
Evolution of Probabilistic Consensus in Digital Organisms
Technical Report: MSU-CSE-09-13

David B. Knoester and Philip K. McKinley
Department of Computer Science and Engineering

Michigan State University
East Lansing, Michigan 48824

email: {dk, mckinley}@cse.msu.edu

Abstract

The complexity of distributed computing systems and
their increasing interaction with the physical world
impose challenging requirements in terms of adapta-
tion, robustness, and resilience to attack. Based on
their reliance on heuristics, algorithms for consensus,
where members of a group agree on a course of action,
are particularly sensitive to these conditions. Given
the ability of natural organisms to respond to adver-
sity, many researchers have investigated biologically-
inspired approaches to designing robust distributed sys-
tems. Examples include biomimetics, which mimic be-
haviors such as swarming found in nature, as well as
evolutionary computation methods, such as genetic al-
gorithms and neuroevolution, which simulate the nat-
ural processes that produce those behaviors. A related
but fundamentally different technique is digital evolu-
tion, a type of artificial life system whereby a popu-
lation of self-replicating computer programs exists in
a user-defined computational environment and is sub-
ject to instruction-level mutations and natural selec-
tion. Over thousands of generations, these digital or-
ganisms can evolve to survive, and thrive, under ex-
tremely dynamic and adverse conditions. In this pa-
per, we describe a study in the use of digital evolution
to produce a distributed behavior for reaching consen-
sus. The evolved algorithm employs a novel mechanism
for probabilistically reaching consensus based on the fre-
quency of messaging. Moreover, this design approach
enables us to change parameters based on the specifics
of the desired system, with evolution producing corre-
sponding flavors of consensus algorithms. Our results
demonstrate that artificial life systems can be used to
discover solutions to engineering problems, and that ex-
periments in artificial life can inspire new studies in
distributed protocol development.

Keywords: distributed algorithm, consensus,
evolutionary computation, digital evolution, self-
organization.

1. Introduction

There are many examples of organisms in nature
that exhibit cooperative behaviors of varying complex-
ity. For example, nearly all species of microorgan-
ism cooperate to form extracellular structures called
biofilms [22], and many social insects cooperate to build
complex nests [27]. Some cooperative behaviors ex-
hibit consensus, where members of a group agree upon
a particular course of action. Consensus behaviors are
visible throughout the spectrum of life, from decision-
making in humans [37], leader election in schools of
stickleback fish [50], alarm-drumming in ants [29], and
quorum sensing in bacteria [56]. Generally, consensus
among individuals in a group leads to improved deci-
sions [21]. Improving our understanding of such behav-
iors has the potential to advance not only the biological
sciences, but also to aid in the design of computational
systems.

In distributed computing systems, consensus algo-
rithms are frequently used to ensure consistency be-
tween replicated components in an effort to increase
reliability [10] or provide the basis for distributed lock
management [15]. However, due to the fact that
bounded-time consensus in the presence of failures has
been proven impossible (the so-called FLP impossibil-
ity proof) [25, 38], numerous heuristics for consensus
have been developed [40]. As computing systems con-
tinue to expand their reach into the natural world,
for example through cyber-physical systems [58], as
well as scaling up in size and complexity, designers
are faced with a multitude of additional complications
(such as the shift from systems comprised of few high-
performance nodes to large systems of unreliable, com-

1



modity hardware [41]), some of which may no longer
be amenable to traditional algorithms.

Many of the challenges faced by designers of dis-
tributed systems are shared by biological organisms.
For example, node churn, message loss, and network
segmentation all have biological analogues in organ-
ism death, sensory ineffectiveness, and environmental
dangers. As such, many recent approaches to design-
ing distributed systems have focused on biomimetics,
where behaviors observed in nature are replicated in
silico [51]. A complementary approach to biomimetics
is evolutionary computation, where instead of mimick-
ing the behaviors found in nature, we harness the power
of evolution and natural selection, the processes that
produced those behaviors. Compared to traditional ap-
proaches for designing distributed algorithms, evolu-
tionary computation enables researchers to specify the
desired global behaviors of the system directly, without
a priori knowledge of local behavior. Instead, these lo-
cal behaviors evolve in response to selective pressures
derived from the specified objective. Moreover, while
still relatively early in its application to distributed sys-
tems, evolutionary computation enables the designer
to search an enormous solution space, often revealing
robust and non-intuitive solutions [34].

In this study, we use digital evolution [42], a form of
evolutionary computation, to evolve digital organisms
that exhibit consensus. In digital evolution, a popula-
tion of digital organisms exists in a user-defined compu-
tational environment. These organisms replicate, com-
pete for resources, and are subject to mutation and
natural selection. Over thousands of generations, they
can evolve to survive, and even thrive, under extremely
dynamic and adverse conditions. In this study we em-
ploy Avida [44], a digital evolution platform previously
used to study biological evolution [36]. Digital organ-
isms in Avida exist in a spatial environment, communi-
cate with their neighbors, and execute their “genome,”
a list of virtual CPU instructions. Recently, Avida
has been applied to an increasingly diverse set of engi-
neering problems, from the generation of software be-
havioral models that assist the developer in addressing
uncertainty in dynamically adaptive systems [26], to
the discovery of algorithms for leader election and con-
struction of communication networks [31, 32].

The contributions of this work are as follows: First,
we were able to evolve a genome that exhibits consen-
sus when placed within a group comprising multiple
copies of itself. Second, by analyzing this genome, we
were able to understand its behavior, which was based
on probabilistic message forwarding. Third, we im-
plemented this algorithm in a simulator to compare it
to examples of distributed consensus from the litera-

ture. These results indicate that evolutionary compu-
tation in general, and digital evolution in particular,
offer a promising approach to designing distributed al-
gorithms.

We note that this approach is complementary to
other advances in distributed systems. For example,
existing algorithms for routing and constructing over-
lay networks can be provided as building blocks within
an evolutionary computation framework for designing
distributed applications, further increasing our abil-
ity to design for complex environments. Our research
explores the role digital evolution can play in design-
ing distributed systems that remain effective under dy-
namic conditions. While evolved solutions may share
some of the inherent imperfections of natural organ-
isms, they might also be resilient to unexpected con-
ditions, in much the same way that living organisms
adapt to their environment.

2. Related Work

Replication of the critical components of a dis-
tributed computing system is a well-known method to
improve overall system reliability [53, 45, 49]. Consen-
sus algorithms are frequently used to ensure that state
information shared among these replica remains consis-
tent [10, 40]. In practice, algorithms such as Paxos [35]
are used as the basis for implementations of consen-
sus [19], which in turn can support higher-level ser-
vices such as distributed lock management [15]. As
distributed systems continue to increase in scale and
complexity, new approaches to the design and imple-
mentation of such algorithms are needed, particularly
as the heuristics used for fault-tolerance are overtaken
by the complexity of the environment in which these
systems are deployed. Indeed, numerous distributed
algorithms already integrate techniques from dynamic
systems [28, 24] to mitigate the effects of dynamic en-
vironments.

The consensus problem specifically has been ap-
proached from many different fields of research. While
the motivation for this paper stems from consensus in
distributed systems, consensus itself is studied in fields
as diverse as coordination games [17], multi-agent sys-
tems [47], and cooperative control [48]. Coordinating
the behavior of multiple agents is also a common prob-
lem in evolutionary robotics, as in [8, 52], and many
studies in artificial life have contributed to our under-
standing of the evolution of cooperation and commu-
nication [55, 9].

