E(x) and y = дx

where E is Paillier’s encryption scheme.

As we discuss later, removing these ZK proofs creates an attack

that leaks some information about the DSA secret key (and the

randomizer k used in each signature) shared among the servers.

We conjecture that this information is so limited that the protocol

remains secure even without them (see Section 6 for details).

1.3 Experimental Results
We implemented our scheme and found both the key generation

and signing protocols to be very efficient.

The key generation protocol is easy to implement and is quite

fast (under a second for any reasonable choice of parameters). This

is in stark contrast to [4, 17] for which the key generation protocol

has never been implemented, and it is hard to estimate what the

actual running time would be.

Our signing protocol is also extremely efficient, and is a sig-

nificant improvement over previous works both in terms of data

transferred and running time.

With the combination of an efficient key generation and signing

protocol, our scheme is suitable to be deployed in practice. We

present full benchmarks and evaluations in Section 7.

2 PRELIMINARIES
Communication Model. We assume the existence of a broadcast

channel as well as point-to-point channels connecting every pair

of players.

The Adversary. We assume a probabilistic polynomial time ma-
licious adversary, who may deviate from the protocol description

arbitrarily. The adversary can corrupt up to t players, and it learns

the private state of all corrupted players. As in previous threshold

ECDSA schemes [4, 17, 18, 26], we limit ourselves to static corrup-
tions, meaning the adversary must choose which players to corrupt

at the beginning of the protocol. There are standard techniques

for converting a protocol secure against static corruptions to se-

cure against adaptive corruptions [6, 23], but these will incur an

overhead.

We assume a rushing adversary, meaning that the adversary gets

to speak last in a given round and, in particular, can choose his

message after seeing the honest parties’ messages.
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Following [4, 17] (but unlike [18]), we assume a dishonest ma-
jority, meaning t , the number of players the adversary corrupts,

can be up ton−1. In this case, there is no guarantee that the protocol
will complete, and we therefore do not attempt to achieve robust-
ness, or the ability to complete the protocol even in the presence of

some misbehaving participants.

2.1 Signature Schemes
A digital signature scheme S consists of three efficient algorithms:

• (sk, pk)←Key-Gen(1λ), the randomized key generation al-

gorithm which takes as input the security parameter and

returns the private signing key sk and public verification

key pk.
• σ←Sig(sk,m), the possibly randomized signing algorithm

which takes as input the private key sk and the message to

be signedm and outputs a signature, σ . As the signature may

be randomized, there may be multiple valid signatures. We

denote the set of valid signatures as {Sig(sk,m)} and require

that σ ∈ {Sig(sk,m)}.
• b←Ver (pk,m,σ ), the deterministic verification algorithm,

which takes as input a public key pk , a message m and a

signature σ and outputs a bit b which equals 1 if and only if

σ is a valid signature onm under pk .

To prove a signature scheme secure, we recall the standard notion

of existential unforgeability against chosen message attacks (EU-

CMA) as introduced in [21].

Definition 2.1 (Existential unforgeability). Consider a PPT adver-

sary A who is given public key pk output by Key-Gen and oracle

access to the signing algorithm Sig(sk, ·) with which it can receive

signatures on adaptively chosen messages of its choosing. Let M
be the set of messages queried by A. A digital signature scheme

S =(Key-Gen,Sig,Ver) is said to be existentially unforgeable if there is
no such PPT adversaryA that can produce a signature on a message

m < M , except with negligible probability in λ.

2.2 Threshold Signatures
Threshold secret sharing. A (t ,n)−threshold secret sharing of

a secret x consists of n shares x1, . . . ,xn such that an efficient

algorithm exists that takes as input t +1 of these shares and outputs
the secret, but t or fewer shares do not reveal any information about

the secret.

Threshold signature schemes.Consider a signature scheme, S=(Key-
Gen, Sig, Ver). A (t ,n)-threshold signature schemeTS for S enables

distributing the signing among a group of n players, P1, . . . , Pn
such that any group of at least t + 1 of these players can jointly

generate a signature, whereas groups of size t or fewer cannot.
More formally, TS consists of two protocols:

• Thresh-Key-Gen, the distributed key generation protocol,

which takes as input the security parameter 1
λ
. Each player

Pi receives as output the public key pk as well as a private

output ski , which is Pi ’s share of the private key. The values
sk1, . . . , skn constitute a (t ,n) threshold secret sharing of the
private key sk .

• Thresh-Sig, the distributed signing protocol which takes

as public input a message m to be signed as well as a pri-

vate input ski from each player. It outputs a signature σ ∈
{Sig(sk,m)}.

Notice that the signature output by Thresh-Sig is a valid signature
under Sig, the centralized signing protocol. Thus we do not specify

a threshold variant of the verification algorithm as we will use the

centralized verification algorithm, Ver.
In some applications, it may be acceptable to have a trusted

dealer generate the private key shares for each party. In this case,

Thresh-Key-Gen would not be run.

Following [18, 19], we present a game-based definition of security

analogous to EU-CMA.

Definition 2.2 (Unforgeable threshold signature scheme [18]). We

say that a (t ,n)-threshold signature scheme TS =(Thresh-Key-
Gen,Thresh-Sig) is unforgeable, if no malicious adversary who cor-

rupts at most t players can produce, with non-negligible (in λ)
probability, the signature on any new (i.e., previously unsigned)

messagem, given the view of the protocol Thresh-Key-Gen and of

the protocol Thresh-Sig on input messagesm1, . . . ,mk which the

adversary adaptively chose as well as signatures on those messages.

This is a game-based definition of security which is analogous

to the notion of existential unforgeability under chosen message

attack as defined by Goldwasser, Micali, and Rivest [21]. Unlike in

the centralized EU-CMA definition, the adversary is additionally

given the corrupted players’ views of the key generation protocol

as well as their views in the signing protocol for the messages it

chooses. A stronger simulation-based definition is also possible (see

e.g. [17, 18, 26]).

2.3 Additively Homomorphic Encryption
Our protocol relies on an encryption scheme E that is additively

homomorphic modulo a large integer N . Let Epk (·) denote the

encryption algorithm for E using public key pk . Given ciphertexts

c1 = Epk (a) and c2 = Epk (b), there is an efficiently computable

function +E such that

c1 +E c2 = Epk (a + b mod N )

The existence of a ciphertext addition operation also implies a

scalar multiplication operation, which we denote by ×E . Given an

integer s ∈ N and a ciphertext c = Epk (a), then we have

c ×E s − Epk (as mod N )

Informally, we say that E is semantically secure if for the prob-

ability distributions of the encryptions of any two messages are

computationally indistinguishable.

We instantiate our protocol using the additively homomorphic

encryption scheme of Paillier [29], and we recall the details here:

• Key-Gen: generate two large primes P ,Q of equal length, and

set N = PQ . Let λ(N ) = lcm(P − 1,Q − 1) be the Carmichael

function of N . Finally choose Γ ∈ Z ∗N 2
such that its order is

a multiple of N . The public key is (N , Γ) and the secret key

is λ(N ).
• Encryption: to encrypt a messagem ∈ ZN , select x ∈R Z ∗N
and return c = ΓmxN mod N 2

.
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• Decryption: to decrypt a ciphertext c ∈ ZN 2 , let L be a

function defined over the set {u ∈ ZN 2 : u = 1 mod N }
computed as L(u) = (u − 1)/N . Then the decryption of c is

computed as L(cλ(N ))/L(Γλ(N )) mod N .

• Homomorphic Properties: Given two ciphertexts c1, c2 ∈
ZN 2 define c1 +E c2 = c1c2 mod N 2

. If ci = E(mi ) then

c1 +E c2 = E(m1 +m2 mod N ). Similarly, given a ciphertext

c = E(m) ∈ ZN 2 and a number a ∈ Zn we have that a ×E c =
ca mod N 2 = E(am mod N ).

The security of Paillier’s cryptosystem relies on theN -residuosity

decisional assumption [29], which informally says that it is infeasi-

ble to distinguish random N -residues from random group elements

in Z ∗N 2
.

2.4 Non-Malleable Equivocable Commitments
A trapdoor commitment scheme allows a sender to commit to a

message with information-theoretic privacy. i.e., given the tran-

script of the commitment phase the receiver, even with infinite

computing power, cannot guess the committed message better than

at random. On the other hand when it comes to opening the mes-

sage, the sender is only computationally bound to the committed

message. Indeed the scheme admits a trapdoor whose knowledge
allows to open a commitment in any possible way (we will refer to

this also as equivocate the commitment). This trapdoor should be

hard to compute efficiently.

Formally a (non-interactive) trapdoor commitment scheme con-

sists of four algorithms KG, Com, Ver, Equiv with the following

properties:

• KG is the key generation algorithm, on input the security

parameter it outputs a pair pk, tk where pk is the public key

associated with the commitment scheme, and tk is called the
trapdoor.
• Com is the commitment algorithm. On input pk and a mes-

sage M it outputs [C(M),D(M)] = Com(pk,M,R) where r
are the coin tosses. C(M) is the commitment string, while

D(M) is the decommitment string which is kept secret until

opening time.

• Ver is the verification algorithm. On input C,D and pk it

either outputs a messageM or ⊥.

