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Abstract

Unlike signatures in a single-party setting, threshold signatures require coop-
eration among a threshold number of signers each holding a share of a common
private key. Consequently, generating signatures in a threshold setting imposes
overhead due to network rounds among signers, proving costly when secret shares
are stored on network-limited devices or when coordination occurs over unreliable
networks. In this work, we present FROST, a Flexible Round-Optimized Schnorr
Threshold signature scheme that reduces network overhead during signing opera-
tions while employing a novel technique to protect against forgery attacks applica-
ble to similar schemes in the literature. FROST improves upon the state of the art
in Schnorr threshold signature protocols, as it can be safely used without limiting
concurrency of signing operations yet allows for true threshold signing, as only a
threshold number of participants are required for signing operations. FROST can
be used as either a two-round protocol where signers send and receive two mes-
sages in total, or optimized to a single-round signing protocol with a pre-processing
stage. FROST achieves its efficiency improvements in part by allowing the pro-
tocol to abort in the presence of a misbehaving participant (who is then identified
and excluded from future operations)—a reasonable model for practical deploy-
ment scenarios. We present proofs of security demonstrating that FROST is secure
against chosen-message attacks assuming the discrete logarithm problem is hard
and the adversary controls fewer participants than the threshold.

1 Introduction
Threshold signature schemes are a cryptographic primitive to facilitate joint ownership
over a private key by a set of participants, such that a threshold number of participants
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must cooperate to issue a signature that can be verified by a single public key. Thresh-
old signatures are useful across a range of settings that require a distributed root of trust
among a set of equally trusted parties.

Similarly to signing operations in a single-party setting, some implementations of
threshold signature schemes require performing signing operations at scale and un-
der heavy load. For example, threshold signatures can be used by a set of signers to
authenticate financial transactions in cryptocurrencies [15], or to sign a network con-
sensus produced by a set of trusted authorities [17]. In both of these examples, as the
number of signing parties or signing operations increases, the number of communi-
cation rounds between participants required to produce the joint signature becomes a
performance bottleneck, in addition to the increased load experienced by each signer.
This problem is further exacerbated when signers utilize network-limited devices or
unreliable networks for transmission, or protocols that wish to allow signers to partici-
pate in signing operations asynchronously. As such, optimizing the network overhead
of signing operations is highly beneficial to real-world applications of threshold signa-
tures.

Today in the literature, the best threshold signature schemes are those that rely on
pairing-based cryptography [5,6], and can perform signing operations in a single round
among participants. However, relying on pairing-based signature schemes is undesir-
able for some implementations in practice, such as those that do not wish to introduce a
new cryptographic assumption, or that wish to maintain backwards compatibility with
an existing signature scheme such as Schnorr signatures. Surprisingly, today’s best
non-pairing-based threshold signature constructions that produce Schnorr signatures
with unlimited concurrency [13, 24] require at least three rounds of communication
during signing operations, whereas constructions with fewer network rounds [13] must
limit signing concurrency to protect against a forgery attack [9].

In this work, we present FROST, a Flexible Round-Optimized Schnorr Threshold
signature scheme1 that addresses the need for efficient threshold signing operations
while improving upon the state of the art to ensure strong security properties without
limiting the parallelism of signing operations. FROST can be used as either a two-
round protocol where signers send and receive two messages in total, or optimized to a
(non-broadcast) single-round signing protocol with a pre-processing stage. FROST
achieves improved efficiency in the optimistic case that no participant misbehaves.
However, in the case where a misbehaving participant contributes malformed values
during the protocol, honest parties can identify and exclude the misbehaving partici-
pant, and re-run the protocol.

The flexible design of FROST lends itself to supporting a number of practical use
cases for threshold signing. Because the preprocessing round can be performed sep-
arately from the signing round, signing operations can be performed asynchronously;
once the preprocessing round is complete, signers only need to receive and eventu-
ally reply with a single message to create a signature. Further, while some threshold
schemes in the literature require all participants to be active during signing opera-
tions [8, 13], and refer to the threshold property of the protocol as merely a security
property, FROST allows any threshold number of participants to produce valid signa-

1Signatures generated using the FROST protocol can also be referred to as ”FROSTy signatures.”
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tures. Consequently, FROST can support use cases where a subset of participants (or
participating devices) can remain offline, a property that is often desirable for security
in practice.

Contributions. In this work, we present the following contributions.
• We review related threshold signature schemes and present a detailed analysis of

their performance and designs.
• We present FROST, a Flexible Round-Optimized Schnorr Threshold signature

scheme. FROST improves upon the state of the art for Schnorr threshold signa-
tures by defining a signing protocol that can be optimized to a (non-broadcast)
single-round operation with a preprocessing stage. Unlike many prior Schnorr
threshold schemes, FROST remains secure against known forgery attacks with-
out limiting concurrency of signing operations.

• We present a proof of security and correctness for an interactive two-round
variant of FROST, building upon proofs of security for prior related threshold
schemes. We then demonstrate how this proof extends to FROST in the single-
rounnd setting.

Organization. We present background information important to understanding our
work in Section 2, and in Section 3 we give an overview of related threshold Schnorr
signature constructions in the literature. In Section 4 we review notation and security
assumptions maintained for our work. In Section 5 we introduce FROST and describe
its protocols in detail, and in Section 6, we give proofs of security and correctness
for FROST. In Section 7, we discuss options for implementations outside the scope
of the FROST protocol yet relevant for practical considerations, and we conclude in
Section 8.

2 Background

2.1 Threshold Schemes
Cryptographic protocols called (t, n)-threshold schemes allow a set of n participants
to share a secret s, such that any t out of the n participants are required to cooperate
in order to recover s, but any subset of fewer than t participants cannot recover any
information about the secret.

Shamir Secret Sharing. Many threshold schemes build upon Shamir secret shar-
ing [23], a (t, n)-threshold scheme that relies on Lagrange interpolation to recover a
secret. In Shamir secret sharing, a trusted central dealer distributes a secret s to n par-
ticipants in such a way that any cooperating subset of t participants can recover the
secret. To distribute this secret, the dealer first selects t− 1 coefficients a1, . . . , at−1 at
random, and uses the randomly selected values as coefficients to define a polynomial
f(x) = s+

∑t−1
i=1 aix

i of degree t−1 where f(0) = s. The secret shares for each par-
ticipant Pi are subsequently (i, f(i)), which the dealer is trusted to distribute honestly
to each participant P1, . . . , Pn. To reconstruct the secret, at least t participants perform
Lagrange interpolation to reconstruct the polynomial and thus find the value s = f(0).
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However, no group of fewer than t participants can reconstruct the secret, as at least t
points are required to reconstruct a polynomial of degree t− 1.

Verifiable Secret Sharing. Feldman’s Verifiable Secret Sharing (VSS) Scheme [10]
builds upon Shamir secret sharing, adding a verification step to demonstrate the consis-
tency of a participant’s share with a public commitment that is assumed to be correctly
visible to all participants. To validate that a share is well formed, each participant vali-
dates their share using this commitment. If the validation fails, the participant can issue
a complaint against the dealer, and take actions such as broadcasting this complaint to
all other participants. FROST similarly uses this technique as well.

The commitment produced in Feldman’s scheme is as follows. As before in Shamir
secret sharing, a dealer samples t − 1 random values (a1, . . . , at−1), and uses these
values as coefficients to define a polynomial fi of degree t − 1 such that f(0) = s.
However, along with distributing the private share (i, f(i)) to each participant Pi, the
dealer also distributes the public commitment

~C = 〈φ0, . . . , φt−1〉, where φ0 = gs and φj = gaj

Note that in a distributed setting, each participant Pi must be sure to have the same
view of ~C as all other participants. In practice, implementations guarantee consistency
of participants’ views by using techniques such as posting commitments to a central-
ized server that is trusted to provide a single view to all participants, or adding another
protocol round where participants compare their received commitment values to ensure
they are identical.

2.2 Threshold Signature Schemes
Threshold signature schemes leverage the (t, n) security properties of threshold schemes,
but allow participants to produce signatures over a message using their secret shares
such that anyone can validate the integrity of the message, without ever reconstructing
the secret. In threshold signature schemes, the secret key s is distributed among the n
participants, while a single public key Y is used to represent the group. Signatures can
be generated by a threshold of t cooperating signers.

For our work, we require the resulting signature produced by the threshold signa-
ture scheme to be valid under the Schnorr signature scheme [22]. We introduce Schnorr
signatures in Section 2.4.

Because threshold signature schemes ensure that no participant (or indeed any
group of fewer than t participants) ever learns the secret key s, the generation of s and
distribution of shares s1, . . . , sn often require generating shares using a less-trusted
method than relying on a central dealer. Instead, these schemes (including FROST)
make use of a Distributed Key Generation (DKG) protocol, which we describe next.

2.3 Distributed Key Generation
While some threshold schemes such as Shamir secret sharing rely on a trusted dealer
to generate and distribute secret shares to all participants, not all threat models can
allow for such a high degree of trust in a single individual. Distributed Key Gener-
ation (DKG) supports such threat models by enabling every participant to contribute
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equally to the generation of the shared secret. At the end of running the protocol, all
participants share a joint public key Y , but each participant holds only a share si of the
corresponding secret s such that no set of participants smaller than the threshold knows
s.

Pedersen [19] presents a two-round DKG where each participant acts as the central
dealer of Feldman’s VSS [10] protocol, resulting in n parallel executions of the pro-
tocol. Consequently, this protocol requires two rounds of communication between all
participants; after each participant selects a secret xi, they first broadcast a commit-
ment to xi to all other participants, and then send all other participants a secret share
of xi.

Gennaro et al. [14] demonstrate a weakness of Pedersen’s DKG [19] such that a
misbehaving participant can bias the distribution of the resulting shared secret by is-
suing complaints against a participant after seeing the shares issued to them by this
participant, thereby disqualifying them from contributing to the key generation. To
address this issue, the authors define a modification to Pedersen’s DKG to utilize both
Feldman’s VSS as well as a verifiable secret sharing scheme by Pedersen [20] result-
ing in a three-round protocol. To prevent adversaries from adaptively disqualifying
participants based on their input, the authors add an additional “commitment round”,
such that the value of the resulting secret is determined after participants perform this
commitment round (before having revealed their inputs).