In this study, we use a model of the consensus prob-
lem based on [40] and [18], called the n-process id con-
sensus problem, in which a group of processes seek to

2



reach agreement, or consensus, upon a common process
id. Necessarily, solving the consensus problem requires
cooperation and communication among the processes,
in addition to a strategy for selecting the agreed-upon
value. Additional related forms of consensus will be
discussed in Section 7. Given the fundamental use-
fulness of consensus in distributed algorithms, and its
theoretical impossibility [25], discovering heuristics for
achieving consensus in modern distributed systems is
of great importance.

Previous studies that have used evolutionary algo-
rithms to produce cooperative behaviors have tended
to focus on either the evolution of cooperation un-
der fixed communication properties [4], or the evolu-
tion of communication under fixed cooperation prop-
erties [16, 54]. In this study, we provide digital or-
ganisms with a mechanism for communication and se-
lect for the ultimate (as opposed to proximal) result of
cooperation, leaving evolution to discover the specific
cooperative and communication behaviors.

3. Digital Evolution and Avida

Digital evolution [43] is a form of evolutionary com-
putation that was originally developed to study evolu-
tion in biology. Avida [44], a platform for digital evo-
lution, has also recently been applied to engineering
problems, including the design of dynamically adap-
tive systems [26], construction of communication net-
works [32], information gathering and energy manage-
ment [11], and adaptive population control for energy
efficiency [12]. Although Avida has many character-
istics that make it suitable for studying evolution in
biology, here we use Avida similarly to a linear ge-
netic program [46]. There are a number of features
that make Avida an appropriate choice for evolving
distributed algorithms, and these features have already
made it possible for us to study various types of cooper-
ative behaviors for application to computing systems.
First, digital organisms in Avida have only rudimen-
tary computation capabilities, comparable to resource-
constrained nodes in a sensor network. Second, though
organisms in Avida live in a digital world that enables
them to communicate with each other, any communi-
cation behaviors must evolve within an environment
exhibiting various communication hazards [33]. Third,
Avida includes features that enable the evolution of
group behaviors. In the remainder of this section, we
briefly describe the structure of an organism in Avida
and the mechanism by which group behaviors can be
evolved.

Recently, we have shown that digital evolution is
capable of evolving distributed problem solvers. For

example, in [31] we used digital evolution to evolve a
novel algorithm for leader election, where the leader
was elected based on the characteristics of its genome.
In that study, the strategies employed depended on
characteristics of the Avida environment, specifically
self-replication, mutation, and direct inspection of
genomes. In this study, we remove the ability for or-
ganisms to rely on these features, and evolve behaviors
that only depend on message sending.

3.1. Digital Organisms

Figure 1 depicts an Avida population and the struc-
ture of an individual organism. Each digital organism
comprises a circular list of instructions (its genome)
and a virtual CPU, and exists in a common virtual
environment. Within this environment, organisms ex-
ecute the instructions in their genomes, and the par-
ticular instructions that are executed determine the
organism’s behavior (its phenotype). Different Avida
CPU architectures have been implemented and used
in various studies [44]. The architecture used in this
study contains a circular list of three general-purpose
registers {AX, BX,CX}, two general-purpose stacks
{GS,LS}, and four special-purpose heads. Heads may
be thought of as pointers into the organism’s genome
and are similar to a traditional program counter and
stack pointer.

get-id
inc

getid
h-div

rtrvm
hdiv

sendmsg

inc

rotater

if-less

rotater

rotatel
rtrvm

halloc

getid
Write Interface

Registers Stacks
CPU GS

LSCX
Heads

BXAX

InstrFlow
Read

Cell

Figure 1. An Avida population containing
multiple genomes (bottom), and the structure
of an individual organism (top).

Instructions within an organism’s genome are simi-
lar in appearance to a traditional assembly language.
These instructions enable an organism to perform sim-

3



ple mathematical operations, such as addition and mul-
tiplication; to manipulate heads within their genome;
to sense and change properties of the environment; and
to communicate with neighboring organisms. Certain
instructions also enable organisms to replicate, subject
to mutation, and thus spread throughout the popu-
lation. Instructions in Avida can also have different
costs (in terms of virtual CPU cycles) associated with
them. For example, a simple addition may cost only
one cycle, while broadcasting a message may cost 20
cycles. A key property of Avida’s instruction set that
differs from traditional computer languages is that it
is not possible to construct a syntactically incorrect
genome in Avida. Hence, while random mutations
may produce many genomes that do not perform any
meaningful computation, their instruction sequences
are always executable.

As shown in Figure 1, each organism in Avida lives
in a cell located in a fixed location within a spatial envi-
ronment. Each cell can contain at most one organism;
organisms cannot live outside of cells. The topology
of the environment defines the neighborhood of each
cell, and is user-defined. For example, the environment
topology may be configured as a grid, a torus, or as a
well-mixed environment, where all cells are neighbors
of each other (also referred to as a clique). Further-
more, each organism in the environment has a facing
that defines its orientation. This facing may be used in
a number of different ways. For example, an organism
can send a message in the faced direction. The organ-
ism can also sense and manipulate its facing via the
get-facing and rotate-∗ instructions, respectively.

3.2. Levels of Selection

Natural selection is the differential survival and re-
production of organisms within their environment [20],
while multilevel selection is the theory that the sur-
vival of the individual is linked to the survival of its
group [57]. These groups may be defined in many dif-
ferent ways, for example by a common trait (a trait-
group), shared ancestry (clade selection), membership
in the same species (species selection), or by the inter-
actions between related individuals (kin selection).

Figure 2 depicts the three different levels of selec-
tion available within Avida. Under the first, individ-
ual selection, organisms compete with each other for
space (cells) in their environment and are responsible
for their own replication, that is, organisms must exe-
cute instructions to self-replicate. In the second level,
group selection, the population of digital organisms
is divided into distinct subpopulations, called demes.
Within each deme, organisms replicate, mutate, and

compete with each other for space and resources. At
the same time, demes also compete with each other
for space and resources based on the behavior of their
constituent organisms. Competition between demes
can either be synchronous, where periodic selection is
applied based on a deme-level fitness function using
fitness-proportional selection, or asynchronous, where
the behavior of each deme is monitored for a user-
defined event that triggers the deme’s replication. Nor-
mally, when a deme replicates, all of its constituent or-
ganisms are replicated as well. The third level of selec-
tion available within Avida is most similar to multicel-
lularity in biology. Here, the population is again split
into demes, however the organisms within each deme
are homogeneous. In this case, a genome is attached to
each deme, rather than individual organisms, and all
organisms within the deme are instantiations of that
same genome. When a deme replicates, any mutations
occur to the deme’s genome, which is called a digital
germline [32]. As in the group selection case, replica-
tion when using a germline can be either synchronous
or asynchronous.

demes

Individual selection,

Group selection,

“Multicellularity,”

single population

demes

Figure 2. Levels of selection available within
Avida; different shades represent different
genomes.

