
ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER

DR. GAVIN WOOD
CTO, ETHEREUM PROJECT
GAVIN@ETHEREUM.ORG

Abstract. The blockchain paradigm when coupled with cryptographically-secured transactions has demonstrated its
utility through a number of projects, not least Bitcoin. Each such project can be seen as a simple application on
a decentralised, but singleton, compute resource. We can call this paradigm a transactional singleton machine with
shared-state.

Ethereum implements this paradigm in a generalised manner. Furthermore it provides a plurality of such resources,
each with a distinct state and operating code but able to interact through a message-passing framework with others.
We discuss its design, implementation issues, the opportunities it provides and the future hurdles we envisage.

1. Introduction

With ubiquitous internet connections in most places of
the world, global information transmission has become in-
credibly cheap. Technological-rooted movements like Bit-
coin have demonstrated through the power of the default,
consensus mechanisms and voluntary respect of the social
contract that it is possible to use the internet to make
a decentralised value-transfer system, shared across the
world and virtually free to use. This system can be said
to be a very specialised version of a cryptographically se-
cure, transaction-based state machine. Follow-up systems
such as namecoin adapted this original “currency appli-
cation” of the technology into other applications allbeit
rather simplistic ones.

Ethereum is a project that attempts to build the gen-
eralised technology; technology on which all transaction-
based state machine concepts may be built. Moreover it
aims to provide to the end-developer a tightly integrated
end-to-end system for building software on a hitherto un-
explored compute paradigm in the mainstream: a trustful
object messaging compute framework.

1.1. Driving Factors. There are many goals of this
project; one key goal is to facilitate transactions be-
tween consenting individuals who would otherwise have no
means to trust one another. This may be due to geograph-
ical separation, interfacing difficulty, or perhaps the in-
compatibility, incompetance, unwillingness, expense, un-
certainty, inconvenience or corruption of existing legal sys-
tems. By specifying a state-change system through a
rich and unambiguous language, and furthermore archi-
tecting a system such that we can reasonably expect that
an agreement will be thus enforced autonomously, we can
provide a means to this end.

Dealings in this proposed system would have several
attributes not often found in the real word. The incor-
ruptibility of judgement, often difficult to find, comes nat-
urally from a disinterested algorithmic interpreter. Trans-
parency, through being about to see exactly how a state
or judgement came about through the transaction log and
rules or instructional codes never happens perfectly in
human-based systems.

Overall, we wish to provide a system such that the user
can be guaranteed that any other individuals, systems or
organisations that they interact with, they can do so with

absolute confidence in the possible outcomes and how they
might come about.

2. The Blockchain Paradigm

Ethereum, taken as a whole, can be viewed as a
transaction-based state machine: we begin with a gene-
sis state and incrementally execute transactions to morph
it into some final state. It is this final state which we ac-
cept as the canonical “version” of the world of Ethereum.
The state can include such information as account bal-
ances, reputations, trust arrangements, data pertaining
to information of the physical world; in short, anything
that can currently be represented by a computer is ad-
missable. Transactions thus represent a valid arc between
two states; the ‘valid’ part is important—there exist far
more invalid state changes than valid state changes. In-
valid state changes might, e.g. be things such as reducing
an account balance without an equal and opposite increase
elsewhere. We define a valid state transitions as one which
comes about through a transaction. Formally:

(1) St+1 ≡ Υ(St, T )

where Υ is the Ethereum state transition function. In
Ethereum, Υ, together with S are considerably more pow-
erful then any existing comparable system; Υ allows com-
ponents to carry out arbitrary computation, while S allows
components to store arbitrary state between transactions.

Transactions are collated into blocks; we then chain
blocks together using a cryptographic hash as a means of
reference. Blocks function as a journal, recording a se-
ries of transactions together with the previous block and
an identifier for the final state (though do not store the
final state itself—that would be far too big). They also
punctuate the transaction series with incentives for nodes
to mine. This incentivisation takes places as a state-
transition function, adding value to a nominated account.

Mining is the process of dedicating effort (working) to
bolster one series of transactions (a block) over any other
potential competitor block. It is achieved thanks to a
cryptographically secure proof. This scheme is known as
a proof-of-work and is discussed in detail in section 10.4.

Formally, we expand to:

1



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 2

St+1 ≡ Π(St, B)(2)

B ≡ (..., [T0, T1, ...])(3)

Π(S, B) ≡ Ω(B,Υ(Υ(S, T0), T1)...)(4)

Where Ω is the block-finalisation state transition func-
tion (a function that rewards a nominated party); B is
this block, which includes a series of transactions amongst
some other components; and Π is the block-level state-
transition function.

This is the basis of the blockchain paradigm, a model
that forms the backbone of not only Ethereum, but all de-
centralised consensus-based transaction systems to date.

2.1. Value. In order to incentivise computation within
the network, there needs to be an agreed method for trans-
mitting value. To address this issue, Ethereum has an
intrinsic currency, Ether, known also as ETH. The small-
est subdenomination of Ether, and thus the one in which
all integer values of the currency are counted, is the Wei.
One Ether is defined as being 1018 Wei. There exist other
subdenominations of Ether:

Multiplier Name

100 Wei
1012 Szabo
1015 Finney
1018 Ether

Throughout the present work, any reference to value,
in the context of Ether, currency, a balance or a payment,
should be assumed to be counted in Wei.

2.2. Which History? Since the system is decentralised
and all parties have an opportunity to create a new block
on some older pre-existing block, the resultant structure is
necessarily a tree of blocks. In order to form a consensus as
to which path, from root (the genesis block) to leaf (the
block containing the most recent transactions) through
this tree structure, known as the blockchain, there must
be an agreed-upon scheme. If there is ever a disagree-
ment between nodes as to which root-to-leaf path down
the block tree is the ‘best’ blockchain, then a fork occurs.

This would mean that past a given point in time
(block), multiple states of the system may coexist: some
nodes believing one block to contain the canonical transac-
tions, other nodes believing some other block to be canoni-
cal, potentially containing radically different or incompat-
ible transactions. This is to be avoided at all costs as the
uncertainty that would ensue would likely kill all confi-
dence in the entire system.

The scheme we use in order to generate consensus is a
simplified version of the GHOST algorithm ?. This pro-
cess is described in detail in section 9.

3. Blocks, State and Transactions

Having introduced the basic concepts behind
Ethereum, we will discuss the meaning of a transaction, a
block and the state in more detail.

3.1. World State. The world state (state, see Appendix
G), is a mapping between addresses (160-bit identifiers)
and account states (a data structure serialised as RLP,
see Appendix C). Though not stored on the blockchain,
it is assumed that the implementation will maintain this
mapping in a modified Merkle Patricia tree (trie, see Ap-
pendix D). The trie requires a simple database backend
that maintains a mapping of bytearrays to bytearrays; we
name this underlying database the state database. This
has a number of benefits; firstly the root node of this struc-
ture is cryptographically dependent on all internal data
and as such its hash can be used as a secure identity for
the entire system state. Secondly, being an immutable
data structure, it allows any previous state (whose root
hash is known) to be recalled by simply altering the root
hash accordingly. Since we store all such root hashes in
the blockchain, we are able to trivially revert to old states.

The account state comprises the first two, and poten-
tially the last two, of the following fields:

nonce: A scalar value equal to the number of trans-
actions sent from this address, or, in the case
of contract accounts, the number of contract-
creations made by this account.

balance: A scalar value equal to the number of wei
owned by this address.

stateRoot: A 256-bit hash equal to the root node
of a further trie structure that encodes the stor-
age contents of the contract. Though a separate
data structure, this trie is still stored using the
same underlying state database. This trie takes
the form as a simple mapping between domains
of 256-bit values.

codeHash: The hash of the EVM code of this
contract—this is the code that gets executed
should this address reveive a call; it is im-
mutable and thus, unlike all other fields, cannot
be changed after construction. All such code frag-
ments are contained in the state database under
their corresponding hashes for later retrieval.

