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Abstract. One of the most promising innovations offered by the cryptographic currencies (like Bitcoin) are the
so-called smart contracts, which can be viewed as financial agreements between mutually distrusting participants.
Their execution is enforced by the mechanics of the currency, and typically has monetary consequences for the
parties. The rules of these contracts are written in the form of so-called “scripts”, which are pieces of code in some
“scripting language”. Although smart contracts are believed to have a huge potential, for the moment they are not
widely used in practice. In particular, most of Bitcoin miners allow only to post standard transactions (i.e.: those
without the non-trivial scripts) on the blockchain. As a result, it is currently very hard to create non-trivial smart
contracts in Bitcoin.
Motivated by this, we address the following question: “is it possible to create non-trivial efficient smart contracts us-
ing the standard transactions only?” We answer this question affirmatively, by constructing efficient Zero-Knowledge
Contingent Payment protocol for a large class of NP-relations. This includes the relations for which efficient sigma
protocols exist. In particular, our protocol can be used to sell a factorization (p, q) of an RSA modulus n = pq,
which is an example that we implemented and tested its efficiency in practice.
As another example of the “smart contract without scripts” we show how our techniques can be used to implement
the contract called “trading across chains”.

1 Introduction

Cryptographic currencies (also dubbed the cryptocurrencies) are a very interesting concept that emerged in the last few
years. The most prominent of them, and by far the largest one (in terms of capitalization), is Bitcoin, introduced in
2009 [36]. The main property of these currencies is that their security does not rely on any single trusted third party.
The list of transactions in the system is written on a public ledger that is maintained jointly by the users. Without
going much into the details: the main property of the ledger is that it is write-only, which prevents the double-spending
attacks (once a transaction appears on the ledger it is irreversible). Very informally, the ledger can therefore be viewed
as a distributed replacement of a trusted third party (like a bank). Since it is public, everybody who observes it can
examine the complete history of transactions and decide how much money is held on each account.1 Another reason
why these currencies are so interesting is that they allow the users to perform much more than simple money transfers
between each other. Namely, several cryptocurrencies, including the Bitcoin, implement an idea of Nick Szabo [44]
of the so-called smart-contracts. Such contracts can be viewed as distributed protocols executed between a number of
parties. Typically, they have financial consequences, i.e., the users contribute money to them, and these funds are later
distributed among the participants according to contract rules. Moreover, these contracts are “self-enforcing”, which
means that their execution is guaranteed by the rules of the underlying cryptocurrency. In particular, once a party enters
into such a contract she cannot “change her mind” and withdraw her invested funds unless the contract specifically
allows her to do so. Hence, the contracts are binding in a similar way as the legal documents are, the main difference
being that in the former case the execution of a contract is enforced automatically, while in the latter case the parties
have to rely on the judicial system.

To be more specific, consider a contract called the Zero Knowledge Contingent Payment [16], which is an example
on how Bitcoin contracts can provide a solution for the so-called fair exchange problem (see, e.g., [38]). It is executed
between two parties: the Seller and the Buyer. The Buyer is looking for a value x ∈ {0, 1}∗, that he does not know, but
he is able to specify the conditions of x that make it valuable for him. Namely, he can describe a function f : {0, 1}∗ →
{true, false} (in a form of a polynomial-time computer program, say), such that every x satisfying f(x) = true, has
a value B100 for him (here “B” denotes Bitcoin currency unit). Obviously (assuming that P 6=NP), finding x such that
f(x) = true is much harder than verifying that f(x) = true holds. Hence, in many cases it makes a lot of sense for the

1 The accounts are identified by the public keys, and hence they cannot be automatically linked to individual users. This weak form
of anonymity is also called “pseudonymity”.



Buyer to pay for x. As an example: think of a Buyer that wants to buy a factorization p, q of an RSA modulus N . He
would then define f : N× N→ {true, false} as f(p, q) := true iff ((p · q = N) ∧ p 6= 1 ∧ q 6= 1).

Imagine now that the Buyer is approached by a Seller, who is claiming that he knows x such that f(x) = true
and he is willing to sell it. If this happens over the Internet, and the parties do not trust each other then they face the
following problem: shall the Seller first send x to the Buyer who later pays to him (after verifying that indeed f(x)),
or the other way around: shall the Buyer first pay and then get x from the Seller? Clearly in the first case a malicious
Buyer can refuse to pay B100 to the Seller (after receiving x), and in the latter a malicious Seller may not send x to
the Buyer (after receiving the payment). Is there a way to sell x in such a way that none of the parties can cheat the
other one? Unfortunately, it turns out (see, e.g., [37]), that this fundamental problem, called the fair exchange cannot
be in general solved without a trusted third party. This is exactly where the contracts come to play. Intuitively, thanks
to this feature of the cryptocurrencies, the users can use the ledger as a trusted entity that allows them to perform the
exchange x for B100 simultaneously. Technically (but still very informally), this is done by placing a contract C on the
ledger that has the following semantics:

“The Buyer has to put aside B100. This money can be claimed by the Seller only by posting x such that
f(x) = true on the ledger. If he does not do it within time t, then B100 goes back to to the Buyer.”

Now, everybody who observes the ledger can easily verify if the contract obligations were respected by the parties, and
decide whether B100 should be now “transferred” from the Buyer to the Seller or not.

Another interesting example of a contract is so-called trading across chains [12] where users can exchange in a
secure and fair way money between different cryptographic currencies. More advanced examples include, the rapidly-
adjusted micro-payments, the assurance contracts [12], the multiparty lotteries [4, 6], or general secure multiparty
computation protocols [2, 10, 31]. Some experts predict that the smart contracts will revolutionize the digital econ-
omy. It is even envisioned that in the future these contracts may be used to maintain large distributed autonomous
corporations that would operate without any trusted party control [25].

1.1 Contracts: from theory to practice

The above description ignores many technical details, and in particular it does not mention how the contracts are writ-
ten. The transactions that are used in the contracts contain the so-called scripts. In Bitcoin the scripts are written in the
so-called Bitcoin script language [13], which is not Turing-complete, and hence not every condition can be expressed
in it. The reason why Bitcoin was designed in this way is that otherwise it could be the case that a contract would re-
quire a very long computation, and hence its status, i.e. whether it was fulfilled or not, would not be immediately clear
(recall that it is undecidable whether a program written in a Turing-complete language terminates or not). A serious
obstacle when implementing the Bitcoin contracts in real life is that in practice it is currently very hard to post on the
ledger a transaction corresponding to a non-trivial contract. To explain why it is the case we need to say a bit more
about Bitcoin mechanics. The transaction ledger has a form of a chain of blocks (hence the name: the blockchain).
Each block contains a list of new transactions and a pointer to the previous block. It is computationally moderately
hard to extend the chain by a new block (this “moderate computational hardness” is obtained via a technique called the
proofs of work [23]), and hence it is also hard to delete a transaction from the blockchain (especially if it is contained in
a block that is already followed by some other blocks in the chain) as it would require to produce an alternative chain
without this transaction. The process of finding a new block is called mining, and the users that work on extending the
chain are called the miners. They receive financial rewards (in bitcoins) for mining each new block. In order to reduce
the variance of their income the miners typically operate in coalitions called the mining pools.

Technically, to write a transaction on the ledger one broadcasts it over Bitcoin network and hopes that one of
the miners will include it into a new block that he mines. This gives the miners power to decide which transactions
are included into the blockchain and which are not. Unfortunately, currently most of the miners do not include more
complicated transactions into the blockchain. The reasons for this are: (1) such transactions tend to be longer than the
“standard” ones, and space in the block is scarce2, and (2) writing the transactions is tricky and error-prone, and most
of the mining pool operators agreed to disallow them in order to prevent the users from loosing money. Technically
deciding whether to accept a transaction or not is done by computing a boolean function isStandard() that evaluates
to true only if the transaction is “standard”, and otherwise it evaluates to false (the non-standard transactions are also
called strange). The vast majority of the miners will include a transaction T in a new block only if isStandard(T)=

2 Currently it is limited to 1MB, and there is a disagreement in the Bitcoin community whether to extend it or not (see [11])
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true (more on this can be found, e.g., in [5], Chapter 5). Up to our knowledge, the only mining pool that currently
accepts the non-standard transactions is Eligius that mines less than 1% of blocks.