For this study, we used CompeteDemes, a frame-
work within Avida that enables the periodic replica-
tion and competition of demes, in combination with a
digital germline to ensure homogeneity within demes.
During the execution of an Avida trial, the Compet-
eDemes framework periodically calculates the fitness
of each deme via a user-defined fitness function. This
fitness function takes as input a single deme and pro-
duces the fitness of that deme (a floating-point num-
ber) as output. Using the resulting array of fitness
values, the CompeteDemes framework then performs
fitness-proportional selection, preferentially replicating
those demes with higher fitness, and replacing those
demes with lower fitness. For this study, we define

4



fitness functions based on the degree to which organ-
isms within a deme achieve consensus. Over time, the
CompeteDemes framework will preferentially replicate
those demes that are more capable of reaching consen-
sus than others, resulting in a population that evolves
better approaches to reaching consensus. At the end of
an Avida trial, the dominant, or most prolific, genome
can be identified for further study, for example to bet-
ter understand its behavior.

4. Methods

Typically, the Avida user will configure the envi-
ronment in which the digital organisms live and define
the selective pressures that act upon the population.
Once configured, multiple Avida trials are conducted
to account for the stochastic nature of evolution; al-
though a single result may be sufficient when searching
for an effective algorithm, for example, multiple trials
improve statistical accuracy. In the remainder of this
section, we describe the configurations and extensions
to Avida that were required for this study of the evo-
lution of consensus.

4.1. Instructions

All relevant instructions employed in this study are
summarized in Table 1. Of particular note are the in-
structions associated with messaging, opinions, and the
“flash” capability. These instructions enable organisms
to send and retrieve messages; manipulate the “opin-
ion” register, used as the basis for the fitness functions
that will be presented in Section 5; and to both sense
and trigger virtual “flashes,” a synchronization primi-
tive based on the behavior of fireflies, respectively.

4.2. Configuration

We configured Avida to use the CompeteDemes pro-
cess, outlined in Section 3.2, with specific configuration
values summarized in Table 2. We used 400 demes,
each comprising 25 digital organisms connected in a
torus topology, with each deme configured to use a
germline to provide homogeneity within demes. The
relatively small size of each deme was selected primar-
ily for practical (i.e., computation time) purposes, and
the default values were used for all mutation rates.

In order to control the initial conditions for each
deme, we configured Avida to disallow self-replication
of individual organisms. Each time a deme replicated
as a result of the CompeteDeme process, the offspring
deme was filled with 25 copies of the latest (possibly

Table 2. Common Avida configurations used
for the experiments described in this study.

Configuration Value
Trials per experiment 30
Max. population size 10,000
Number of demes 400, each 5× 5
Environment topology Torus
Copy mutation rate 0.0075 (per instruction)
Insertion mutation rate 0.05 (per replication)
Deletion mutation rate 0.05 (per replication)
Time slice 5 instructions per update
CompeteDemes Compete all demes us-

ing fitness-proportional
selection (periodic, every
800 updates).

mutated) genome from the germline, the genome at-
tached to the deme. As the final step of Avida config-
uration, we defined the default ancestor, which is the
starting organism for each deme within all Avida tri-
als. Here, we used an organism that contained 100
nop-C instructions; the nop-∗ instructions perform no
computation, and do not change the state of the virtual
CPU. The presence of a large number of nop-C instruc-
tions in the default ancestor is common in Avida ex-
periments, and provides evolution with a “blank tape”
for mutating different instructions into the genome. We
emphasize that although the default ancestor contains
only 100 instructions in its genome, not only can mu-
tations increase and decrease genome size, the genome
itself is circular; once the organism executes the final
instruction, execution flow wraps around to the begin-
ning of the genome.

5. Results

5.1. Simple Consensus

Our initial experiment in the evolution of consensus
focused on the simple consensus dilemma, based on the
n-process id consensus problem. Informally, we define
the Simple Consensus Dilemma (SCD) as follows1:

Each agent within a group is assigned a
unique identifier. Agents within this group
are independent, and can communicate by

1This presentation of the consensus problem is intentionally
patterned after the classic Prisoner’s Dilemma. Game theoretic
studies have historically provided insight into many of the fun-
damental aspects of evolution, such as cooperation [5].

5



Table 1. Relevant instructions for this study. All instructions are equally likely to be selected as
targets for mutation.

Instruction Description
send-msg Sends a message to the neighbor currently faced by the caller; message contains

contents of BX and CX registers.
retrieve-msg Loads the caller’s BX and CX registers from a previously received message.
rotate-left-one Rotate this organism counter-clockwise one step.
rotate-right-one Rotate this organism clockwise one step.
get-opinion Sets register ?BX? to the value of the caller’s opinion register.
set-opinion Sets the caller’s opinion register to the value in register BX.
bcast1 Sends a two-word message containing the values of registers BX and CX to all

immediately neighboring organisms.
collect-cell-data Sets register BX to the value of the cell data where the caller lives.
if-cell-data-changed Execute the subsequent instruction if the cell data where the caller lives has changed

since the previous call to collect-cell-data, otherwise skip the subsequent instruction.
get-neighborhood Load a hidden register with a list of the IDs of all neighboring organisms.
if-neighborhood-changed Execute the subsequent instruction if the caller’s current neighbor is different from

that when get-neighborhood was last called.
flash Broadcasts a “flash” message to caller’s neighbors, with a configurable loss rate.
if-recvd-flash If the caller has received a flash from any of its neighbors, execute the subsequent

instruction. Otherwise, skip the subsequent instruction.
flash-info If the caller has ever received a flash, set BX to 1 and CX to the number of cycles

since that flash was received. Otherwise, set BX and CX to 0.

sending messages. Each agent can also des-
ignate a value, selected from the set of iden-
tifiers, as its “opinion.” Following a period
of time during which the agents may commu-
nicate with each other, the opinion of every
agent within the group is examined. If all
agents express the same opinion, the group
survives. If agents within the group express
different opinions, the group perishes. How
should the agents act?

The question we are asking here then, is can evolution
evolution solve the SCD, and if so, what solutions will
be discovered? Using the Opinion, CellData, and Com-
peteDemes frameworks described earlier, we configured
each deme as a 5× 5 torus of cells. Each of these cells
were assigned a random 32-bit integer as cell data, and
we used a fitness function to reward demes whose con-
stituent organisms set their opinion to a common value.
The specific fitness function used here was:

F = (1 + Smax)2 (1)

where F is the resulting fitness value and Smax is the
maximum support, or the number of organisms that
have expressed the most common opinion, where that
opinion also corresponds to a cell value present within
the deme. We emphasize that although organisms are

able to set their opinion to any integer value, only opin-
ions that are set to a cell data present within the deme
contribute to the deme’s fitness.

Figure 3(a) plots average and best-case performance
of individual demes across all 30 trials. In this figure,
the y-axis represents the fraction of consensus achieved,
where a value of 1 is complete consensus, and the x-
axis is in units of updates, the standard unit of time in
Avida. Here we see that the best-performing demes
achieve consensus after approximately 25,000 updates,
while the average deme steadily approaches consensus.
Figure 3(b) depicts a representative behavior of a single
deme from this experiment. Here, individual opinions
are shown as points in red, while the mean opinion
over all individuals within the deme is shown in blue.
Consensus among all individuals is represented as both
a vertical black line and green circle. As shown here,
when consensus is reached individual opinions and the
mean opinion converge to the same value.