If the latter two fields are missing, the node represents
a simple (non-contract) account: it maintains no state and
executes no code on receipt of a transaction.

3.2. The Transaction. A transaction (formally, T ) is a
single cryptographically signed instruction sent by an ac-
tor external to Ethereum. An external actor can be a per-
son (via a mobile device or desktop computer) or could be
from a piece of automated software running on a server.
There are two types of transactions: those which result
in message calls and those which result in the creation of
new contracts. Both types specify a number of common
fields:

nonce: A scalar value equal to the number of trans-
actions sent by the sender; formally Tn.

value: A scalar value equal to the number of wei to
be transferred to the message call’s recipient or,
in the case of contract creation, as an endowment
to the newly created contract’s account; formally
Tv.

gasPrice: A scalar value equal to the number of
wei to be paid per unit of gas for all computation
costs incurred as a result of the execution of this
transaction; formally Tp.



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 3

gasLimit: A scalar value equal to the maximum
amount of gas that should be used in executing
this transaction. This is paid up-front, before any
computation is done and may not be topped-up
later; formally Tg.

to: The 160-bit address of the message call’s recip-
ient or the zero address for a contract-creation
transaction; formally Tr.

v, r, s: Three scalar values corresponding to the sig-
nature of the transaction and used to determine
the sender of the transaction.

Additionally, a contract-creation transaction contains:

body: An unlimited size byte array specifying the
EVM-code for the contract, formally Tb.

init: An unlimited size byte array specifying the
EVM-code for the contract initialisation proce-
dure, formally Ti.

Both body and init are EVM-code fragments; body
is executed each time the contract account receives a mes-
sage call (either through a transaction or due to the in-
ternal execution of code). init is a piece of code that
is executed only once at contract creation and that gets
discarded immediately thereafter.

Whereas a message call transaction contains:

data: An unlimited size byte array specifying the
input data of the message call, formally Td.

Appendix H specifies the function mapping transac-
tions to the sender S, which happens through the ECDMA
of the SECP-256k1 curve, using the hash of the transac-
tion as the datum to sign. For the present we simply assert
that the sender of a given transaction T can be represented
with S(T ).

3.3. The Block. The block in Ethereum is the collec-
tion of relevant pieces of information (known as the block
header), H, together with a set of transactions, T, and
a set of other block headers U that are known to have a
parent equal to the present block’s parent’s parent (such
blocks are known as uncles). The block header contains
several pieces of information:

parentHash: The SHA3 256-bit hash of the parent
block, in its entirety; formally Hp.

unclesHash: The SHA3 256-bit hash of the uncles
list portion of this block; formally Hu.

coinbase: The 160-bit address to which all fees col-
lected from the successful mining of this block be
transferred; formally Hb.

stateRoot: The SHA3 256-bit hash of the root
node of the state trie, after all transactions are
executed and finalisations applied; formally Hr.

transactionsHash: The SHA3 256-bit hash of the
transactions list portion of this block; formally
Ht.

difficulty: A scalar value corresonding to the diffi-
culty level of this block. This can be calculated
from the previous block’s difficulty level and the
timestamp; formally Hd.

timestamp: A scalar value equal to the reasonable
output of Unix’s time() at this block’s inception;
formally Hs.

extraData: An arbitrary byte array containing
data relavant to this block. Generally 256-bit or

less, but could be much larger in the genesis block.
Not formally used.

nonce: A 256-bit hash which proves that a sufficient
amount of computation has been carried out on
this block; formally Hn.

The other two components in the block are simply a list
of uncle block headers (of the same format as above) and a
list of the transactions (as defined previously). Formally,
we can refer to a block B:

(5) B ≡ (H,U,T)

We can assert its validity if and only if it satisfies sev-
eral conditions: It must be internally consistent with the
uncle and transaction block hashes; the given transactions
T, when executed in order on the base state S result in a
new state of the identity Hr:

SHA3(RLP(U)) ≡ Hu(6)

∧ SHA3(RLP(T)) ≡ Ht(7)

∧ r(Π(S, B)) ≡ Hr(8)

where r(S) is the root node hash of the Merkle Patri-
cia tree structure containing the key-value pairs of S with
values encoded using RLP.

3.3.1. Block Header Validity. We define P (BH) to be the
parent block of B, formally:

(9) P (H) ≡ B′ : SHA3(RLP(B′)) = Hp

The canonical difficulty of a block of header H, is de-
fined as D(H):
(10)

D(H) ≡


222 if genesis block

P (H)Hd +
P (H)Hd

1024
if Ht < P (H)Ht + 42

P (H)Hd −
P (H)Hd

1024
otherwise

Ht is the timestamp of block H, must fulfill the rela-
tion:

(11) Ht > P (H)Ht

This mechanism enforces a homeostasis in terms of the
time between blocks; a smaller period between the last two
blocks results in an increase in the difficulty level and thus
additional computation required, lengthening the likely
next period. Conversely, if the period is too large, the
difficulty, and expected time to the next block, is reduced.

The nonce, Hn, must satisfy the relation:

(12) PoW(H,Hn) 6
2256

Hd

Where PoW is the proof-of-work function (see section
10.4): this evaluates to an pseudo-random number cryp-
tographically dependent on the parameters H and Hn.
Given an approximately uniform distribution in the range
[0, 2256), the expected time to find a solution is propor-
tional to the difficulty, Hd.

This is the foundation of the security of the blockchain
and is the fundamental reason why a malicious node can-
not propogate newly created blocks that would otherwise
overwrite (“rewrite”) history. Because the nonce must sat-
isfy this requirement, and because satisfaction of this re-
quirement depends on the contents of the block and in turn
its composed transactions, creating new, valid, blocks is
difficult, and, over time, requires approximately the total
compute power of the trustworthy portion of the mining
peers.



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 4

Thus we are able to define the block header validity
function V (H):

V (H) ≡ PoW(H,Hn) 6
2256

Hd
(13)

∧ Hd = D(H)(14)

∧ Ht > P (H)Ht(15)

4. Gas and Payment

In order to avoid issues of network abuse and to side-
step the inevitable questions stemming from Turing com-
pleteness, all programmable computation in Ethereum is
subject to fees. The fee schedule is specified in units of
gas (see Appendix B for the fees associated with various
computation). Thus any given fragment of programmable
computation (this includes creating contracts, making
message calls, utilising and accessing contract storage and
executing operations on the virtual machine) has a uni-
versally agreed cost in terms of gas.

Every transaction has a specific amount of gas associ-
ated with it: gasLimit. This is the amount of gas which
is implicitly purchased from the sender’s account balance.
The purchase happens at the according gasPrice, also
specified in the transaction. The transaction is consid-
ered invalid if the account balance cannot support such a
purchase. It is named gasLimit since any unused gas at
the end of the transaction is refunded (at the same rate
of purchase) to the sender’s account. Gas does not exist
outside of the execution of a transaction. Thus for trusted
contracts, a relatively high gas limit may be set and left
alone.