Another problem with running the smart contracts in Bitcoin is that the Bitcoin scripting language contains a
feature, called the transaction malleability, that makes it tricky to implement several natural contracts. We write more
about it in Sect. 2.2. Although some techniques of dealing with this problem are known [3], they are often hard to use,
since they make the contracts unnecessarily complicated (and make the transactions longer), and sometimes force the
parties to invest more money than would normally be needed (by requiring them to put aside so-called deposits). One
interesting new tool for dealing with this problem is the OP CHECKLOCKTIMEVERIFY instruction [45] that was
recently deployed in Bitcoin. See Sect. 4.3 for more information about this instruction.

After Bitcoin was deployed several other cryptocurrencies were proposed. The most interesting one from the point
of view of the smart contracts, is Ethereum (www.ethereum.org), which permits to use the Turing-complete scripts.
The aforementioned problem of the high time consumption associated with the evaluation of the complicated scripts is
solved in Ethereum in the following way. Each step of the computation of a script costs some small amount of money
(the currency used for this is called ether), and the script evaluates as long as there are enough funds for this. Ethereum
has recently been deployed in real life. It is, however, still a very young project and it is unclear how successful it will
be in the real life. Moreover, as recently observed by Luu et al. [33] Ethereum may be susceptible to attacks where the
adversary wastes miners’ computational resources, which, in turn means that the miners might have incentives not to
verify the correctness of the scripts. This, at least in theory, puts the whole Ethereum security model at risk.

Some of the other new cryptocurrencies go in the opposite direction by removing the possibility of having scripts at
all. Sometimes this is a price for having additional interesting features in a currency. One example is the Zerocash [9],
where the key new feature is the real anonymity (obtained by using the zero-knowledge techniques). Another, slightly
different example is the Lightning system (www.lightning.network), which is a new proposal for micropayments
constructed on top of the Bitcoin financial system, that also allows only standard transactions between the parties.

1.2 Our contribution: contracts without scripts

These observations lead to the following natural question: can we efficiently construct non-trivial contracts using only
the standard transactions? In this paper we answer this affirmatively. We show (in Sect. 4.2) a general technique for
efficiently solving the Zero-Knowledge Contingent Payment problem using only standard transactions for any f such
that the corresponding language {x : f(x) = true} has an efficient zero-knowledge proof of knowledge of a special
(but very broad) form, that, in particular, includes the sigma-protocols (see, e.g., [22]). We define this class of protocols
in Sect. 4.3, but for a moment let us only say that it includes many natural languages. As an example we show an
efficient protocol for selling a factorization of an RSA modulus, which is a problem that we already discussed at the
beginning of this section. We implemented our protocol and confirmed its efficiency (see Sect. 4.4). In our construction
we do not rely on any costly cryptographic mechanisms such as the generic secure multiparty computation protocols,
or the generic zero-knowledge schemes. Instead, we use the standard and simple cut-and-choose technique. We also
outline how to solve in a similar way the “trading across chains” problem (this is done in Sect. 4.5).

Our protocols are proven secure in the random oracle model, and are based on standard cryptographic assumptions,
an assumption that time-lock encryption of [41] is secure, plus one additional assumption about the strong unforge-
ability of the Elliptic Curve DSA (ECDSA) signatures used in Bitcoin. We describe this assumption in more detail
in Sect. 3. For a moment let us only briefly say that ECDSA signatures are malleable in the sense that given a valid
(message, signature) pair (m,σ) it is possible to efficiently construct another pair (m, g(σ)) that is valid with respect
to the same public key, and such that σ 6= g(σ) (here g is some function defined over the set of valid signatures).
Currently only one function g like this is known. Informally, our assumption states that no more functions like this
exist. In Sect. 3 we informally explain why we believe that this is the case. We leave reducing this assumption to more
standard assumptions as an interesting open problem. Our protocols have an exponentially small probability of error
(i.e.: the probability that the adversary cheats), assuming that we are allowed to use so-called multisig transactions,
i.e., transactions that can be spent by providing signatures with respect to k public keys (out of n ≥ k possible public
keys). Currently such transactions are considered standard for n ≤ 15. We note that if one does not want to use such
transactions, then our solution also works, but the error probability is inversely proportional to the running time of the
parties.

Related work. As already mentioned, the Zero-Knowledge Contingent Payment protocol has been described before in
[16] and recently implemented [35] for selling a proof of a sudoku solution. When viewed abstractly, our construction
is a bit similar to the one of [16]. There are some important differences, though. Firstly, the protocol of [16] uses some
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non-standard scripts. Secondly, it is vulnerable to the “malleability attacks”. To see why it is the case look at the section
entitled “But what if they’re just anti-social and don’t redeem the txn?” in [16]: the refund transaction depends on an
identifier of the txn transaction, and becomes meaningless if txn is mauled. Finally, the protocol of [16] uses generic
zero knowledge protocols, or can be used only for very simple problems (like selling the sudoku solution), while we
rely on much simpler and more efficient methods (in particular: the cut-and-choose technique). The existing protocols
for trading across chains [12] suffer from similar problems.

2 Preliminaries

2.1 Definitions.

Signature schemes We will sometimes model the hash functions as random oracles, see [8]. A signature scheme
consists of a key generation algorithm SignGen, a signing algorithm Sign, and a verification algorithm Vrfy. The
algorithm SignGen takes as input a security parameter 1λ, and produces as output a key pair (sk , pk) ∈ ({0, 1}∗)2.
The signing algorithm takes as input sk , a message z ∈ {0, 1}∗ and produces as output a signature σ = Signsk (z) ∈
{0, 1}∗. The verification algorithm Vrfy takes as input pk , z, and σ and produces as output Vrfypk (z, σ) ∈ {⊥, ok}. We
say that σ is a valid signature on z with respect to pk if Vrfypk (z, σ) = ok. We require that always Vrfypk (z, σ) = ok,
as long as σ = Signsk (z) and (sk , pk) = SignGen(1λ) (i.e.: a correctly computed signature is always valid).

To define security of a signature scheme consider the following game played by a polynomial time adversary A.
First, a key pair is sampled as (pk , sk) := SignGen(1λ) and the adversary is given pk . He then chooses a sequence
(z1, . . . , zk) of messages, and he learns σi := Signsk (zi) for each zi. He does it adaptively, i.e. he chooses each zi after
learning σ1, . . . , σi−1. Finally, A produces as output a pair (ẑ, σ̂). We say that A forges a signature if ẑ 6∈ {1, . . . , zk}
and σ̂ is a valid signature on ẑ with respect to pk . We say that (SignGen,Sign,Vrfy) is existentially unforgeable under
a chosen message attack if for any polynomial-time A the probability that A forges a signature is negligible in λ. In
this paper we need a stronger security definition, namely the strong existential unforgeability under a chosen message
attack. This is formally defined in [1, 18]. Consider the same game as before. We say that A mauls a signature if
he is able to produce an output (ẑ, σ̂) such that σ̂ is a valid signature on ẑ with respect to the public key pk (that
corresponds to sk ), and σ̂ has not been sent to A before, i.e. σ̂ 6∈ {σ1, . . . , σk}. A signature scheme is existentially
strongly unforgeable under a chosen message attack (or: non-malleable) if for any polynomial-time adversary the
probability that he mauls a signature is negligible.

Homomorphic encryption schemes. We will use (public key and private key) encryption schemes, defined in a stan-
dard way (see [30] or Appendix A). We say that a public-key encryption scheme is additively homomorphic if for every
valid public key pk and private key sk the set of valid messages for pk is an additive group (Hpk ,+) (note that this
requires specifying how the group operation “+” works, but in our case this will always be clear from the context).
Moreover, we require that there exists an operation ⊗ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥}, such that for every valid
(pk , sk) and every pair z0, z1 ∈ Hpk we have that Decsk (Encpk (z0)⊗ Encpk (z1)) = z0 + z1 (where Enc and Dec are
the encryption and decryption algorithms, respectively).

Time-lock commitment schemes. The definition of the standard commitment schemes is moved to Appendix A.
Our protocols also rely on the time-lock commitment schemes [41, 17]. Informally, (Commit,Open) is a time-locked
commitment if it is a standard commitment scheme, except that the receiver can open the commitment by himself
(even if the sender is not cooperating). Such forced opening requires a significant computational effort. Moreover it is
required that this process cannot be parallelized. In other words: no matter how many machines are available to the
receiver, he always has to spend some significant amount of time in order to force open the commitment. Of course the
machines differ in speed, and hence, a powerful receiver can speed up the forced opening process. However, as long as
this process cannot be efficiently parallelized, the difference between the time needed by a very powerful receiver and a
standard receiver is limited. Hence, every time-lock commitment comes with two parameters: τ0 and τ1 (with τ0 ≤ τ1),
where τ0 denotes the time (in seconds, say) that everybody, including very powerful adversaries, needs to force open
the commitment, and τ1 denotes time needed by the honest users to force open the commitment. We will call such a
commitment scheme (τ0, τ1)-secure. Of course, this is not a formal mathematical definition (as it refers to “real time”),
but for the purpose of this paper we can stay on this informal level. In practice can assume that τ1 ≤ 10 · τ0.