• Equiv is the algorithm that opens a commitment in any possi-

ble way given the trapdoor information. It takes as input pk,
stringsM,R with [C(M),D(M)] = Com(pk,M,R), a message

M ′ , M and a stringT . IfT = tk then Equiv outputs D ′ such
that Ver(pk,C(M),D ′) = M ′.

We note that if the sender refuses to open a commitment we can set

D = ⊥ and Ver(pk,C,⊥) = ⊥. Trapdoor commitments must satisfy

the following properties

Correctness If [C(M),D(M)] = Com(pk,M,R) then
Ver(pk,C(M),D(M)) = M .

Information Theoretic Security For everymessage pairM,M ′

the distributions C(M) and C(M ′) are statistically close.

Secure Binding We say that an adversary Awins if it outputs

C,D,D ′ such that Ver(pk,C,D) = M , Ver(pk,C,D ′) = M ′

and M , M ′. We require that for all efficient algorithms

A, the probability that A wins is negligible in the security

parameter.

Such a commitment is non-malleable [13] if no adversary A,
given a commitment C to a messagesm, is able to produce another

commitmentC ′ such that after seeing the opening ofC tom, A can

successfully decommit to a related messagem′ (this is actually the

notion of non-malleability with respect to opening introduced in

[10]).

The non-malleable commitment schemes in [10, 11] are not suit-

able for our purpose because they are not “concurrently" secure, in

the sense that the security definition holds only for t = 1 (i.e. the

adversary sees only 1 commitment).

The stronger concurrent security notion of non-malleability for

t > 1 is achieved by the schemes presented in [8, 16, 28]), and any

of them can be used in our threshold DSA scheme.

However in practice one can use any secure hash functionH and

define the commitment to x as h = H (x , r ), for a uniformly chosen

r of length λ and assume that H behaves as a random oracle. We

use this efficient random oracle version in our implementation.

2.5 The Digital Signature Standard
The Digital Signature Algorithm (DSA) was proposed by Karivtz in

1991, and adopted by NIST in 1994 as the Digital Signature Standard

(DSS)[3, 25] . ECDSA, the elliptic curve variant of DSA, has become

quite popular in recent years, especially in cryptocurruencies.

All of our results in this paper apply to both the traditional

DSA and ECDSA. We present our results using the generic G-DSA

notaiion from [17], which we recall here.

The Public Parameters consist of a cyclic groupG of prime order

q, a generator д for G, a hash function H : {0, 1}∗ → Zq , and
another hash function H ′ : G → Zq .

.

Key-Gen On input the security parameter, outputs a private key x
chosen uniformly at random in Zq , and a public key y = дx

computed in G.
Sig On input an arbitrary messageM ,

– computem = H (M) ∈ Zq
– choose k ∈R Zq

– compute R = дk
−1

in G and r = H ′(R) ∈ Zq
– compute s = k(m + xr ) mod q
– output σ = (r , s)

Ver On inputM,σ and y,
– check that r , s ∈ Zq

– compute R′ = дms−1 mod qyr s
−1

mod q
in G

– Accept (output 1) iff H ′(R′) = r .

The traditional DSA algorithm is obtained by choosing large

primes p,q such that q |(p − 1) and setting G to be the order q
subgroup of Z ∗p . In this case the multiplication operation in G is

multiplication modulo p. The function H ′ is defined as H ′(R) =
R mod q.

The ECDSA scheme is obtained by choosing G as a group of

points on an elliptic curve of cardinality q. In this case the mul-

tiplication operation in G is the group operation over the curve.

The function H ′ is defined as H ′(R) = Rx mod q where Rx is the

x-coordinate of the point R.
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2.6 Feldman’s VSS Protocol
Recall that in Shamir’s scheme [33], the secret shares are evaluations

of a polynomial

p(x) = σ + a1x + a2x
2 + · · · + atx

t
mod q

In a verifiable secret sharing scheme, auxiliary information is

published that allows players to check that their shares consistently

define a unique secret.

Feldman’s VSS [14] is an extension of Shamir’s secret sharing in

which the dealer also publishes vi = д
ai

in G for all i ∈ [1, t].
Using this auxiliary information, each player can check its share

σi for consistency by verifying:

дσi
?

=

t∏
0

vzii in G

If the check does not hold for any player, it raises a complaint

and the protocol terminates. Note that this is different than the

way Feldman VSS was originally presented as it assumed an honest

majority and could recover if a dishonest player raised a complaint.

However, since we assume dishonest majority in this paper, the

protocol will abort if a complaint is raised.

While Feldman’s scheme does leak дσ , it can be shown via a

simulation argument that nothing else is leaked, but we omit the

details here.

2.7 Assumptions

DDH. LetG be a cyclic group of prime order q, generated by д. The
DDH Assumption states that the following two distributions over

G3
are computationally indistinguishable:DH = {(дa ,дb ,дab ) for a,b ∈R

Zq } and R = {(д
a ,дb ,дc ) for a,b, c ∈R Zq }.

Strong-RSA. Let N be the product of two safe primes, N = pq,
with p = 2p′ + 1 and q = 2q′ + 1 with p′,q′ primes. With ϕ(N ) we
denote the Euler function of N , i.e. ϕ(N ) = (p − 1)(q − 1) = p′q′.
With Z ∗N we denote the set of integers between 0 and N − 1 and
relatively prime to N .

Let e be an integer relatively prime toϕ(N ). The RSAAssumption

[31] states that it is infeasible to compute e-roots in Z ∗N . That is,

given a random element s ∈R Z ∗N it is hard to find x such that

xe = s mod N .

The Strong RSA Assumption (introduced in [2]) states that given

a random element s in Z ∗N it is hard to find x , e , 1 such that

xe = s mod N . The assumption differs from the traditional RSA

assumption in that we allow the adversary to freely choose the

exponent e for which she will be able to compute e-roots.
We now give formal definitions. Let SRSA(n) be the set of integers

N , such that N is the product of two n/2-bit safe primes.

Assumption 1. We say that the Strong RSA Assumption holds,
if for all probabilistic polynomial time adversaries A the following
probability

Prob[ N ← SRSA(n) ; s ← Z ∗N : A(N , s) = (x , e) s.t. xe = s mod N ]

is negligible in n.

3 A SHARE CONVERSION PROTOCOL
Assume that we have two parties Alice and Bob holding two se-

crets a,b ∈ Zq respectively which we can think of as multiplicative

shares of a secret x = ab mod q. Alice and Bob would like to com-

pute secret additive shares α , β of x , that is random values such

that α + β = x = ab mod q with Alice holding a and Bob holding b.
Here we show a protocol based on an additively homomorphic

scheme which has appeared many times before in the literature (e.g.

[9, 24, 26, 27] but that we adapt to our needs. We assume that Alice

is associated with a public key EA for an additively homomorphic

scheme E over an integer N . Let K > q also be a bound which will

be specified later.

In the following we will refer to this protocol as anMtA (for Mul-

tiplicative to Additive) share conversion protocol. In our protocol

we also assume that B = дb might be public. In this case an extra

check for Bob is used to force him to use the correct value b. We

refer to this enhanced protocol as MtAwc (as MtA "with check").

(1) Alice initiates the protocol by

• sending cA = EA(a) to Bob

• proving in ZK that a < K via a range proof

(2) Bob computes the ciphertext cB = b ×E cA +E EA(β
′) =

EA(ab + β
′) where β ′ is chosen uniformly at random in ZN .

Bob sets his share to β = −β ′ mod q. He responds to Alice

by

• sending cB
• proving in ZK that b < K

• only if B = дb is public proving in ZK that he knows b, β ′

such that B = дb and cB = b ×E cA +E EA(β
′)

(3) Alice decrypts cB to obtain α ′ and sets α = α ′ mod q

Correctness. Assume both players are honest and N > K2q. Then
note that Alice decrypts the value α ′ = ab + β ′ mod N . Note that

if β ′ < N − ab the reduction modN is not executed. Conditioned

to this event, then the protocol correctly computes α , β such that

α + β = x mod q.
Since ab ≤ K2

and N > K2q we have that β ′ ≥ N − ab with

probability at most 1/q (i.e. negligible).

Simulation. We first point out that as a stand-alone protocol, we

can prove security even without the range proofs. Indeed, if the

adversary corrupts Alice, then Bob’s message can be simulated with-

out knowledge of its input b. Indeed a simulator can just choose

a random b ′ ∈ Zq and act as Bob. The distribution of the message

decrypted by Alice in this simulation is identically to the message

decrypted when Bob uses the real b, because the “noise" β ′ is uni-
formly distributed in ZN .

If the adversary corrupts Bob, then Alice’s message can be simu-

lated without knowledge of its input a. Indeed a simulator can just

choose a random a′ ∈ Zq and act as Alice. In this case the view of

Bob is computationally indistinguishable from the real one due to

the semantic security of the encryption scheme E.
However if the range proofs are not used, a malicious Alice

or Bob can cause the protocol to "fail" by choosing large inputs.

As a stand-alone protocol this is not an issue since the parties

are not even aware that the reduction modN took place and no

information is leaked about the other party’s input. However, when

used inside our threshold DSA protocol, this attack will cause the
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signature verification to fail, and this information is linked to the

size of the other party’s input.