Any ether used to purchase gas that is not refunded
is delivered to the coinbase address, the address of an ac-
count typically under the control of the miner. Transac-
tors are free to specify any gasPrice that they wish, how-
ever miners are free to ignore transactions as they choose.
A higher gas price on a transaction will therefore cost the
sender more in terms of Ether and deliver a greater value
to the miner and thus will more likely be selected for in-
clusion by more miners. Miners, in general, will choose
to advertise the minimum gas price for which they will
execute transactions and transactors will be free to can-
vas these prices in determining what gas price to offer.
Since there will be a (weighted) distribution of minimum
acceptable gas prices, transactors will necessarily have a
trade-off to make between lowering the gas price and max-
imising the chance that their transaction will be mined in
a timely manner.

5. Transaction Execution

The execution of a transaction is the most complex part
of the Ethereum protocol: it defines the state transition
function Υ. It is assumed that any transactions executed
first pass the initial tests of intrinsic validity. These in-
clude:

(1) The transaction signature is valid;
(2) the transaction nonce is valid (equivalent to the

sender account’s current nonce);
(3) the gas limit is no smaller than the intrinsic gas,

g0, used by the transaction;
(4) the sender account balance contains at least the

cost, v0, required in up-front payment;

Formally, we consider the function Υ, with T being a
transaction and S the state:

(16) S′ = Υ(S, T )

Thus S′ is the post-transactional state.
We define intrinsic gas g0, the amount of gas this trans-

action requires to be paid prior to execution, as follows:

(17) g0 ≡

{
(|Ti|+ |Tb|)Gdata +Gcreate if Tr = 0

|Td|Gdata +Gcall otherwise

where |Td|, |Ti| and |Tb| are the sizes, in bytes, of
the transaction’s associated data, initialisation and body
EVM-code, respectively and G is defined in Appendix B.

The up-front cost v0 is calculated as:

(18) v0 ≡ TgTp + Tv

the validity is determined as:

S(T ) 6= ∅(19)

∧ S[S(T )] 6= ∅(20)

∧ Tn = S[S(T )]nonce(21)

∧ g0 ≤ Tg(22)

∧ v0 ≤ S[S(T )]balance(23)

The transaction must not require more gas to be
utilised in this block than the global block limit of gas,
specified at 106.

The execution of a valid transaction begins with an
irrevocable change made to the state: the nonce of the
account of the sender (S(T )) is incremented by one and
the balance is reduced by the up-front cost, v0. The gas
available for the proceeding computation, g, is defined as
Tg − g0. The computation, whether contract creation or
a message call, results in an eventual state (which may
legally be equivalent to the current state), the change to
which is deterministic and never invalid: there can be no
invalid transactions from this point.

We define the rollback state S0:

S0 ≡ S except:(24)

S0[S(T )]balance ≡ S[S(T )]balance − c(25)

S0[S(T )]nonce ≡ S[S(T )]nonce + 1(26)

Evaluating S0 from S0 depends on the transaction type;
either contract creation or message call; we define the pair-
ing of post-execution provisional state (SP ) and remaining
gas (g′):
(27)

(SP , g
′) ≡

{
Λ(S0, S(T ), To, g, Tp, Tv, Ti, Tb) if Tr = 0

Θ∗(S0, S(T ), To, Tr, g, Tp, Tv, Td) otherwise

where

(28) g ≡ Tg − g0

Note we use Θ∗ to denote the fact that only the first
two components of the function’s value are taken; the third
represents the message-call’s output value (a byte array)
and is unused in the context of transaction evaluation.

After the message call or contract creation is processed,
the state is finalised by refunding g′, the remaining gas, to
the sender at the original rate. The Ether for the gas that
was actually used is given to the miner, whose address is
specified as the coinbase of the present block B. So we



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 5

define the final state S′ in terms of the provisional state
SP :

S′ ≡ SP except(29)

S′[s]balance ≡ SP [s]balance + g′Tp(30)

S′[m]balance ≡ SP [m]balance + (g − g′)Tp(31)

m ≡ BHb(32)

In the case that s = m then we simply return the Ether
back to the sender/miner, collapsing the exception into:

S′[s]balance ≡ SP [s]balance + g(33)

6. Contract Creation

There are number of intrinsic parameters used when
creating a contract: sender (s), nonce (o), available gas
(g), gas price (p), endowment (v) together with the two
arbitrary length byte arrays, i for the initialisation EVM
code and b for the EVM code of the body.

We define the creation function formally as the func-
tion Λ, which evaluates from these values, together with
the state S0 to the tuple containing the new state, addi-
tional database entries and remaining gas (SP , g

′), as in
5:

(34) (SP , g
′) ≡ Λ(S0, s, o, g, p, v, i,b)

The address of the new contract is defined as being the
rightmost 160 bits of the SHA3 hash of RLP encoding of
the structure [ sender, nonce ]. In the unlikely event
that the address is already in use, it is treated as a big-
endian integer and incremented by one until an unused
address is arrived at. Thus we define the creation address
function A:

A(s, n) ≡ a where:(35)

a = arg min
x

: x > a′ ∧ S0[x] = ∅(36)

a′ = B96..255

(
SHA3

(
RLP
(
〈s, n〉

)))
(37)

where SHA3 is the SHA3 256-bit hash function, RLP is
the RLP encoding function, Ba..b(X) evaluates to binary
value containing the bits of indices in the range [a, b] of the
binary data X and S0[x] is the address state of x or ∅ if
none exists. Note we use one fewer than the sender’s nonce
value; we assert that we have incremented the sender ac-
count’s nonce prior to this call, and so the value used
is the sender’s nonce at the beginning of the responsible
transaction or VM operation.

The account’s nonce is initially defined as zero, the
balance as the value passed, the storage as empty and the
code hash as the SHA3 256-bit hash of the code, thus the
mutated state becomes S∗:

S∗ ≡ S except:(38)

S∗[A(s, S[s]nonce)] ≡ (0, v,∅, SHA3(b))(39)

It is asserted that the state database will also change
such that it defines the pair (SHA3(b),b).

Finally, the contract is initialised through the execution
of the initialising EVM code i according to the execution
model (see section 8). Code execution can effect several
events that are not internal to the execution state: the
contract’s storage can be altered, further contracts can be
created and further message calls can be made. As such,
the code execution function Ξ evaluates to a tuple of the
resultant state S′ and available gas remaining g′.

Code execution depletes gas; thus it may exit before the
code has come to a natural halting state. In this excep-
tional case we say an Out-of-Gas exception has occured:
The evaluated state is defined as being the empty set ∅
and the entire create operation should have no effect on
the state, effectively leaving it as it was immediately prior
to attempting the creation. The gas remaining should of
course be zero. If the creation was conducted as the mani-
festation of a transaction, then this doesn’t affect payment
of the intrinsic cost: it is paid regardless.

If such an exception does not occur, then the remaining
gas is refunded to the originator and the now-altered state
is allowed to persevere. Thus formally, we may specify the
new state and gas as S′, g′ where:

(S∗∗, g′) ≡ Ξ(S∗, g, I)(40)

SP ≡

{
S0 if S∗∗ = ∅
S∗∗ otherwise

(41)

Ia ≡ a(42)

Io ≡ s(43)

Ip ≡ p(44)

Id ≡ [](45)

Is ≡ s(46)

Iv ≡ v(47)

Ib ≡ i(48)

Id evaluates to the empty array. IH and In have no
special treatment and are determined from the blockchain.

7. Message Call

In the case of executing a message call, several param-
eters are required: sender (s), transaction originator (o),
recipient (r), available gas (g), value (v) and gas price
(p) together with an arbitrary length byte array, d, the
input data of the call. Aside from evaluating to a new
state and additional database entries, message calls also
have an extra component—the output data denoted by the
byte array o. This is ignored when executing transactions,
however message calls can be initiated due to VM-code ex-
ecution and in this case this information is used.