Zero Knowledge Protocols As described in the introduction, in our constructions we do not rely on the generic zero
knowledge protocols (for efficiency reasons). We will use them to describe how our protocols can be generalized (see
Section 4.3). There is no space here to give a full introduction to zero-knowledge (the reader may consult, e.g., [27], for
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this). Let us only say that these protocols [28] are executed between a prover P and a verifier V . The goal of the prover
is to convince the verifier that some instance x is a member of some language L (both P and V know (x, L)). The
zero-knowledge property means that the verifier does not learn any information beyond the fact that x ∈ L (even if he
is malicious, i.e., he does not follow the rules of the protocol). Every protocol has also to be sound by which we mean
that it is impossible to convince the verifier that x ∈ L if it is not the case (except with negligible probability). In our
paper we actually need a stronger notion, namely the zero-knowledge proofs of knowledge [7]. Such proofs are defined
only if L is in NP, and hence for every x ∈ L there exists an NP-witness w that serves as a proof that x ∈ L. We assume
that P knows x and require that the prover not only proves that x ∈ L, but also convinces the verifier that he knows the
corresponding witness w. Defining formally the property of a prover “knowing” some value is a bit tricky, and we do
not do it here (see, e.g., [27] for such a definition). Very informally, it is usually defined as follows: for every (possibly
malicious) prover P ∗ there exists a polynomial-time machine, called the knowledge extractor, that can interact with
P ∗ (possibly even rewinding it), and at the end it outputs x. The definition that we use here is more restrictive. First,
suppose without loss of generality, that the last two messages in the protocol are: a challenge c sent by the verifier to
the prover, and provers response r. We require (cf. Section 4.3) that the extractor extracts the witness after being given
transcripts of two accepting executions that are identical except that that the challenge messages are different (and the
response messages may also be different). This class of protocols includes our protocol for selling the factorization of
the RSA modulus. It is also similar to the sigma-protocols (see, e.g, [22]), except that it may have more rounds than
3, but on the other hand we require that the zero-knowledge property holds also against the malicious verifier. Note
that some sigma-protocols, including the Schnorr protocol, are conjectured to be secure also in this case. Observe also
that we can easily get rid of the “honest verifier” assumption by requiring the verifier to make his message equal to a
hash of some message (chosen by him) [24]. Hence, our method can be used also to efficiently “sell” a witness of any
relation for which an efficient sigma-protocol exists.

2.2 Instantiations.

As explained in the introduction, Bitcoin uses an Elliptic Curve Digital Signature Algorithm (ECDSA) [29, 20], which
is a variant of the Digital Signature Algorithm (DSA). More concretely, it uses the Secp256k1 curve [14], but to be
able to state our theorems in an asymptotic way we will be more general and define our protocol over arbitrary elliptic
curve. The description of this algorithm appears in Appx. B.

We will use the additively-homomorphic public key encryption scheme introduced by Pascal Paillier [39]. Be-
low, we describe only the properties of this scheme that are needed in this work. For more details the reader can
consult, e.g, [39]. The public key pk of this encryption scheme contains a modulus n = p · q, where p and q are
large distinct random primes of the same length. The Paillier encryption scheme is homomorphic over (Zn,+). It is
semantically secure under the Decisional composite residuosity assumption [39]. In the sequel we will assume that
(AddHomGen,AddHomEnc,AddHomDec) is a Paillier encryption scheme. The elements on which we will perform
the addition operations will be the exponents in the elliptic curve group of the ECDSA scheme. Hence, we need Zn to
be larger than G, and, for the reasons that will become clear later, it will be convenient to have n� |G|. We therefore
assume that on input 1λ the algorithm AddHomGen produces as output (pk , sk) such that the corresponding group Zn
satisfies n > 2 · |G|4.

We use very standard commitment schemes that are based on the hash functions, and are secure in the random
oracle model. Let H be a hash function. In order to commit to some value x ∈ {0, 1}∗ the committer chooses some
random r ∈ {0, 1}λ (where 1λ is the security parameter) and produces as output Commit(x) = H(x||r). In order
to open the commitment it is enough to reveal (x, r). The fact that the scheme is binding follows from the collision-
resistance of H (a commitment that can be open in two different ways would automatically form a collision for H).
The hiding property follows from the fact that we model H as the random oracle (and hence H(x||r) does not reveal
any information about x).

We use the classic timed commitments of [41]. In order to commit to a message x ∈ {0, 1}` (for some `) the
committer chooses an RSA modulus n, i.e., he selects two random primes p and q of length λ (where 1λ is the security
parameter) and sets n = pq. He then computes ϕ(n) = (p− 1)(q − 1). Let t be some parameter. The committer takes
random y ∈ Z∗n and computes z := y2

t

mod n. Since he knows ϕ(n) he can compute it efficiently by first computing
e = 2t mod ϕ(n) (doing this using the standard square-and-multiply algorithm takes log2 t squaring modulo n), and
then letting z := ye mod n. Finally, he computes H(z) and outputs y and H(z) ⊕ x, where H : Z∗n → {0, 1}`
is a hash function. On the other hand, it is conjectured [41] that an adversary, who does not know ϕ(n) needs to
perform t squarings to compute z (and hence to compute x). Also, no practical methods of parallelizing the problem of
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computing z is known. It is also easy to see that this algorithm is a commitment in a standard sense, i.e., if the committer
is cooperating with the receiver then he can open the commitment efficiently (by sending (p, q) to the receiver). To set
the parameter t let c be the number of squarings that the honest receiver can do in one second. We then let t = τ1 · c
(where τ1 is the parameter of the timed commitment scheme).

A short description of the Bitcoin transaction syntax. We now briefly describe the syntax of the Bitcoin transactions.
Since we do not use the non-standard transactions we will provide a simplified description that ignores this feature
of Bitcoin. More on Bitcoin transactions can be found, e.g., in [15, 5]. The users in Bitcoin are identified by their
public keys in the ECDSA signature scheme (SignGen,Sign,Vrfy). Each such a key pk is called an address3. In
the simplest case transaction T simply sends some amount Bx (where x can be smaller than one4) from an address
pk0 (called an input of T ) to an address pk1 (called the output of T ). The amount Bx will also be called the value
of T . Transaction T must contain a pointer to another transaction T ′ that appeared earlier on the ledger and has
value at least Bx, and whose destination is pk0. We say that T redeems T ′. Transaction T is valid only if T ′ has
not been redeemed by some other transaction before. Hence, in the simplest case a transaction contains a following
tuple [T ] := (TXid(T ′), value : Bx, from : pk0, to : pk1), where TXid(T ′) denotes the identifier of T ′ (we will
define it in a moment), and [T ] is called a simplified transaction T . Of course, in order for [T ] to have any meaning
it needs to be signed with the private key sk0 corresponding to pk0. Hence, the complete transaction T has a form
([T ],Signsk0

([T ])), and is valid if all the conditions described above hold, and the signature on [T ] is valid with respect
to pk0. The TXid(T ) is defined simply as a SHA256 hash of ([T ],Signsk0

([T ]))).
A transaction can also have multiple inputs and multiple outputs, but we do not describe this feature here, as we do

not need it. Let us also say that the total value x of the transactions redeemed by T can be larger than the total value x′

of the transactions that spend T . The difference x−x′ is called a transaction fee. On the other hand, obviously, it is not
allowed to have x′ > x. In this paper, for simplicity, we will describe our protocols with an assumption that x′ = x,
i.e., that the fees are equal to zero.