At the end of 30 trials, six of the dominant (most
prolific) genomes appeared to employ a strategy that
searched for the maximum cell data, while an addi-
tional five genomes searched for the minimum cell data.
These approaches are similar to an evolved strategy
from an earlier study on the diffusion of the maxi-
mal sensed value [30]. In that previous study, we used

6



0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.2

0.4

0.6

0.8

1

Update

C
o
n
s
e
n
s
u
s
 f
ra

c
ti
o
n

 

 

grand mean std. error grand max.

(a) Average and best-case deme performance, in terms of
consensus. Consensus is first achieved near update 25,000.

100 200 300 400 500 600 700 800
0

5

10

15

x 10
8

Update

O
p

in
io

n

 

 

mean opinion ind. opinions consensus reached

(b) Representative behavior of a single deme while reaching
consensus. This behavior was produced by testing the dom-
inant (most prolific) genome from one of 30 trials.

Figure 3. Deme performance and detailed be-
havior for the Simple Consensus Dilemma.

Avida tasks, a mechanism to apply selective pressure
to individuals, in order to encourage the evolution of
a distributed behavior that searched for the maximum
cell data. Here, however, we employed a fitness func-
tion that operated only on the group of individuals,
enabling evolution to discover the most fit strategy
without any guidance as to how consensus should be
reached.

Figure 4 depicts a fragment of an evolved genome
that solves the SCD by searching for the maximum cell
data. At the individual level, this genome causes the
organism to set its opinion to either the data contained
in its own cell, or the contents of a received message,
whichever is larger. Similarly, when a group of organ-
isms all share this genome, each will eventually set its
opinion to the maximum cell data that any of the group
members have access to.

...

collect-cell-data

if-less

Message retrieval

Neutral

Sensing cell data

Opinion retrieval

Message sending

Opinion setting

Send a message containing the current

opinion or last received message.

Sense cell data for later use.

Set opinion to largest known value.

If the received message is less than

the current opinion, overwrite the

message with the current opinion.

If sensed data is less than the current

retrieve-msg
opinion, retreive a message.

send-msg

nop-C

nop-C

if-less

nop-C

get-opinion

nop-C

nop-A

set-opinion

Figure 4. Genome fragment responsible for
searching for the maximum cell data present
within a deme.

5.2. Iterated Consensus

In the next series of experiments we explored the
iterated consensus dilemma. The Iterated Consensus
Dilemma (ICD) modifies SCD by introducing rounds,
where the group of agents are repeatedly tasked with
reaching consensus. Whenever a group reaches con-
sensus, the agent with the identifier that the group has
agreed upon is replaced by a new agent with a different
identifier. The particular issue being examined here is
whether a group of organisms can reach consensus, and
then recover to reach consensus again. ICD may be
thought of as non-stationary optimization [14], where
the group must continually strive to reach consensus in
the face of population turnover. To study the evolu-
tion of behaviors that solve the ICD, we modified the
fitness function from Section 5.1. The specific fitness
function we used was:

F = (1 + Smax + R · D)2 (2)

where F is the resulting fitness, Smax is again the max-
imum support, R is the number of times the deme has
reached consensus during this competition period, and
D is the size of the deme (always 25 in this exper-
iment). In order to determine R, each deme in the
population is evaluated at every update to determine
if its constituents have reached consensus. If so, the
value of R for that deme is incremented, and the cell
data corresponding to the agreed-upon value is reset to
a random 32-bit integer. Whenever a cell data is reset,
the new value is selected from the range bounded by
the maximum and minimum cell data present within
that deme.

7



Figure 5(a) plots average and best-case performance
of individual demes across all 30 trials. Here we see
that the average deme approaches a single consensus
round, while the best-case performance of any deme is
two consensus rounds. Figure 5(b) depicts the behavior
of a deme that achieved two consensus rounds. The
remaining experiments examine various ways in which
evolution might improve solutions to the ICD.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

1

2

3

4

5

6

7

Update

C
o

n
s
e

n
s
u

s
 f

ra
c
ti
o

n

 

 

grand mean std. error grand max.

(a) Average and best-case deme performance, in terms of
consensus. The first deme to pass multiple consensus rounds
occurs near update 50,000.

100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

x 10
8

Update

O
p

in
io

n

 

 

mean opinion ind. opinions consensus reached

(b) Representative behavior of a single deme passing multiple
consensus rounds.

Figure 5. Deme performance and detailed be-
havior for the Iterated Consensus Dilemma.

5.3. Neighborhood Sensing

In this experiment, we provide additional instruc-
tions that organisms may use to sense their neigh-
borhood for changes. Specifically, we add the get-
neighborhood and if-neighborhood-changed instructions,
which enable individuals to sense their environment,
and determine if the organisms in their neighborhood
are different than the last time the neighborhood was
sensed, respectively.

Figure 6(a) plots average and best-case performance
of individual demes across all 30 trials, and Figure 6(b)
depicts the detailed behavior of a single deme from
this experiment. Although the mean behavior of demes
from this experiment is significantly different from that
in Section 5.2 (p < 0.001, Mann-Whitney U-test), and
the specific behavior of individual demes is qualita-
tively different, the best-case performance of any deme
across all trials is unchanged. Based on these results,
we conclude that the ability of an individual to sense
their neighborhood does not aid in the evolution of
consensus over organisms without this ability.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

1

2

3

4

5

6

7

Update

C
o

n
s
e

n
s
u

s
 f

ra
c
ti
o

n

 

 

grand mean std. error grand max.

(a) Average and best-case deme performance, in terms of
consensus. The first deme to pass multiple consensus rounds
occurs near update 60,000.

100 200 300 400 500 600 700 800
0

5

10

15

x 10
8

Update

O
p

in
io

n

 

 

mean opinion ind. opinions consensus reached

(b) Representative behavior of a single deme passing multiple
consensus rounds with the addition of neighborhood-sensing.

Figure 6. Deme performance and detailed be-
havior for the Iterated Consensus Dilemma,
with the addition of neighborhood-sensing
instructions.

5.4. Broadcast

All previous experiments have used relatively sim-
ple mechanisms for sending and receiving messages.

8



Specifically, individuals in the previous experiments
have only been able to send point-to-point messages.
Here, we present a treatment that improved the
message-sending capability of digital organisms, by
adding the bcast1 instruction; this instruction func-
tions identically to send-msg in terms of register usage
and payload, however, the message is sent to all neigh-
boring organisms instead of the single faced organism.

Figure 7(a) plots average and best-case performance
of individual demes across all 30 trials. As with the pre-
vious experiment, the individual deme behavior shown
in Figure 7(b) is qualitatively different from previous
results, and mean deme performance is significantly
different from previous results (p < 0.001), however
best-case performance of individual demes is no differ-
ent than previous results. Thus, we conclude that the
addition of broadcast messaging alone does not aid in
the evolution of consensus.

5.5. Sensing Death

Under the observation that it is the “death” of an
individual that signals the start of a new round of con-
sensus, and that these deaths are rare events, we next
examined the effect of a small background rate of death
on the evolution of consensus. Specifically, here we es-
tablish a 0.025% chance per update of an individual
within a deme to be replaced, including new cell data.
At this rate, on average each deme will experience 20
deaths during a single competition period.