(49) (SP , g
′,o) ≡ Θ(S, s, o, r, g, p, v,d)

We define S1, the rollback state as the original state
but with the value transferred to the recipient:

S1 ≡ S except:(50)

S1[r]balance ≡ S1[r]balance + v(51)

If the recipient account contains no code to be exe-
cuted (i.e. it’s not a contract), then we define the final
state as being equivalent to the rollback state. In the case
that the recipient contains code to be executed (i.e. that
the account is a contract), then the contract’s body code
(identified as the fragment whose SHA3 hash is S[r]code])
is executed according to the execution model (see section
8). Just as with contract creation, if the execution halts
due to an exhausted gas supply, then no gas is refunded



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 6

to the caller and the state is reverted to the point imme-
diately prior to code execution.

S′ ≡


S1 if S1[r]code = ∅
S1 if S∗∗ = ∅
S∗∗ otherwise

(52)

(S∗∗, g′,o) ≡ Ξ(S1, g, I)(53)

Ia ≡ a(54)

Io ≡ o(55)

Ip ≡ p(56)

Id ≡ d(57)

Is ≡ s(58)

Iv ≡ v(59)

Let SHA3(Ib) = S[r]code(60)

We assert that the state database contains the entry
(SHA3(Ib), Ib).

8. Execution Model

The execution model specifies how the system state is
altered given a series of bytecode instructions and a small
tuple of environmental data. This is specified through a
formal model of a virtual state machine, known as the
Ethereum Virtual Machine (EVM). It is a quasi-Turing-
complete machine; the quasi qualification comes from the
fact that the computation is intrinsically bounded through
a parameter, gas, which limits the total amount of com-
putation done.

8.1. Basics. The EVM is a simple stack-based architec-
ture. The word size of the machine (and thus size of
stack item) is 256-bit. This was chosen to facilitate the
SHA3-256 hash scheme and elliptic-curve computations.
The memory model is a simple word-addressed byte ar-
ray. The stack has an unlimited size. The machine also
has an independent storage model; this is similar in con-
cept to the memory but rather than a byte array, it is
a word-addressable word array. Unlike memory, which is
volatile, storage is non volatile and is maintained as part
of the system state in the state database. All locations
in both storage and memory are well-defined initially as
zero.

The machine does not follow the standard von Neu-
mann architecture. Rather than storing program code
in memory or storage, it is stored separately in a virtual
ROM. It cannot be read directly; instead it exists only as
a model for determining the next instruction to execute.

The machine can have exceptional execution for several
reasons, including stack underflows, invalid instructions
and divides by zero. These unambiguously and validly
result in immediate halting of the machine with all state
changes left intact. The one piece of exceptional execution
that does not leave state changes intact is the out-of-gas
(OOG) exception. Here, the machine halts immediately
and reports the issue to the execution agent (either the
transaction processor or, recursively, the spawning execu-
tion environment) and which will deal with it separately.

8.2. Fees Overview. Fees (denominated in gas) are
charged under three distinct circumstances, all three as
prerequisite to the execution of an operation. The first
and most common is the fee intrinsic to the computation

of the operation. Most operations require a single gas fee
to be paid for their execution; exceptions include SSTORE,
SLOAD, CALL, CREATE, BALANCE and SHA3. Secondly,
gas may be deducted in order to form the payment for a
subordinate message call or contract creation; this forms
part of the payment for CREATE and CALL. Finally, gas
may be paid due to an increase in the usage of the memory.

Over a contract’s execution, the total fee for memory-
usage payable is proportional to smallest multiple of 32
bytes that are required such that all memory indices
(whether for read or write) are included in the range. This
is paid for on a just-in-time basis; as such, referencing an
area of memory at least 32 bytes greater than any previ-
ously indexed memory will certainly result is an addition
memory usage fee. Due to this fee it’s highly unlikely
addresses will ever go above 32-bit bounds since at the
present price of ether and default gas price, that would
cost around US$20M for the memory fee alone.

Storage fees have a slightly nuanced behaviour—to in-
centivise contracts to minimise storage use (which corre-
sponds directly to a larger state database on all nodes),
the execution fee for an operation that clears an entry in
the storage is waived; in fact, it is effectively paid up-front
since the initial usage of a storage location costs twice as
much as the normal usage.

More formally, given an instruction, it is possible to
calculate the gas cost of executing it as follows:

• SHA3 costs Gsha3 gas
• SLOAD costs Gsload gas
• BALANCE costs Gbalance gas
• SSTORE costs d.Gsstore gas where:

– d = 2 if the new value of the storage is non-
zero and the old is zero;

– d = 0 if the new value of the storage is zero
and the old is non-zero;

– d = 1 otherwise.
• CALL costs Gcall, though additional gas may be

taken for the execution of contract body code.
• CREATE costsGcreate, though additional gas may

be taken for the execution of contract initialisa-
tion code.

• STOP costs Gstop gas
• All other operations cost Gstep gas.

Additionally, when memory is accessed with MSTORE,
MSTORE8, MLOAD, RETURN, SHA3, CREATE or CALL,
the memory should be enlarged to the smallest multiple
of words such that all addressed bytes now fit in it. See
Appendix I for a rigourous definition of the EVM gas cost.

8.3. Execution Environment. In addition to the sys-
tem state S, and the remaining gas for computation g,
there are several pieces of important information used in
the execution environment that the execution agent must
provide; these are contained in the tuple I:

• Ia, the address of the account which owns the
code that is executing.

• Io, the sender address of the transaction that orig-
inated this execution.

• Ip, the price of gas in the transaction that origi-
nated this execution.

• Id, the byte array that is the input data to this
execution; if the execution agent is a transaction,
this would be the transaction data.



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 7

• Is, the address of the account which caused the
code to be executing; if the execution agent is a
transaction, this would be the transaction sender.

• Iv, the value passed to this account as part of
the same procedure as execution; if the execution
agent is a transaction, this would be the transac-
tion value.

• Ib, the byte array that is the machine code to be
executed.

• IH , the block header of the previous block.
• In, the block number of the current block.

The execution model defines the function Ξ, which can
compute the resultant state S′ and the remaining gas g′,
given these definitions:

(61) (S′, g′) ≡ Ξ(S, g, I)

8.4. Execution Overview. We must now define the Ξ
function. In most practical implementations this will be
modelled as an iterative progression of the pair comprising
the full system state, S and the machine state, M. For-
mally, we define it recursively with a function X. This
uses an iterator function O (which defines the result of a
single cycle of the state machine) together with functions
Z which determines if the present state is an exceptional
halting state of the machine and H, specifying the output
data of the instruction if and only if the present state is
a normal halting state of the machine. We consider the
empty sequence (denoted [] to be non-equal to the empty
set, denoted ∅).

Ξ(S, g, I) ≡ X(S,M, I)(62)

Mg ≡ g(63)

Mpc ≡ 0(64)

MM ≡ [0, 0, ...](65)

Mi ≡ 0(66)

MS ≡ [](67)

(68) X(S,M, I) ≡


(S,M, I, []) if Z(S,M, I)

(O(S,M, I),o) if o 6= ∅
X(O(S,M, I)) otherwise

where

(69) o ≡ H(S,M, I)

The machine state M is defined as the tuple
(g, pc,M, i, T ) which are the gas available, the program
counter, the memory contents, the active number of words
in memory (counting continuously from position 0), and
the stack contents. The memory contents MM are a series
of zeroes of size 2256.

For the ease of reading, the instruction mnemonics,
written in smallcaps (e.g. ADD), should be interpreted as
their numeric equivalents; the full table of instructions and
their specifics is given in Appendix I.