In a later work, Gennaro et al. [13] prove that Pedersen’s DKG as originally de-
scribed [19] is secure enough in certain contexts, as the resulting secret is sufficiently
random despite the chance for bias from a misbehaving participant adaptively select-
ing their input after seeing inputs from other participants. However, Pedersen’s DKG
requires larger security parameters to achieve the same level of security as the modi-
fied variant by Gennaro et al. [14] that requires the additional commitment round. In
short, the two-round Pedersen’s DKG [19] requires a larger group to be as secure as
the three-round DKG presented by Gennaro et al. [14].

2.4 Schnorr Signatures
Often, it is desirable for signatures produced by threshold signing operations to be
indistinguishable from signatures produced by a single participant, consequently re-
maining backwards compatible with existing systems, and also preventing a privacy
leak of the identities of the individual signers. For our work, we require signatures pro-
duced by FROST signing operations to be indistinguishable from Schnorr signatures,
and thus verifiable using the standard Schnorr verification operations. To this end, we
now describe Schnorr signing and verification operations [22] in a single-signer setting.

Let G be a group with prime order q and generator g, and let H be a cryptographic
hash function mapping to Z∗q . A Schnorr signature is generated over a message m by
the following steps:

1. Sample a random nonce k $← Zq; compute the commitment R← gk ∈ G
2. Compute the challenge c = H(m,R)
3. Using the secret key s, compute the response z = k + s · c ∈ Zq
4. Define the signature over m to be σ = (z, c)
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Validating the integrity of m using the public key Y = gs and the signature σ is
performed as follows:

1. Parse σ as (z, c).
2. Compute R′ = gz · Y −c
3. Compute c′ = H(m,R′)
4. Output 1 if c = c′ to indicate success; otherwise, output 0.

Schnorr signatures are simply the standard Σ-protocol proof of knowledge of the
discrete logarithm of Y , made non-interactive (and bound to the message m) with the
Fiat-Shamir transform.

2.5 Additive Secret Sharing
Similarly to the single-party setting described above, FROST requires generating a ran-
dom nonce k for each signing operation. However, in the threshold setting, k should be
generated in such a way that each participant contributes to but does not know the re-
sulting k (properties that performing a DKG as described in Section 2.3 also achieve).
Key to the design of FROST is the observation that while an arbitrary t out of n enti-
ties are required to participate in a signing operation, a simpler t-out-of-t scheme will
suffice to generate the random nonce k.

While Shamir secret sharing and derived constructions require shares to be points
on a secret polynomial f where f(0) = s, an additive secret sharing scheme allows t
participants to jointly compute a shared secret s by each participant Pi contributing a
value si such that the resulting shared secret is s =

∑t
i=1 si, the summation of each

participant’s share. Consequently, this t-out-of-t secret sharing can be performed non-
interactively; each participant directly chooses their own si. Benaloh and Leichter [4]
generalize this scheme to arbitrary monotone access structures.

Share Conversion. Cramer, Damgård, and Ishai [7] present a non-interactive
mechanism for participants to locally convert additive shares generated via the Benaloh
and Leichter t-out-of-n additive secret sharing construction to polynomial (Shamir)
form. To perform share conversion using this technique, a secret polynomial f is con-
structed such that each participant Pi can evaluate f only at point i.

We consider subsets of participants (denoted by their participant identifiers) {1, . . . , n}
of size n − (t − 1). Let U be the universe of all

(
n
t−1

)
such subsets. For each A ∈ U

(so that A is a particular subset of size n − (t − 1)), there is an additive secret share
sA. Then for each i ∈ A, participant Pi holds a copy of sA. The secret s is simply the
sum

∑
A∈U sA.

Cramer et al. [7] demonstrate how to non-interactively convert these t-out-of-n
additive secret shares of s to t-out-of-n Shamir shares of the same s. For each A ∈ U ,
define the polynomial gA(x) =

∏
i∈{1,...,n}\A

i−x
i (this polynomial can be constructed

from information that is entirely public to each participant). Note that for each A of
size n− (t−1), gA(x) is of degree t−1, satisfies g(i) = 0 for each i ∈ {1, . . . , n}\A,
and g(0) = 1. Now define f(x) =

∑
A∈U sAgA(x), which similarly is a degree

t − 1 polynomial. Each participant Pi can compute f(i) using their knowledge of
sA for each A that contains i, but no other evaluation of f . Therefore, as f(0) =
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∑
A∈U sAgA(0) =

∑
A∈U sA = s, each f(i) is indeed a t-out-of-n Shamir secret

share of s.
In our work, we use the special case of this technique when n = t. In this case, each

set A is of size 1; consequently, each participant Pi can simply choose their own s{i}
non-interactively. The resulting g{i}(x) is a degree t−1 polynomial with g{i}(0) = 1,
g{i}(j) = 0 for j ∈ {1, . . . , t}\{i}, and g{i}(i) =

∏
j∈{1,...,t}\{i}

j−i
j = 1

λi
, where λi

is the ith Langrange coefficient for interpolating on the set {1, . . . , t}. Therefore, f(i)
is simply s{i}

λi
. The key observation is that if t participants each select si at random,

then si
λi

is a t-out-of-t Shamir secret share of s =
∑
i si. Importantly, participants

are not required to communicate at all when creating this Shamir secret sharing of a
random value.

In FROST, participants use this technique during signing operations to non-interactively
generate a one-time secret nonce (as is required by Schnorr signatures, described in
Section 2.4) that is Shamir secret shared among all t signing participants.

2.6 Attack on Parallelized Schnorr Multisignatures
We next describe an attack recently introduced by Drijvers et al. [9] against some
two-round Schnorr multisignature schemes and describe how this attack applies to a
threshold setting. This attack can be performed when the adversary has control over
either choosing the message m to be signed, or the ability to adaptively choose its
own individual commitments used to determine the group commitment R after seeing
commitments from all other signing parties.

Successfully performing the Drijvers attack requires finding a hash output c∗ =
H(m∗, R∗) that is the sum of T other hash outputs c∗ =

∑T
j=1H(mj , Rj) (where

c∗ is the challenge, mj the message, and Rj the commitment corresponding to a stan-
dard Schnorr signature as described in Section 2.4). To find T hash outputs that sum
to c∗, the adversary can open many (say T number of) parallel simultaneous signing
operations, varying in each of the T parallel executions either its individual commit-
ment used to determine Rj or the message being signed mj . Drijvers et al. use the
k-tree algorithm of Wagner [25] to find such hashes and perform the attack in time
O(κ · b · 2b/(1+lg κ)), where κ = T + 1, and b is the bitlength of the order of the group.

Although this attack was proposed in a multisignature n-out-of-n setting, this at-
tack applies similarly in a threshold t-out-of-n setting with the same parameters for
an adversary that controls up to t − 1 participants. We note that the threshold scheme
instantiated using Pedersen’s DKG by Gennaro et al. [13] is likewise affected by this
technique and so similarly has an upper bound to the amount of parallelism that can be
safely allowed.

In Section 5.2 we discuss how FROST avoids the attack by ensuring that an attacker
will not gain an advantage by adaptively choosing its own commitment (or that of any
other of the signing participants) used to determine Rj , or adaptively selecting the
message being signed.

Drijvers et al. [9] also present a metareduction for the proofs of several Schnorr
multisignature schemes in the literature that use a generalization of the forking lemma
with rewinding, proving that the security demonstrated in a single-party setting does
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not extend when applying this proof technique to a multi-party setting; we show in
Section 6 why this metareduction does not apply to our proof of security.

3 Related Work
We now review prior threshold schemes with a focus on Schnorr-based designs, and
split our review into robust and non-robust schemes. Robust schemes ensure that so
long as t participants correctly follow the protocol, the protocol is guaranteed to com-
plete successfully, even if a subset of participants (at most n− t) contribute malformed
shares during the protocol execution. Conversely, designs that are not robust simply
abort after detecting any participant misbehaviour.

Robust Threshold Schemes. Stinson and Strobl [24] present a threshold signature
scheme producing Schnorr signatures, using the modification of Pedersen’s DKG pre-
sented by Gennaro et al. [14] to generate both the secret key s during key generation
as well as the random nonce k during each signing operations as required by Schnorr
signatures. In total, this construction requires at minimum four rounds for each signing
operation (assuming no participant misbehaves): three rounds to perform the DKG to
obtain k, and one round to distribute signature shares and compute the resulting group
signature. Each round requires participants to send values to every other participant.

Gennaro et al. [13] present a threshold Schnorr signature protocol that uses a mod-
ification of Pedersen’s DKG as presented originally [19] to generate both s during key
generation and the random nonce k during signing operations. However, their con-
struction requires all n signers to participate in signing, while the adversary is allowed
to control under the given threshold t. Recall from Section 2.3 that Pedersen’s DKG
requires two rounds to obtain the k value. In the setting that all participants main-
tain equal levels of trust, signing operations in this construction require three rounds
of communication in total, where all participants send values to all other participants
in each round. The authors also discuss an optimization that leverages a signature
aggregator role, an entity trusted to gather signatures from each participant, perform
validation, and publish the resulting signature, a role we also adopt in our work. In
their optimized variant, participants can perform Pedersen’s DKG to generate multiple
k values in a pre-processing stage independently of performing signing operations. In
this variant, to compute ` signatures, signers first perform two rounds of ` parallel exe-
cutions of Pedersen’s DKG, thereby generating ` random nonces. The signers can then
store these pre-processed values to later perform ` single-round signing operations.

Our work builds upon the key generation stage of Gennaro et al. [13]; we use a
variant of Pedersen’s DKG for key generation with a requirement that in the case of
misbehaviour, the protocol aborts and the cause investigated out of band. However,
FROST does not perform a DKG during signing operations as is done in both of the
above schemes, but instead make use of additive secret sharing and share conversion.
Consequently, FROST trades off robustness for more efficient signing operations, such
that a misbehaving participant can cause the signing operation to abort. However, such
a tradeoff is practical to many real-world settings.