Consider for example the case of Alice running the protocol with

input a′ = q2+a. If Bob’s input is "small" then the reduction mod N
wil not take place and the protocol will succeed, and eventually

the signature produced by our threshold DSA protocol will verify

(since a′ = a mod q). But if Bob’s input is large the protocol will
fail.

So we need security in the presence of an oracle that tells the

parties if the reduction mod N happens or not, but due to the ZK

"range proofs" such reduction will only happen with negligible

probability and security holds.

Remark. An alternative approach. The above protocol is overwhelm-

ingly correct, and hides b perfectly. We could modify it so that β ′ is
always chosen uniformly at random in [0...N − K2]. This distribu-

tion is statistically close to the uniform one over ZN (since K > q),
therefore the value b is now hidden in a statistical sense. On the

other hand the protocol is always correct.

Remark. On the ZK proofs and the size of the modulus N . For the
ZK proofs required in the protocol we use simplified versions of

similar ZK proofs presented in [27] and already used in [17]).

These are ZK arguments with security holding under the Strong

RSA Assumption. Moreover they require K q3 which in turns re-

quire N > q7. We point out that for typical choices of parameter N
is approximately q8 (since q is typically 256-bit long while N is a

2048-bit RSA modulus), so this requirement is not problematic
2
.

4 OUR SCHEME
We now describe our protocol. The players run on input G,д the

cyclic group used by the DSA signature scheme. We assume that

each player Pi is associated with a public key Ei for an additively

homomorphic encryption scheme E.

4.1 Key generation protocol
• Phase 1. Each Player Pi selectsui ∈R Zq ; computes [KGCi ,KGDi ] =

Com(дui ) and broadcast KGCi . Each Player Pi broadcasts
Ei the public key for Paillier’s cryptosystem.

• Phase 2. Each Player Pi broadcastsKGDi . Letyi be the value
decommitted by Pi . The player Pi performs a (t ,n) Feldman-

VSS of the valueui , withyi as the “free term in the exponent"

The public key is set to y =
∏

i yi . Each player adds the

private shares received during the n Feldman VSS protocols.

The resulting values xi are a (t ,n) Shamir’s secret sharing of

the secret key x =
∑
i ui . Note that the values Xi = д

xi
are

public.

• Phase 3 Let Ni = piqi be the RSA modulus associated with

Ei . Each player Pi proves in ZK that he knows xi using
Schnorr’s protocol [32] and that he knows pi ,qi using any
proof of knowledge of integer factorization (e.g. [30])

2
For the simple range proof that a, b < K one could alternatively use a variation of

Boudot’s proof [5] which establish K q which sets N q3
. This proof is less efficient

that the ones from [17, 27] which are anyway required for Bob in the MtAwc protocol.
Moreover as we said earlier, N > q8

in practice anyway so the improvement in the

size of N is irrelevean for ECDSA.

4.2 Signature Generation
We now describe the signature generation protocol, which is run on

inputm (the hash of the message M being signed) and the output

of the key generation protocol described above. We note that the

latter protocol is a t-out-of-n protocol (and thus the secret key x is

shared using (t ,n) Shamir secret-sharing).

Let S ⊆ [1..n] be the set of players participating in the signature

protocol. We assume that |S | = t ′ where t < t ′ ≤ n. For the signing
protocol we can share any ephemeral secrets using a (t ′, t ′) secret
sharing scheme, and do not need to use the general (t ,n) structure.
We note that using the appropriate Lagrangian coefficients λi,S each

player in S can locally map its own (t ,n) share xi of x into a (t ′, t ′)
share wi = λi,Sxi of x , i.e. x =

∑
i ∈S wi . Since Xi = дxi and λi,S

are public values all the players can computeWi = д
wi = X

λi,S
i .

• Phase 1. Each Player Pi selects ki ,γi ∈R Zq ; computes

[Ci ,Di ] = Com(дγi ) and broadcast Ci .
Define k =

∑
i ∈S ki , γ =

∑
i ∈S γi . Note that

kγ =
∑
i, j ∈S

kiγj mod q

kx =
∑
i, j ∈S

kiw j mod q

• Phase 2. Every pair of players Pi , Pj engages in twomultiplicative-

to-additive share conversion subprotocols

– Pi , Pj runMtAwith shares ki ,γj respectively. Let αi j [resp.
βi j ] be the share received by player Pi [resp. Pj ] at the
end of this protocol, i.e.

kiγj = αi j + βi j

Player Pi sets δi = kiγi +
∑
j,i αi j +

∑
j,i βji . Note that

the δi are a (t
′, t ′) additive sharing of kγ =

∑
i ∈S δi

– Pi , Pj runMtAwc with shares ki ,w j respectively. Let µi j
[resp. νi j ] be the share received by player Pi [resp. Pj ] at
the end of this protocol, i.e.

kiw j = µi j + νi j

Player Pi sets σi = kiwi +
∑
j,i µi j +

∑
j,i νji . Note that

the σi are a (t
′, t ′) additive sharing of kx =

∑
i ∈S σi

• Phase 3. Every player Pi broadcasts δi and the players recon-
struct δ =

∑
i ∈S δi = kγ . The players compute δ−1 mod q.

• Phase 4. Each Player Pi broadcasts Di . Let Γi be the values
decommitted by Pi who proves in ZK that he knows γi s.t.
Γi = д

γi
using Schnorr’s protocol [32].

The players compute

R = [
∏
i ∈S

Γi ]
δ−1 = д(

∑
i∈S γi )k−1γ −1 = дγk

−1γ −1 = дk
−1

and r = H (R).
• Phase 5. Each player Pi sets si =mki + rσi . Note that∑
i ∈S

si =m
∑
i ∈S

ki + r
∑
i ∈S

σi =mk + rkx = k(m + xr ) = s

i.e. the si are a (t
′, t ′) sharing of s .

– (5A) Player Pi chooses ℓi , ρi ∈R Zq computesVi = Rsiдℓi ,

Ai = дρi , Bi = дℓi ρi and and [Ĉi , D̂i ] = Com(Vi ,Ai ,Bi )
and broadcasts Ĉi .
Let ℓ =

∑
i ℓi and ρ =

∑
i ρi .
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– (5B) Player Pi broadcasts D̂i and proves in ZK that he

knows si , ℓi such that Vi = Rsiдℓi and Bi = Aℓi
i . If a ZK

proof fails, the protocol aborts. Let V = д−my−r
∏

i ∈S Vi
(this should be V = дℓ )

– (5C) Player Pi computesUi = V
ρi

andTi = [
∏

j,i Aj ]
ℓi =

дℓi (ρ−ρi ). It commits [C̃i , D̃i ] = Com(Ui ,Ti ) and broad-

casts C̃i .
– (5D) Player Pi broadcasts D̃i to decommit toUi ,Ti If

∏
i ∈S [TiBi ] ,∏

i ∈S Ui the protocol aborts.
– (5E) Otherwise player Pi broadcasts si . The players com-

pute s =
∑
i ∈S si . If (r , s) is not a valid signature the players

abort, otherwise they accept and end the protocol.

Let us explain the intuition behind Phase 5. To avoid expensive

ZK proofs, we are potentially reconstructing an incorrect signature,

which is then checked and possibly rejected. A naive approach to the

last phase is for the players to reveal si and reconstruct s =
∑
i si .

But, for reasons that will become clear in the proof, this is not

provably secure – the intuitive reason being that if the adversary

makes the protocol fail by outputting an invalid signature the values

si held by the good players may give him valuable information.
3

Naively this could be done by first broadcasting Si = Rsi and

check that

∏
i Si = Rs = дmyr according to the DSA verification

algorithm. But for similar reasons, this step makes the proof fail.

So in our protocol the players mask Rsi with a random value дℓi .

Let Vi = Rsiдℓi . Then
∏

i Vi = Rsдℓ and therefore V = дℓ . The

players cannot revealдℓi to check the correctness ofV as this would

"de-mask" Rsi so we "randomize" the "aggregate" value toU = дℓρ .

Alongside the players compute дℓρ via pairwise "Diffie-Hellman"

exchanges. If this distributed randomized signature verification

carries out, then it is safe to release the shares si , but if the signature
does not verify then the protocol aborts here and the values si held
by the good players are never revealed in the clear.

4.3 The Zero-Knowledge Proofs
In step (5B) a player P outputs V = Rsдℓ and A,B = Aℓ

and must

prove that he knows s, ℓ satisfying the above relationship. A classic

(honest-verifier) ZK proof for this task is as follows:

• The Prover chooses a,b ∈R Zq and sends α = Raдb and

β = Ab

• The Verifier sends a random challenge c ∈R Zq
• The Prover answers with t = a + cs mod q and u = b +
cℓ mod q.
• The Verifier checks that Rtдu = αV c

and Au = βBc

4.4 Security Proof
In this section we prove the following

Theorem 4.1. Assuming that
• The DSA signature scheme is unforgeable;
• The Strong RSA Assumption holds;
• KG, Com, Ver, Equiv is a non-malleable equivocable commit-
ment scheme;
• the DDH Assumption holds

then our threshold DSA scheme in the previous section is unforgeable.

3
We do not have an attack but we do not see a way to make a proof work either.

The proof of this theoremwill proceed by a traditional simulation

argument, in which we show that if there is an adversary A that

forges in the threshold scheme with a significant probability, then

we can build a forger F that forges in the centralized DSA scheme

also with a significant probability.