For the purposes of defining Z, H and O, we define w
as the current operation to be executed:

(70) w ≡

{
Ib[Mpc] if Mpc < ‖Ib‖
STOP otherwise

We also assume the fixed amounts of δ and α, specify-
ing the stack movement items removed and added, both
subscriptable on the instruction and an instruction cost
function C evaluating to the full cost, in gas, of executing
the given instruction.

8.4.1. Exceptional Halting. The exceptional halting func-
tion Z is defined as:

(71) Z(S,M, I) ≡ Mg < C(S,M, I) ∨ ‖MS‖ < δw

This states that the execution is in an exceptional halt-
ing state if there is insufficient gas or if there are insuffi-
cient stack items. The astute read will realise that this im-
plies that no instruction can, through its execution, cause
an exceptional halt.

8.4.2. Normal Halting. We define the normal halting
function H:
(72)

H(S,M, I) ≡


HRETURN(M) if w = RETURN

[] if w ∈ {STOP, SUICIDE}
∅ otherwise

The data-returning halt operation, RETURN, has a
special function HRETURN, defined in Appendix I.

8.5. The Execution Cycle. Stack items are added or
removed from the left-most, lower-indexed portion of the
series; all other items remain unchanged:

O(S,M, I) ≡ (S′,M′, I)(73)

∆ ≡ αw − δw(74)

‖M′T ‖ ≡ ‖MT ‖+ ∆(75)

∀x ∈ [αw, ‖M′T ‖) : M′Tx
≡ MTx+∆(76)

The gas is reduced by the instruction’s gas cost and
for most instructions, the program counter increments on
each cycle, for the three exceptions, we assume a function
J , subscripted by one of two instructions, which evaluates
to the according value:

M′g ≡ Mg − C(S,M, I)(77)

M′pc ≡


Jo(M) if w ∈ {JUMP, JUMPI}
Mpc + p if w ∈ [PUSH1,PUSH32]

Mpc + 1 otherwise

(78)

where p is the byte size of the push instruction, defined
as:

(79) p ≡ w − PUSH1 + 2

In general, we assume the memory and system state
don’t change:

M′M ≡ MM(80)

M′i ≡ Mi(81)

S′ ≡ S(82)

However, instructions do typically alter one or several
components of these values. Altered components listed by
instruction are noted in Appendix I, alongside values for
α and δ and formal a description of the gas requirements.



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 8

9. Blocktree to Blockchain

The canonical blockchain is a path from root to leaf
through the entire block tree. In order to have consensus
over which path it is, conceptually we identify the path
that has had the most computation done upon it, or, the
heaviest path. Clearly one factor that helps determine the
heaviest path is the block number of the leaf, equivalent
to the number of blocks, not counting the unmined genesis
block, in the path. The longer the path, the greater the
total mining effort that must have been done in order to
arrive at the leaf. This is akin to existing schemes, such
as that employed in Bitcoin-derived protocols.

This scheme notably ignores so-called stale blocks:
valid, mined blocks, which were propogated too late into
the network and thus were beaten to network consensus by
a sibling block (one with the same parent). Such blocks
become more common as the network propogation time
approaches the ideal inter-block time. However, by count-
ing the computation work of stale block headers, we are
able to do better: we can utilise this otherwise wasted
computation and put it to use in helping to butress the
more popular blockchain making it a stronger choice over
less popular (though potentially longer) competitors.

This increases overall network security by making it
much harder for an adversary to silently mine a canonical
blockchain (which, it is assumed, would contain different
transactions to the current consensus) and dump it on the
network with the effect of reversing existing blocks and
the transactions within.

In order to validate the extra computation, a given
block B may include the block headers from any known
uncle blocks (i.e. blocks whose parent is equivalent to
the grandparent of B). Since a block header includes the
nonce, a proof-of-work, then the header alone is enough
to validate the computation done. Any such blocks con-
tribute toward the total computation or total difficulty of
a chain that includes them. To incentivise computation
and inclusion, a reward is given both to the miner of the
stale block and the miner of the block that references it.

Thus we define the total difficulty of block B recur-
sively as:

Bt ≡ B′t +Bd +
∑

U∈BU

Ud(83)

B′ ≡ P (H)(84)

H ≡ BH(85)

As such given a block B, Bt is its total difficulty, B′

is its parent block, Bd is its difficulty and BU is its set of
uncle blocks.

10. Block Finalisation

The process of finalising a block involves three stages:

(1) Validate (or, if mining, determine) uncles.
(2) Apply rewards.
(3) Verify (or, if mining, compute a valid) state and

nonce.

10.1. Uncle Validation. The validation of uncle headers
means nothing more than verifying that each uncle header
is both a valid header and satisfies the relation of uncle to

the present block. Formally:

(86)
∧

U∈BU

V (U) ∧ P (U) = P (P (BH)) ∧ P (BH) 6= B

10.2. Reward Application. The application of rewards
to a block involves raising the balance of the accounts of
the coinbase address of the block and each uncle by a cer-
tain amount. We raise the block’s coinbase account by Rb,
the block reward, and the coinbase of each uncle by 7

8
of

that. Formally we define the function Ω:

Ω(B, S) ≡ S′ : S′ = S except:(87)

S′[BHb] = S[BHb] +Rb(88)

∀U ∈ BU : S′[Ub] = S[Ub] +
7

8
Rb(89)

We define the block reward as 1500 Finney:

(90) Let Rb = 1.5 ∗ 1016

10.3. State & Nonce Validation. We may now define
the function, Γ, that maps a block B to its initiation state:

(91) Γ(B) ≡

{
S0 if P (BH) = ∅
Si : r(Si) = P (BH)Hr otherwise

Here, r(Si) means the hash of the root node of a trie of
state Si; this is stored in the state database since the trie
is a mutable data structure.

And finally define Φ, the block transition function,
which maps an incomplete block B to a complete block
B′:

Φ(B) ≡ B′ : B′ = B∗ except:(92)

B′n = n : PoW(B∗, n) <
2256

Hd
(93)

B∗ ≡ B except: B′r = r(Π(Γ(B), B))(94)

As specified at the beginning of the present work, Π is
the state-transition function, which is defined in terms of
Ω, the block finalisation function and Υ, the transaction-
evaluation function, both now well-defined:

Π(S, B) ≡ Ω(B,Υ(Υ(S, T0), T1)...)(95)

B ≡ (H, [T0, T1, ...],U)(96)

Thus the complete block-transition mechanism, less
PoW, the proof-of-work function is defined.

10.4. Mining Proof-of-Work. The mining proof-of-
work (PoW) exists as a cryptographically secure nonce
that proves beyond reasonable doubt that a particular
amount of computation has been expended in the deter-
mination of some token value n. It is utilised to enforce
the blockchain security by giving meaning and credence
to the notion of difficulty (and, by extension, total dif-
ficulty). However, since mining new blocks comes with
an attached reward, the proof-of-work not only functions
as a method of securing confidence that the blockchain
will remain canonical into the future, but also as a wealth
distribution mechanism.

For both reasons, there are two important goals of the
proof-of-work function; firstly, it should be as accessible as
possible to as many people as possible. The requirement
of or reward from specialised and uncommon hardware
should be minimised. This makes the distribution model
as open as possible, and, ideally, makes the act of mining a
simple swap from electricity to ether at roughly the same
rate for anyone around the world.



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 9

Secondly, it should not be possible to make super-linear
profits, and especially not so with a high initial barrier.
Such a mechanism allows a well-funded adversary to gain
a troublesome amount of the network’s total mining power
and as such gives them a super-linear reward (thus skew-
ing distribution in their favour) as well as reducing the
network security.

