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Abstract

Cryptographic accumulators allow to succinctly represent a large
set of values by providing a membership witness that can be used to
verify that the element was indeed part of a committed set. Accu-
mulators could be used in a public blockchain to create accountable
protocols, in which a party could prove to a smart contract that cer-
tain events have happened without having to store an expensive audit
log. In this work we introduce the first append-only hash-based ac-
cumulators with sub-logarithmic insertion cost and poly-logarithmic
witness size.

1 Introduction

Cryptographic accumulators are short commitments to a set S in a way that
allows one to produce compact proofs of membership that can be verified
efficiently by anyone with the knowledge of the accumulator’s value.

Introduced in [BDM93] with an application to timestamping, accumula-
tors find a wide range of applications, for example in accountable certificate
management [NN98, BLL00], authenticated dictionaries [GTH02], anony-
mous credentials [CL02], computations on authenticated data [ABC+15],
anonymous E-cash [STS99, MGGR13, SALY17], data outsourcing [Sla12],
updateable signatures [CJ10, PS14], and decentralized bulletin boards
[FVY14, GGM14].

Accumulators find natural applications in blockchains. They are among
of the building blocks of Zerocoin [MGGR13], a protocol for anonymous E-
cash. Cryptocurrencies like Bitcoin [Nak08] need all network nodes to reach
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consensus on the set of unspent transaction outputs (UTXOs). The size of the
UTXO set has grown to several gigabytes over time, which increases the cost
of running a node, therefore affecting the decentralization of such networks.
Similar concerns equally apply to cryptocurrencies in the account model like
Ethereum. [BBF19] builds constant-sized accumulators using groups of un-
known order, and uses them to create stateless blockchains with lightweight
nodes. While this construction is theoretically the best possible and it has
other useful properties like batching, it has the downside of requiring ad-
ditional cryptographic assumptions compared to hash-based accumulators.
Moreover, hash functions are in practice orders of magnitude faster than
operations in number-theoretic groups. In fact, [Dry19] builds on the dy-
namic hash-based accumulators of [RY16] to show how to create efficient,
hash-based dynamic accumulators for the UTXO set of Bitcoin.

1.1 Append-only audit logs

In some protocols, there is an asymmetry in the operational costs of updates,
proof generations and proof verification. For example, in Pisa [MBB+18], an
audit log of the actions executed by the operator is used in order to later be
able to prove that such actions were indeed executed. Thus, if the operator
was hired for a task and it did not complete it, the user can issue a challenge,
and the operator will lose it and be slashed; vice versa, if the user issues a
challenge despite the operator has done the task, then there will be an entry
in the audit log that the operator can use to win the challenge.

The downside of the approach above is that the size of the state that
grows linearly with the number of tasks. This can be solved by using an
accumulator.

Note that in the above protocol, it is not expected to actually have to
generate or verify proofs frequently. In fact, if the operator did complete
the task, a rational user will never issue a challenge that will lose. Thus,
while it is important that the costs of are small enough that a proof could be
created and verified, it is game-theoretically not expected to happen. On the
contrary, the accumulator needs to be updated with a new item every time
a new task is performed. This justifies the search for accumulators whose
update cost is as small as possible, even at the cost of slightly larger proof
sizes.

We remark that there is no requirement of ever deleting elements that
were added to the accumulator. That is, using the nomenclature in [BCD+17],

2



an additive accumulator suffices, rather than a fully dynamic accumulator. It
is reasonable to expect that one can obtain an improvement on proof size and
update costs by reducing the set of allowed operations on the accumulator,
and this is the topic of this paper.

1.2 Our contribution

In this work, we propose a hash-based additive accumulator with extremely
efficient element insertion time, while retaining poly-logarithmic proof size
and verification times. Unlike static accumulators, our constructions allow to
add new elements to the committed set, but fall short of being fully dynamic
in that we do not allow to remove elements.

Our first construction has a O(1) insertion time (notably, only one hash
and the counter need to be written at each insertion), while the proof size is
O(log2 n), where n is the number of elements added to S from the beginning.