So let’s assume that there is an adversary A that forges in the

threshold scheme with probability larger than ϵ ≥ λ−c .
We assume that the adversary controls players P2, . . . , Pt+1 and

that P1 is the honest player. We point out that because we use

concurrently non-malleable commitments (where the adversary

can see many commitments from the honest players) the proof also

holds if the adversary controls less than t players and we have more

than 1 honest player. So the above assumption is without loss of

generality.

Because we are assuming a rushing adversary, P1 always speaks
first at each round. Our simulator will act on behalf of P1 and inter-

act with the adversary controlling P2, . . . , Pn . Recall how A works:

it first participates in the key generation protocol to generate a

public key y for the threshold scheme. Then it requests the group

of players to sign several messagesm1, . . . ,mℓ , and the group en-

gages in the signing protocol on those messages. At the end with

probability at least ϵ the adversary outputs a messagem ,mi and

a valid signature (r , s) for it under the DSA key y. This probability
is taken over the random tape τA of A and the random tape τ1 of
P1. If we denote with A(τA)P1(τ1) the output of A at the end of the

experiment described above, we can write

Probτ1,τA [ A(τA)P1(τ1) is a forgery ] ≥ ϵ

We say that an adversary random tape τA is good if

Probτ1 [ A(τA)P1(τ1) is a forgery ] ≥
ϵ

2

By a standard application of Markov’s inequality we know that if

τA is chosen uniformly at random, the probability of choosing a

good one is at least
ϵ
2
.

We now turn to building the adversary F that forges in the

centralized scheme. This forger will use A as a subroutine in a

“simulated" version of the threshold scheme: F will play the role of

P1 while A will control the other players. F will choose a random

tape τA for A: we know that with probability at least
ϵ
2
it will be a

good tape. From now on we assume that A runs on a good random

tape.

F runs on input a public key y for the centralized DSA scheme,

which is chosen according to the uniform distribution in G. The
first task for F is to set up an indistinguishable simulation of the

key generation protocol to result in the same public key y.
Similarly every time A requests the signature of a messagemi ,

the forger F will receive the real signature (ri , si ) from its signature

oracle. It will then simulate, in an indistinguishable fashion, an

execution of the threshold signature protocol that on input mi
results in the signature (ri , si ).

Because these simulations are indistinguishable from the real

protocol for A, the adversary will output a forgery with the same

probability as in real life. Such a forgerym, r , s is a signature on a

message that was never queried by F to its signature oracle and

therefore a valid forgery for F as well. We now turn to the details

of the simulations.
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4.5 Simulating the key generation protocol
The simulation Sim-Key-Gen is described below. On input a public

key y = дx for DSA the forger F plays the role of P1 as follows.
The forger F also runs on input a public key E for which he does

not know the matching secret key (this is necessary for when we

have to make a reduction to the semantic security of the Paillier

encryption scheme).

Simulation: Repeat the following steps (by rewinding A) until A
sends valid messages (i.e. a correct decommitment) for P2, . . . , Pn
on both iterations.

• F (as P1) selects a randomvalueu1 ∈ Zq , computes [KGC1,KGD1]=

Com(дu1 ) and broadcasts KGC1. A broadcast commitments

KCGi for i > 1;

• Each player Pi broadcasts KGDi ; let yi be the decommitted

value and the accompanying Feldman-VSS (F will follow the

protocol instructions). Each player broadcasts Ei . F broacasts

E1 = E.
• Let yi the revealed commitment values of each party. F
rewinds the adversary to the decommitment step and

– changes the opening of P1 to ˆKGD1 so that the committed

value revealed is now ŷ1 = y ·
∏n

i=2 y
−1
i .

– simulates the Feldman-VSS with free term ŷ1
• The adversary A will broadcasts ˆKGDi . Let ŷi be the com-

mitted value revealed by A at this point (this could be ⊥ if

the adversary refused to decommit).

• The players compute ŷ =
∏t+1

i=1 ŷi (set to ⊥ if any of the ŷi
are set to ⊥ in the previous step).

We now prove a few lemmas about this simulation.

Lemma 4.2. The simulation terminates in expected polynomial
time and is indistinguishable from the real protocol.

Proof of Lemma 4.2. SinceA is running on a good random tape,

we know that the probability over the random choices of F , that
A will correctly decommit is at least

ϵ
2
> 1

2λc . Therefore we will

need to repeat the loop only a polynomial number of times in

expectation.

The only differences between the real and the simulated views

is that P1 runs a simulated Feldman-VSS with free term in the

exponent ŷ1 for which it does not know the discrete log. But we have

shown in Section 2.6 that this simulation is identically distributed

from the real Feldman-VSS. So the simulation of the protocol is

perfect. □

Lemma 4.3. For a polynomially large fraction of inputs y, the
simulation terminates with outputy except with negligible probability.

Proof of Lemma 4.3. First we prove that if the simulation ter-

minates on an output which is not⊥, then it terminates with output

y except with negligible probability. This is a consequence of the

non-malleability property of the commitment scheme. Indeed, if

A correctly decommits KGCi twice it must do so with the same

string, no matter what P1 decommits too (except with negligible

probability)
4
. Therefore ŷi = yi for i > 1 and therefore ŷ = y.

4
This property is actually referred to as independence. This is introduced in [20] as a

stronger version of non-malleability and then proven equivalent to non-malleability

in [4]).

Then we prove that this happens for a polynomially large frac-

tions of input y. Let yA =
∏t+1

i=2 yi , i.e.the contribution of the ad-

versary to the output of the protocol. Note that because of non-

malleability this value is determined and known to F by the time

it rewinds the adversary. At that point F rewinds the adversary

and chooses ŷ1 = yy
−1
A . Since y is uniformly distributed, we have

that ŷ1 is also uniformly distributed. Because A is running on a

good random tape we know that at this point there is an
ϵ
2
> 1

2λc
fraction of ŷ1 for which A will correctly decommit. Since there is

a 1-to-1 correspondence between y and ŷ1 we can conclude that

for a
ϵ
2
> 1

2λc fraction of the input y the protocol will successfully

terminate. □

4.6 Signature generation simulation
After the key generation is over, F must handle the signature queries

issued by the adversary A. When A requests to sign a messagem,

our forger F will engage in a simulation of the threshold signature

protocol. During this simulation F will have access to a signing

oracle that produces DSA signatures under the public key y issued

earlier to F .

Semi-Correct Executions. Let k be such that R = дk
−1

and let
˜k be

the value defined by the inputs of the players in theMtA andMtAwc
protocols. More specifically if ci is the encryption sent by player Pi
in the first round of those protocols, then define

˜ki = Deci (ci ) and
˜k =

∑
i
˜ki .

We say that a protocol execution is semi-correct if in step (4) it

holds that k = ˜k . Note that this condition is well defined since the

values k, ˜k are uniquely determined by step (4). It is however not

feasible to decide if an execution is semi-correct or not.

Note that an execution is not semi-correct if the adversary "messes"

up the computation of R by revealing wrong shares in the compu-

tation of δ .

Bird-Eye View of Simulation. First we note that for semi-correct

executions the adversary, after Step 4 can already detect if the value

Rs1 which will be broadcast in Step (5) by the good player is correct

or not. In fact by this point the adversary has si for i > 1 and for a

"candidate" Rs1 can check if∏
i
Rsi = Rs = дmyr

Moreover in such executions when we arrive to step (5A) the simu-

lator will be able to "extract" the value s1 for the good player, which
will allow the simulation to terminate successfully.

Second, we show that a simulation that is not semi-correct will

fail at step (5D) with high probability since the valueU1 contributed

by the good player is indistinguishable from random. This allows

us to simulate Phase (5) by simply using a random s̃1 for P1.
The final question is how do we detect if an execution is semi-

correct or not. Here we use an idea from [26]: the forging simulator

will guess which one (if any) of theQ signature queries result in an

execution which is not semi-correct. Since this execution will be an

aborting execution, the simulation will stop there. With probability

1/(Q + 1) the guess will be correct and the simulation will succeed,

and the forger will be able to produce a forgery.

We now proceed with the details.
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4.7 Semi-correct executions
We now present a simulation that works for a semi-correct execu-

tion. We point out that F does not know the secret values associated

with P1: its correct share w1 of the secret key, and the secret key

of its public key E1. The latter is necessary in order to reduce un-

forgeability to the semantic security of the encryption scheme.

However F knows the secret keys of all the other players, and

their sharesw j . It also knows the "public key" of P1,W1 = д
w1

from

the simulation of the key generation protocol.

In the following simulation F aborts whenever the protocol is

supposed to abort, i.e. if the adversary (i) refuses to decommit in

steps 4, 5B or 5D or (ii) fails the ZK proof in Step 2 or 5 or (iii) the

signature (r , s) does not verify.

• Phase 1 All the players execute the protocol by broadcasting

Ci (F runs the protocol correctly for P1).
• Phase 2
– All the players execute the MtA protocol for k and γ . F
runs the protocol correctly for P1 but it cannot decrypt
the share α1j during the execution of the protocol with Pj
on input k1,γj , so F sets αi j to a random value in Zq

– All the players execute the MtAwc protocol for k and x .
Here F simulates P1 according to the simulation described

in Section 3. Moreover it extracts Pj resulting share ν1j
from his ZK proof.