Further, because FROST does not provide robustness, FROST is secure so long as
the adversary controls fewer than the threshold t participants, an improvement over
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robust designs, which can at best provide security for t ≤ n/2 [14].
Non-Robust Threshold Schemes. FROST is not unique in trading off favouring

increased network efficiency over robustness. Gennaro and Goldfeder [11] present a
threshold ECDSA scheme that similarly requires aborting the protocol in the case of
participant misbehaviour. Their signing construction uses a two-round DKG to gener-
ate the nonce required for the ECDSA signature, leveraging additive-to-multiplicative
share conversion, which has since been independently leveraged in a Schnorr thresh-
old scheme context to generate the random nonce for signing operations [18]. In later
work [12], the same authors define an optimization to their protocol to a single-round
ECDSA signing operation with a preprocessing stage. However, the end-to-end proto-
col itself is eight network rounds, six of which require broadcasting to all other partic-
ipants in the signing set, and two of which require performing pairwise multiplicative-
to-additive share conversion protocols. FROST allows for a more efficient prepro-
cessing phase as secret nonces can be generated in the preprocessing phase via non-
interactive additive secret sharing.

Recent work by Damgård et al. [8] define an efficient threshold ECDSA construc-
tion that similarly requires aborting in the case of misbehaviour. Their design relies on
generating a blinding factor d+m · e such that where d and e are 2t secret sharings of
zero, such that the entire binding factor evaluates to zero when all signing parties are
honest and agree on m. This approach is similar to FROST in that signature shares are
bound to the message and to the set of signing parties. However, the security of their
scheme requires the majority of participants to be honest, and n ≥ 2t+1. Further, their
scheme requires all n participants take part in signing operations, where the threshold
t is simply a security parameter.

Similarly to FROST, Abidin, Aly, and Mustafa [1] present a design for authentica-
tion between devices, and use additive secret sharing to generate the nonce for Schnorr
signatures in a threshold setting, a technique also used by FROST. However, the authors
do not consider the Drijvers attack and consequently their design is similarly limited to
restricted levels of parallelism. Further, their design does not include validity checks
for responses submitted by participants when generating signatures and consequently
does not detect nor identify misbehaving participants.

FROST improves upon prior work in Schnorr threshold schemes by providing a
single-round signing variant with a preprocessing stage involving only a threshold
number of participants, while remaining secure against the Drijvers attack and mis-
behaving participants who do not correctly follow the protocol.

4 Preliminaries
Let G be a group of prime order q in which the Decisional Diffie-Hellman problem is
hard, and let g be a generator of G. Let H be a cryptographic hash function mapping
to Z∗q .

Let n be the number of participants in the signature scheme, and t denote the thresh-
old of the secret-sharing scheme. Let i denote the participant identifier for participant
Pi where 1 ≤ i ≤ n. Let si be the long-lived secret share for participant Pi. Let Y
denote the long-lived public key shared by all participants in the threshold signature
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scheme, and let Yi = gsi be the public key share for the participant Pi. Finally, let m
be the message to be signed.

For a fixed set S = {p1, . . . , pt} of t participant identifiers in the signing operation,
let λi =

∏t
j=1,j 6=i

pj
pj−pi denote the ith Lagrange coefficient for interpolating over

S. Note that the information to derive these values depends on which t (out of n)
participants are selected, and uses only the participant identifiers, and not their shares.2

Security Assumptions. We maintain the following assumptions, which implemen-
tations need to account for in practice.
- Message Validation. We assume every participant checks the validity of the message
m to be signed before issuing its signature share. If the message is invalid, the
participant should take actions to discard the message and report the misbehaviour
to other participants.

- Reliable Message Delivery. We assume messages are sent between participants using
a reliable network channel.

- Participant Identification. In order to report misbehaving participants, we require
that values submitted by participants to be identifiable within the signing group.
Our protocols assume participants are not forging messages by other participants,
but implementations can enforce this using a method of participant authentication
within the signing group.3

5 FROST: Flexible Round-Optimized Schnorr Thresh-
old Signatures

We now present FROST, a Flexible Round-Optimized Schnorr Threshold signature
scheme that minimizes the network overhead of producing Schnorr signatures in a
threshold setting while allowing for unrestricted parallelism of signing operations and
only a threshold number of signing participants.

Efficiency over Robustness. As described in Section 3, prior threshold signature
constructions [13,24] provide the property of robustness; if one participant misbehaves
and provides malformed shares, the remaining honest participants can detect the mis-
behaviour, exclude the misbehaving participant, and complete the protocol, so long
as the number of remaining honest participants is at least the threshold t. This kind
of robust construction is appropriate in settings where signing participants might be
arbitrary entities from the Internet, for example.

However, in settings where one can expect misbehaving participants to be rare,
threshold signing protocols can be relaxed to be more efficient in the “optimistic” case
that all participants honestly follow the protocol. In the case that a participant does
misbehave, honest participants can identify the misbehaving participant and abort the
protocol. The honest participants can then simply re-run the protocol amongst them-
selves, excluding the misbehaving participant. Consequently, we present a relaxed

2Note that if n is small, the λi for every possible S can be precomputed by each participant during the
key generation phase of the protocol as a performance optimization to avoid re-computing these values for
each signing operation.

3For example, authentication tokens or TLS certificates could serve to authenticate participants to one
another.
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threshold protocol that trades off robustness in the protocol for improved efficiency in
this way.

Signature Aggregator Role We instantiate FROST using a semi-trusted signature
aggregator role, denoted as SA. Such a role is often practical in a real-world setting;
we include this role as it also allows for improved efficiency. However, FROST can be
instantiated without a signature aggregator. To do so, each participant simply performs
a broadcast in place of SA performing coordination.

The signature aggregator role can be performed by any participant in the protocol,
or even an external party, provided they know the participants’ public-key shares Yi.
SA is trusted to report misbehaving participants (we assume participants can authen-
ticate themselves to one another, as discussed in Section 4) and to publish the group’s
signature at the end of the protocol. If SA deviates from the protocol, the protocol
remains secure against adaptive chosen message attacks, as SA is not given any more
of a privileged view than the adversary we model in our proof of security for FROST
in Section 6. A malicious SA does have the power to perform denial-of-service attacks
and to falsely report misbehaviour by participants, but cannot learn the private key or
cause improper messages to be signed. Note this signature aggregator role is also used
in prior threshold signature constructions in the literature [13] as an optimization.

5.1 Key Generation
To generate long-lived key shares in our scheme’s key generation protocol, FROST
builds upon Pedersen’s DKG for key generation; we present detailed protocol steps in
Figure 1. Note that Pedersen’s DKG is simply where each participant executes Feld-
man’s VSS as the dealer in parallel, and derives their secret share as the sum of the
shares received from each of the n VSS executions. In addition to the base Pedersen
DKG protocol, FROST additionally requires each participant to demonstrate knowl-
edge of their secret ai0 by providing other participants with proof in zero knowledge,
instantiated as a Schnorr signature, to protect against rogue-key attacks [2] in the set-
ting where t ≥ n/2.

To begin the key generation protocol, a set of participants must be formed using
some out-of-band mechanism decided upon by the implementation. After participating
in the Ped-DKG protocol, each participant Pi holds a value (i, si) that is their long-
lived secret signing share. Participant Pi’s public key share Yi = gsi is used by other
participants to verify the correctness of Pi’s signature shares in the following signing
phase, while the group public key Y can be used by parties external to the group to
verify signatures issued by the group in the future.

View of Commitment Values. As required for any multi-party protocol using
Feldman’s VSS, the key generation stage in FROST similarly requires participants to
maintain a consistent view of commitments ~Ci, 1 ≤ i ≤ n issued during the execution
of Ped-DKG. In this work, we assume participants broadcast the commitment values
honestly (e.g., participants do not provide different commitment values to a subset of
participants); recall Section 2.1 where we described techniques to achieve this guaran-
tee in practice.

Security tradeoffs. While Gennaro et al. [14] describe the “Stop, Kill, and Rewind”
variant of Ped-DKG (where the protocol terminates and is re-run if misbehaviour is de-
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FROST KeyGen

Round 1

1. Every participant Pi samples t random values (ai0, . . . , ai(t−1)))
$← Zq , and

uses these values as coefficients to define a polynomial
fi(x) =

∑t−1
j=0 aijx

j of degree t− 1 over Zq .

2. Every Pi computes a proof of knowledge to the corresponding secret ai0 by
calculating a Schnorr signature σi = (µi, ci) using ai0 as the secret key,

such that k $← Zq , Ri = gk, ci = H(i,Φ, gai0 , Ri), µi = k + ai0 · ci, with
Φ being a context string to prevent replay attacks.

3. Every participant Pi computes a public commitment ~Ci = 〈φi0, . . . , φi(t−1)〉,
where φij = gaij , 0 ≤ j ≤ t− 1

4. Every Pi broadcasts ~Ci, σi to all other participants.

5. Upon receiving ~C`, σ` from participants 1 ≤ ` ≤ n, ` 6= i, participant Pi
verifies σ` = (µ`, c`), aborting on failure, by checking:

c`
?
= H

(
`,Φ, φ`0, g

µ` · φ−c``0

)
Round 2

1. Each Pi securely sends to each other participant P` a secret share (`, fi(`)),
and keeps (i, fi(i)) for themselves.

2. Each Pi verifies their shares by calculating: gf`(i) ?
=
∏t−1
k=0 φ

ik mod q
`k , aborting

if the check fails.

3. Each Pi calculates their long-lived private signing share by computing
si =

∑n
`=1 f`(i), and stores si securely.

4. Each Pi calculates their public verification share Yi = gsi , and the group’s
public key Y =

∏n
j=1 φj0. Any participant can compute the public

verification share of any other participant by calculating

Yi =

n∏
j=1

t−1∏
k=0

φi
k mod q
jk

Figure 1: KeyGen. A distributed key generation (DKG) protocol that builds upon the
DKG by Pedersen [19]. Our variant includes a protection against rogue key attacks
by requiring each participant to prove knowledge of their secret value commits, and
requires aborting on misbehaviour.
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tected) as vulnerable to influence by the adversary, we note that in a real-world setting,
good security practices typically require that the cause of misbehaviour is investigated
once it has been detected; the protocol is not allowed to terminate and re-run continu-
ously until the adversary finds a desirable output. Further, many protocols in practice
do not prevent an adversary from aborting and re-executing key agreement at any point
in the protocol; adversaries in protocols such as the widely used TLS protocol can skew
the distribution of the resulting key simply by re-running the protocol.

However, implementations wishing for a robust DKG can adapt our key generation
protocol to the robust construction presented by Gennaro et al. [14]. Note that the
efficiency of the DKG for the key generation phase is not extremely critical, because
this operation must be done only once per key generation for long-lived keys. For the
per-signature operations, FROST optimizes the generation of random values without
utilizing a DKG, as discussed next.