One plague of the Bitcoin world is ASICs. These are
specialised pieces of compute hardware that exist only to
do a single task. In Bitcoin’s case the task is the SHA256
hash function. While ASICs exist for a proof-of-work func-
tion, both goals are placed in jeopardy. Because of this,
a proof-of-work function that is ASIC-resistant (i.e. diffi-
cult or economically inefficient to implement in specialised
compute hardware) has been identified as the proverbial
silver bullet.

Two directions exist for ASIC resistance; firstly make
it sequential memory-hard, i.e. engineer the function such
that the determination of the nonce requires a lot of mem-
ory and that the memory cannot be used in parallel to
discover multiple nonces simultaneously. The second is
to make the type of computation it would need to do
general-purpose; the meaning of “specialised hardware”
for a general-purpose task set is, naturally, general pur-
pose hardware and as such commodity desktop computers
are likely to be pretty close to “specialised hardware” for
the task.

More formally, the proof-of-work function takes the
form of PoW:

(97) PoW(Hn, n) <
2256

Hd

Where Hn is the new block’s header H, but without the
nonce component; Hd is the new block’s difficulty value
(i.e. the block difficulty from section 9).

As of the proof-of-concept (PoC) series of the Ethereum
software, the proof-of-work function is simplistic and does
not attempt to secure these goals. It will be described
here for completeness.

10.4.1. PoC Series. For the PoC series, we use a simpli-
fied proof-of-work. This is not ASIC resistant and is meant
merely as a placeholder. It utilises the bare SHA3 hash
function to secure the block chain by requiring the SHA3
hash of the concatenation of the nonce and the header’s
SHA3 hash to be sufficiently low.

It is formally defined as PoW:

(98) PoW(H,n) ≡ BE(SHA3(SHA3(RLP(Hn)) ◦ n))

where: RLP(Hn) is the RLP encoding of the block
header H, not including the final nonce component; SHA3
is the SHA3 hash function accepting an arbitrary length
series of bytes and evaluating to a series of 32 bytes (i.e.
256-bit); n is the nonce, a series of 32 bytes; ◦ is the se-
ries concatenation operator; BE(X) evaluates to the value
equal to X when interpreted as a big-endian-encoded in-
teger.

10.4.2. Release Series. For the release series, we use a
more complex proof-of-work. This has yet to be formally

defined, but involves two components; firstly that it con-
cerns contract processing, and by extension the evaluation
of programs on the EVM. Secondly that it concerns the
utilisation of either the blockchain or the full state trie.

As an overview, the output of the function is based
upon the system state, defined as the hash of the root node
of the state trie. A set of transactions, pseudo-randomly
determined from the nonce value and selected from the last
N blocks is taken. N is large enough and the selection cri-
teria are such that execution of the transactions requires
some non-negligable amount of processing by the EVM.
Whenever code is executed on the EVM, it is pseudo-
randomly (seeded again by the nonce) corrupted before
alteration. Corruption could involve switching addresses
with other transactions or rotating them through in the
state trie (perhaps to the next address with the same order
of magnitude of funds), rotating through instructions that
have equivalent stack behaviour (e.g. swapping ADD for
SUB or GT for EQ), or more destructive techniques such
as randomly changing opcodes. This results in a problem
that both require generalised computation hardware and
is sequentially memory (and perhaps even disk) hard.

Any specialised hardware to perform this task could
also be leveraged to speed up (and thus drive down costs)
of general Ethereum transaction processing.

11. Implementing Contracts

11.1. Data Feeds. External server runs node. Creates
& signs a transaction every minute containing new data.
Sends to contract which knows to accept data only from
this address. Allows polling of data from all other con-
tracts (possibly for a microfee).

11.2. Random Numbers. Hash the block timestamp;
for a series of pseudorandoms, take the previous, add some
constant and hash the result.

For a more secure pseudo-random offering both parties
agree on a number of random data feed contracts; these are
concatenated along with the block timestamp and hashed
to produce the first number in the series.

12. Future Directions

Rather than being hard-specified in the protocol, the
block limit will become based upon some fixed ratio about
a long-term moving average of actual gas usage in blocks,
allowing it to slowly increase according to the network’s
ability to manage the transaction volume.

State database won’t keep everything; maintains an
age and eventually throws out nodes that are not recent
enough or checkpoints.

Nodes in state trie that haven’t sent/received a trans-
action in over X blocks could be thrown out, reducing
Ether-leakage and reducing the growth of the state data-
base.

13. Conclusion

This paper has introduced, discussed and formally de-
fined the protocol of Ethereum.



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 10

Appendix A. Terminology

External Actor: A person or other entity able to interface to an Ethereum node, but external to the world of
Ethereum. It can interact with Ethereum through depositing signed Transactions and inspecting the blockchain
and associated state. Has one (or more) intrinsic Accounts.

Address: A 160-bit code used for identifying Accounts.
Account: Accounts have an intrinsic balance and transaction count maintained as part of the Ethereum state.

They are owned either by External Actors or intrinsically (as an identity) an Autonomous Object within
Ethereum. If an Account identifies an Autonomous Object, then Ethereum will also maintain a Storage State
particular to that Account. Each Account has a single Address that identifies it.

Transaction: A piece of data, signed by an External Actor. It represents either a Message or a new Autonomous
Object. Transactions are recorded into each block of the blockchain.

Autonomous Object: A virtual object existant only within the hypothetical state of Ethereum. Has an intrinsic
address. Incorporated only as the state of the storage component of the VM.

Storage State: The information particular to a given Autonomous Object that is maintained between the times
that it runs.

Message: Data (as a set of bytes) and Value (specified as Ether) that is passed between two Accounts in a perfectly
trusted way, either through the deterministic operation of an Autonomous Object or the cryptographically secure
signature of the Transaction.

Message Call: The act of passing a message from one Account to another. If the destination account is an
Autonomous Object, then the VM will be started with the state of said Object and the Message acted upon. If
the message sender is an Autonomous Object, then the Call passes any data returned from the VM operation.

Gas: The fundamental network cost unit. Paid for exclusively by Ether (as of PoC-4), which is converted freely
to and from Gas as required. Gas does not exist outside of the internal Ethereum computation engine; its price
is set by the Transaction and miners are free to ignore Transactions whose Gas price is too low.

Contract: Synonym for Autonomous Object used for non-technical audiences.
Object: Synonym for Autonomous Object.
App: An end-user-visible application hosted in the Ethereum Browser.
Ethereum Browser: (aka Ethereum Reference Client) A cross-platform GUI of an interface similar to a simplified

browser (ala Chrome) that is able to host sandboxed applications whose backend is purely on the Ethereum
protocol.

Ethereum Virtual Machine: (aka EVM) The virtual machine that forms the key part of the execution model
for a contract’s program code.

EVM Code: The bytecode that the EVM can natively execute.
EVM Assembly: The human-readable form of EVM-code.
LLL: The Lisp-like Low-level Language, a human-writable language used for authoring simple contracts.

Appendix B. Fee Schedule

Name Value Description*

Gstep 1 Default amount of gas to pay for execution cycle.
Gstop 0 Nothing paid for the STOP operation.
Gsha3 20 Paid for a SHA3 operation.
Gsload 20 Paid for a SLOAD operation.
Gsstore 100 Paid for a normal SSTORE operation (doubled of waived sometimes).
Gbalance 20 Paid for a BALANCE operation.
Gcreate 100 Paid for a CREATE operation and for a contract creation transaction.
Gcall 20 Paid for a CALL operation and for a message call transaction.
Gmemory 1 Paid for every additional word when expanding memory.
Gtxdata 5 Paid for every byte of data or code for a transaction.