In the protocol with Pj on input kj ,w1, F does not know

w1 so it just sends a random µ j1 to Pj
Note that at this point F knows σi for the bad players. Indeed

σi = kiwi +
∑
j
µi j +

∑
j
νji

and F knows all the values on the right end side of the

equation.

• Phase 3 All the players execute the protocol by revealing δi .
Let δ =

∑
i δi (F runs the protocol correctly for P1 with the

random shares it chose in step 2 – therefore F is effectively

broadcasting a random δ1).
• Phase 4
(1) Each player reveals Di to decommit to Γi
(2) F queries its signature oracle and receives a signature

(r , s) on m. It computes R = дms−1yr s
−1

∈ G (note that

H ′(R) = r ∈ Zq ).
(3) F rewindsA to the decommitment step, and for P1 changes

the decommitment to Γ̂1 = Rδ
∏

i>1 Γ
−1
i . Note that [Γ̂1

∏
i>1 Γi ]

δ−1 =

R
Note that at this point F knows the value si held by the bad

players since si = kim + σir . So F can compute the correct

s1 held by P1 as s −
∑
i>1 si .

• Phase 5 All players execute all the steps in this phase. F uses

s1 as the share for P1

We prove the following Lemma about the simulation.

Lemma 4.4. Assuming that

• The Strong RSA Assumption holds
• KG, Com, Ver, Equiv is a non-malleable equivocable commit-
ment;

then the simulation has the following properties

• on inputm it outputs a valid signature (r , s) or aborts.
• it is computationally indistinguishable from a semi-correct
real execution

Proof of Lemma 4.4. The only differences between the real and

the simulated views is the following: In theMtA protocol the values

ci = Ei (ki ) are published and in the real protocol R = дk
−1

where

k =
∑
i ki , while in the simulated execution R = д

ˆk−1
for the

ˆk
chosen by the signature oracle. This is easily seen to be computa-

tionally indistinguishable under the semantic security of Paillier’s

encryption.

Indeed, when F rewinds the adversary to "fix" the value of R, it
implicitly changes the value k1 that F contributes for P1 to R. If

R = д
ˆk−1

, let (implicitly)
ˆk1 = ˆk −

∑
i>1 ki . Note that R

ˆk1
is known

since R
ˆk1+

∑
i>1

ki = д, therefore R
ˆk1 = дR−k2 . So to distinguish

between the real execution and the simulated one the adversary

should detect if the ciphertext sent by F for P1 in the first round

of the MtAwc protocol contains a random k1 or the random
ˆk1

determined as logR (дR
−k2 ) which is infeasible under the semantic

security of Paillier’s encryption (given that all values are proven to

be "small" and no wraparound modN happens).

Note that we are simulating a semi-correct execution with an

execution which is not semi-correct, but that’s OK because the two

are indistinguishable.

However, because the real execution is a semi-correct one, we

know that the correct shares ofk for the adversary are theki that the
simulator knows. Therefore the value s1 computed by the simulator

is consistent with a correct share for P1 for a valid signature (r , s),
which makes Phase 5 indistinguishable from the real execution to

the adversary.

Let (r , s) be the signature that F receives by its signature oracle

in Step 2 of Phase 4. This is a valid signature form. We prove that

if the protocol terminates, it does so with output (r , s). This is a
consequence of the non-malleability property of the commitment

scheme. Indeed, if the adversary correctly decommits, its openings

must be the same except with negligible probability. □

4.8 Simulation of a non semi-correct execution
We now show how to simulate the last execution for a non semi-

correct execution when
˜k , k . Details follow.

• Phases 1 to 3 The simulator runs the semi-correct simula-

tion through Phase 3 (including aborting at Phase 4 if the

adversary fails to decommit).

• Phase 4 F does not rewind the adversary to "fix" the value

of R, but runs the protocol normally for P1.
• sf Phase (5) F chooses s̃1 ∈R Zq and runs Phase 5 with this

value instead of s1.

Before we prove that this simulation is indistinguishable for non-

semi-correct executions let us give an intuition. Note that the only

difference with the previous simulation is that here F uses a random

share s̃1 instead of the s1 that it computed in the other simulation.

The reason is that the value s1 computed in the previous simulation

is only guaranteed to be the "correct" share of s if the execution
is semi-correct. If the adversary shares ki don’t match anymore

the value R then s1 is incorrect, and therefore F chooses a random
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value instead. In turns this causes U1 to be uniformly distributed

and the check in step (5D) to fail.

The main point of the proof is that if the execution is not semi-

correct then the valueU1 is (given the view of the adversary) compu-

tationally indistinguishable from uniform even in the real execution

(under the DDH assumption).

Our proof reflects the above intuition. First we prove that a

real non-semi-correct execution is indistinguishable from one in

which P1 outputs a random S1. And then we prove that this is

indistinguishable from the simulation above.

Lemma 4.5. Assuming that

• KG, Com, Ver, Equiv is a non-malleable equivocable commit-
ment;
• the DDH Assumptions holds

then the simulation is computationally indistinguishable from a non-
semi-correct real execution

Proof of Lemma 4.5. We construct three games between the

simulator (running P1) and the adversary (running all the other

players). In G0 the simulator will just run the real protocol. In G1

the simulator will follow the real protocol but will choose S1 as
a random group element. In G2 the simulator will run the above

simulation.

Indistinguishability of G0 and G1 Let us assume that there is an

adversary A0 that can distinguish between G0 and G1. We show

how this contradicts the DDH Assumption.

Let A = дa ,B = дb ,C = дc be the DDH challenge where c = ab
or random in Zq .

The distinguisher F0 runs A0, simulating the key generation

phase so that y = B = дb . It does that by rewinding the adversary

at the end of Phase 2 of the key generation protocol and changing

the decommitment of P1 to y1 = b
∏

i>1 y
−1
i .

F0 also extracts the values xi from the adversary. Note that at

this point y = B and F0 knows xi , but not b and therefore not x1.
Moreover F0 extracts the secret key for the encryption keys Ei for
i > 1. In this simulation F0 also knows the secret key matching

E1 (since we are not making any reduction to the security of the

encryption scheme).

Then F0 runs the signature generation protocol for a not-semi-

correct execution. Remember here we assume that we have a (t ′, t ′)
sharing of the secret key. So b =

∑
i ∈S wi with F0 knowingwi for

i > 1 but not knowing w1. Denote with wA =
∑
i>1wi (which is

known to F0) and thereforew1 = b −wA.

F0 runs the protocol normally for Phases 1,2,3,4. It extracts the

value γi for i > 1 from the adversary (and he knows γ1 since he

ran P1 normally). Therefore F0 knows k such that R = дk
−1

since

k = (
∑
i γi )δ

−1
. It also knows k1 since it was chosen normally

according to the protocol. Before moving to the simulation of Phase

5, let’s look at theMtAwc protocol for the computation of the shares

σi .
We note that since F0 knows the decryption key for E1 he also

knows all the shares µ1j from the invocation of theMtAwc protocol
between P1 and Pj on input k1 andw j respectively

5
.

5
In this case we do not need to extract anything from Pj ’s ZK proof, but we still need

to check that the value sent by Pj is correct.

For theMtAwc protocol between P1 and Pj on inputw1 and kj re-
spectively, F0 knows the value kj input by Pj since he has extracted
the secret key of Ej . However F0 does not know w1 therefore he

sends a random µ j1 to Pj and sets (implicitly) νj1 = kjw1 − α j1.
At the end we have that the share σ1 held by P1 is

σ1 = k1w1 +
∑
j>1

µ1j +
∑
j>1

νj1

by rearranging the terms and substituting the above we get

σ1 = ˜kw1 +
∑
j>1

µ1j −
∑
j>1

µ j1

where
˜k =

∑
i ki . Remember that since this is not a semi-correct

execution then
˜k , k where R = дk

−1

.

Sincew1 = b −wA we have

σ1 = ˜kb + µ1

where

µ1 =
∑
j>1

µ1j −
∑
j>1

µ j1 − ˜kwA

with µ1, ˜k known to F0.
Note that this allows F0 to compute the correct value

дσ1 = B
˜kдµ1

and therefore the correct value of Rs1 as

Rs1 = Rk1m+rσ1 = дk
−1(k1m+rσ1) = дk

−1(k1m+r µ1)Bk
−1 ˜kr

or

Rs1 = дµ̂1B
ˆβ1

where µ̂1 = k−1(k1m + r µ1) and ˆβ1 = k−1 ˜kr and µ̂1 and
ˆβ1 are

known to F0.
We now continue the simulation

• 5A/5B F0 selects a random ℓ1 and sets V1 = Rs1дℓ1 A1 =

дρ1 = A = дa and B1 = дρ1ℓ1 = Aℓ1
. It simulates the ZK

proof (since it does not know ρ1 or s1). It extracts si , ℓi from

the adversary such that Vi = Rsiдℓi = дk
−1siдℓi . Let sA =∑

i>1 k
−1si

Note that

V = д−my−r
∏
i
Vi = д

−my−rV1
∏
i>1

Vi

and therefore substituting the above relations (and setting

ℓ =
∑
i ℓi )

V = дℓRs1дsA−my−r

Note that y = B so y−r = B−r . Therefore

V = дℓдµ̂1B
ˆβ1дsA−mB−r

or

V = дℓдθBκ

where θ = µ̂1 + sA −m and κ = ˆβ1 − r known to F0.
Note that for executions that are not semi-correct , 0

• 5C/5D F0 computes T1 correctly (which he can do since he

knows ℓ1) but forU1 outputsU1 = AθCκ and it aborts.
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Note what happens when C = дab . By our choice of a = ρ1 and
b = x we have thatU1 = V

ρ1
as in Game G0. However when C is a

random group element, U1 is uniformly distributed as in G1.