Figure 8(a) plots average and best-case performance
of individual demes across all 30 trials, and Figure 8(b)
depicts the specific behavior of a single deme. In this
case, not only is the mean deme performance signifi-
cantly different than previous results (p < 0.001), the
best-case performance of an individual deme oscillates
between three and four complete consensus rounds, a
significant improvement. Based on these results, we
conclude that a small background rate of death has
served to sensitize demes to the death of individuals,
thus making it easier for them to recover from death.

5.6. Synchronization

In the next experiment, we add synchronization
primitives to the instruction set. Specifically, we add
the flash and get-flash-info instructions, which send vir-
tual “flashes” (a la fireflies) to an individual’s neigh-
bors, and retrieve information about any sensed flashes,
respectively. Here we also provide individuals with
the bcast1 instruction, enabling them to send messages
that match the distribution of the virtual flashes.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

1

2

3

4

5

6

7

Update

C
o

n
s
e

n
s
u

s
 f

ra
c
ti
o

n

 

 

grand mean std. error grand max.

(a) Average and best-case deme performance, in terms of
consensus. The first deme to pass multiple consensus rounds
occurs near update 60,000.

100 200 300 400 500 600 700 800
0

5

10

15

x 10
8

Update

O
p

in
io

n

 

 

mean opinion ind. opinions consensus reached

(b) Representative behavior of a single deme passing multiple
consensus rounds with the addition of broadcasting.

Figure 7. Deme performance and detailed be-
havior for the Iterated Consensus Dilemma,
with the addition of an instruction enable
broadcast messages.

Figure 9(a) plots average and best-case performance
of individual demes across all 30 trials, and Figure 9(b)
depicts the specific behavior of a single deme. Here
we see a significant improvement in both the average
and best-case deme performance, where the average
deme approaches 1.5 consensus rounds, and the best-
case deme at the end of all trials achieves five consensus
rounds. An interesting result brought to light in this
experiment is the role of historical contingency, and its
relationship to instructions. Specifically, it appears as
though a combination of broadcast, sensing, and syn-
chronization instructions are needed as building blocks
for the behavior shown in Figure 9(b), although the
genome responsible does not include the flash instruc-
tion.

9



0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

1

2

3

4

5

6

7

Update

C
o

n
s
e

n
s
u

s
 f

ra
c
ti
o

n

 

 

grand mean std. error grand max.

(a) Average and best-case deme performance, in terms of
consensus. The first deme to pass multiple consensus rounds
occurs near update 100,000.

100 200 300 400 500 600 700 800
0

5

10

15

x 10
8

Update

O
p

in
io

n

 

 

mean opinion ind. opinions consensus reached

(b) Representative behavior of a single deme passing multiple
consensus rounds, with the addition of death.

Figure 8. Deme performance and detailed be-
havior for the Iterated Consensus Dilemma,
with the addition of death during deme com-
petition periods.

5.7. Stability of Consensus

In our final experiment, we demonstrate the flexibil-
ity of an evolutionary computation approach to design-
ing distributed behaviors. In previous experiments, we
required that all organisms express the same opinion
once, and during the same update. In this experiment
we alter the fitness function to reward for stability of
consensus. Specifically, we require all organisms in the
same deme to express the same opinion for a series of
consecutive updates – In other words, we reward for
stable consensus. The specific fitness function we used
was:

F = (1 + Smax + D(R · H + Lmax))2 (3)

where F is the resulting fitness; Smax is again the max-
imum support; R is the number of times the deme has
reached consensus during this competition period; H

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

1

2

3

4

5

6

7

Update

C
o

n
s
e

n
s
u

s
 f

ra
c
ti
o

n

 

 

grand mean std. error grand max.

(a) Average and best-case deme performance, in terms of
consensus. The first deme to pass multiple consensus rounds
occurs near update 20,000.

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

x 10
8

Update

O
p

in
io

n

 

 

mean opinion ind. opinions consensus reached

(b) Representative behavior of a single deme passing multi-
ple consensus rounds, with the inclusion of synchronization
instructions.

Figure 9. Deme performance and detailed be-
havior for the Iterated Consensus Dilemma,
with the inclusion of synchronization instruc-
tions.

is the hold time, a configurable value for the number
of updates that all organisms in the deme must share
the same opinion before we consider consensus to have
been reached; and D is the size of the deme (again, 25).
We found the final component of this fitness function,
Lmax, to be critical for the evolution of stable consen-
sus. Here, Lmax is the maximum level, and is defined
as the maximum number of subsequent updates during
which organisms in a deme shared the same opinion
without reaching consensus. For example, if we set the
hold time (H) to four, and during a competition pe-
riod all organisms in a deme express the same opinion
during subsequent updates for at most three updates,
then Lmax is three. Were this deme to hold that same
opinion for one more update, we then count consensus
as having been reached, increment R, and reset Lmax

10



to zero for the next round.
In this experiment, we test three different values of

H: 2, 4, 8, 16, and 32 updates, and perform 30 trials of
each. Figure 10(a) plots average and best-case perfor-
mance of individual demes across all 30 trials for a hold
time of 32 updates (H = 32), and Figure 10(b) depicts
the specific behavior of a single deme. Compared to
the results in Figure 9, fewer consensuses are reached,
which is to be expected, as this is a more difficult prob-
lem where each consensus requires more time.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

1

2

3

4

5

6

7

Update

C
o

n
s
e

n
s
u

s
 f

ra
c
ti
o

n

 

 

grand mean std. error grand max.

(a) Average and best-case deme performance, in terms of
consensus. The first deme to pass multiple consensus rounds
occurs near update 20,000.

0 100 200 300 400 500 600 700 800
0

5

10

15

x 10
8

Update

O
p

in
io

n

 

 

mean opinion ind. opinions consensus reached

(b) Representative behavior of a single deme passing multiple
consensus rounds, with a consensus hold time of 32 updates.

Figure 10. Deme performance and detailed
behavior for Stable Consensus.

6. Genome Analysis

In this section we analyze the dominant genome
from the experiment described in Section 5.6, the same
genome responsible for the behavior in Figure 9(b).
Analysis is complicated by the fact that the evolved
behavior depends not only the random cell data, but

also on interactions with other individuals within the
deme. Hence, testing an organism in isolation provides
little insight into its behavior. To overcome these diffi-
culties, three different techniques were used. First, we
performed a knockout analysis of each instruction in
this genome; second, a detailed analysis of the relevant
instructions, highlighted by the knockout analysis was
conducted; and finally, the putative algorithm was re-
implemented and evaluated outside of Avida to verify
our understanding of the evolved behavior.

First, however, we describe how we selected this
genome for closer analysis. We first extracted the final
dominant genome from the original 30 trials of the ex-
periment described in Section 5.6. We then conducted
30 isolated trials of each of these 30 dominant genomes,
where each trial consisted of executing a single deme,
and recorded the resulting fitness of that deme based
on the fitness function in Equation 2. We selected the
genome corresponding to the highest average fitness for
analysis.