Appendix C. Recursive Length Prefix

This is a method for encoding arbitrarily structured binary data (byte arrays).

Appendix D. Modified Merkle Patricia Tree

The modified Merkle Patricia tree (trie) provides a persistent data structure to map between arbitrary-length binary
data (byte arrays). It is defined in terms of a mutable data structure to map between 256-bit binary fragments and
arbitrary-length binary data, typically implemented as a database.

Appendix E. Hex-Prefix Encoding

Hex-prefix encoding is an efficient method of encoding a arbitrary number of nibbles as a byte array. It is able to
store an additional flag which, when used in the context of the trie (the only context in which it is used), disambiguates
between node types.



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 11

Appendix F. Formal Specification of Structures

Though RLP is data-agnostic, it does specify a canonical representation for integer quantities. It is big-endian with
no leading zero-bytes. Thus for elements than feasibly can be stored as integers, it becomes important to specify whether
they should adhere to this canonical representation or be left in some other (perhaps more ’native’) format.

In the case of counts, balances, fees and amounts of wei, the canon-integer form must be used when storing in RLP.
We call these INTs.

In the case of hashes (256-bit or 160-bit), user-visible strings and specialised byte-arrays (e.g. hex-prefix notation
from the trie), they should be stored as unformatted byte-array data and not altered into some other form. We call these
BINs.

When interpreting RLP data, clients are required to consider non-canonical INT fields in the same way as otherwise
invalid RLP data and dismiss it completely.

Specifically:
for the Block header:

[

parentHash: BIN (256-bit),

unclesHash: BIN (256-bit),

coinbase: BIN (160-bit),

stateRoot: BIN (256-bit),

transactionsHash: BIN (256-bit),

difficulty: INT,

timestamp: INT,

extraData: BIN (typically 256-bit),

nonce: BIN (256-bit)

]

(note: ’nonce’, the last element, refers to a hash here and so is binary)
for entries in the State trie for normal addresses:

[

balance: INT,

nonce: INT

]

and for contract addresses:

[

balance: INT,

nonce: INT,

storageRoot: BIN (256-bit),

codeHash: BIN (256-bit)

]

(note: ’nonce’, the second element, refers to a tx-count here and so is integer)
for message call transactions:

[

nonce: INT,

value: INT,

gasPrice: INT,

gas: INT,

recvAddr: BIN (160-bit),

data: BIN (arbitrary length),

v: INT,

r: INT,

s: INT

]

or, for contract creation transactions,

[

nonce: INT,

value: INT,

gasPrice: INT,

gas: INT,

0: BIN (160-bit),

code: BIN (arbitrary length),

init: BIN (arbitrary length),

v: INT,

r: INT,



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 12

s: INT

]

(note: ’nonce’, the first element, refers to a tx-count here and so is integer)
The nonce in the transaction refers to the total amount of transactions sent from the address up until that moment

in time.
for blocks, there are no immediate data field, but lists:

[

blockHeader: [...]

uncleList: [ [...], [...], ... ]

txList: [ [...], [...], ... ]

]

Uncle-blocks contain only the uncle’s header.

Appendix G. The State DB

The state database is a mapping between SHA3-256 hashes (i.e. 256-bit binary fragments) and arbitrary byte data.

Appendix H. Signing Transactions

The method of signing transactions is similar to the ‘Electrum style signatures’; it utilises the SECP-256k1 curve.

Appendix I. Virtual Machine Specification

As previously specified in section 8, these definitions take place in the final context there. In particular we assume O
is the EVM state-progression function and define the terms pertaining to the next cycle’s state S′ M′ such that:

(99) O(S,M, I) ≡ (S′,M′, I)

When interpreting 256-bit binary values as integers the representation is big-endian.
When a 32-byte machine datum is converted to and from as a 160-bit address or hash, the leftwards (high-order for

BE) 20 bytes are used and the right most 12 are discarded or filled with zeroes.
The general gas cost function is defined as:

(100) C(S,M) ≡ Gmemory(M′i −Mi) +



cSSTORE if o = SSTORE

Gcall if o = CALL

Gcreate if o = CREATE

Gsha3 if o = SHA3

Gsload if o = SLOAD

Gbalance if o = BALANCE

Gstop if o = STOP

Gstep otherwise

where co is specified in the appropriate section below and CM is the memory cost function, given as the product of
Gmemory and the maximum of 0 and the ceiling of the number of words in size that the memory must be over the current
number of words, Mi in order that all accesses reference valid memory whether for read or write; M′i is defined as this
new maximum number of words of active memory; special-cases are given where these two are not equal.



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 13

0s: Stop and Arithmetic Operations
All arithmetic is modulo 2256.

Value Mnemonic δ α Description

0x00 STOP 0 0 Halts execution.
M′R = []

0x01 ADD 2 1 Addition operation.
M′T [0] ≡ MS [0] + MS [1]

0x02 MUL 2 1 Multiplication operation.
M′T [0] ≡ MS [0]×MS [1]

0x03 SUB 2 1 Subtraction operation.
M′T [0] ≡ MS [0]−MS [1]

0x04 DIV 2 1 Integer division operation.
M′T [0] ≡ bMS [0]÷MS [1]c

0x05 SDIV 2 1 Signed integer division operation.
M′T [0] ≡ bMS [0]÷MS [1]c
Where all values are treated as signed 256-bit integers for the purposes of this operation.

0x06 MOD 2 1 Modulo remainder operation.
M′T [0] ≡ MS [0] mod MS [1]

0x07 SMOD 2 1 Modulo remainder operation.
M′T [0] ≡ MS [0] mod MS [1]
Where all values are treated as signed 256-bit integers for the purposes of this operation.

0x08 EXP 2 1 Exponential operation.

M′T [0] ≡ MS [0]MS [1]

0x09 NEG 1 1 Negation operation.
M′T [0] ≡ −MS [0]
Where all values are treated as signed 256-bit integers for the purposes of this operation.

0x0a LT 2 1 Less-than comparision.

M′T [0] ≡

{
1 if MS [0] < MS [1]

0 otherwise

0x0b GT 2 1 Greater-than comparision.

M′T [0] ≡

{
1 if MS [0] > MS [1]

0 otherwise

0x0c EQ 2 1 Equality comparision.

M′T [0] ≡

{
1 if MS [0] = MS [1]

0 otherwise

0x0d NOT 1 1 Simple not operator.

M′T [0] ≡

{
1 if MS [0] = 0

0 otherwise

10s: Bitwise Logic Operations
MS [0]i gives the ith bit (counting from zero) of MS [0]

Value Mnemonic δ α Description

0x10 AND 2 1 Bitwise AND operation.
∀i ∈ [0..255] : M′T [0]i ≡ MS [0]i ∧MS [1]i

0x11 OR 2 1 Bitwise OR operation.
∀i ∈ [0..255] : M′T [0]i ≡ MS [0]i ∨MS [1]i

0x12 XOR 2 1 Bitwise XOR operation.
∀i ∈ [0..255] : M′T [0]i ≡ MS [0]i ⊕MS [1]i

0x13 BYTE 2 1 Retrieve single byte from word.

∀i ∈ [0..7] : M′T [0]i ≡

{
MS [1](i+8MS [0]) if MS [0] < 32

0 otherwise

For Nth byte, we count from the left (i.e. N=0 would be the most significant in big endian).