5.2 Threshold Signing with Unrestricted Parallelism
We now introduce the signing protocol for FROST. This operation builds upon known
techniques in the literature [1, 13] by employing additive secret sharing and share con-
version in order to non-interactively generate the nonce value for each signature. How-
ever, signing operations in FROST additionally leverage a binding technique to avoid
known forgery attacks without limiting concurrency. We present FROST signing in
two parts: a pre-processing phase and a single-round signing phase. However, these
stages can be combined for a simple two-round protocol if desired.

As a reminder, the attack of Drijvers et al. [9] requires the adversary to either see the
victim’s T commitment values before selecting their own commitment, or to adaptively
choose the message to be signed, so that the adversary can manipulate the resulting
challenge c for the set of participants performing a group signing operation. To prevent
this attack without limiting concurrency, FROST binds each participant’s response to a
specific message as well as the set of participants and their commitments used for that
particular signing operation. In doing so, combining responses over different messages
or participant/commitment pairs results in an invalid signature, thwarting attacks such
as those of Drijvers et al.

Preprocessing Stage. We present in Figure 2 a preprocessing stage where partic-
ipants generate and publish π commitments at a time. In this setting, π determines
the number of nonces that are generated and their corresponding commitments that are
published in a single preprocess step, and correspondingly the number of signing op-
erations that can be performed before the participant must perform this preprocessing
stage again. Note that implementations that do not wish to cache commitments can
instead use a two-round protocol, where participants publish a single commitment to
each other in the first round.

Each participant Pi begins by generating a list of single-use private nonce pairs and
corresponding public commitment shares 〈((dij , Dij = gdij ), (eij , Eij = geij ))〉πj=1,
where j is a counter that identifies the next nonce/commitment share pair available to
use for signing. Each Pi then publishes (i, Li), where Li is their list of commitment
shares Li = 〈(Dij , Eij)〉πj=1. The location where participants publish these values can
depend on the implementation; options include broadcasting to all other participants or
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Preprocess(π)→ (i, 〈(Dij , Eij)〉πj=1)
Each participant Pi, i ∈ {1, . . . , n} performs this stage prior to signing. Let j be
a counter for a specific nonce/commitment share pair, and π be the number of
pairs generated at a time, such that π signing operations can be performed before
performing another preprocess step.

1. Create an empty list Li. Then, for 1 ≤ j ≤ π, perform the following:

1.a Sample single-use nonces (dij , eij)
$← Z∗q × Z∗q

1.b Derive commitment shares (Dij , Eij) = (gdij , geij ).

1.c Append (Dij , Eij) to Li. Store ((dij , Dij), (eij , Eij)) for later use in
signing operations.

2. Publish (i, Li) to a predetermined location, as specified by the
implementation.

Figure 2: FROST Preprocessing Protocol

publishing to a centralized location that all participants can access (we discuss these
options further in Section 7). The set of (i, Li) tuples are then stored by any entity that
might perform the signature aggregator role during signing.

Signing Protocol. At the beginning of the signing protocol presented in Figure 3,
SA selects t participants (possibly including itself) to participate in the signing. Let
S be the set of those t participants. SA then selects the next available commitment
(Dij , Eij) for each participant in S, which are later used to generate a secret share
to a random commitment R for the signing group.4 This technique is a t-out-of-t
additive secret sharing; the resulting secret nonce is k =

∑
i∈S ki, where each ki =

dij +eij ·ρi (we next describe how participants calculate ρi), and (dij , eij) correspond
to the (Dij = gdij , Eij = geij ) values published during the Preprocess stage. Recall
from Section 2.5, that if the ki are additive shares of k, then each ki

λi
are t-out-of-t

Shamir shares of k.
After these steps, SA then creates the set B, where B is the ordered list of tuples

〈(i,Dij , Eij)〉i∈S . SA then sends (m,B) to every Pi, i ∈ S.
After receiving (m,B) from SA to initialize a signing operation, each participant

checks that m is a message they are willing to sign. Then, using m and B, all partici-
pants derive the “binding values” ρi, i ∈ S such that ρi = H1(i,m,B), where H1 is a
hash function whose outputs are in Zq∗.

Each participant can then compute the commitment Ri for each participant in S by
deriving Ri = Dij · (Eij)ρi . Doing so binds the message, the set of signing partici-

4Each participant contributes to the group commitment R, which corresponds to the commitment gk to
the nonce k in step 1 of the single-party Schnorr signature scheme in Section 2.4.
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Sign(m)→ (m,σ)

Let SA denote the signature aggregator (who themselves can be one of the t
signing participants). Let S be the set of participants selected for use for this
signing operation. Let B = 〈(i,Dij , Eij)〉i∈S denote the ordered list of
participant indices corresponding to each participant Pi, and Li be the set of
available commitment values for Pi that were published during the Preprocess
stage. Each identifier i is coupled with the jthcommitments (Dij , Eij) published
by Pi that will be used for this particular signing operation. Let H1, H2 be hash
functions whose outputs are in Zq∗.

1. SA begins by fetching the next available commitment for each participant
Pi ∈ S from Li and constructs B.

2. For each i ∈ S, SA sends Pi the tuple (m,B).

3. After receiving (m,B), each Pi first validates the message m, and then checks
D`j , E`j ∈ G∗ for each commitment in B, aborting if either check fails.

4. Each Pi then computes the set of binding values ρ` = H1(`,m,B), ` ∈ S.
Each Pi then derives the group commitment R =

∏
`∈S D`j · (E`j)ρ` , and

the challenge c = H2(m,R).

5. Each Pi computes their response using their long-lived secret share si by
computing zi = dij + (eij · ρi) + λi · si · c, using S to determine λi.

6. Each Pi securely deletes ((dij , Dij), (eij , Eij)) from their local storage, and
then returns zi to SA.

7. The signature aggregator SA performs the following steps:

7.a Derive ρi = H1(i,m,B) and Ri = Dij · (Eij)ρi for i ∈ S, and
subsequently R =

∏
i∈S Ri and c = H2(m,R).

7.b Verify the validity of each response by checking gzi ?
= Ri · Yic·λi for

each signing share zi, i ∈ S. If the equality does not hold, first
identify and report the misbehaving participant, and then abort.
Otherwise, continue.

7.c Compute the group’s response z =
∑
zi

7.d Publish the signature σ = (z, c) along with the message m.

Figure 3: FROST Single-Round Signing Protocol
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pants, and each participant’s commitment to each signature share, such that signature
shares on one message cannot be used for another, assuming that (dij , eij) remain se-
cret and are used only once. This binding technique thwarts the attack of Drijvers et al.
described in Section 2.6 as attackers cannot combine signature shares across disjoint
signing operations or permute the set of signers or published commitments for each
signer.

The commitment for the set of signers is then simply R =
∏
i∈S Ri. As in single-

party Schnorr signatures, each participant computes the challenge c = H2(m,R).
Each participant’s response zi to the challenge can be computed using the single-

use nonces (dij , eij) and the long-term secret shares si, which are t-out-of-n (degree
t− 1) Shamir secret shares of the group’s long-lived secret key s. Recalling that kiλi are
degree t− 1 Shamir secret shares of k, we see that kiλi + si · c are degree t− 1 Shamir
secret shares of the correct response z = k + s · c for a plain (single-party) Schorr
signature. Using share conversion again, and that ki = dij + (eij · ρi), we get that

zi = dij + (eij · ρi) + λi · si · c

are t-out-of-t additive shares of z.
SA finally checks the consistency of each participant’s reported zi with their com-

mitment share (Dij , Eij) and their public key share Yi. If every participant issued a
correct zi, then the sum of the zi values, along with c, forms the Schnorr signature
on m. This signature will verify properly to a verifier unaware that FROST was used
to generate the signature, and who checks it with the standard single-party Schnorr
verification equation with Y as the public key (Section 2.4).

Handling Ephemeral Outstanding Shares. Because each nonce and commitment
share generated during the preprocessing stage described in Figure 2 must be used at
most once, participants delete these values after using them in a signing operation, as
indicated in Step 5 in Figure 3. An accidentally reused (dij , eij) can lead to exposure
of the participant’s long-term secret si, so participants must securely delete them, and
defend against snapshot rollback attacks as in any implementation of Schnorr signa-
tures.

However, if SA chooses to re-use a commitment set (Dij , Eij) during the sign-
ing protocol, doing so simply results in the participant Pi aborting the protocol, and
consequently does not increase the power of SA.

6 Security
We now present proofs of correctness and a high-level overview of our proof of security
against chosen-message attacks for FROST. We present our complete proofs of security
in Appendix A.

6.1 Correctness
Signatures in FROST are constructed from two degree t − 1 polynomials; the first
polynomialF1(x) defining the secret sharing of the private signing key s and the second
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polynomial F2(x) defining the secret sharing of the nonce k such that

k =
∑
i∈S

dij + eij · ρi

using the associated public data (m,B) to determine ρi. During the key generation
phase described in Figure 1, the first polynomial F1(x) =

∑n
j=1 fj(x) is generated

such that the secret key shares are si = F1(i) and the secret key is s = F1(0).
During the signature phase (Figure 3), each of the t participants selected for signing

use a pair of nonces (dij , eij) to define a degree t− 1 polynomial F2(x), interpolating
the values (i,

dij+eij ·H1(i,m,B)
λi

), such that F2(0) =
∑
i∈S dij + eij · ρi.

Then let F3(x) = F2(x)+c·F1(x), where c = H2(m,R). Now zi equals dij+(eij ·
ρi)+λi ·si ·c = λi(F2(i)+c·F1(i)) = λiF3(i), so z =

∑
i∈S zi is simply the Lagrange

interpolation of F3(0) = (
∑
i∈S di + eij · ρi) + c · s. Because R = g

∑
i∈S dij+eij ·ρi

and c = H2(m,R), (z, c) is a correct Schnorr signature on m.

6.2 Security Against Chosen Message Attacks
We now present a high-level overview of the proof of security against chosen-message
attacks for FROST; our complete proofs are in Appendix A. We begin by introducing
an interactive variant of FROST that we call FROST-Interactive, where the binding fac-
tor ρi is generated interactively via a “one-time” verifiable random function (VRF).5

We demonstrate that the difficulty to an adversary to forge FROST signatures by per-
forming an adaptively chosen message attack in the random oracle model reduces to
the difficulty of computing the discrete logarithm of an arbitrary challenge value ω
in the underlying group, so long as the adversary controls fewer than the threshold t
participants for t ≤ n, for n possible signing participants.