Knockouts Due to the cryptic nature of evolved
genomes, we first conducted knockout experiments on
the genome to identify the instructions most important
to consensus. In Avida, a knockout mutation is the re-
placement of an instruction in an organism’s genome
with a nop-X, an instruction that performs no compu-
tation. By examining the effect of a knockout muta-
tion on overall group behavior, we can pinpoint those
instructions that contribute to consensus. Specifically,
we generated all possible single-point knockouts by re-
placing each of the instructions in the genome with
a nop-X, and tested each of the resulting mutants 30
times. There are 86 instructions in this genome, thus
there are 86 possible knockout mutations, and each of
these mutants were testing 30 times, resulting in 2,580
total trials. Figure 11 depicts the resulting fitnesses of
these trials. For each knockout position, referring to
the instruction in the genome that was replaced by a
nop-X, a box-plot for the 30 resulting fitness values was
generated. In this figure, we see that the majority of
fitnesses from a knockout fall in the range 0.5× 104 to
1.0×104, indicating that those knockouts had very lit-
tle effect on fitness, and thus the replaced instructions
were not likely to contribute to consensus. However,
knockouts of instructions near position 25, 43, 47, 50-
53, and 57 reduced fitness to 0, indicating that these
instructions are critical for consensus behavior.

Annotated genome Figure 12 depicts the anno-
tated genome. In this figure, each instruction has been
color-coded for whether it interacts with its neighbors
or environment, whether it depends directly on the ac-

11



1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

0.5

1

1.5

2

x 10
4

D
e
m

e
 f
it
n
e
s
s

Knockout position

Figure 11. Fitness vs. knockout position, av-
eraged over 30 trials. The most significant in-
structions are located mid-way through this
genome.

tivities of its neighbors, or whether it is an individual
behavior. Instructions that do not affect the overall
fitness of this genome have been marked as neutral. In-
terestingly, this genome has evolved to utilize a fairly
short (36 out of 86 instructions) loop to solve the ICD.

Of particular interest in this genome are the instruc-
tions at position 26 and 61, which together form a loop
around the intervening instructions. Instruction 31
senses cell data, while instructions 33, 35, 44, 48, and
55 retrieve messages that have been sent to the caller.
Instruction 52 sets the organism’s opinion, while in-
struction 57 broadcasts its opinion to its neighborhood.
These observations are supported by the knockout ex-
periments.

Evolved Algorithm To test that the evolved algo-
rithm was general, we configured Avida with larger
demes (100 organisms, four times larger than that used
to evolve this genome). Figure 13 depicts the behav-
ior of a representative trial with this larger population
size. As can be seen here, consensus is still reached,
however it takes significantly longer for the population
to converge (725 vs. 120 updates).

Algorithm 1 is pseudocode for the evolved algo-
rithm. The key component of this algorithm is the
timing relationship between the different calls to re-
trieveMsg() and the if-statement at line nine. Specifi-
cally, these instructions combine to broadcast messages
probabilistically and in inverse proportion to the num-
ber of messages that are being sent in the organism’s
neighborhood. Through experimentation, we found
that consensus was achieved when the probability of
broadcasting a message was below approximately 25%,

31 collect-cell-data
32 nop-C
33 retrieve-msg
34 nop-C
35 retrieve-msg
36 nop-C
37 swap-stk
38 nop-C
39 nop-C
40 pop
41 if-n-equ
42 rotate-left-one
43 swap-stk
44 retrieve-msg
45 nop-C
46 nop-C
47 push
48 retrieve-msg
49 nop-C
50 if-cell-data-chan
51 if-neighborhood-
52 set-opinion
53 nop-C
54 rotate-right-one
55 retrieve-msg
56 if-less
57 bcast1
58 nop-C
59 nop-C
60 flash-info
61 mov-head

1 set-flow

29 if-cell-data-chan

78 nand
79 get-head
80 jmp-head
81 flash-info
82 IO
83 nop-C
84 push
85 if-n-equ
86 nand

26 h-search
27 inc
28 if-less

30 add

2 nop-C
3 h-search
4 shift-l
5 if-less
6 nop-B
7 nop-B
8 swap-stk
9 retrieve-msg
10 flash-info
11 flash-info
12 inc
13 nand
14 dec
15 retrieve-msg
16 pop
17 push
18 swap-stk
19 h-search
20 send-msg
21 set-flow
22 get-head
23 nop-C
24 nop-C
25 shift-r

62 if-n-equ
63 nop-C
64 set-opinion
65 shift-r
66 send-msg
67 add
68 rotate-right-one
69 add
70 add
71 get-head
72 dec
73 sub
74 nop-A
75 jmp-head
76 rotate-right-one
77 nop-C

Loop.

28 if-less

29 if-cell-data-changed

30 add

31 collect-cell-data

32 nop-C

33 retrieve-msg

34 nop-C

35 retrieve-msg

36 nop-C

37 swap-stk

38 nop-C

39 nop-C

40 pop

41 if-n-equ

42 rotate-left-one

43 swap-stk

44 retrieve-msg

45 nop-C

46 nop-C

47 push

48 retrieve-msg

49 nop-C

50 if-cell-data-changed

51 if-neighborhood-changed

52 set-opinion

54 rotate-right-one

55 retrieve-msg

56 if-less

57 bcast1

58 nop-C

59 nop-C

60 flash-info

26 h-search

53 nop-C

61 mov-head

Beginning

of loop.

Retrieve cell

data.

Retrieve

messages.

Retrieve

messages.

Set opinion

to cell data

or message.

Retrieve

message.

Probabilistic

broadcast

based on

retrieved
messages.

Message retrieval

Neutral

Sensing cell data

Looping

Probabilistic broadcast

Opinion setting

27 inc

Figure 12. Annotation of the best-performing
final dominant from the experiment de-
scribed in Section 5.6.

while consensus was rarely achieved at higher broad-
cast rates. One implication of this result for distributed
algorithms that warrants further study is the seeming
contradiction that sending fewer messages leads to a
more stable system.

Figure 14 shows the results of a simulation of this
algorithm written in Python. As can be seen here, con-
sensus was reached twice in 100 updates. We note that
for this simulation, an update refers to a single itera-
tion of the loop in Algorithm 1 for all processes. This

12



0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

x 10
9

Update

O
p
in

io
n

 

 

mean opinion ind. opinions consensus reached

Figure 13. Representative behavior of the
genome from Figure 12 when tested in a
deme four times larger (100 organisms) than
that it was evolved in, showing generality of
the evolved genome.

Algorithm 1 Evolved algorithm for solving the ICD.
Require: opinion is null; AX, BX,CX = 0.

loop
2: CX ⇐ cellData

(CX,AX) ⇐ retrieveMsg()
4: (CX,AX) ⇐ retrieveMsg()

(CX,AX) ⇐ retrieveMsg()
6: (CX,AX) ⇐ retrieveMsg()

setOpinion(CX)
8: (BX, CX) ⇐ retrieveMsg()

if BX < CX then
10: broadcast(CX,AX)

end if
12: end loop

is a different definition of update than in Avida, where
each individual executed only five virtual CPU instruc-
tions (in other words, an update in Figure 14 is longer
than an update in Avida). Given that the length of the
loop in Figure 12 is 35 instructions, this corresponds
to a 1:7 ratio between updates (that is, one simulation
update corresponds to seven Avida updates).