By storing the state of our first construction in a Merkle tree, we ob-
tain an accumulator with O(log log n) insertion time, and proofs of size
O(log n log log n). In both cases, the space occupation for Add is O(log n),
while the accumulator is a single hash.

To the best of our knowledge, previous hash-based accumulator construc-
tions are based on Merkle trees ([Mer80]) or forests of Merkle trees ([RY16],
[Dry19]), and have O(log n) insertion time and proof size.

2 Definitions

We assume that H is a collision-resistant hash function, and we denote with
|| the concatenation operator.

For any positive integer n, we define d(n) as the largest power of 2 that
divides n. For example, d(17) = 1, d(6) = 2 and d(24) = 8. When n is
expressed in binary, d(n) is the number obtained by zeroing all 1 digits, except
the least significant one, for example d(88) = d(10110002) = 10002 = 8.

For a positive integer n, we further define zeros(n) = log2(d(n)) the
number of trailing zeros of n, and we define the predecessor pred(n) :=
n−d(n). It is easy to see that pred(n) is the number obtained by zeroing the
rightmost 1 bit in the binary representation of n. For example pred(88) =
pred(10110002) = 10100002 = 80.

For convenience, we also define pred(0) = zeros(0) = 0.
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We also define pred1(n) := pred(n) and, for t ≥ 2, we define predt(n) :=
pred(predt−1(n)); that is, predt(n) is the result obtained by starting from n
and applying t times the transform n 7→ pred(n).

3 Intuition

In this section we present the main idea behind our new construction for an
additive accumulator.

Let Rk be the value of the accumulator after the k-th element xk is added.
We consider schemes where Rk is defined as a commitment to the value of xk,
together with the value of some subset of previous accumulators {Rl}l∈Pk

,
where Pk ⊆ [1, k − 1]. Therefore, once Rk is known, a witness for some
element xj with j < k can be produced by opening the commitment for Rk

itself to prove the values of xk and Rk′ for an appropriately chosen k′ ∈ Pk,
and concatenating it with the witness for xj starting from Rk′ .

In the graph that has a node for each Rj, and a directed arch from Rj

to Ri if i ∈ Pj, building a witness for some element xj amounts to finding a
path from the current accumulator’s node Rk to the node corresponding to
Rj, and revealing all that is necessary to verify the chain of commitments;
by rebuilding the same path, one can verify such a witness. Of course, it is
best to find a path that is as short as possible.

The most trivial such scheme is obtained by setting Pk := {k − 1} for
each k > 1, obtaining a chain of commitments. This is not an interesting
accumulator, though, as the length of the witness is O(k − j).

A more interesting construction can be obtained by choosing

Pk := {Rk−1, Rk−2, Rk−4, . . . , Rk−2i . . .}

Rj−8 Rj−7 Rj−6 Rj−5 Rj−4 Rj−3 Rj−2 Rj−1 Rj Rj+1 Rj+2 Rj+3

Figure 1: A simple accumulator where each new value Rj commits to previous
accumulators at geometrically increasing distance. Each arrow represents one
of the values of previous accumulators that Rj commits to.
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As |Pk| = dlog ke, it is straightforward to obtain a construction with poly-
logarithmic witness size, by always revealing Rk−2i where i is chosen so that
k − 2i is the smallest number that is bigger than or equal to the target j.
This construction presents a major drawback: the size of the accumulator’s
state grows linearly in k, and any party that wishes to verify that updates are
correct needs to replicate the same state. In the following sections we present
our constructions where we address this problem by carefully choosing Pk.

A crucial idea in all our construction is the following observation: for any
fixed integer d > 1, the largest multiple of d not bigger than k+ 1 is equal to
the highest multiple of d not larger than k, unless k + 1 itself is a multiple
of d.

Therefore, we use as ’hook’ to the past history of the accumulator the
largest k′ ≤ k that is divisible by 2i but not divisible by 2i+1. We do this for
each i such that 2i ≤ k, obtaining a set of blog nc hashes that are stored in
the state of the accumulator. Crucially, when a new element xk+1 is added,
only one of these hooks need to be updated, corresponding to the highest
power of two that divides k + 1.