Therefore under the DDH assumption G0 and G1 are indistin-

guishable.

Indistinguishability of G1 and G2 We note that in G2 the simu-

lator really computesU1 as V
ρ1

(rather than outputting a random

group element). However since s̃1 is chosen at random we have

thatU1 follows a uniform distribution in both games.

In Phase (5B) F broadcasts a random Ṽ1 = Rs̃1дℓ1 which is indis-

tinguishable from the correct V1 = Rs1дℓ1 because of the "mask"

дℓ1 which (under the DDH) is computationally indistinguishable

from a random value, given that the adversary only has A1,B1.
Therefore under the DDH assumption the games G1 and G2 are

indistinguishable.

□

4.9 Finishing up the proof
Before we conclude the proof we note that our protocol detects the

presence of a malicious adversary by noticing that the signature

does not verify. As pointed out by Lindell in [26] this strategy is

not immediately simulatable against a malicious adversary for the

following reason. Consider what happens in Phase 5: In the semi-

correct simulation F rewinds the adversary to “hit" the correct s .
But if the adversary had decided to be malicious and terminate the

protocol with an invalid signature, then the protocol would not be

simulatable. If F hits an invalid signature “on purpose" (e.g. by not

rewinding), then the simulation is distinguishable by a semi-honest

adversary who does hit the correct signature.

Luckily for a “game-based" definition of security, this is not an

issue as discussed in [26]. Let Q < λc be the maximum number of

signature queries that the adversary makes. In the real protocol,

the adversary will output a forgery after ℓ < Q queries, either

because it stops submitting queries, or because the protocol aborts.

Therefore in our simulation, following Lindell [26], we choose a

random index ι ∈ [0...Q]:

• if ι = 0 we assume that all executions are semi-correct. In

this case we can always simulates as in the previous section

• otherwise we assume that the first ι − 1 executions are semi-

correct, but at the ιth execution the value V is not equal to

дℓ .

With probability 1/(Q + 1) ≥ λ−c this is a correct guess.
We can now complete the proof.

Proof of Theorem 4.1. Unforgeability. The forger F described

above produces an indistinguishable view for the adversary A, and
therefore, A will produce a forgery with the same probability as in

real life. The success probability of F is at least
ϵ 3
8Q where Q is the

maximum number of queries. That’s because F has to succeed in

• choosing a good random tape for A (this happens with prob-

ability larger than
ϵ
2
)

• hitting a good public key y (this also happens with probabil-

ity larger than
ϵ
2
)

• guessing the correct index query ℓ (this happens with prob-

ability larger than 1/Q

Under those conditions, the adversary A will output a forgery with

probability at least
ϵ
2
.

Under the security of the DSA signature scheme, the probability

of success of F must be negligible, which implies that ϵ must also be

negligible, contradicting the assumption thatA has a non-negligible

probability of forging.

Correctness. If all players are honest, the protocol fails only if

one of the MtA protocols fails. Since we have a total of 4n2 such
sub-protocols executed during a run of our signature protocol, we

have that our protocol fails with probability at most
4n2

q which is

negligible.

□

5 EXTENSIONS
In the final version of the paper we will present the following

natural extensions to our result.

Other additively homomorphic schemes. Our optimistic scheme

works with any additively homomorphic scheme with no modifica-

tion. It requires an assumption analogous to the Paillier-EC (or an

efficient ZK Proof for the statement in the MtAwc protocol).

Other multiplicative to share conversions. Again, our opti-

mistic protocol works with any protocol that allows two parties to

convert their multiplicative shares of a secret into additive shares.

In particular protocols based on oblivious transfer can be used (see

the literature on SPDZ or the recent work on threshold DSA in

[12]).

Deterministic Key Generation A very popular feature of Bit-

coin wallets is deterministic key generation. Introduced in Bitcoin-

Improvement-Proposal 32 (BIP32), the idea of this scheme is to allow

one to deterministicly generate many keys from a single ECDSA

key. Our key sharing is compatible with BIP32 public derivations,

and we leave it as future work to prove security in this setting.

6 REMOVING THE ZK PROOFS FROM THE
MTA PROTOCOL

As we mentioned in the Introduction, the ZK proofs in the MtA
protocol are the most expensive step of our protocol due not only to

the fact that these are ZK proofs over the Paillier cryptosystem, but

also that every player has to run n of them (since they are specific

to each execution of the MtA protocol).

We consider what happens if the range proofs are eliminated.

As we discussed in Section 3 theMtA protocol needs to be secure

in the presence of an oracle that tells the parties if a reduction

modN happens during the execution. Note that in reality the oracle

represents the failure of the verification of the signature generated

by the protocol, and if that happens the system is reset. So the

oracle is a very weak oracle, which stops the working the moment

it tells you that a reduction modN happened.

We conjecture that our protocol remains secure even if the ZK

proofs are eliminated for Alice and simplified for Bob in theMtA
protocol and simplified in theMtAwc protocol. More precisely both

the MtA and MtAwc protocol work as follow:

• Neither party proves that their values a,b are "small"
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• Bob broadcasts B = дb ,B′ = дβ
′

together with a ZK proof

of knowledge for b, β ′ mod q using Schnorr’s prooof [32].

Alice also checks that дα = BaB′.

We point out that B = дb is public in our threshold DSA

protocol. Indeed in one case b = wi , the share of the secret

key x held by player Pi and B = д
b
is public at the end of the

key generation phase together with a ZK proof of knowledge.

In the other case b = γi , and B = д
b
will be public at the end

of following round which is when Alice performs the above

check.

To support our conjecture we propose some "ad-hoc" computa-

tional assumptions which if true, they would guarantee the security

of the protocol. The assumptions are new and non-standard, yet

they look reasonable. We discuss them informally below – a full

proof of security will appear in the final version.

Information Leaked to Alice by removing the Range Proof.

If we remove the proofs that the input a used by Alice is small, we

leak information about the input used by Bob via the knowledge

that a reduction modN happened or not. Notice that Bob’s inputs

to theMtA andMtAwc protocols are the share of ρ (the mask for

the inversion of k) and the share of x (the secret key).

Note that these values are all "high entropy" secrets and that a

reduction modN can only happen once, since if that happens the

protocol ends.

Therefore the following stronger assumption on the unforgeabil-

ity of DSA would suffice. We define a game between a Challenger

and an Attacker:

• The Challenger gives to the Attacker a DSA public key y =
дx and a random number x̂ ∈R Zq . Let x

′ = x − x̂ mod q.

The Attacker chooses an RSA modulus N > q3.
• The Attacker submits a messagem and three arbitrary num-

bers λ1, λ2, ρ̂1.
• The Challenger chooses ρ ′ ∈R Zq and β1, β2 ∈R ZN . If

λ1x
′+β1 and λ2ρ

′+β2 are less than N , the Attacker receives

(r , s) a valid DSA signature on m and also α = ρk mod q

where k ∈R Zq and r = дk
−1

.

Otherwise the game stops.

The Attacker wins if he forges a signature on a message for which

the Challenger did not output a signature. The assumption is that

winning this game is infeasible.

We believe this assumption to be reasonable because it appears

that the Attacker receives only limited information about the values

x ,k .
Note that we can’t simulate Alice’s view in this case, but we are

arguing that the information leaked is minimal and does not affect

security in a game-based definition of unforgeability.

Information Leaked to Bob by removing the ZK Consistency

Proof. Here instead we are able to simulate Bob’s view under a

stronger assumption on the Paillier cryptosystem.

If Bob is corrupted, then the simulated Alice sends the encryption

of a random value cA = E(â). But then it must decide if to accept

or reject at the end of step (2) (where the real Alice checks that

дα = BaB′) without knowing â. Here we assume that the simulator

is provided with an oracle ΩcA (cB ,b, β) which answers 1 if and

only if Dec(cB ) = b · Dec(cA) + β mod q. Then the simulator will

extract b, β from the malicious Bob’s proof of knowledge, and query

ΩcA (cB ,b, β) and accepts if the oracle answers 1.

Security cannot be based on the semantic security of the Paillier’s

encryption scheme anymore since the presence of the oracle im-

mediately implies that Paillier is not semantically secure anymore.

However consider the following experiment:

• Generate a Paillier key (E,D)
• Generate two random values a0,a1 ∈R Zq and publish A =
дa0

• Choose a random bit b and publish c = E(ab )
• Letb ′ be the output of the adversary who is allowed restricted
access to the oracle Ωc – by restricted we mean that the

oracle will stop working after it outputs 0.

We say that the Paillier-ECR assumption holds if for every PPT ad-

versary, the probability that b = b ′ is negligible. Under the Paillier-
ECR assumption we can prove that no adversary given дa0 can

distinguish if theMtA protocol was run with a0 or a1 (with both

values being "high entropy" in particularly randomly chosen). This

is sufficient to simulate MtA with high entropy inputs, which is

what is needed to prove security of our threshold DSA protocol.