We employ the generalized forking strategy used by Bellare and Neven [3] to create
a reduction to the security of the discrete logarithm problem (DLP) in G. Following
this proof strategy, we are given a purported forgerF for FROST signatures. We embed
a challenge value ω ∈ G in the public key Y generated by FROST, and create a simu-
lator A that simulates the environment and honest participants to F to produce forged
signatures under the key Y . A can then itself be used as a subroutine by a generalized
forking algorithm GFA to produce two forgeries (σ = (z, c), σ′ = (z′, c′)), which are
then used to solve the DLP for ω. Without loss of generality, we assumeF controls t−1
participants, and A simulates the tth honest participant. Note that because our proofs
reduce to the hardness of the discrete logarithm problem for the underlying group, as
opposed to the one-more discrete logarithm problem, the metareduction presented by
Drijvers et al. [9] does not apply to our proof strategy.

Proof of adaptive chosen message security for FROST-Interactive. We begin
by proving the security for FROST-Interactive, a two-round signing variant of FROST
that uses one-time VRFs as an interactive mechanism to generate the binding factor ρi

5A one-time VRF Fk for key k relaxes the standard properties of a VRF by requiring that Fk(x) be
unpredictable to someone who does not know k only when at most one value of Fk(y) has been published
by the keyholder (and y 6= x). We use the construction k = (a, b) ∈ Z2

q and Fk(x) = a+ b ·x. The public
key is (A = ga, B = gb), which can be used to check the correctness of the output.
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(whereas FROST uses a hash function to generate ρi non-interactively). We provide our
complete proofs in Appendix A but summarize the proof here, and then demonstrate
how the proof extends to the single-round setting of FROST.

In FROST-Interactive, ρi is established using a one-time VRF, as ρi = aij + (bij ·
Hρ(m,B)), where (aij , bij) are both selected and committed to as (Aij = gaij , Bij =
gbij ) during the preprocessing stage, along with zero-knowledge proofs of knowledge
of (aij , bij). To perform a signing operation, participants first generate ρi in the first
round of the signing protocol using (aij , bij), and then publish ρi to the signature
aggregator, which distributes all ρ`, ` ∈ S to all signing participants. These ρ`, ` ∈ S
values are then used by all signing participants to compute R in the second round of
the signing protocol, which participants use to calculate and publish zi.

Let nh be the number of queries made to the random oracle, np be the number of
allowed preprocess queries, and ns be the number of allowed signing queries.

Theorem 6.1. If the discrete logarithm problem in G is (τ ′, ε′)-hard, then the FROST-
Interactive signature scheme over G with n signing participants, a threshold of t, and
a preprocess batch size of π is (τ, nh, np, ns, ε)-secure whenever

ε′ ≤ ε2

2nh + (π + 1)np + 1

and

τ ′ = 4τ + (30πnp + (4t− 2)ns + (n+ t− 1)t+ 6) · texp +O(πnp + ns + nh + 1)

such that texp is the time of an exponentiation in G, assuming the number of partici-
pants compromised by the adversary is less than the threshold t.

Proof Sketch for FROST-Interactive. We provide our complete proof in Appendix A
but summarize here. We prove Theorem 6.1 by contradiction. We assume there exists a
forgerF that (τ, nh, np, ns, ε)-breaks FROST-Interactive, meaning thatF can compute
a forgery for a signature generated by FROST-Interactive in time τ with success ε, but
is limited to making nh number of random oracle queries, np number of preprocess
queries, and ns number of signing queries. We construct an algorithm C that (τ ′, ε′)-
solves the discrete logarithm problem in G, for an arbitrary challenge value ω.

We begin by embedding the challenge value ω into the group public key Y . The
coordinator algorithm C then uses the generalized forking algorithm GFA to initialize
the adversary A(Y, {h1, . . . , hnr};β), providing the group public key Y , outputs for

nr = 2nh + (π + 1)np + 1 random oracle queries denoted as {h1, . . . , hnr}
$← H ,

and the random tape β. A then invokes the forger F , simulating the responses to F’s
random oracle queries by providing values selected from from {h1, . . . , hnr}. A also
simulates the honest party Pt in the KeyGen, Preprocess, and Sign procedures.

In order to simulate signing without knowing the secret key corresponding to Pt’s
own public key Yt, A generates the commitment and signature for participant Pt by

publishing (Dtj = gztj · (Yt)−cj , Etj) such that ztj
$← Zq , cj is the next unused value

from the set of random oracle outputs supplied by GFA, and Etj = getj , etj
$← Z∗q .

One notable difference in the implementation of A in the proof for FROST-Interactive
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from plain Schnorr is that A does not require guessing which challenge cj to return
for a particular commitment (Dij , Eij) while simulating a signing operation to F . In-
stead, A forks F to extract its (aij , bij) VRF keys from its zero-knowledge proofs
during Preprocess for each participant P` controlled by F , and consequently can di-
rectly compute its corresponding ρ`. Hence, A can compute R strictly before F for
every signing query, and thus can always correctly program the random oracle for the
query H2(m,R) to return the correct cj embedded in Dtj .

Once A has returned a valid forgery σ = (z, c) and the index J associated to the
random oracle query hJ such that hJ = c, GFA re-executes A with the same random
tape β and public key Y , but with responses to random oracle queries

{h1, . . . , hJ−1, h
′
J , . . . , h

′
nr}, where {h′J , . . . , h′nr}

$← H . Doing so simulates the
“forking” of A at a specific point in its execution, such that all behaviour of A is
identical between executions up to the J th random oracle query, but different thereafter.

Consequently, given a forger F that with probability ε produces a valid forgery, the
probability thatA returns a valid forgery for FROST-Interactive is ε, and the probability
thatGFA returns two valid forgeries using the same commitment after forkingA is ε2

nr
.

The running time for C to compute the discrete logarithm by procuring two forg-
eries from FROST-Interactive is four times that for F (because of the forking of A,
which itself forks F), plus the time to compute (30πnp+(4t−2)ns+(n+ t−1)t+6)
exponentiations, and O(πnp + ns + nh + 1) other minor operations, such as table
lookups.

Extension of Proof to FROST. We now heuristically demonstrate how the change
from FROST-Interactive to FROST does not open a hole in the proof. The difference
between FROST-Interactive and FROST is the replacement of the interactive VRF in
FROST-Interactive with a hash function (modelled by a random oracle) to derive ρi.
We note that this change still achieves the properties required of ρi, as deterministic,
unpredictable, and bound to (i,m,B). However, the key distinction when generating
ρi via a VRF versus a hash function is that in FROST-Interactive, the VRF query is
part of the signing algorithm, and so each such query uses up a (dij , eij) pair; there-
fore, the adversary can learn only one ρi(m,B) value for any given (i,Dij , Eij) ∈ B,
and importantly, this allows the simulator A in the proof to always be able to set
H2(m,R) to the correct cj value. In FROST, the adversary can query the random ora-
cle ρi = H1(i,m,B) polynomially many times, even with the same (i,Dij , Eij) ∈ B.
The adversary will be able to produce a forgery if6 (slightly generalizing the Drijvers
attack to arbitrary linear combinations instead of just sums) they can find m∗, r∗, and
〈mj , Bj , γj〉πj=1 such that

H2(m∗, R∗) =

π∑
j=1

γj ·H2(mj , Rj) (1)

6This is the main heuristic step; sufficiency (“if”) is immediate, but we do not prove necessity (“only
if”). That said, the only information the forger has about honest participant Pt’s private key st is Yt = gst

and π pairs (gkj , zj = kj + st · λt · H2(mj , Rj))
π
j=1. If the forger can produce a forgery, they must

necessarily be able to compute a pair (gk
∗
, z∗ = k∗ + st · λt ·H2(m∗, R∗)). Assuming taking discrete

logs is infeasible, writing z∗ as a linear combination of the zj (as polynomials in the unknown st) appears
to be the forger’s only reasonable strategy.
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where Rj =
∏

(i,D,E)∈Bj

D · EH1(i,mj ,Bj), R∗ = gr
∗
·
π∏
j=1

R
γj
j , each Bj contains the

honest party’s (t,Dtj , Etj), and m∗ is not one of the mj .
Importantly, the key difference between FROST and schemes susceptible to the

Drijvers attack is that in FROST, the R∗ in the left side of Equation 1 is itself a func-
tion of all the inputs to the hash functions on the right side. Drijvers can use Wagner’s
generalized birthday attack [25] because the left and right sides of Equation 1 are inde-
pendent in their setting, and so Wagner’s algorithm can find a collision between a list
of possible values on the left (the (m∗, R∗) terms) and a (larger) list of possible values
on the right (the (mj , Rj) terms). In FROST, however, each combination of values on
the right changes R∗, and so the list of possible values on the left (varying m∗, for
example) changes for each such combination, increasing the cost to an attacker from
the generalized birthday collision attack to multiple preimage attacks.

As such, we heuristically argue that the difference between the VRF in FROST-
Interactive and the random oracle in FROST has no security consequence.

6.3 Aborting on Misbehaviour
As discussed above, the goal of FROST is to save communication rounds (particularly
at signing time), at the cost of sacrificing robustness. Consequently, FROST requires
participants to abort once they have detected misbehaviour.

If one of the signing participants provides an incorrect signature share, SA will
detect that and abort the protocol, if SA is itself behaving correctly. The protocol can
then be rerun with the misbehaving party removed. If SA is itself misbehaving, and
even if up to t− 1 participants are corrupted, SA still cannot produce a valid signature
on a message not approved by at least one honest participant.

7 Discussion
Publishing Commitments to a Commitment Server. The preprocessing step for
FROST presented in Section 5.2 requires some agreed-upon location for participants
to publish their commitments to. We now discuss choices for such a location for im-
plementations, and possible security implications.

While participants could simply broadcast commitments to each other, this ap-
proach requires memory overhead and possibly coordination effort. Alternatively, im-
plementations may wish to employ a commitment server specifically tasked with per-
forming and managing of participants’ commitment shares. While the commitment
server may be a separate entity, we note that the signature aggregator SA can also pro-
vide this service in addition to its other duties. In this setting, the commitment server is
trusted to provide the correct (i.e, valid and unused) commitment shares upon request.
If the commitment server chose to act maliciously, it could either prevent participants
from performing the protocol by denial of service, or it could provide stale or mal-
formed commitment values on behalf of honest participants, causing uncertainty as to
whether the commitment server or the participant was the misbehaving entity. How-
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ever, simply having access to the set of a participant’s public published commitments
does not grant any additional powers, and a misbehaving commitment server (or SA)
that provides old commitment values for a signing operation simply results in either a
denial of service or an invalid signature. If SA assumes the commitment server role it-
self, any uncertainty as to who is the cause of misbehaviour can be avoided, and allows
SA to carry out their role to report misbehaviour when it occurs.