Another standard type of the transactions are the so-called multisig transactions. In this case [T ] has a form
(TXid(T ′), value : Bx, from : pk0, to “k-out-of-n” : pk1, . . . , pkn) where n ≤ 15. It is signed by pk0. It can be
spent by a transaction T ′′ that is signed by k signatures with respect to k different public keys from the set pk1, . . . , pkn.
More precisely the transaction T ′′ has to have a form ([T ′′], σi1 , . . . , σik), where 1 ≤ i1 < · · · < ik ≤ n and for every
1 ≤ j ≤ k it holds that Vrfypkij ([T

′′], σij ) = ok. The multisig transactions are typically used to increase the security
of the bitcoin storage: instead of storing one key, a user can generate n keys, and store each of them in a separate place.
In this way even if k − 1 keys leak to the adversary, the money is still safe. On the other hand: if n − k keys get lost
the user can still spend the transaction, which provides some level of security in case of, e.g., the hardware on which
the keys are stored is damaged or stolen. The “2-out-of-3” multisig transactions are also used with (partially) trusted
third party that helps in mediating disputes.

3 On the malleability of the Bitcoin transactions and the ECDSA signatures

As described in Section 2.2, the Bitcoin transactions are identified by their hashes, more precisely: TXid(T ) = H(T )
(where H is the SHA256 hash function). This can sometimes be a problem, since it turns out that often the adversary
that knows T can compute T ′ that is semantically equivalent to T (i.e.: spends the same transaction, has the same
value, and the same inputs and outputs), but is syntactically different from T . This is called mauling the transaction T .
In a moment we will explain how mauling can be done, but let us first say what are the consequences of this attack. The
problem comes from the fact that in such a case TXid(T ) 6= TXid(T ′). Note that this does not imply that the adversary
can steal money (as the output of T is the same as the output of T ′). Still, it is undesirable in many situations. Firstly, it
turns out [3] that several Bitcoin software clients are not prepared to handle situations when the transaction that appears
on the ledger has a different identifier than the transaction that was originally posted. Secondly, and more importantly,
it creates problems when creating Bitcoin contracts (see, e.g., [2, 3]).

There are actually several methods that allow to maul a transaction in Bitcoin. The simplest ones exploit the prop-
erties of the Bitcoin scripting language and we will not discuss them here. What is more relevant to this paper is the
attack that is based on mauling the ECDSA signatures (the malleability of signatures was defined in Section 2.1). As it
turns out these signatures are easily malleable: if (r, s) is a valid signature on some message z, then also (r,−s mod p)

3 Technically: it is actually the hash of pk , but this is not relevant to this high-level description.
4 The smallest currency unit in Bitcoin is B10−8.
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(where p is the order over which the elliptic curve G is defined) is a valid signature (with respect the the same public
key). To see why this is the case observe that ϕ : G→ G (where G denotes the elliptic curve) defined as ϕ(h) = (−h)
is an automorphism on G (which is easy to verify by checking the formulas for the group operation), and the reduction
function f (cf. Section 2.2) is invariant with respect to taking this automorphism, i.e. it is such that

∀h∈Gf(h) = f(ϕ(h)) (1)

(this is because f is defined as f(x, y) = x and in G we have that −(x, y) = (x,−y)). Recall that the ECDSA
verification algorithm takes as input a public key D, a signature (r, s), and a message z and checks whether

r = f(H(z) · s−1 · g + r · s−1 ·D). (2)

Now observe that if we run the check from Eq. (2) on (r,−s) then the right hand side on (2) becomes

f(−H(z) · s−1 · g − r · s−1 ·D))

= f(ϕ(H(z) · s−1 · g + r · s−1 ·D))

= f(H(z) · s−1 · g + r · s−1 ·D)

= r,

so on input (r,−s) the verification algorithm also returns ok. We now conjecture that this is the only way that the
ECDSA signatures on the Secp256k1 curve can be mauled. One of the reasons why we believe that this assump-
tion holds is that the attack described above works only since ϕ is an automorphism such that (1) holds. But, since
Secp256k1 has j-invariant 0 (see [19]) we know (see [46], Section 2.7) that ϕ is its only non-trivial automorphism.
Hence, no other attack of this type is possible.

It also seems that the Bitcoin community generally believes that there is no other method of mauling Bitcoin
signatures. For example, the Bitcoin Improvement Proposal (BIP) 0062 [47] lists 9 possible sources of malleability of
Bitcoin transactions, among them the “Inherent ECDSA signature malleability”, where the only method of mauling the
signatures is the one described above (taking the negative of s). Also, the only countermeasure against the signature
malleability mentioned in [47] is to disallow negating s. Technically this is done be requiring that s ≤ (p− 1)/2.

In order to make our signature scheme strongly-unforgeable we follow the guidelines from [47]. Namely, we assume
that the only “legal” signatures have a form (r, s) such that s ≤ (p − 1)/2. Note that, since we want our protocols to
work over the current version of Bitcoin, we cannot assume that the BIP 0062 was already implemented. We therefore
do not assume it, and hence our protocols need to be ready to handle situations where s > (p− 1)/2 (in case, e.g., one
of the participants is malicious). To this end, we simply assume that, whenever our protocol gets as input an ECDSA
signature (r, s) with s > (p−1)/2, it converts it to one with s ≤ (p−1)/2 by computing s := −s mod p. An ECDSA
scheme with only ”legal” signatures being the ones with s ≤ (p− 1)/2 will be called a positive ECDSA.

We can now informally state our strong unforgeability assumption as follows:

The positive ECDSA defined over Secp256k1 is strongly unforgeable under chosen-message attack

(or equivalently: the only way to maul the signatures defined over Secp256k1 is to negate the s). Note that this statement
is informal, and in order to formalize it we would need to express it in an asymptotic way. To do this, we would need
to define a family of signature schemes parametrized by a security parameter. A natural example of such a family could
be the ECDSA signatures defined over any prime field. We do not state this assumption formally, since anyway at the
end we are interested only in the concrete case of the Secp256k1 curve.

We also note that our scheme remains secure even if some other methods of mauling the signatures become known,
as long as they permit efficient “inversion” of the mauling function, i.e, after obtaining σ′ which is a “mauled” version
of σ it is possible to construct a polynomial-size set Σ such that σ ∈ Σ.

4 The protocols

Our model We will consider two-party protocols, executed between a Buyer B and a Seller S. If a party is malicious
then she may not follow the protocol (in other words: we consider the active security settings). The parties are connected
by a secure (i.e. secret and authenticated) channel. Such a channel can be easily obtained using the standard techniques,
provided that the parties know each others public keys. Observe that in order to do any financial transfers in Bitcoin
they anyway need to know each other keys (let (skB , pkB) be the ECDSA key pair of the Buyer, and let (skS , pkS) the
the key pair of the Seller), and the participating parties can use the same key pairs for establishing the secure channel
between each other. How exactly these public keys pkB and pkS are exchanged is beyond the scope of this paper.
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The security definition We now outline a construction of our protocol in which the Seller sells to the Buyer x such that
f(x) = true (for some public f : {0, 1}∗ → {true, false}). We assume that the “price” of x is Bd, and that, before an
execution of the protocol starts, there is some unspent transaction T0 on the blockchain whose value is Bd, and whose
output is pkB (i.e.: it can be spent by the Buyer). The parties initially share the following common input: a security
parameter 1λ, a price Bd for the secret x, parameters a, b ∈ N such that a > b, an elliptic curve group (G,O, g,+) for
an ECDSA signature scheme, such that dlog2 |G|e = λ, and parameters (τ0, τ1). We say that the SellWitnessf protocol
is ε-secure if the following properties hold: (1) except with probability ε + µ(λ) (where µ is negligible), if an honest
Buyer loses his funds then he learns x′ s.t. f(x′) = true, (2) except with negligible probability, if an honest Seller does
not get Buyer’s funds then the Buyer learns no information about x. We construct a protocol SellWitnessf (for a large
class of functions f ) in Sect. 4.3. First, however, we give an outline of our construction. The necessary ingredients are
defined and constructed in Sections 4.1 and 4.2.

Outline of the construction. Our protocol consists of several stages. The main idea can be described as follows (we
start with describing an “idealized” protocol and then we show how to modify it to make it efficient and practical).
Imagine that the parties first create, in a distributed way, an ECDSA key pair (sk , pk) such that the private key sk
is secret-shared between the parties, and the public key pk is known to both of them. Then, the Buyer prepares a
transaction T1 that sends the output of T0 to the public key pk . Obviously for a moment the Buyer has to keep T1
private, as posting T1 on the ledger would put his money at risk (as spending money from T1 requires cooperation
of the Seller). He now creates a simplified transaction5 [T2] that redeems T1 and sends the output to the public key
pkS of the Seller. Then, the parties jointly sign [T2] with the shared private key sk in such a way that the signature
σ = Signsk ([T2]) is known only to the Seller. Note that this is possible without revealing T1 to the Seller, as the only
thing that is needed from T1 is its transaction identifier, which happens to be equal to the hash H(T1) of T1 (in the
random oracle model H(T1) clearly reveals no information about T1).