We note that our Paillier-ECR assumption is a weaker version

of the Paillier-EC assumption in [26]. In the latter the oracle access

is not restricted, which makes the assumption much stronger. In

our case it is sufficient to consider the restricted oracle since the

real protocol stops if Alice detects cheating.

7 IMPLEMENTATION, BENCHMARKS, AND
EVALUATION

We implemented both the key generation and signature generation

of our protocol, and we confirm that they are highly efficient and

fast enough to be used in practice. We benchmarked the version

of our protocol from Section 6 that does not contain the range

proofs, but relies on the Paillier-ECR assumption. We compare the

performance of our protocol to the runtimes of Gennaro et al. [17]
and Boneh et al. [4]. All benchmarks were single-threaded and run

on an an Intel quad-core i7-6700 CPU@ 3.40GHz and 64GB of RAM.

We ran the code [17] and [4] on our benchmark machine to get

an accurate comparison. It should be noted that we implemented

our scheme in C while theirs is a Java implementation which calls

native C libraries for the heaviest arithmetic computations. All

benchmarks were taken over the secp256k1 curve, which is is the

curve used in Bitcoin and more recently a NIST standard.

For the curve operations, we used libsecp256k1.
6
We imple-

mented theMtA protocol with Paillier using the implementation

from libhcs.
7
.

7.1 Benchmarking the data complexity
When compared to [4, 17], we reduce the amount of data transmit-

ted. All figures in this section were measured empirically from the

respective implementations, and thus it is possible that they may be

further optimized in practice.
8
For a threshold of t (i.e. when there

6
https://github.com/bitcoin-core/secp256k1

7
https://github.com/tiehuis/libhcs

8
We note that in [12] they give size benchmarks for [17] and [4] that are far worse than

the numbers we gave– nearly 2 Megabytes for the two party case alone. However,

when we ran the benchmarks ourselves, we found that their numbers were incorrect
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are t + 1 participants in the signing protocol), the total data d in

bytes sent and received by a given player to/from all other players

during the signing protocol is given by:

dours (t) = 2, 328 + t × 5, 024 Bytes
In contrast, the data sent to/from a given player in [17] is given

by:

dGennaro (t) = (t + 1) × 34, 578 Bytes
And the data transmitted per player in [4] is given by:

dBoneh (t) = (t + 1) × 38, 189 Bytes
Lastly, we mention that for the 2-of-n case, we have dours (t =

1) = 3, 976 B. In contrast, the recent protocol of [12] requires far

more than that with 86.7 KiB for 2-of-2 signing and 106.7 KiB
for 2-of-n signing. Lindell’s scheme [26] only requires 769 B to be

communicated in the 2-of-2 case (but does not support 2-of-n).

7.2 Benchmarking signature generation time
Following the methodology of [4, 17], we benchmark the raw com-

putation time of a single player without counting network costs.

Since each player runs their computation in parallel, this represents

the running time of the entire protocol other than network latency.

We find that our protocol significantly outperforms both of [4, 17]

when using this metric.

As in [4, 17], the protocol running time has a fixed cost that is

independent of the number of players plus a linear marginal cost

as the threshold increases. We stress that the signing time only

depends on the number of active participants (t + 1), but does not
depend on n, the total number of players. All times are given on a

single core, and were averaged over 1000 iterations.

Our protocols running time is given by:

rours (t) = 29 + (t) × 24 milliseconds
The running time of [17] is given by:

rGennaro (t) = 142 + (t) × 52 milliseconds
The running time of [4] is given by:

rBoneh (t) = 397 + (t) × 91 milliseconds
We can see that our protocol significantly outperforms both

previous schemes. See Figure 1 for a comparison of the concrete

raw computation times for thresholds up to 20.

8 CONCLUSION
We have presented a threshold ECDSA protocol that is an improve-

ment over the existing schemes by every metric. Although [17]

has been available for some time, there are still to our knowledge

no Bitcoin services or user wallets that offer threshold-signature

security. We believe that this is due to the impracticality of their

distributed key generation protocol. Having to rely on a trusted

dealer to distribute key shares exposes a single point of failure for

the system and in doing so runs contrary to the entire premise of

using threshold signatures in the first place.

and far too high. Even with our own more favorable benchmarks of [4, 17], our scheme

is still a significant improvement.

Figure 1: Comparison of the raw computation time as
the threshold increases between this work and previous
schemes.

We solve this problem by presenting and implementing a new

scheme with a highly efficient distributed key generation protocol.

Together with our reduction in running time and data transferred,

we believe that ECDSA threshold signatures are finally mature

enough for adoption.
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A THE ZK PROOFS FOR THE MTA
PROTOCOL

In this section we describe the ZK proofs that are needed in the

MtA protocol (see Section 3). The proofs are based on similar ones

from [27]: specifically we prove statements that are simpler than

the ones needed in [27].

In these proofs the Verifier uses an auxiliary RSA modulus Ñ
which is the product of two safe primes P̃ = 2p̃ + 1 and Q̃ = 2q̃ + 1
with p̃, q̃ primes. The Verifier also uses two values h1,h2 ∈ Z ∗

Ñ

according to the commitment scheme in [15]. Security is based

on the assumption that the Prover cannot solve the Strong RSA

problem over Ñ .

Therefore our initialization protocol must be augmented with

each player Pi generating an additional RSAmodulus Ñi , and values

h1i ,h2i , together with a proof that they are of the correct form (see

[15]).

A.1 Range Proof
This proof is run by Alice (the initiator) in bothMtA andMtAwc
protocols.

The input for this proof is a Paillier public key N , Γ and a value

c ∈ ZN 2 . The prover knows m ∈ Zq and r ∈ Z ∗N such that c =

ΓmrN mod N 2
, where q is the order of the DSA group.

At the end of the protocol the Verifier is convinced that m ∈
[−q3,q3].

• The Prover selects α ∈R Zq3 , β ∈R Z ∗N , γ ∈R Zq3Ñ and

ρ ∈R ZqÑ .

The Prover computes z = hm
1
h
ρ
2
mod Ñ ,u = Γα βN mod N 2

,

w = hα
1
h
γ
2
mod Ñ .

The Prover sends z,u,w to the Verifier.

• The Verifier selects a challenge e ∈R Zq and sends it to the

Prover.

• The Prover computes s = re β mod N , s1 = em + α and

s2 = eρ + γ and sends s, s1, s2 to the Verifier.

• The verifier checks that s1 ≤ q3, u = Γs1sN c−e mod N 2
and

hs1
1
hs2
2
z−e = w mod Ñ .

Completeness. By inspection.

Soundness. Let Ñ , s̃ be our Strong RSA challenge. We show how

to solve it using a Prover who succeeds on incorrect instances (i.e.

where |m | > q3).
Let h2 = s̃ and h1 = h

χ
2
for a random χ ∈ ZqÑ . It is not hard to

see that the distribution of these values is indistinguishable from

the real one with sufficiently high probability.

Run the prover on a successful execution over a challenge e and
then rewind him and find a successful execution with challenge

ê . Therefore we have the same first message z,u,w and two set of

answers s, s1, s2 for challenge e , and ŝ, ŝ1, ŝ2 for challenge ê both

satisfing the verification equations. Let ∆E = e − ê , ∆s1 = s1 − ŝ1
and ∆s2 = s2 − ŝ2.

Let λ = GCD(∆s2 + χ∆s1,∆E ). Assume λ , ∆E : denote with

λs = (∆s2 + χ∆s1)/λ and λE = ∆E/λ > 1. Then we find µ,ν such

that µλs + νλE = 1.

Then the solution to the Strong RSA challenge is x̃ = zµ s̃ν mod

Ñ , λE . Indeed note that

w = hs1
1
hs2
2
z−e = hŝ1

1
hŝ2
2
z−ê mod Ñ

therefore

z∆E = h∆s1
1

h∆s2
2
= s̃∆s2+χ∆s1 mod Ñ

which implies

zλE = s̃λS mod Ñ

Concluding

s̃ = s̃µλs+νλE = [zµ s̃ν ]λE mod Ñ
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We now need to prove that the case λ = ∆E cannot happen with

high probability.

Consider first the case λ = ∆E but ∆E does not divide ∆s1. Write

χ = χ0 + χ1p̃q̃ with χ1 chosen uniformly at random from a set of

size > q. Note that the value χ1 is information theoretically secret

from the adversary (who only has h1,h2). We have that

∆s2 + χ∆s1 = ∆s2 + χ0∆s1 + χ1∆s1p̃q̃

Then there is a prime power ab (with a ≥ 2) such that ab |∆E ,

ab−1 |∆s1 but a
b
does not divide ∆s1. Note that this implies that

ab−1 |∆s2. Set c0 = (∆s2 + χ0∆s1)/a
b−1

and c1 = ∆s1p̃q̃/a
b−1

. We

have that c0 + χ1c1 = 0 mod a and c1 , 0 mod a. The number of

elements χ1 for which this equivalence holds is at most q/a + 1 and
thus the probability of this holding for a random choice of χ1 is at
most

1

a +
1

q which is at most
1

2
+ 1

q . Otherwise we are in the case

above with λ , ∆E .
Now consider the case λ = ∆E and ∆E |∆s1. Note that this implies

that ∆E |∆s2 as well. Define m1 = ∆s1/∆E , ρ1 = ∆s2/∆E , α1 =
(eŝ1 − ês1)/∆E , γ1 = (eŝ2 − ês2)/∆E .