Adaptively choosing the set of signing participants. While FROST requires ex-
actly t signers due to the structure of non-interactively generating the nonce k (more
specifically, so participants can determine λi during signing), implementations can still
adaptively choose signing participants based on their availability if the implementation
does not wish to assume which t signers are online and available when beginning a
FROST signing operation.

How implementations should determine the availability of participants, and select
which t participants will perform signing, falls outside FROST, and will depend on the
implementation details of the communications among the participants. In the worst
case, however, implementations can simply add an additional round before performing
the FROST signing protocol, during which participants can demonstrate their avail-
ability and coordinate how available signers are selected to perform the signing round
(such as using some simple tie-breaking exercise or ordering rule).

8 Conclusion
While threshold signatures provide a unique cryptographic functionality that is appli-
cable across a range of settings, implementations incur network overhead costs when
performing signing operations under heavy load. As such, minimizing the number of
network rounds when generating signatures in threshold signature schemes will reduce
the cost of network overhead, benefiting implementations such as those with network-
limited devices, where network transmission is costly, or where signers can go offline
but wish to perform a signing operation asynchronously. In this work, we introduce
FROST, a flexible Schnorr-based threshold signature scheme that improves upon the
state of the art by minimizing the number of network rounds required for signing with-
out limiting the parallelism of signing operations. We present an optimized variant of
FROST as a single-round signing protocol with a preprocessing phase, but the protocol
can be used in a two-round setting. While FROST requires aborting on misbehaviour,
such a tradeoff is often practical in a real-world setting, assuming such cases of misbe-
haviour are rare. We present proofs of security and correctness for FROST, demonstrat-
ing FROST is secure against chosen-message attacks assuming the adversary controls
fewer than a threshold number of participants, and the discrete logarithm problem is
hard.
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A Proof of Security
In Section 6.2, we presented a high-level overview of the proof of security for FROST-
Interactive. We now present the proof in detail.

A.1 Preliminaries
Our proof strategy is to demonstrate that the security of FROST-Interactive reduces
to the difficulty of computing the discrete logarithm of an arbitrary challenge value
ω. At a high level, ω will be embedded into a public key Y representing a set of
participants, such that Y is the output of these participants cooperating to perform the
FROST KeyGen protocol. Then, to compute the discrete logarithm of ω, a forgerF will
produce two forgeries (σ, σ′), σ 6= σ′ for the same commitment value R and message
m. Using (σ, σ′), the discrete logarithm of ω can subsequently be extracted.

We will now describe how we perform this proof strategy in detail. To begin, we
will introduce the different components required to execute this strategy. Our proof
relies on four different algorithms, each with different roles and responsibilities. We
describe these at a high level below, and expand on each in the following sections.

- F represents a forger that with probability ε and in time t can compute a forgery
σ for a public key Y , where Y was generated as part of the FROST KeyGen
protocol.

- A represents a simulator that invokesF and simulates the necessary inputs/outputs
for F to perform its forgery attack. Specifically, A simulates honest participants
in FROST KeyGen and signing operations, as well as random oracle queries.
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- GFA represents the Generalized Forking Algorithm that establishes a random
tape and outputs to random oracle queries, and invokes A with these values in
order to produce two forgeries (σ, σ′).

- C represents the coordination algorithm that accepts a challenge value ω and
invokes the other algorithms in order to obtain (σ, σ′), which it then uses to
compute the discrete logarithm of ω.

Adversary Powers. When performing its forgery attack, we grant F the role of
the signature aggregator SA. Without loss of generality, we assume F controls t − 1
participants, and has full power over how these participants behave, what secret and
public values they generate, etc. We also assume the participant Pt is in the signing set
S.

We now describe in greater detail GFA and C, as these algorithms remain largely
unchanged from their use by Bellare and Neven [3]. We describe the implementation
of A in the proof directly.

A.1.1 Generalized Forking Algorithm and Lemma

We build upon the Generalized Forking Algorithm and Lemma by Bellare and Neven [3],
for both its simplicity and to ensure that our proof can support concurrent executions
of the signing protocol. In the Generalized Forking Algorithm, the rewinding of the
adversary A is simulated by invoking A in succession. In each invocation of A, the
same random tape β is supplied, as well as the same public key Y . However, each
execution of A receives different outputs for a subset of random oracle queries. This
approach is akin to the proof technique by Pointcheval and Stern [21] for plain Schnorr,
which requires running the adversary until a forgery is produced, and then “rewinding”
the adversary back to a specific point in execution. However, the Generalized Forking
Algorithm does not require rewinding, but instead re-executes A with fresh random-
ness after a specific random oracle query hJ to simulate the forking of A. As a result,
each execution of A is identical before the random oracle query that receives hJ , but
diverges afterward.

We next describe the Generalized Forking Algorithm and corresponding General-
ized Forking Lemma in greater detail.

Generalized Forking Algorithm. Let nr be the maximum number of random
oracle outputs thatAmay need to generate, and let h be the number of possible outputs
from the random oracle H .

In more detail, the adversary A is an algorithm that accepts as inputs a public key
Y , the randomly selected set h1, . . . , hnr of random oracle outputs, and a random tape
β. A outputs an integer J which represents the index corresponding to the random
oracle query that can be used to derive c for the forgery σ = (z, c), along with σ itself.
GFA plays the role of setting up these inputs and outputs, and executingA accordingly.

The execution GFA is as follows: first GFA instantiates a random tape β, and
generates random outputs h1, . . . , hnr which will then be used by A to simulate the
outputs for each random oracle query. GFA then executes A with these inputs as
well as a public key Y . A uses the forger F as a subroutine to perform its forgery
attack, simulating all input and output whenever F requests a signing operation or
random oracle query. Eventually, F outputs a forgery σ with probability ε, which A
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Algorithm 1 Generalized Forking Algorithm GFA(Y )

Input A public key Y
Output (1, σ, σ′) if A produces two forgeries, otherwise ⊥

1: Instantiate a random tape β

2: {h1, . . . , hnr}
$← H

3: (J, σ) or ⊥ ← A(Y, {h1, . . . , hnr};β)
4: If ⊥, then return ⊥
5: h′J , . . . , h

′
nr

$← H
6: (J ′, σ′)← A(Y, {h1, . . . , hJ−1, h

′
J , h
′
nr};β)

7: If J ?
= J ′ and hJ 6= h′J then return (1, σ, σ′)

8: else, return ⊥

returns along with its corresponding index for the random oracle query that can be
used to derive c for σ. After A outputs (J, σ), GFA first checks to see if the output
is a successful forgery, as indicated by when J ≥ 1. If so, it continues to the second
execution of A.

For the second execution of A, GFA will feed in the same random tape β, but
will supply a different set of simulated responses for the random oracle H . In order to
“fork”A,GFA will supply the same responses h1, . . . , hJ−1, but will provide different
responses for hJ , . . . , hnr . In doing so, GFA simulates forking the adversary at a
specific point when performing its attack similar to the proof model by Pointcheval
and Stern [21], but without needing to rewind A to a specific point.

After its second execution, A will return (J ′, σ′) or ⊥. If J ′ ?
= J but the output

from the random oracle queries is different such that hJ 6= hJ′ , then GFA will out-
put 1 to indicate success along with the two forgeries σ, σ′. These values can then be
used by the coordination algorithm C to determine the discrete logarithm of the chal-
lenge value ω (for which we provide more details on how to perform this operation in
Section A.1.3).

Generalized Forking Lemma. We will now see how the generalized forking
lemma presented by Bellare and Neven [3] determines the probability that GFA will
return a successful output. Let acc be the accepting probability ofA, or the probability
that J ≥ 1, and let h be the total number of possible outputs of H . Let e′ be the ad-
vantage of solving the discrete logarithm problem over some group G. Recall that nr
is the maximum number of random oracle outputs A may need to generate.

Lemma A.1. Generalized Forking Lemma [3] Let frk be defined by the following
probability:

frk = Pr[b = 1 : x
$← IG : (b, σ, σ′)

$← GFA(x)]

where IG is an input generator for a challenge input x. Then

e′ ≥ frk ≥ acc · (acc
nr
− 1

h
)
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Algorithm 2 Algorithm C(ω)

Input A challenge value ω
Output The discrete logarithm of ω, or ⊥

1: Simulate KeyGen to embed challenge value ω and extract the forger’s secret values
(Y, (a10, . . . , a(t−1)0))← SimKeyGen(ω)

2: (1, σ, σ′) or ⊥ ← GFA(Y )
3: If not ⊥, then ExtractDLog(ω, σ, σ′, (a10, . . . , a(t−1)0))

Lemma A.1 demonstrates the probability e′ that running the generalized forking
algorithm GFA will produce two valid forgeries σ = (z, c) and σ′ = (z′, c′) over the
same messagem and public commitmentR, and so enable the extraction of the desired
discrete logarithm.

A.1.2 Embedding the challenge value during KeyGen

As described at the beginning of Section A.1, we use a coordination algorithm C to
perform setup for GFA and to derive the discrete logarithm of the challenge value ω
afterward. We describe the steps of C in Algorithm 2.

Simulating KeyGen. We now describe how C embeds the challenge value ω into
the group public key Y during a simulation of the KeyGen phase; Y is in turn fed as
input intoGFA. For simplicity of notation, we let n = t (where n is the total number of
participants and t is the threshold), and F controls t− 1 participants, and A simulates
the tth (honest) participant to F . The case for general n is similar.