Let us now briefly analyze the situation after these steps are executed: the Buyer knows T1, and the Seller knows
T2 that spends T1 (but she does not know T1, so for a moment she cannot make any use of T2). The key idea now is:
the Seller will make a commitment to the signature σ in such a way that opening this commitment will automatically
reveal x (and she will convince the Buyer that the commitment was formed in this way). Now the Buyer can post T1
on the ledger, and wait until the Seller redeems it. The only way in which she can do it, is to publish σ (here we use the
assumption that the signatures are strongly unforgeable), so the Buyer can be sure that he learns x.

This construction is similar to the one described in [16]. Unfortunately, in practice there are several problems
with it. Firstly, there is no way for the Buyer to “force” the Seller to publish σ, and hence the Buyer’s money can be
locked forever in T1. We solve this problem using the time-locked commitments. The Seller has to commit with such
a commitment to her private share of sk , so that it can be unlocked by the Buyer after some time. In this way he can
get his money back by signing a transaction T ′2 that redeems T1 and sends the money to his key pkB . As described in
Sect. 1, an alternative solution is to use the OP CHECKLOCKTIMEVERIFY instruction. We describe this solution in
Sect. 4.3.

Secondly, the currently-known protocols for distributed signing with the ECDSA signatures are rather complicated
and involve costly generic zero-knowledge techniques [34] (see also [26]). Also, the generic zero-knowledge would
need to be used to prove that the timed commitment above is indeed a commitment to Seller’s share in sk .

Our solution to this problem is to use the standard technique, called cut-and-choose (see, e.g, [32]). Informally,
the idea here is to perform a number a of independent executions of a protocol. Then the Buyer tells the Seller to
“uncover” a− b (for some parameter b < a) of them, by opening all her commitments related to these executions. It is
easy to see that, if all the opened commitments were correct, then most probably a significant fraction of the remaining
b (”non-uncovered”) executions will also be correct. Since some executions may still be incorrect, we will thus create
T1 as a multisig transaction (so it can be spent with less than b signatures). This is done in Sections 4.1 and 4.2.

Thirdly, we need to describe how to create the commitment to σ in the last step that requires proving that “opening
this commitment will automatically reveal x”. We do it as follows: we require that the Seller commits to F (σ) (where
F is some hash function), and then we use again the cut-and-choose technique (on the elements of F (σ)) to prove
that if the whole F (σ) is opened then x is revealed. Technically, this is done by showing that revealing F (σ) opens
commitments to messages from a zero-knowledge proof of knowledge of x. For the details see Sect. 4.3.

The outline of the SellWitnessf protocol and the subprotocols is presented on Fig. 1.

5 Recall (cf. Sect. 2.2) that a “simplified transaction” means a transaction without a signature.
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1. The parties run a times the SharedKGen protocol to generate secret-shared signing keys.
2. The Buyer selects b of these keys and uses the GenMsgT procedure to produce transactions T1 and T2.
3. The parties run the USG protocol to sign T2 using all a shared keys (only the Seller learns the signatures) and the Seller

generates commitments. Then the Buyer checks the Seller on the unselected a− b executions.
– The single signing iteration is performed using the KSignGen procedure.

4. Using the Zero Knowledge protocol (and again the cut-and-choose technique) the Seller proves that by revealing any signature
the Buyers will extract the witness x from it.

5. The Buyer broadcasts T1. Then the Seller uses the signatures to broadcast T2 and the Buyer can extract the witness x (or
solve the timed commitment to get his funds back if the Seller does not broadcast T2).

Fig. 1: The outline of the SellWitnessf protocol and the subprotocols.

4.1 The two-party ECDSA key generation protocol

The first ingredient of our scheme is a protocol in which two parties, the Seller and the Buyer, generate a (public key,
private key) key pair for the ECDSA signatures, in such a way that the secret key is secret-shared between the Seller
and the Buyer. To be more precise, fix an elliptic curve (G,O, g,+) constructed over a field Zp and recall that the
secret key in the ECDSA signatures is a private integer d ∈ Z|G|. We construct a two-party protocol, that we call
SharedKGen, in which both parties take as input a security parameter 1λ and at the end they both know an ECDSA
public key pk = d · g (where d is secret), and additionally the Seller knows dS ∈ Z|G| and the Buyer knows dB ∈ Z|G|
such that dS · dB = d (mod |G|) is a secret-sharing. The protocol is presented on Figure 2 and it uses a commitment
scheme COM = (Commit,Open). The protocol is very similar to the classic actively-secure key generation protocols
for the discrete log signatures [40]. It is secure against active adversaries. Since it is a standard argument we do not
prove its security here.

Seller Buyer
sample: dS ← Z∗|G|,
compute: DS := dS · g, Commit(DS)

DB
sample: dB ← Z∗|G|,
compute: DB := dB · g

Open(DS)

compute: pk := dS ·DB ,
if pk = O then abort

compute pk := dB ·DS ,
if pk = O then abort

Fig. 2: The SharedKGen(1λ) protocol.

4.2 The Unique Signature Generation Protocol

After the parties generate a key pairs (sk1, pk1), . . . , (ska, pka) using the SharedKGen protocol, they perform an
additional procedure, called unique signature generation (USG) protocol, whose goal is to sign a message z ∈ {0, 1}∗
with respect to these keys. The message z is chosen by the Buyer and may depend on the public keys that were generated
in the SharedKGen phase, and on the Buyer’s private randomness. During the execution of the USG protocol a − b
private keys are “uncovered” (here b < a is some parameter), i.e., they are reconstructed by the parties. At the end of
the execution they are discarded and the output of the protocol depends only on the key pairs whose private keys were
not uncovered. Let (ŝk1, p̂k1), . . . , (ŝk b, p̂k b) denote these key pairs. Each p̂k i is known to both parties, and each ŝk i
remains secret and is shared between the parties (as a pair (d̂iS , d̂

i
B) of shares). Moreover the Seller knows the ECDSA

signatures σ̂1, . . . , σ̂b on z with respect to p̂k1, . . . , p̂k b (respectively). The Buyer does not know these signatures, but
we require that the Seller is committed (again: using COM) to each F (σ̂i), where F is a hash function (modeled as
a random oracle). Let Γ1, . . . , Γb denote the commitments created this way. Finally, we want the Buyer to be able to

9



“force open” the values d̂1S , . . . , d̂
b
S after some time τ1, so that he can reconstruct the private keys ŝk1, . . . , ŝk b and sign

any message that he wants using these keys. This is achieved using a (τ0, τ1)-secure time-locked commitment scheme
TLCOM = (TLCommit,TLForceOpen). Let Φ1, . . . , Φb denote the timed-commitments that were created this way.

To explain informally our security requirements, first let us say what are the goals of a malicious Seller. One obvious
goal is to produce a signature on some message z∗ 6= z (with respect to some p̂k i). A more subtle (and more specific
to our applications) goal for the Seller is to learn some signature σ∗i on z (with respect to one of p̂k1, . . . , p̂k b) other
than σ̂1, . . . , σ̂b. Finally, she could try to time-commit to some value other than d̂iS (so that, after time τ1 passes, the
Buyer cannot reconstruct ŝk i).

Formally, we say that the malicious Seller S∗ breaks the key i (for i = 1, . . . , b) if the Buyer did not abort the
protocol and one of the following holds:

– after the execution of the protocol S∗ produces as output (σ̂∗i , ẑi) such that σ̂∗i is a valid signature on ẑi 6= z with
respect to p̂k i,

– after the execution of the protocol S∗ produces as output σ̂∗i such that σ̂∗i is a valid signature on z with respect to
p̂k i, and S∗ opens the commitment Γi to a value different than F (σ̂∗i ),

– the value di∗B that results from forced opening of Φi is such that d̂iS · di∗B 6= d̂i.

Now, consider a malicious Buyer. Informally, his goal is to learn any valid signature on z with respect to any key
p̂k1, . . . , p̂k b. If he does not succeed in this, then another goal that he could try to achieve is to learn at least one of the
F (σ̂i)’s. Recall also that the secrets of the Seller are time-locked. Hence after time τ0 the Buyer can easily “break” the
protocol, and our definition has to take care of it.

Formally, we say that a malicious Buyer B∗ wins if the Seller did not abort the protocol and before time τ0 one of
the following holds:

– the B∗ produces as output a signature on z∗ (either z∗ = z or z∗ 6= z) that is valid with respect to one of the p̂k i’s,
– the B∗ learns some information about one of the F (σ̂i)’s.