4 First scheme: smart back-links

In our first construction, we choose Pk = {k−1, pred(k)}, using the notation
of Section 11.

R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27

Figure 2: Representation of the commitments of our construction for the
accumulator’s values R16 to R27. Each Ri also commits to the Ri−1, but
the arrow is omitted for simplicity; for even values of i, Ri also commits to
Rpred(i).

The public state of our accumulator contains a counter k, initially set to
0, and an array S. We assume that S[i] = 0 by default for every integer

1If k is odd, pred(k) = k−1, hence it is redundant to commit to both values; we ignore
such optimizations for the sake of simplicity.
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i, until S[i] is assigned a different value. The value of k is the number of
elements that were added to the accumulator from the beginning.

At any point in time, we maintain the following invariant: S[i] for a
non-negative i is the value of the accumulator when the largest k′ ≤ k was
inserted with the property that k′ is divisible by 2i, but not divisible by 2i+1;
S[i] = 0 if no such number exists.

In particular, the current accumulator Rk after xk was added is always
the value stored in S[zeros(k)]; we call Rk the value of the accumulator after
the k-th element is added. In order to simplify the notation, we also define
R0 = NIL.

Only the first O (blog kc) elements of S can be non-zero, so no other
element needs to be stored as part of the public state of the accumulator.

The accumulator’s operator (or anyone that wishes to produce witnesses)
needs to also store the value Rk of the accumulators for each k.

Element insertion In order to add the k-th element xk, the accumulator’s
operator computes Rk as produces a new commitment (by hashing) to the
concatenation of H(xk), Rk−1 and Rpred(k).

The resulting hash is stored in S[zeros(k)], which is the new accumula-
tor’s root.

Algorithm 1: Inserting element x

Add(x)
k ← k + 1
prev ← S[zeros(k − 1)]
parent ← S[zeros(pred(k)]
S[zeros(k)] ← H(x||prev||parent)

Once the k-th element x is inserted in the accumulator, we assume that
the operator stores Rk and xk forever if it needs to be able to produce proofs
of membership. Note that storing Rk is only needed to produce proofs of
membership.

Observe that the value of prev in the algorithm above is equal to Rk−1,
while the value of parent equals Rpred(k). Therefore it is always the case that:

Rk = H(xk||Rk−1||Rpred(k))
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Witness generation Given the value of Ri for some i, the operator can
generate a membership witness of the value of xj, for any 0 < j ≤ i.

We define πi = (xi, Ri−1, Rpred(i)). Note that π is the opening of the
commitment Rk.

If j = i, the witness consists of the values of Ri−1 and Rpred(i), necessary
to open the commitment for the accumulator Ri.

If j < i, then we recursively generate the witness starting from either
Ri−1 or Rpred(i), whichever is ”most convenient”. That is, we use always use
the witness for Rpred(i), unless pred(i) < j; in that case, we concatenate πi
with the witness for Ri−1.

Algorithm 2: Generating a witness for xj starting from i

MemWitCreate(i, j)
π ←(xi, Ri−1, Rpred(i))
if i = j then

return π
else

if pred(i) < j then return π || MemWitCreate(i− 1, j)
else return π || MemWitCreate(pred(i), j)

end

Remark: the above algorithm generates the witness for element xj, start-
ing from the accumulator at time i. The witness for element xj for the current
accumulator is therefore generated by calling MemWitCreate(k, j).

Witness verification Given a witness w for the value of xj given the value
of Ri, for some positive j ≤ i, the verifier first checks that the hash of the
concatenation of the first three elements of w is indeed Ri. Let w′ be equal
to w after removing the first 3 elements of w, and let x, P , Q the first three
elements of w, respectively. Then:

• If j = i, it checks that the first element of w is indeed xj.

• If j < i and pred(i) < j, it recursively verifies that w′ is a valid proof
of the value of xj given that the value of Ri−1 is P .