For the first round of the key generation protocol, A simulates Pt as follows. Let
~Ci be the set of public commitments φi1, . . . , φi(t−1) for participant Pi. To calculate
~Ct and to distribute shares ft(1), . . . , ft(t − 1) to the t − 1 participants corrupted by
F , A does the following:

1. Randomly generate x̄t1, . . . , x̄t(t−1) to serve as the secret shares corresponding
to ft(1), . . . , ft(t− 1)

2. Set φt0 to be the challenge value ω

3. Calculate φt1, . . . , φt(t−1) by performing Lagrange interpolation in the expo-
nent, or φtk = ωλk0 · g

∑t−1
i=1 λki·x̄ti

A then broadcasts ~Ct for Pt. For the second round, A sends (1, x̄t1), . . . , (t −
1, x̄t(t−1)) to the participants P1, . . . , Pt−1 corrupted by F . Further, A simulates the
proof of knowledge for at0 by deriving σ as:

ct, z
$← Zq; R = gz · ω−ct ; and σ = (R, z)

A derives the public key for Pt by following the same steps they would use to
calculate the public key for their peers (as the discrete log of the challenge value ω is
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Algorithm 3 Algorithm ExtractDLog(ω, σ, σ′)

Input A challenge value ω, two forgeries (σ, σ′), and the forger’s secret values
(a10, . . . , a(t−1)0)

Output The discrete logarithm of ω

1: Parse σ, σ′ as (z, c), (z′, c′), and then compute the discrete logarithm of Y as
(z′−z)
(c′−c) .

2: Compute at0 = dlog(Y )−
∑t−1
i=1 ai0

3: Return at0, which is the discrete logarithm of ω

unknown), by performing:

Yt =

n∏
j=1

t−1∏
k=0

φt
k mod q
jk

The participants controlled by F can derive their private key shares si by directly
following the KeyGen protocol, then deriving Yi = gsi . We will see in the proof for
FROST-Interactive how A can still simulate signing for the honest party Pt to F even
without knowing its corresponding private key share. Each party (honest or corrupted
by F) can follow the KeyGen protocol to derive the group’s long-lived public key, by
calculating Y =

∏n
j=1 φj0.

In addition, C must obtain F’s secret values (a10, . . . , a(t−1)0) using the extractor
for the zero-knowledge proofs that F generates. C will use these values next in order
to convert the discrete logarithm for the group public key Y into the discrete logarithm
for the challenge value ω.

A.1.3 Solving Discrete Logarithm of the Challenge

We now describe how two forged signatures (σ, σ′) produced as output from GFA can
be used by C to extract the discrete logarithm of the challenge value ω. We give an
overview of the algorithm ExtractDLog in Algorithm 3, which C uses as a subroutine,
and then describe each step. Note that the advantage e′ used later in our proofs denotes
the advantage of C(ω) of solving the discrete logarithm for the challenge value ω.

Using σ = (z, c) and σ′ = (z′, c′), we can compute dlog(Y ), because

R = gz · Y −c = gz
′
· Y −c

′

and since c 6= c′, then

dlog(Y ) =
(z′ − z)
(c′ − c)

The discrete logarithm corresponding to ω can then be extracted as follows:

at0 = dlog(Y )−
t−1∑
i=1

ai0 = dlog(ω) (2)
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As discussed in the overview of how A simulated the key generation with ω em-
bedded as the challenge value in Section A.1.2, all of F’s ai0, i 6= t values are known
as these were extracted by A while performing the key generation protocol. Hence, C
can extract at0 using Equation 2, resulting in learning the discrete log of the challenge
value ω.

A.2 Proof of Security for FROST-Interactive
Due to the difficulty of simulating zero-knowledge proofs in parallel, for the purposes
of proving the security of FROST, we will first prove security against an interactive
two-round variant of the FROST signing operation, which we call Frost-Interactive. In
this variant, verifiable random functions (VRFs) are used to generate the binding value
ρi. We will then describe how replacing the interactive VRF that generates ρi with
a random oracle (modelling a non-interactive hash function) fulfills the same desired
security properties for the generation of ρi, namely that it is generated deterministically,
unpredictably, and bound to i, m, and B.

A.2.1 FROST-Interactive

FROST-Interactive uses the same KeyGen protocol to generate long-lived keys as reg-
ular FROST, as further described in in Section 5.1. We present an overview of the
Preprocess step for FROST-Interactive in Figure 4, and the signing step in Figure 5.

The distinction between the signing operations for plain FROST and FROST-Interactive
is how the binding value ρi is generated. Because of the difficulty of simulating non-
interactive zero-knowledge proofs of knowledge (NIZKPKs) in a concurrent setting,
we instantiate FROST-Interactive using a one-time VRF, from which each participant
generates their value ρi given the inputs (m,B). We prove this variant to be secure
against adaptive chosen message attacks. Then, we review the impact upon security
when the protocol is instantiated using a hash function to generate the binding factor
ρi in lieu of a VRF.

Preprocess. The Preprocess phase for FROST-Interactive differs from FROST in
two ways. First, participants additionally generate one-time VRF keys (aij , bij) and
their commitments (Aij = gaij , Bij = gbij ) along with the usual FROST nonce values
(dij , eij) and their commitments (Dij = gdij , Eij = geij ); these one-time VRF keys
are later used to generate ρi during the signing phase. Second, participants produce a
zero-knowledge proof of knowledge of their (aij , bij) values, and we add an additional
interaction round in Preprocess for FROST-Interactive to similarly avoid the issues with
parallel non-interactive zero-knowledge proofs of knowledge as above.

Sign. To perform signing, SA first sends (m,B) to each participant, and each
participant responds with ρi = aij + bij ·Hρ(m,B), where B is derived similarly to
in plain FROST via the ordered list of tuples (i,Dij , Eij), i ∈ S. In the second round,
SA then sends each ρi to each of the signing participants, who use these values to
derive R and then to calculate their own response zi.
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Preprocess(π)→ (i, 〈(Dij , Eij , Aij , Bij)〉πj=1)
Each participant Pi, i ∈ {1, . . . , n} performs this stage prior to signing. As
before, j is a counter for a nonce/commitment pair, and π the number of
commitments generated. Let H3 be a hash function whose input is a sequence of
commitment values, and H4 be one with inputs (i,Φ).
Round 1

1. Create empty list Li. Then, for 1 ≤ j ≤ π, perform the following:

1.a Generate nonces dij , eij , aij , bij
$← Z∗q , and derive

(Dij , Eij , Aij , Bij) = (gdij , geij , gaij , gbij ).

1.b Generate nonces kaij , kbij
$← Zq , and commitments

(Raij , Rbij) = (gkaij , gkbij ).

1.c Let Kij = (Dij , Eij , Aij , Bij , Raij , Rbij).

1.d Append (j, (Dij , Eij , Aij , Bij)) to Li, store ((dij , Dij), (eij , Eij),
(aij , Aij), (bij , Bij)) for later use in signing operations.

2. Let Ki = H3(Ki1, . . . ,Kiπ); send (i,Ki) to all other participants.

Round 2

1. After receiving (`,K`) from all other participants, Generate a zero-knowledge
proof of knowledge σi for 〈aij , bij〉πj=1 by performing:

1.a Compute Φ = H3(K1, . . . ,Kn) and ci = H4(i,Φ).

1.b Derive µaij = kaij + aij · ci and µbij = kbij + bij · ci,
∀j ∈ {1, . . . , π}.

1.c Set Ji = 〈µaij , µbij〉πj=1.

2. Send (i, Li, Ji) to all other participants.

3. After receiving (`, L`, J`) from each participant, verify the proofs in J` using
L`. First, compute c` = H4(`,Φ). Then, for each j ∈ {1, . . . , π}:

3.a Check that D`j , E`j , A`j , B`j ∈ G∗.
3.b Derive R′a`j = gµa`j · (A`j)−c` and R′b`j = gµb`j · (B`j)−c` .
3.c Let K ′`j = (D`j , E`j , A`j , B`j , R

′
a`j , R

′
b`j).

4 Let K ′` = H3(K ′`1, . . . ,K
′
`π). Check K ′`

?
= K`, aborting on failure.

5. Abort if any check failed, or any participant did not respond. Otherwise, store
(`, L`) for use in signing operations.

Figure 4: FROST-Interactive Two-Round Preprocessing Protocol

30



Sign(m)→ (m,σ)

Round 1

1. SA selects a set S of t participants for the signing protocol, and the next
available commitments for each signing participant (Dij , Eij , Aij , Bij),
and creates B = 〈(i,Dij , Eij)〉i∈S . SA then sends (m,B) to each
participant Pi, i ∈ S.

2. After receiving (m,B), each Pi, i ∈ S first checks that m is a valid message,
and validates every tuple (i,Dij , Eij) ∈ B maps to the next available
(Dij , Eij , Aij , Bij), aborting if either check fails.

3. Each Pi generates ρi = aij + bij ·Hρ(m,B), securely deletes (aij , Aij) and
(bij , Bij) from their local storage, and returns ρi to SA.

Round 2

1. After receiving each ρ`, SA then distributes all ρ`, ` ∈ S to each signing
participant.

2. After receiving the list of ρ` values, each participant checks the validity of
each by verifying (gρ`

?
= A`j ·B`jHρ(m,B)).

3. Each Pi then derives R =
∏
`∈S D`j · E`jρ` , and then c = H2(m,R).

4. Each Pi computes their response using their long-lived secret share si by
computing zi = dij + (eij · ρi) + λi · si · c, using S to determine λi.

5. Each Pi securely deletes (dij , Dij) and (eij , Eij) from their local storage, and
then returns zi to SA.

6. SA performs the identical verification, aggregation, and publication of
signature shares as in plain FROST.

Figure 5: FROST-Interactive Two-Round Signing Protocol
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A.2.2 Proof of Security for FROST-Interactive

We now present in detail a proof of security for FROST-Interactive, demonstrating that
an adversary that can compute forgeries acting against FROST-Interactive can be used
to compute the discrete logarithm of an arbitrary challenge value. Note that as we
discuss how the security for FROST-Interactive extends to plain FROST in Section 6.2,
we omit this discussion here.

Let nh be the number of queries made to the random oracle, np be the number of
allowed preprocess queries, and ns be the number of allowed signing queries.

Theorem A.2. If the discrete logarithm problem in G is (τ ′, ε′)-hard, then the FROST-
Interactive signature scheme over G with n signing participants, a threshold of t, and
a preprocess batch size of π is (τ, nh, np, ns, ε)-secure whenever

ε′ ≤ ε2

2nh + (π + 1)np + 1

and

τ ′ = 4τ + (30πnp + (4t− 2)ns + (n+ t− 1)t+ 6) · texp +O(πnp + ns + nh + 1)

such that texp is the time of an exponentiation in G, assuming the number of partici-
pants compromised by the adversary is less than the threshold t.