We say that a USG protocol is (ε, b̂)-secure if (a) for every polynomial-time malicious Seller the probability that she
breaks at least b̂ keys is at most ε+µ(λ), where µ is negligible, and (b) for every polynomial-time malicious Buyer the
probability that he wins is negligible.

The implementation of the USG protocol. Our USG protocol is depicted on Fig. 3. We assume that before it is
executed the parties run the SharedKGen procedure (cf. Fig. 2) a times (on input 1λ). We denote these executions as
SharedKGeni(1λ) for i = 1, . . . , a. As a result of each execution SharedKGeni, both parties learn the public keys pk i

and they secret-share the corresponding secret keys sk i (let (diS , d
i
B) be the respective shares).

The USG protocol uses as a subroutine the protocol KSignGen from Fig. 4. This protocol allows the parties to sign
a message z using the secret key that is secret shared d = dS ·dB . First they jointly create signing randomnessK. Then
the Seller creates a new key in the Paillier encryption scheme and sends the encryption of his share dS of the signing
key d to the Buyer. The Buyer calculates the encryption of the unfinished signature (using the homomorphic properties
of the Paillier cryptosystem) and sends it to the Seller. Then the Seller decrypts it and completes the signature σ. At the
end the Seller commits to F (σ) and creates a timed commitment to dS . We now have the following lemma, its proof
appears in Appendix C.

Lemma 1. Suppose Paillier encryption is semantically secure, COM and TLCOM are secure commitment schemes,
and the ECDSA scheme used in the construction of the USG is Strongly Unforgeable signature scheme. Then the USG

protocol constructed on Fig. 3 is (ε, b̂)-secure for ε = (b/a)
b̂.

4.3 The construction of the SellWitnessf protocol

In this section we show how to use the USG protocol to construct the SellWitnessf protocol (defined in Sect. 4). Our
assumption is that f has a zero-knowledge proof of knowledge protocol, that we denote F , in which the Seller can
prove that she knows an x such that f(x) = true. Additionally F consist of two phases: SetupF and ChallengeF . Let
the values AF and BF denote the views of the Seller and the Buyer (respectively) after executing the SetupF phase.

In the ChallengeF phase the Buyer generates a challenge message cF = GenChallengeF (BF ) and sends it to the
Seller. Then the Seller calculates the response rF = GenResponseF (x,AF , cF ) and sends it to the Buyer. At the end
the Buyer accepts according to the output of the function VerifyResponseF (BF , cF , rF ) ∈ {true, false}.
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1. The Buyer chooses a random subset J ⊂ {1, . . . , a}, such that |J | = a− b. Let {j1, . . . , jb} denote the set {1, . . . , a} \ J .
2. The Buyer chooses a message z to be signed and sends it to the Seller.
3. For i = 1 to a the parties execute the KSignGen(1λ) procedure depicted on Fig. 4. As a result of each such execution, the Seller is

committed to Si = F (σi) and timed-committed to diS .
4. The Buyer sends J to the Seller.
5. For every j ∈ J the Seller opens the commitments to Sj and djS , and sends σj , kjS and sk jAH to the Buyer.
6. The Buyer aborts if any of the commitments did not open correctly. Otherwise he verifies if the following holds (for every j ∈ J ):

– Vrfypkj (z, σ
j) = ok,

– F (σj) = Sj ,
– djS · d

j
B · g = pk j , and

– Dec
sk
j
AH

(cjS) = djS .
7. If the verification fails then the Buyer aborts. If he did not abort then the parties use as output the values that were not open in Step 5.

More precisely, the parties set (ŝk i, p̂k i, σ̂i) := (sk ji , pk ji , σji).

Fig. 3: The USG protocol. Note that it uses the KSignGen(1λ) procedure, depicted on Fig. 4, as a subroutine. Recall also that we
assume that before the USG protocol is executed, the parties run the SharedKGen procedure (cf. Fig. 2) a times (on input 1λ). As
a result of each such execution, both parties learn the public keys pk1, . . . , pka and they secret-share the corresponding secret keys
sk1, . . . , ska (let (d1S , d

1
B), . . . , (d

a
S , d

a
B) be the respective shares).

The fact that F is a proof of knowledge is formalized as follows: we require that there is also a function ExtractF
s.t. ExtractF (BF , c1F , r

1
F , c

2
F , r

2
F ) = x′ and f(x′) = true if only VerifyResponseF (BF , c

i
F , r

i
F ) = true for i = 1, 2

and c1F 6= c2F . That means that the witness x′ can be computed from the correct answers to two different challenges. We
also assume that from the point of view of the Seller the challenge cF is chosen uniformly from the set XAF . Without
loss of generality we also assume that XAF = {0, 1}.

The parties use the USG protocol, so we have to describe how the Buyer produces the message z to be signed.
Given the public keys ˆpk1, . . . ,

ˆpk b the Buyer first creates a transaction T1 that takes Bd from his funds and sends them
to a multisig escrow “b-out-of-(2b− 1)” using public keys ˆpk1, . . . ,

ˆpk b and b− 1 times his own public key pkB . The
Buyer does not broadcast T1 yet. Then he creates a transaction T2 that spends the transaction T1 and sends all the funds
(Bd minus fee) to the public key pkS owned by the Seller. The simplified transaction z := [T2] is the message that the
parties later sign. We call this procedure GenMsgT .

We assume that each Si from the USG protocol is divided into 2λ parts Si,1, . . . , Si,2λ each of size λ. Additionally
we assume that each part Si,j is committed separately. To explain the idea behind our protocol assume for simplicity
that b = 1. Recall that at the end of the USG protocol the Buyer knows the transaction T1 that sends his funds to
the key secret-shared between the Seller and the Buyer. Both parties know the transaction T2 that is redeeming the
transaction T1 and sends the money to the Seller. The Seller knows the signature σ on T2, but she cannot use T2 yet,
because the Buyer did not broadcast T1. When the Buyer learns σ then he will be able to learn the secret random values
S1, . . . , S2λ to which the Seller is committed. Additionally after some (long) time the Buyer will learn the secret key
needed to redeem T1 when only he force-opens the time-locked puzzle hiding dS .

Now the Seller and the Buyer will use cut-and-choose technique again. They run 2λ times the first part SetupF
of the zero knowledge proof of knowledge F of the x satisfying f . Each time the Seller calculates the responses ri0
and ri1 to the challenges c = 0 and c = 1. The Seller encrypts ri0 and ri1 using the same key Si to get γi0 and γi1 and
she commits to each ciphertext. Then the Buyer selects λ indices j1, . . . , jλ and challenges the Seller on them using
c1, . . . , cλ ∈ {0, 1}. The Seller opens commitments to Sj1 , . . . , Sjλ and to γj1c1 , . . . , γ

jλ
cλ

(the Seller opens only one of
γjk0 , γ

jk
1 ) and the Buyer uses secrets Sjk to decrypt γjkck and verify the response. If the Buyer verifies everything without

an error, then the Seller opens the commitments to γk0 and γk1 (but not Sk) for k 6= j1, . . . , jλ.
Now the Buyer broadcasts the transaction T1. The Seller can spend it by revealing σ — in that case the Buyer can

compute Sk, decrypt γk0 and γk1 to learn responses rk0 and rk1 and from them extract the value x. And if the Seller does
nothing then after some time the Buyer will solve his time-locked puzzle, learn the secret key and take his funds back.
The SellWitnessf protocol is depicted on Fig. 5. We have the following lemma, its proof appears in Appendix D.