7. Discussion

Based on the analysis of the evolved algorithm from
the previous section, we can place it in the class of
randomized asynchronous consensus protocols [2, 13],
where the random arrival times of messages are ex-
ploited in order to achieve consensus. The evolved al-
gorithm bears similarity to at least three algorithms for
distributed consensus: In [6], Aysal, Coates, and Rab-

0 10 20 30 40 50 60 70 80 90

0.5

1

1.5

2
x 10

9

Update

O
p
in

io
n

 

 

mean opinion ind. opinions consensus reached

Figure 14. Detailed behavior of a simulation
of Algorithm 1.

bat describe a probabilistic time-quantization method
for producing a distributed average. In [1], Aspnes
describes lean-consensus, a probabilistic algorithm for
bit-consensus, where races between processes are ex-
ploited to solve consensus. Finally, in [18], Chandra
presents a solution to n-process id consensus based on
coin-flipping.

In the course of simulating these algorithms for com-
parison to the evolved strategy, we uncovered a number
of important differences. The most significant of these
differences is that our model for consensus is contin-
uous, and includes random death of agents. For ex-
ample, Figure 15 depicts the representative behavior
of a simulation of Aspnes’ lean-consensus algorithm.
At first glance, this behavior appears “cleaner,” with
a steady change in average opinion towards consen-
sus. However, once consensus is reached, this algo-
rithm has no mechanism to recover from the removal
of the agreed-upon value. In other words, a system
based on lean-consensus has no capacity to “change its
mind” once a sufficient number of agents have agreed
upon a course of action. Thus, once consensus has
been achieved, the state of all agents must be reset
in order to subsequently reach consensus. In contrast,
the behavior shown in Figure 10(b) contains a number
of oscillations between each consensus, and death of
agents, even the agent owning the current maximally-
supported opinion, is allowed. A second difference is
found in the communications model. In particular, we
assume that agents are able to communicate only with
neighboring individuals (eight, in this study), as op-
posed to the multi-writer register model used in other
studies. This complicates the consensus problem by
requiring that organisms evolve their communication
protocol as well as the consensus algorithm. As far
as we know, the evolved algorithm presented here is a

13



novel approach to consensus.

0 10 20 30 40 50 60 70 80 90
−1

−0.5

0

0.5

1

Update

O
p

in
io

n

 

 

mean opinion ind. opinions consensus reached

Figure 15. Simulation of lean-consensus [1].
All agents are reset once consensus is
reached.

In a more general sense, using evolutionary compu-
tation to develop distributed algorithms enables us to
take into account many of the challenges facing modern
distributed systems by incorporating these challenges
directly into the environment in which evolution takes
place. For example, the addition of message loss or cor-
ruption into the Avida system could supply us with an
algorithm for consensus that is resilient to these haz-
ards. Moreover, the inclusion of MANET-specific con-
cerns, for example, battery conservation, into fitness
functions would enable the simultaneous optimization
of multiple criteria.

It is also possible that techniques designed for the
analysis of traditional probabilistic distributed algo-
rithms could be used to better understand evolved al-
gorithms. For example, in [3], Attiya and Censor estab-
lished tight time bounds for asynchronous randomized
consensus, which may hold for evolved algorithms. It
may also be the case that techniques developed for un-
derstanding randomized distributed algorithms could
be used here [39].

Finally, we note a behavior exhibited by many
of the evolved algorithms that suggests evidence of
self-organization. In many of the figures containing
detailed behaviors, especially Figure 8(b) and Fig-
ure 10(b), we see a common response to the removal
of the source of the agreed-upon value immediately
following consensus. Specifically, the average opinion
changes abruptly. This behavior suggests that equilib-
rium (consensus) exists on the threshold between sta-
bility and instability – a claim that is supported by
the instability immediately following consensus. Fur-
ther study is required, but it is possible that evolution-
ary algorithms are capable of producing behaviors that
incorporate self-organized criticality [7], where the de-

sired behavior of the system can be encoded such that
it is resilient to changes in parameters, similar to self-
stabilizing algorithms [23].

8. Conclusion

The experiments described here show that digital
evolution can be used to evolve distributed behaviors
for reaching consensus. Based on the results of dif-
ferent experimental treatments, we can conclude that
the availability of synchronization and broadcast prim-
itives, as well a low rate of population turnover, have
a significant impact on the evolvability of effective dis-
tributed behavior, even if those features are not used
in the final solutions. Moreover, we have shown that
digital evolution is capable of using novel features of
the environment, in this case, message arrival times, to
produce probabilistic behaviors. The results presented
in this paper also demonstrate a near-complete devel-
opment life-cycle for using digital evolution as a tool in
the design of distributed algorithms, including initial
evolution, analysis, and simulation stages.

Ongoing and future work includes examining the
stability of consensus, where instead of holding a com-
mon value for at least one update, we require organisms
to share the same value for a longer period of time; con-
sensus in irregular or self-constructed network topolo-
gies; introducing various network and environmental
hazards in order to discover strategies to deal with ad-
verse conditions; and competitive coevolutionary stud-
ies, where groups of individuals are forced to compete
with adversaries for resources.

References

[1] J. Aspnes. Fast deterministic consensus in a noisy en-
vironment. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), pages
299–308, 2000.

[2] J. Aspnes. Randomized protocols for asynchronous
consensus. Distributed Computing, 16(2-3):165–175,
2003.

[3] H. Attiya and K. Censor. Tight bounds for asyn-
chronous randomized consensus. Journal of the ACM
(JACM), 55(5):1–26, 2008.

[4] R. M. Axelrod. The Complexity of Cooperation:
Agent-Based Models of Competition and Collabora-
tion. Princeton University Press, 1997.

[5] R. M. Axelrod and W. D. Hamilton. The evolution of
cooperation. Science, 211(4489):1390–1396, 1981.

[6] T. C. Aysal, M. Coates, and M. Rabbat. Distributed
average consensus using probabilistic quantization. In
Proceedings of the IEEE/SP Workshop on Statistical
Signal Processing (SSP), pages 640–644, 2007.

14



[7] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized
criticality. Phys. Rev. A, 38(1):364–374, Jul 1988.

[8] G. Baldassarre, D. Parisi, and S. Nolfi. Dis-
tributed coordination of simulated robots based on
self-organization. Artificial Life, 12(3):289–311, 2006.

[9] C. Baray. Evolving cooperation via communication in
homogeneous multi-agent systems. In Proceedings of
the International Conference on Intelligent Informa-
tion Systems, 1997.

[10] M. Barborak, A. Dahbura, and M. Malek. The consen-
sus problem in fault-tolerant computing. ACM Com-
puting Surveys (CSUR), 25(2):171–220, 1993.

[11] B. Beckmann, P. K. McKinley, D. B. Knoester, and
C. Ofria. Evolution of cooperative information gath-
ering in self-replicating digital organisms. In Proceed-
ings of the International Conference on Self-Adaptive
and Self-Organizing Systems (SASO), July 2007.

[12] B. E. Beckmann and P. K. McKinley. Evolution of
adaptive population control in multi-agent systems. In
Proceedings of the International Conference on Self-
Adaptive and Self-Organizing Systems (SASO), pages
181–190, 2008.

[13] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols. Journal of the ACM (JACM),
32(4):824–840, 1985.

[14] J. Branke. Evolutionary Optimization in Dynamic En-
vironments. Springer, 2001.

[15] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the
USENIX Symposium on Operating Systems Design
and Implementation, 2006.

[16] P. C. Buzing, A. Eiben, and M. C. Schut. Emerging
communication and cooperation in evolving agent so-
cieties. Journal of Artificial Societies and Social Sim-
ulation, 8(1), 2005.