• Otherwise, if j < i and pred(i) ≥ j, it recursively verifies that w′ is a
valid proof of the value of xj given that the value of Rpred(i) is Q.
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Algorithm 3: Verifying that w is a valid proof that xj = x, given Ri.

VerMem(Ri, i, j, w, x)
Parse w as x′, P,Q,w′, where x′, P,Q are the first three elements of
w, and w′ is the rest of the list.

if H(x′||P ||Q) 6= Ri then
return 0

end
if i = j then

return 1 if x = x′ else return 0
else

if pred(i) < j then return VerMem(P, i− 1, j, w′, x)
else return VerMem(Q, pred(i), j, w′, x)

end

Similarly to the witness generation function, the VerMem verifies that
w is a valid proof that the given element x is indeed element the j-th element
added to the accumulator, given that the accumulator’s value for some i ≥ j
is Ri. To verify a proof against the current accumulator after k elements
have been added, one calls the VerMem function with first parameters Rk

and k, respectively.

Witness update As there is no trapdoor and the execution of the Add
function is public, any party that was observing the accumulator can generate
the witness for a specific xk; in that case, it does not need more than a number
of elements proportional to the size of the proof itself.

With a more careful algorithm, the running time of the witness update
can be slightly improved. In fact, the old witness and the new witness are
identical, except for a prefix of length at most O(log n) that is replaced from
the old witness.

4.1 Analysis

Theorem 1. The construction defined above is an additive accumulator with
O(1) insertion cost, size of the accumulator state O(log n), and length of the
proof O(log2 n). The cost of a witness update is O(log n).

Remark. More precisely, the size of the proof for element j when k elements
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have been added to the accumulator is O(log2(k − j)).

5 Second scheme: Merkleized back-links

In this section we sketch the modifications to the above scheme to obtain a
different trade-off in running time; namely, we modify the commitment for
the k-th element to include the roots for O(log n) previous elements instead
of one. This will allow to obtain quasi-logarithmic proof size, at the cost of
a slightly worse insertion cost of O(log log n).

The main observation is that since pred(n) is the number obtained by
zero-ing the least significant 1 of n, in the above construction we end up
revealing a sequence of past commitments corresponding to the sequence
pred(k), pred(pred(k)), . . . and so on, until we reach a number k′ such that
pred(k′) is too small; in that case we reveal the commitment for k′ − 1
instead. Moreover, observe that all the commitments in the sequence
Rk, Rpred(k), . . . , Rk′ are indeed available as elements of the array S.

Based on these observations, we modify the above construction as follows:

• The accumulator’s operator stores and maintains in its state the entire
Merkle tree that has the elements of the array S as leafs; let Mk be the
value in the root of this Merkle tree.

• We define Rk := H(xk||Rk−1||Mk), in order to commit to both the
element xk and the state of the whole array S. We assume M0 := NIL

As the size of the array S is blog kc, it follows that it is possible to reveal
a specific leaf of the Merkle tree by revealing O(log log k) hashes. This allows
to modify the witness generation (and similarly the witness verification) al-
gorithm as follows: when pred(i) ≥ j, instead of recurring over pred(i), we
recur over predt(i) for the largest t such that predt(i) ≥ j.

The cost of updating the Merkle tree when an element of the array S is
modified (or appended) is O(log log k) as well, since only the hashes from a
leaf to the root need to be recomputed by the accumulator operator.

Theorem 2. There is an additive accumulator that has with insertion cost
O(log log n) and proof size O(log n log log n) for an accumulator with n ele-
ments. The cost of a witness update is O(log log n).
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6 Remarks and future extensions

The following ideas are still underdeveloped.

• In some applications, it could be reasonable to limit proofs to latest
t elements most recently added, for some constant t; in this case, the
computational and size bounds are polylogarithmic in t.

• Both the above schemes can be modified to support simultaneous in-
sertion of a batch of multiple elements at a cost significantly lower than
what would be paid by inserting the elements one by one.
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