Lemma 2. Suppose Paillier encryption and symmetric encryption are semantically secure, COM and TLCOM are
secure commitment schemes, and the ECDSA scheme used in the construction of the USG is Strongly Unforgeable
signature scheme. Assume additionally that there is a zero knowledge proof F of knowledge of x s.t. f(x) = true of
the required form. Then the SellWitnessf constructed on Fig. 5 is ε-secure for ε =

(
b
a

)b
.
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Seller Buyer
sample: kS ← Z∗|G|
compute: KS := kS · g Commit(KS)

KB

sample: kB ← Z∗|G|,
compute: KB := kB · g

Open(KS)

K := kS ·KB

if K = O then abort
K := kB ·KS

if K = O then abort

The parties now know pk ,K ∈ G. The corresponding discrete logs of these values
are multiplicatively shared between the parties as pairs (dS , dB) and (kS , kB).

parse K as (x, y)
r := x mod |G|
if r = 0 then abort

parse K as (x, y)
r := x mod |G|
if r = 0 then abort

(pkAH, skAH) := AddHomGen(1λ).
cS := AddHomEncpkAH

(dS) pkAH, cS

c0 := (kB)
−1 ·H(z) mod |G|

c1 := AddHomEncpkAH
(c0)

t := (k−1
B ) · r · dB mod |G|

c2 := c1 ⊗ (cS)
t

samples u← {1, . . . , |G|2}
cB := c2 ⊗ AddHomEncpkAH

(u · |G|)

s0 := AddHomDecskAH(cB)

s := (kS)
−1 · s0 mod |G|

if s = 0 then abort
σ := (r, s)
if Vrfypk (z, σ) = ⊥ then abort
S = F (σ)

cB

Γi := Commit(S)
Φ := TLCommit(dS)

Γi, Φ

Fig. 4: The KSignGen(1λ) procedure. Recall that G is an elliptic curve group for ECDSA, and
(AddHomGen,AddHomEnc,AddHomDec) is a Paillier encryption scheme which is additively homomorphic over Zn,
where n > 2 · |G|4.

Construction using the OP CHECKLOCKTIMEVERIFY operator. Recently a new instruction has been added
to the Bitcoin scritping language — OP CHECKLOCKTIMEVERIFY. Earlier dealing with time constraints in Bitcoin
scripts was cumbersome and problematic. Now, using the OP CHECKLOCKTIMEVERIFY operator one can easily
create a transaction that can be redeemed by the receiver only after some specified time. It can also be used in more
complicated scripts as a fuse for a transaction funder — if the other parties leave the protocol then the funder of a
transaction can get his money back after some predefined time.

If we assume that the transactions using the OP CHECKLOCKTIMEVERIFY operator are standard in a given
cryptocurrency then we can simplify our protocol. What we exactly need is that the following type of transactions is
standard: T can be redeemed by a “k-out-of-n” multisig p̂k1, . . . , p̂kn or after τ seconds by pk . In that case we can
use this script in a transaction T1 s.t. k = n = b and pk = pkB . Now the Buyer will be able to take his funds after τ
seconds, so we can remove the timed commitments entirely from the USG and the SellWitnessf protocols.
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1. The parties execute the USG protocol using the provided parameters. The Buyer will generate transaction T2 to be signed
as defined earlier in the procedure GenMsgT .

2. For i = 1 to b:
a) For j = 1 to 2λ: the parties execute the Setupi,jF phase and the Seller and the Buyer learnsAi,jF andBi,jF respectively.
b) For j = 1 to 2λ: the Seller calculates the two challenges (in random order) that can be chosen by the Buyer ci,j1 and

ci,j2 . Then she calculates the responses ri,jk = GenResponseF (x,A
i,j
F , c

i,j
k ) for k = 1, 2.

c) For j = 1 to 2λ: The Seller uses the secret Si,j as a key in the symmetric cypher and encrypts γi,jk =
EncSi,j (c

i,j
k , ri,jk ) for k = 1, 2. Then she commits to γi,jk for k = 1, 2.

d) The Buyer chooses random subset J i ⊂ {1, . . . , 2λ} of size λ. Then he sends to the Seller (j, ci,jB :=
GenChallengeF (B

i,j
F )) for j ∈ J i.

e) For j ∈ J i: the Seller opens her commitment to Si,j and checks that ci,jB = ci,jk for k = 1 or k = 2. She opens the
commitments to γi,jk for only this k.

f) For j 6∈ J i: the Seller opens her commitments to γi,jk for k = 1, 2.
g) The Buyer verifies all the commitments.
h) For j ∈ J i: the Buyer decrypts (ci,j , ri,j) = DecSi,j (γ

i,j
k ). Then he checks that ci,j = ci,jB and

VerifyResponseF (B
i,j
F , c

i,j
B , ri,j) = true.

3. The Buyer broadcasts T1 and the parties wait until it becomes final.
4. The Seller broadcasts T2 using the signatures σ̂1, . . . , σ̂b to get her payment.
5. The Buyer uses signatures σ̂i to calculate secrets Si,j . Then he decrypts all the values γi,j to get all the challenges and

responses ci,jk , ri,jk . At the end using any pair of responses he calculates x′ = ExtractF (B
i,j
F , c

i,j
1 , ri,j1 , ci,j2 , ri,j2 ).

6. If the Seller do not redeem the Buyer’s transaction then the Buyer force-opens time-locked puzzles Φi and uses any of
the opened values diS to get his funds back.

Fig. 5: The SellWitnessf protocol.

4.4 Protocol for selling a factorization of an RSA modulus

In this section we use the SellWitness protocol to construct the protocol for selling a factorization of an RSA modulus.
To do it, we introduce the ZKFactorization protocol depicted on Fig. 6 — a zero knowledge proof of knowledge of the
factorization of the RSA modulus. We now have the following lemma, whose proof appears in Appendix E.

Lemma 3. Assume that the commitment scheme is hash based and we model the hash function as a programmable or-
acle. Then the protocol ZKFactorization depicted on Fig. 6 is a zero knowledge proof of knowledge of the factorization
of the RSA modulus.

Prover Verifier

y sample: x← Z∗n,
if x > n/2 then set x = n− x,
compute: y = x2 mod n

if y is not a square in Zn then set r0, r1 ← Z∗n,
otherwise calculate both square roots of y that
are smaller than n/2 and store them in r0, r1
in a random order Commit(r0),Commit(r1)

x

if x2 6= y mod n or x > n/2 then abort,
let b ∈ {0, 1} be such that rb = x b,Open(rb) accept if and only if rb = x and the opening

of the commitment verified correctly

Fig. 6: The ZKFactorization(n) protocol
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Implementation of the protocol for selling a factorization of an RSA modulus. We have created a prototype
implementation of the protocol for selling a factorization of an RSA modulus. The main part of the protocol is written
in C++, it is using the Crypto++ library for cryptographic functions. The Bitcoin related functionality is written in Java
using the bitocinj library. The communication between C++ and Java is operated by Apache Thrift. The implementation
is only a proof of concept but we were able to verify the feasibility and efficiency of the protocol. The current version
of the protocol can be found on http://github.com/SellWitness/ZKFactorization.

When using the ZKFactorization protocol in the SellWitness protocol we were able to simplify the main protocol
a little. In the ZKFactorization protocol the Seller sends the commitments to the square roots of y but now it is not
necessary because we do similar step in the SellWitness protocol. This is why the only messages exchanged between
the parties before the Buyer sends the challenge are: first the Buyer sends yi,j , then the Seller calculates the square
roots ri,j0 , ri,j1 of y, encrypts them γi,jk = EncSi,j (r

i,j
k ) and commits to both ri,jk .

In the implementation we use the following parameters: a = 512, b = 8 and λ = 1024. We use b = 8 because
it means “b-out-of-(2b − 1)” multisig transactions, and this kind of multisig transaction are standard in Bitcoin (for
greater b they would be non-standard). We set λ = 1024, so the ZKFactorization protocol is executed b · 2λ = 8 · 2048
times. Fortunately this phase does not require any costly public key cryptography operations and therefore it is still
very efficient. We set a = 512 and b = 8, and hence the probability of cheating is at most (b/a)b = 2−48.

The running time of our protocol (i.e. the time until the Buyer broadcasts T1) for this configuration (and primes
of size about 512 bits each) is about 1 minute — the running time of the USG protocol is about 33 seconds and Step
2 in the SellWitnessf protocol takes about 28 seconds. The numbers are an average over 10 runs of the algorithm
using a single thread on a standard personal computer. As this is not a protocol that users may want to run frequently,
we believe that this running time is satisfactory. We note that the running time could be improved by using multiple
threads. Additional measurements are presented on Figures 7 and 8 in Appx. G.

We run our protocol on a single machine, and local testing blockchain (testnet-box) and hence posting on blockchain,
and communication between the parties was almost immediate (our current implementation takes 12 rounds, and the
total communication size is about 60 MB). However, since we use the time-lock commitment schemes we need a
conservative estimate on how much time would the execution of our protocol take on real blockchain, and when the
parties are running in different physical locations. As in our protocol the parties have to wait for two transactions to be
included into the blockchain, we have to assume that the whole protocol may take up to two hours6. Taking into account
time needed to post messages on the blockchain the running our protocol takes on average 2 hours, we have to have at
least τ0 = 5 hours, so τ1 should be set to 50 hours. Our tests has shown that an honest user (on an standard personal
computer) can compute about 219 squares (modulo n of size λ = 1024 bits) per second. That is why in our protocol
we set the hardness of the timed commitment to t = 237. The measurements of the time of the squaring algorithm are
presented on Fig. 9 in Appx. G.