These ensure that z = hm1

1
h
ρ1
2

mod Ñ , w = hα1

1
h
γ1
2

mod Ñ ,

s1 = em1 + α1 and ŝ1 = êm1 + α1.
Finally denote with m′

1
= ∆s1∆

−1
E mod N and α ′

1
= (eŝ1 −

ês1)∆
−1
E mod N . Note that sincem′

1
=m1 mod N and α ′

1
= α1 mod

N , there must be r1, β
′ ∈ Z ∗N such that

c = Γm
′
1rN
1

and u = Γα
′
1 (β ′)N mod N 2

At this point we know the following facts

s1 < q3 s1 = em1 + α1 s1 = em′
1
+ α1 mod N

ŝ1 < q3 ŝ1 = êm1 + α1 ŝ1 = êm′
1
+ α1 mod N

Therefore we can prove thatm1 ∈ [−q
3,q3] since |m1 | ≤ |∆s1 | ≤ q3.

But this implies that m′
1
∈ [−q3,q3] since m′

1
= m1 mod N and

N > q7.

Honest-Verifier Zero-Knowledge. The simulator proceeds as in

[27]. Choose z, s, s1, s2, e according to the appropriate distribution

and set u = Γs1sN c−e mod N andw = hs1
1
hs2
2
z−e mod Ñ .

A.2 Respondent ZK Proof for MtAwc
This proof is run by Bob (the responder) in theMtAwc protocol. For
theMtA protocol a simpler version of this proof if needed, which

we present later.

The input for this proof is a Paillier public key N , Γ and two

values c1, c2 ∈ ZN 2 , together with a value X in G the DSA group.

The prover knows x ∈ Zq , y ∈ ZN and r ∈ Z ∗N such that

c2 = c
x
1
ΓyrN mod N 2

, and X = дx ∈ G , where q is the order of the

DSA group.

At the end of the protocol the Verifier is convinced of the above

and that x ∈ [−q3,q3].

• The Prover selects α ∈R Zq3 , ρ ∈R ZqÑ , ρ ′ ∈R Zq3Ñ , σ ∈

ZqÑ , β ∈R Z ∗N , γ ∈R Z ∗N and τ ∈R ZqÑ .

The Prover computes u = дα , z = hx
1
h
ρ
2
mod Ñ , z′ =

hα
1
h
ρ′
2

mod Ñ , t = h
y
1
hσ
2
mod Ñ ,v = cα

1
Γγ βN mod N 2

, and

w = h
γ
1
hτ
2
mod Ñ .

The Prover sends u, z.z′, t ,v,w to the Verifier.

• The Verifier selects a challenge e ∈R Zq and sends it to the

Prover.

• The Prover computes s = re β mod N , s1 = ex + α , s2 =
eρ + ρ ′, t1 = ey + γ and t2 = eσ + τ .
The Prover sends s, s1, s2, t1, t2 to the Verifier.

• The verifier checks that s1 ≤ q3, д1 = X eu ∈ G, hs1
1
hs2
2
=

zez′ mod Ñ , ht1
1
ht2
2
= tew mod Ñ , and cs1

1
sN Γt1 = ce

2
v mod

N 2
.

Completeness. By inspection.

Soundness. Let Ñ , s̃ be our Strong RSA challenge. We show how

to solve it using a Prover who succeeds on incorrect instances (i.e.

where |x | > q3).
Let h2 = s̃ and h1 = h

χ
2
for a random χ ∈ ZqÑ . It is not hard to

see that the distribution of these values is indistinguishable from

the real one with sufficiently high probability.

Run the prover on a successful execution over a challenge e and
then rewind him and find a successful execution with challenge ê .
Therefore we have the same first message u, z, z′, t ,v,w and two

set of answers s, s1, s2, t1, t2 for challenge e , and ŝ, ŝ1, ŝ2, t̂1, t̂2 for
challenge ê both satisfing theverification equations. Let ∆E = e − ê ,
∆s1 = s1 − ŝ1, ∆s2 = s2 − ŝ2, ∆t1 = t1 − t̂1 and ∆t2 = t2 − t̂2.

Let λ = GCD(∆s2 + χ∆s1,∆E ). Assume λ , ∆E : denote with

λs = (∆s2 + χ∆s1)/λ and λE = ∆E/λ > 1. Then we find µ,ν such

that µλs + νλE = 1.

Then the solution to the Strong RSA challenge is x̃ = zµ s̃ν mod

Ñ , λE . Indeed note that

z′ = hs1
1
hs2
2
z−e = hŝ1

1
hŝ2
2
z−ê mod Ñ

therefore

z∆E = h∆s1
1

h∆s2
2
= s̃∆s2+χ∆s1 mod Ñ

which implies

zλE = s̃λS mod Ñ

Concluding

s̃ = s̃µλs+νλE = [zµ s̃ν ]λE mod Ñ

Let λ′ = GCD(∆t2+ χ∆t1,∆E ). In a similar way as above we can

prove that if λ′ , ∆E then we can solve our Strong RSA challenge.

Therefore we can limit ourselves to the case λ = λ′ = ∆E .
Consider first the case λ = λ′ = ∆E but ∆E does not divide ∆s1.

Write χ = χ0 + χ1p̃q̃ with χ1 chosen uniformly at random from a

set of size > q. Note that the value χ1 is information theoretically

secret from the adversary (who only has h1,h2). We have that

∆s2 + χ∆s1 = ∆s2 + χ0∆s1 + χ1∆s1p̃q̃

Then there is a prime power ab (with a ≥ 2) such that ab |∆E ,

ab−1 |∆s1 but a
b
does not divide ∆s1. Note that this implies that

ab−1 |∆s2. Set c0 = (∆s2 + χ0∆s1)/a
b−1

and c1 = ∆s1p̃q̃/a
b−1

. We

have that c0 + χ1c1 = 0 mod a and c1 , 0 mod a. The number of

elements χ1 for which this equivalence holds is at most q/a + 1 and
thus the probability of this holding for a random choice of χ1 is at
most

1

a +
1

q which is at most
1

2
+ 1

q . Otherwise we are in the case

above with λ , ∆E .
In a similar fashionwe can remove the case in which λ = λ′ = ∆E

but ∆E does not divide ∆t1.
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Now consider the case λ = λ′ = ∆E with ∆E |∆s1 and ∆E |∆t1.
Note that this implies that ∆E |∆s2 and ∆E |∆t2as well.

Define x1 = ∆s1/∆E , ρ1 = ∆s2/∆E , α1 = (eŝ1 − ês1)/∆E , ρ
′
1
=

(eŝ2 − ês2)/∆E , y1 = ∆t1/∆E , σ1 = ∆t2/∆E , γ1 = (et̂1 − êt1)/∆E
and τ1 = (et̂2 − êt2)/∆E .

Define x ′
1
= x1 mod N and y′

1
= y1 mod N . Note that by defini-

tion

c
x ′
1

1
Γy
′
1κN = c2 mod N 2

for some κ as needed. And дx1 = X ∈ G. So we have extracted

the required x ,y. As in the previous proof we can establish that

x1,x
′
1
∈ [−q3,q3].

Honest-Verifier Zero-Knowledge. The simulator proceeds as

in [27] and in the previous ZK proof.

A.3 Respondent ZK Proof for MtA
This proof is run by Bob (the responder) in the MtA protocol. It is

a simpler version of the previous protocol where Bob only proves

that x is small (without proving that it is the discrete log of any

public value).

The input for this proof is a Paillier public key N , Γ and two

values c1, c2 ∈ ZN 2 .

The prover knows x ∈ Zq , y ∈ ZN and r ∈ Z ∗N such that

c2 = c
x
1
ΓyrN mod N 2

where q is the order of the DSA group.

At the end of the protocol the Verifier is convinced of the above

and that x ∈ [−q3,q3].

• The Prover selects α ∈R Zq3 , ρ ∈R ZqÑ , ρ ′ ∈R Zq3Ñ , σ ∈

ZqÑ , β ∈R Z ∗N , γ ∈R Z ∗N and τ ∈R ZqÑ .

The Prover computes z = hx
1
h
ρ
2
mod Ñ , z′ = hα

1
h
ρ′
2

mod Ñ ,

t = h
y
1
hσ
2
mod Ñ ,v = cα

1
Γγ βN mod N 2

, andw = h
γ
1
hτ
2
mod

Ñ .

The Prover sends z, z′, t ,v,w to the Verifier.

• The Verifier selects a challenge e ∈R Zq and sends it to the

Prover.

• The Prover computes s = re β mod N , s1 = ex + α , s2 =
eρ + ρ ′, t1 = ey + γ and t2 = eσ + τ .
The Prover sends s, s1, s2, t1, t2 to the Verifier.

• The verifier checks that s1 ≤ q3, hs1
1
hs2
2
= zez′ mod Ñ ,

ht1
1
ht2
2
= tew mod Ñ , and cs1

1
sN Γt1 = ce

2
v mod N 2

.

The proof is immediate from the previous one.
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