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 14

20s: SHA3

Value Mnemonic δ α Description

0x20 SHA3 2 1 Compute SHA3-256 hash.
M′T [0] ≡ SHA3(MM [MS [0] . . . (MS [0] + MS [1]− 1)])
M′i ≡ max(Mi, d(MS [0] + MS [1])÷ 32e)

30s: Environmental Information

Value Mnemonic δ α Description

0x30 ADDRESS 0 1 Get address of currently executing account.
M′T [0] ≡ Ia

0x31 BALANCE 0 1 Get balance of currently executing account.
M′T [0] ≡ S[Ia]balance

0x32 ORIGIN 0 1 Get execution origination address.
M′T [0] ≡ Io
This is the sender of original transaction; it’s never a contract.

0x33 CALLER 0 1 Get caller address.
M′T [0] ≡ Ic
This is the address of the account that is directly responsible for this execution.

0x34 CALLVALUE 0 1 Get deposited value by the instruction/transaction responsible for this execution.
M′T [0] ≡ Iv

0x35 CALLDATALOAD 1 1 Get input data of current environment.
M′T [0] ≡ Id[MS [0] . . . (MS [0] + 32)]
This pertains to the input data passed with the message call instruction or transaction.

0x36 CALLDATASIZE 0 1 Get size of input data in current environment.
M′T [0] ≡ ‖Id‖
This pertains to the input data passed with the message call instruction or transaction.

0x37 GASPRICE 0 1 Get price of gas in current environment.
M′T [0] ≡ Ip
This is gas price specified by the originating transaction.

40s: Block Information

Value Mnemonic δ α Description

0x40 PREVHASH 0 1 Get hash of most recent complete block.
M′T [0] ≡ IHp

IHp is the previous block’s hash.

0x41 COINBASE 0 1 Get the block’s coinbase address.
M′T [0] ≡ IHb

0x42 TIMESTAMP 0 1 Get the block’s timestamp.
M′T [0] ≡ IHt

0x43 NUMBER 0 1 Get the block’s number.
M′T [0] ≡ n(IH)
n(IH) is the total number of ancestor blocks of the current block.

0x44 DIFFICULTY 0 1 Get the block’s difficulty.
M′T [0] ≡ IHd

0x45 GASLIMIT 0 1 Get the block’s gas limit.
M′T [0] ≡ 106

Presently, the gas limit is hard-coded in the protocol.



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 15

50s: Stack, Memory, Storage and Flow Operations

Value Mnemonic δ α Description

0x50 POP 1 0 Remove item from stack.

0x51 DUP 1 2 Duplicate stack item.
M′T [0] ≡ MS [0]

0x52 SWAP 2 2 Exchange stack items.
M′T [0] ≡ MS [1]
M′T [1] ≡ MS [0]

0x53 MLOAD 1 1 Load word from memory.
M′T [0] ≡ MM [MS [0] . . . (MS [0] + 32)]
M′i ≡ max(Mi, d(MS [0] + 32)÷ 32e)

0x54 MSTORE 2 0 Save word to memory.
M′M [MS [0] . . . (MS [0] + 32)] ≡ MS [1]
M′i ≡ max(Mi, d(MS [0] + 32)÷ 32e)

0x55 MSTORE8 2 0 Save byte to memory.
M′M [MS [0]] ≡ (MS [1] mod 256)
M′i ≡ max(Mi, d(MS [0] + 1)÷ 32e)

0x56 SLOAD 1 1 Load word from storage.
M′T [0] ≡ S′[Ia]storage[MS [0]]

0x57 SSTORE 2 0 Save word to storage.
S′[Ia]storage[MS [0]] ≡ MS [1]

cSSTORE ≡


2Gsstore if MS [1] 6= 0 ∧ S[Ia]storage[MS [0]] = 0

0 if MS [1] = 0 ∧ S[Ia]storage[MS [0]] 6= 0

Gsstore otherwise

0x58 JUMP 1 0 Alter the program counter.
JJUMP(M) ≡ MS [0]
This has the effect of writing said value to Mpc. See section 8.

0x59 JUMPI 2 0 Conditionally alter the program counter.

JJUMPI(M) ≡

{
MS [0] if MS [0] = 0

Mpc + 1 otherwise

This has the effect of writing said value to Mpc. See section 8.

0x5a PC 0 1 Get the program counter.
M′T [0] ≡ Mpc

0x5b MSIZE 0 1 Get the size of active memory.
M′T [0] ≡ Mi

0x5c GAS 0 1 Get the amount of available gas.
M′T [0] ≡ Mg

60s & 70s: Push Operations

Value Mnemonic δ α Description

0x60 PUSH1 0 1 Place 1 byte item on stack.
M′T [0] ≡ Ib[Mpc + 1]
The byte is right-aligned (takes the lowest significant place in big endian).

0x61 PUSH2 0 1 Place 2-byte item on stack.
M′T [0] ≡ Ib[(Mpc + 1) . . . (Mpc + 2)]
The bytes are right-aligned (takes the lowest significant place in big endian).

...
...

...
...

...

0x7f PUSH32 0 1 Place 32-byte (full word) item on stack.
M′T [0] ≡ Ib[(Mpc + 1) . . . (Mpc + 32)]



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER 16

f0s: System operations

Value Mnemonic δ α Description

0xf0 CREATE 5 1 Create a new contract.
b ≡ MM [MS [1] . . . (MS [1] + MS [2]− 1)]
i ≡ MM [MS [3] . . . (MS [3] + MS [4]− 1)]
(S′,M′g) ≡ Λ(S∗, Ia, Io,Mg, Ip,MS [0], i,b)
S∗ ≡ S except S∗[Ia]nonce = S[Ia]nonce + 1
M′T [0] ≡ x
where x = 0 if the code execution for this operation failed due to lack of gas;
x = A(Ia, S[Ia]nonce), the address of the newly created contract, otherwise.
M′i ≡ max(Mi, dmax(MS [1] + MS [2],MS [3] + MS [4])÷ 32e)

0xf1 CALL 7 1 Message-call into contract.
i ≡ MM [MS [3] . . . (MS [3] + MS [4]− 1)]
o ≡ MM [MS [5] . . . (MS [5] + MS [6]− 1)]

Let gk =

{
0 if MS [2] = 0

Mg −min(Mg,MS [2]) otherwise

(S′, g′,o) ≡ Θ(S, Ia, Io,MS [0], g, Ip,Mg − gk,MS [1], i)
M′g ≡ g′ + gk
M′T [0] ≡ x
where x = 0 if the code execution for this operation failed due to lack of gas;
x = 1 otherwise.
M′i ≡ max(Mi, dmax(MS [3] + MS [4],MS [5] + MS [6])÷ 32e)

0xf2 RETURN 2 0 Halt execution returning output data.
HRETURN(M) ≡ MM [MS [0] . . . (MS [0] + MS [1]− 1)]
This has the effect of halting the execution at this point with output defined.
See section 8.
M′i ≡ max(Mi, d(MS [0] + MS [1])÷ 32e)

0xff SUICIDE 1 0 Halt execution and obliterate account.
S′[MS [0]]balance ≡ S[MS [0]]balance + S[Ia]balance

S′[Ia] ≡ ∅

Appendix J. Wire Protocol

The wire-protocol specifies a network-level protocol for how two peers can communicate. It includes handshake
procedures and the means for transfering information such as blocks & transactions.

Appendix K. Genesis Block

The header of the genesis block is 9 items, and is specified thus:
〈0256, SHA3(RLP([])), 0160, 0256, SHA3(RLP([])), 222, 0, [], 42〉
Where:
0256 refers to the parent hash, a 256-bit hash which is all zeroes.
0160 refers to the coinbase address, a 160-bit hash which is all zeroes.
222 refers to the difficulty.
0 refers to the timestamp (the Unix epoch).
[] refers to the extradata, an empty byte array.
SHA3(RLP([])) values refer to the hashes of the transaction and uncle lists in RLP, both empty.