Proof. We prove the theorem by contradiction. Assume that F can (τ, nh, np, ns, ε)-
break the unforgeability property of FROST-Interactive. We will demonstrate that an
algorithmC that can (τ ′, ε′)-solve the discrete logarithm of an arbitrary challenge value
ω ∈ G. We first describe the simulator A, which uses F as a black-box forger.

We now describe how A simulates FROST-Interactive to F in Algorithm 4. Recall
that F controls t− 1 participants, and A simulates a single honest participant Pt.

We let nr = 2nh + (π + 1)np + 1 denote the maximum number of random oracle
outputs A may require.

After performing the key generation phase as described in Section A.1.2,A invokes
F to perform its forgery attack. A simulates both the responses to the random oracle
queries of F as well as the role of Pt in the Preprocess and Sign algorithms.

Simulating Random Oracle Queries. For each random oracle query to Hρ, H2,
H3, andH4,A responds by first checking a corresponding associative table (initialized
to empty on start) to see if the output has already been determined for that query. If
no such output exists, A sets the output to the next available value from {h1, . . . , hnr}
supplied by GFA upon start, indicated by ctr. After setting the output, A increments
ctr and returns the freshly assigned output.

In lieu of the H1(i,m,B) hash function used in FROST (presented in Section 5.2),
FROST-Interactive uses an interactive one-time VRF with input Hρ(m,B) to provide
this binding mechanism.

We now review how A simulates each of these oracles.

Hρ: Accepts as input (m,B). Simulates this oracle by using the next available input
from GFA, and stores outputs in an associative table Tρ.
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Algorithm 4 Algorithm A(Y, {h1, . . . , hnr};β)

Input A public key Y and random oracle outputs {h1, . . . , hnr}
Output An index J and forgery σ, or ⊥

1: Initialize ctr = 1, Tρ = {}, T2 = {}, T3 = {}, T4 = {}, J2 = {}, C = {},M = {}
2: Run F on input Y , answering its queries as follows, until it outputs (m,σ = (z, c)) or ⊥.
3: On simulating Hρ(m,B):
4: If Tρ[m,B] = ⊥, set Tρ[m,B] = hctr and ctr = ctr + 1. Return Tρ[m,B].
5: On simulating H2(m,R):
6: If T2[m,R] = ⊥, set T2[m,R] = hctr , J2[m,R] = ctr, and ctr = ctr + 1. Return
T2[m,R].

7: On simulating H3( ~X):
8: If T3[ ~X] = ⊥, set T3[ ~X] = hctr and ctr = ctr + 1. Return T3[ ~X].
9: On simulating H4(i,Φ):

10: If T4[i,Φ] = ⊥, set T4[i,Φ] = hctr and ctr = ctr + 1. Return T4[i,Φ].
11: On simulating Preprocess:
12: Round 1:
13: For 1 ≤ j ≤ π, do:
14: Set c̄j = hctr , C[j] = ctr, ctr = ctr + 1, z̄tj

$← Zq , Dtj = gz̄tj · Yt−c̄j .
15: Follow the protocol honestly to sample (etj , atj , btj) and derive (Etj , Atj , Btj).
16: Follow the protocol honestly to sample (katj , kbtj) and derive (Ratj , Rbtj).
17: Derive Kt honestly, publish to F , and wait for all K` values from F .
18: Round 2:
19: Derive Lt,Φ, Jt honestly. Send (t, Lt, Jt) to F , and wait to receive the (`, L`, J`) tuples

from F , following the protocol for validation.
20: Reprogram T3[K1, . . . ,Kn] = hctr; set ctr = ctr + 1. Rederive ct and Jt honestly.
21: Rewind F to step 1 in Round 2 of Figure 4, immediately before F queries H3 with

(K1, . . . ,Kn).
22: After allowing F to proceed after rewinding, use its two sets of outputs to derive the

discrete logarithm of each A`j and B`j ; store for use in the signing protocol.
23: Complete the protocol honestly.
24: On simulating Sign:
25: Round 1: Input (m,B)
26: Insert m into M .
27: Using (a`j , b`j) obtained during Preprocess, derive ρ` : ` ∈ S, ` 6= t
28: Derive ρt = atj + btj ·Hρ(m,B), and follow the protocol honestly for validation. If all

are valid, derive R.
29: Program T2[m,R] = c̄j , J2[m,R] = C[j]; return ρt to F
30: Round 2: Input (ρj , . . . , ρt)
31: Let zt = z̄tj + (etj · ρt); return zt to F
32: If F outputs ⊥, then return ⊥. Else F outputs (m,σ = (z, c)); compute R = gzY −c.
33: If T2[m,R] = ⊥, set T2[m,R] = hctr , J2[m,R] = ctr, and ctr = ctr + 1.
34: If T2[m,R] 6= c or m ∈M , then return ⊥
35: Let J = J2[m,R]. Return J, σ = (z, hJ)
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H2: Accepts as input (m,R). Simulates this oracle by using the next available in-
put from GFA, and stores outputs in an associative table T2. A additionally
programs this oracle during Round 1 of Sign.

H3: Accepts as input a sequence of commitments. Simulates this oracle by using the
next available input from GFA, and stores outputs in an associative table T3. A
additionally programs this oracle during Round 2 of Preprocess.

H4: Accepts as input (i,Φ), where Φ is a context string. Simulates this oracle by using
the next available input from GFA, and stores outputs in an associative table T4.

Simulating Preprocess. To perform the Preprocess stage, A simulates the honest
participant Pt, following the protocol honestly with exception of the following steps.
When generating Dtj , A first picks c̄j as the next available hctr value, and keeps track

of which one it used by setting C[j] = ctr in a list C. A randomly selects z̄tj
$← Zq ,

and then derives Dtj = gz̄tj · Yt−c̄j .
A honestly computes and publishes its proof of knowledge of the (atj , btj) values

in Round 2. However, during this round,A itself forksF in order to extract the discrete
logarithms (a`j , b`j) of the commitment values (A`j , B`j) for all of the players P`
controlled by F . A is able to learn these values by rewinding F to the point before it
makes the query Φ = H3(K1, . . . ,Kt), and programming the random oracle to return
a different random output Φ′. Then, when F republishes Ji : i 6= t for all dishonest
parties that F controls, A can solve for the discrete log for each commitment.

Simulating Signing. Because F is allowed to assume the role of SA, F initiates
the FROST-Interactive signing protocol, sending (m,B) in Round 1. Upon receiving
these values, A is able to compute not only its ρt, but also all of the other ρ` values for
all of the other participants, because of its knowledge of the (a`j , b`j) that A obtained
during Round 2 of the preprocessing stage. Using these ρ` values, it can compute the
R that will be used in Round 2, and program H2(m,R) = c̄j . It also saves C[j], the
ctr value such that c̄k = hctr, as J2[m,R] in a table J2.

One important distinction betweenA as would be used in plain Schnorr and FROST-
Interactive is that for FROST-Interactive, A is never required to guess which output
from the random oracle to program in order to correctly issue a signature, because A
can always computeR before F can, and consequently can program the random oracle
H2(m,R) with perfect success. Conversely, a signing request by A in the simulation
for plain Schnorr succeeds only with probability 1/(nh + ns + 1) [3].

Finding the Discrete Logarithm of the Challenge Input. As described in Sec-
tion A.1.3, using the two forgeries (σ, σ′), the discrete logarithm of ω can be derived.

Recall that the probability of F succeeding for one run of A is simply ε, as A can
return the correct challenge for each signing query. Then, using the forking lemma, the
probability that the discrete logarithm of ω can be extracted after A is run twice is at
least ε2

nr
(ignoring the negligible ε

h term, as h—the number of possible hash outputs—
is typically at least 2256), and the total time required to extract the discrete logarithm
of the challenge value is:

τ ′ = 4τ + (30πnp + (4t− 2)ns + (n+ t− 1)t+ 6) · texp +O(πnp + ns + nh + 1)
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The running time for C to compute the discrete logarithm by procuring two forg-
eries from FROST-Interactive is four times that for F (because of the forking of A,
which itself forks F), plus the time to compute (30πnp+(4t−2)ns+(n+ t−1)t+6)
exponentiations:
• In simulating KeyGen, (t − 1) · t to compute ~Ct, 2 to compute R, and n · t to

compute Yt
• In each of two executions of A:

– 7 in each of π iterations of Round 1 of simulating Preprocess,
– 8π to validate each of two versions of t−1 J` lists in Round 2 of simulating

Preprocess,
– t− 1 to validate the ρ` and t to compute R in each simulation of Sign,
– 2 to compute R to verify the output of F

and O(πnp + ns + nh + 1) other minor operations, such as table lookups.

A.3 Extension of FROST-Interactive to FROST
In this section, we describe the changes we make to FROST-Interactive to remove one
round of communication in each of the Preprocess and the Sign phases. We argue in
Section 6 why our changes do not harm the security of the protocol.

Removal of one-time verifiable random functions to generate ρi. The primary
difference between FROST-Interactive and FROST is that in the former, interactive
one-time VRFs are used to generate the ρi binding values. In FROST, on the other
hand, these values are generated with random oracles (modelling hash functions). Re-
moving the one-time VRFs removes the VRF keys (aij , bij) and their commitments
(Aij , Bij) from the protocol.

Removal of one round of the Sign phase. With the one-time VRFs removed, all
participants can compute every other participants’ ρi values non-interactively, and so
the first round of the Sign protocol for FROST-Interactive (where participants exchange
their ρi values) is no longer necessary for FROST.

Removal of the proofs of knowledge of the one-time VRF keys and one round
of the Preprocess phase. As the one-time VRF keys are removed, so are their proofs
of knowledge Ji in the Preprocess phase. Removing the Ji then makes the Ki unused,
and removing the Ki removes the first round of the Preprocess phase.

B Changelog
2020-01-06 Initial extended abstract posted and presented at RWC 2020.

2020-01-20 Initial complete technical report, added analysis for Drijvers’ attack and
mechanisms for participants to commit to their commitment values in a pre-
processing stage.

2020-07-08 We added the following improvements:
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1. The requirement that each participant provide a zero-knowledge proof of
knowledge of their secret ai0 during the key generation stage in order to
prevent against rogue key attacks in the case that t ≥ n/2.

2. Change to present only a single variant of FROST that is safe in an concur-
rent setting against known attacks such as the Drijvers attack.

3. New proofs for FROST in a two-round signing setting, and a discussion
how this proof of security extends to FROST in a single-round signing
setting.
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