[17] C. F. Camerer. Behavioral game theory: Experiments
in strategic interaction. Princeton University Press,
2003.

[18] T. D. Chandra. Polylog randomized wait-free consen-
sus. In Proceedings of the ACM symposium on Prin-
ciples of Distributed Computing (PODC), pages 166–
175, 1996.

[19] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. In Proceedings
of the ACM symposium on Principles of Distributed
Computing (PODC), pages 398–407, New York, NY,
USA, 2007. ACM.

[20] J. K. Conner and D. L. Hartl. A Primer of Ecological
Genetics. Sinauer, 2004.

[21] L. Conradt and T. J. Roper. Consensus decision mak-
ing in animals. Trends in Ecology and Evolution,
20(8):449–456, 2005.

[22] M. E. Davey and G. A. O’Toole. Microbial biofilms:
from ecology to molecular genetics. Microbiology and
Molecular Biology Reviews, 64(4):847–867, 2000.

[23] E. W. Dijkstra. Self-stabilizing systems in spite of
distributed control. Communications of the ACM,
17(11):643–644, 1974.

[24] S. Dolev and T. Hermane. Superstabilizing protocols
for dynamic distributed systems. In Proceedings of the
ACM Symposium on Principles of Distributed Com-
puting (PODC), page 255, 1995.

[25] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, 1985.

[26] H. J. Goldsby, B. H. C. Cheng, P. K. McKinley, D. B.
Knoester, and C. Ofria. Digital evolution of behav-
ioral models for autonomic systems. In Proceedings of
the International Conference on Autonomic Comput-
ing (ICAC), 2008.

[27] D. Grimaldi and M. S. Engel. Evolution of the Insects.
Cambridge University Press, 2005.

[28] T. Herman. Models of self-stabilization and sensor
networks. In Proceedings of the International Work-
shop on Distributed Computing (IWDC), pages 205–
214, 2003.

[29] B. Holldobler and E. O. Wilson. The Ants. Harvard
University Press, 1990.

[30] D. B. Knoester, P. K. McKinley, B. Beckmann, and
C. Ofria. Directed evolution of communication and
cooperation in digital organisms. In Proceedings of
the European Conference on Artificial Life (ECAL),
2007.

[31] D. B. Knoester, P. K. McKinley, and C. Ofria. Us-
ing group selection to evolve leadership in populations
of self-replicating digital organisms. In Proceedings
of the Genetic and Evolutionary Computation Con-
ference (GECCO), 2007.

[32] D. B. Knoester, P. K. McKinley, and C. Ofria. Coop-
erative network construction using digital germlines.
In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO), 2008.

[33] D. B. Knoester, A. J. Ramirez, P. K. McKinley, and
B. H. C. Cheng. Evolution of robust data distribution
among digital organisms. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO),
2009. (To appear).

[34] J. R. Koza, M. A. Keane, M. J. Streeter, W. Myd-
lowec, J. Yu, and G. Lanza. Genetic Program-
ming IV: Routine Human-Competitive Machine Intel-
ligence. Genetic Programming. Springer, 1st edition,
2005.

[35] L. Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems, 16(2):133–169, 1998.

[36] R. E. Lenski, C. Ofria, R. T. Pennock, and C. Adami.
The evolutionary origin of complex features. Nature,
423:139–144, 2003.

[37] C. List. Democracy in animal groups: a political sci-
ence perspective. Trends in Ecology and Evolution,
19(4):168–169, 2004.

[38] M. C. Loui and H. H. Abu-Amara. Memory require-
ments for agreement among unreliable asynchronous
processes. Advances in Computing Research, 4:163–
183, 1987.

[39] N. Lynch, I. Saias, and R. Segala. Proving time bounds
for randomized distributed algorithms. In Proceedings

15



of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 314–323, 1994.

[40] N. A. Lynch. Distributed Algorithms. Morgan Kauf-
mann, 1997.

[41] M. L. Massie, B. N. Chun, and D. E. Culler. The gan-
glia distributed monitoring system: design, implemen-
tation, and experience. Parallel Computing, 30(7):817
– 840, 2004.

[42] C. Ofria and C. Adami. Evolution of genetic organiza-
tion in digital organisms. In Proceedings of DIMACS
Workshop on Evolution as Computation, 1999.

[43] C. Ofria, C. Adami, T. C. Collier, and G. K. Hsu.
The evolution of differentiated expression patterns in
digital organisms. Lect. Notes Artif. Intell., 1674:129–
138, 1999.

[44] C. Ofria and C. O. Wilke. Avida: A software plat-
form for research in computational evolutionary biol-
ogy. Journal of Artificial Life, 10:191–229, 2004.

[45] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. Journal of the
ACM (JACM), 27(2):228–234, 1980.

[46] R. Poli, W. B. Langdon, and N. F. McPhee. A Field
Guide to Genetic Programming. Lulu.com, 2008.

[47] W. Ren and R. W. Beard. Consensus seeking in multi-
agent systems under dynamically changing interaction
topologies. IEEE Transactions on Automatic Control,
Jan 2005.

[48] W. Ren and R. W. Beard. Distributed Consensus in
Multi-vehicle Cooperative Control. Springer, 2007.

[49] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: a tutorial. ACM
Computing Surveys (CSUR), 22(4):299–319, 1990.

[50] D. J. T. Sumpter, J. Krause, R. James, I. D. Couzin,
and A. J. W. Ward. Consensus decision making by
fish. Current Biology, 18(22):1773–1777, 2008.

[51] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff.
NASA’s swarm missions: The challenge of building
autonomous software. IT Professional, 06(5):47–52,
2004.

[52] E. Tuci, C. Ampatzis, F. Vicentini, and M. Dorigo.
Evolving homogeneous neurocontrollers for a group
of heterogeneous robots: Coordinated motion, coop-
eration, and acoustic communication. Artificial Life,
14(2):157–178, 2008.

[53] J. von Neumann. Probabilistic logics and the synthe-
sis of reliable organisms from unreliable components.
Automata Studies, pages 43–98, 1956.

[54] K. Wagner and J. Reggia. Evolving consensus among
a population of communicators. Complexity Interna-
tional, 9, 2002.

[55] K. Wagner, J. A. Reggia, J. Uriagereka, and G. S.
Wilkinson. Progress in the simulation of emergent
communication and language. Adaptive Behavior,
11(1):37–69, 2003.

[56] C. M. Waters and B. L. Bassler. Quorum sensing:
Cell-to-cell communication in bacteria. Annual Re-
view of Cell and Developmental Biology, 21(1):319–
346, 2005.

[57] D. S. Wilson. Introduction: Multilevel selection theory
comes of age. The American Naturalist, 150:S1–S4,
July 1997.

[58] W. Wolf. Cyber-physical systems. IEEE Computer,
42(3), 2009.

16


	. Introduction
	. Related Work
	. Digital Evolution and Avida
	. Digital Organisms
	. Levels of Selection

	. Methods
	. Instructions
	. Configuration

	. Results
	. Simple Consensus
	. Iterated Consensus
	. Neighborhood Sensing
	. Broadcast
	. Sensing Death
	. Synchronization
	. Stability of Consensus

	. Genome Analysis
	. Discussion
	. Conclusion