4.5 Protocol for trading across chains

As mentioned at the beginning of this paper, one of the interesting examples of the smart contracts is Trading across
chains. Imagine a situation when Alice has her funds in one cryptocurrency A, e.g. she has b bitcoins, and Bob has his
funds in another cryptocurrency B, e.g. he has z zerocoins. The problem is to exchange they funds.

There is a well known Bitcoin protocol (a contract) that solves this problem using advanced Bitcoin scripting
language. However, almost all of the existing cryptocurrencies, including Zerocash, do not have advanced scripting
language as Bitcoin so Alice and Bob cannot use that protocol in real life. Now we will sketch a protocol that can
be used for trading across chains and is using only standard transactions. It is very similar to the protocol from the
previous sections and it is also using only Cut and Choose technique.

Sketch of the protocol We describe this protocol assuming that in both cryptocurrencies A and B the “1-out-of-b”
and “b-out-of-(2b − 1)” multisig transactions are standard. If in any of them only single signature transactions are
possible (the “1-out-of-1” transactions) then we will use b = 1 in the protocol.

At the beginning Bob samples his secret shares diB and calculates Di
B = diB · g for 1 ≤ i ≤ a (using the group

(G,O, g,+) from the cryptocurrency A) and he commits to each Di
B . Also Alice similarly samples her secret shares

diA, calculates Di
A = diA · g for 1 ≤ i ≤ a and sends each Di

A to Bob. These values will be used later in creating the
public keys for Alice in the cryptocurrency A.

6 It takes on average 10 minutes for a transaction to be included into the blockchain but the users are advised to wait for 6 blocks
(≈ 1 hour) on top of the transaction to have more assurance that it will not be withdrawn.
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Then the parties execute the USG protocol (Alice plays the role of the Seller and Bob plays the role of the Buyer)
using the cryptocurrency B and procedure GenMsgT the same as in the SellWitness protocol. The only difference is
that at the end of the KSignGen procedure Alice additionally sends xi = diA ⊕ F (σi) to Bob and Bob in the step 6 of
the USG protocol verifies that she did it honestly.

So now Bob knows transaction T 1
B that sends his funds to a “b-out-of-(2b − 1)” multisig using b public keys

generated and (b− 1) of his own public keys and both parties know T 2
B that redeems T 1

B and sends the funds to Alice.
Alice knows signatures σi and she will be able to use them to broadcast T 2

B and after that Bob will learn values diA.
Now Bob opens his commitments to values Di

B and calculates timed commitments to each diB (with much longer
force-opening time than timed commitments from Alice) and sends all the time-locked puzzles to Alice. Alice verifies
the commitments and chooses a random set JA ⊂ {1, . . . , a} of size a− b and sends it to Bob. Bob opens all the timed
commitments for j ∈ JA and Alice verifies them.

The parties set public keys for Alice as pk jA = d
kj
A · D

lj
B = d

lj
B · D

kj
A where k1, . . . , kb are indices not present in

JA and l1, . . . , lb are indices not present in the set JB chosen by Bob in the USG protocol. Now Alice creates and
broadcasts T 1

A that spends her funds and sends them to a multisig “1-out-of-b” using public keys pk1
A, . . . , pk

b
A. After

T 1
A is included into the blockchain Bob broadcasts (assuming T 1

A is correct) transaction T 1
B .

After T 1
B is included into the blockchain Alice can use T 2

B and all the signatures σi to claim Bob’s funds. Then
Bob can calculate any of the diA using σi and xi to get Alice’s funds. And if Alice do not claim Bob’s funds then Bob
after solving one of his time-locked puzzles can get his funds back7. And after some time Alice can solve one of her
time-locked puzzles to get her funds back8.

Sketch of the security of the protocol appears in the Appendix E.
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A Definitions omitted in the main body

A function µ : N → R is negligible (in x) if for every positive integer c there exists an integer Nc such that for all
x > Nc we have that |µ(x)| < 1

xc . We say that a sequence {Eλ}∞λ=1 of events happens with overwhelming probability
if 1− P (Eλ) is negligible (as a function of λ).

A public-key encryption scheme is a tuple (EncGen,Enc,Dec) of algorithms such that the key generation algorithm
(EncGen) takes as input a security parameter 1λ, and produces as output a key pair (pk , sk) ∈ ({0, 1}∗)2. A pair
(pk , sk) that is an output of EncGen (for some 1λ and the internal randomness of EncGen) will be called a valid
key pair. The encryption algorithm Enc takes as input pk , a message z ∈ {0, 1}∗ and produces as output a ciphertext
c = Encpk (z) ∈ {0, 1}∗. The decryption algorithm Dec takes as input sk , c, and produces as output z′ = Decsk (c). We
require that it is always the case that Decsk (Encpk (z)) = z (for every valid (pk , sk)). We may also restrict the domain
of Enc, and allow that in some cases the algorithm Encpk (z) produces as output ⊥. If this is the case then we do not
require that Decsk (Encpk (z)) = z, and we say that z is an invalid input for pk . Otherwise (i.e. when Encpk (z) 6= ⊥)
we sat that z is a valid input for pk .

To define security of an encryption scheme (EncGen,Enc,Dec) consider a polynomial time adversary A that re-
ceives as input (pk , sk) (where (pk , sk) := EncGen(1λ)), and produces a pair of messages (m0,m1). He then re-
ceives Encpk (mb) for a random b ← {0, 1}, and produces b′ ∈ {0, 1}. We say that A won if b′ = b. We say that
(EncGen,Enc,Dec) is semantically secure if for every polynomial time A the probability that he wins is at most
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1/2+µ(λ), where µ is some negligible function (in other words: Encpk (z0) and Encpk (z1) are computationally indis-
tinguishable).

The definition of a symmetric-key encryption scheme is similar, except that there is only one key k, and it is usually
sampled uniformly at random from some spaceK (that depends on 1λ). The adversary does not learn k, but can get some
partial information about it by adaptively choosing messages m1, . . . ,mn and learning Enck(m1), . . . ,Enck(mn).

A commitment scheme is a pair of algorithms (Commit,Open). The commitment algorithm Commit takes as input
a message z ∈ {0, 1}∗, and produces as output c = Commit(z). Let dc be the randomness used during the generation
of the commitment c. The opening algorithm Open takes as input (c, z, d) and outputs Open(c, z, d) ∈ {0, 1}∗ ∪ {⊥}.
We require that always Open(Commit(z), z, dc) = z.

A commitment scheme will usually be executed between two parties: a committer and a receiver. In the commitment
phase the committer computes c := Commit(z) and sends it to the receiver. Later, in the opening phase the committer
sends (z′, d′) to the receiver, and the receiver outputs z′′ = Open(c, z′, d′). A commitment scheme is secure if it is
binding and hiding. The “hiding” property means that the receiver has no information about z before the opening phase
started. More precisely: for every z0, z1 ∈ {0, 1}∗ we have that Commit(z0) and Commit(z1) are computationally
indistinguishable. The “binding” property means that, no matter how a malicious (but polynomial-time bounded) com-
mitter behaves, after the commitment phase there exists at most one value z′ ∈ {0, 1}∗ such that the receiver outputs
z′ (or outputs ⊥).

B The ECDSA algorithm

For a security parameter 1λ the ECDSA key generation algorithm SignGen chooses an elliptic curve group (G,O, g,+)
over a prime field Zp, whereO is the neutral element, g is the generator of G, and the order |G| of G is a prime number
such that dlog2 |G|e = λ (the details on how this choice is done are not relevant to this paper). Then, SignGen samples
a random d ← Z|G|, and computes D := d · g. The generated secret key is (d, (G,O, g,+)), and the public key is
(D, (G,O, g,+)).

Let H be a hash function, and let f : G→ Z|G| be a reduction function that we will define in a moment. In order to
sign a message z ∈ {0, 1}∗ with key (d, (G,O, g,+)) the signing algorithm first chooses a random k ← Z|G|, and then
computes r = f(k ·g) and s = k−1(H(z)+d ·r) mod |G|. If r = 0 or s = 0 then the algorithm aborts (and needs to be
restarted with fresh randomness). Otherwise, the signing algorithm outputs (r, s). The verification algorithm on public
key (D, (G,O, g,+)) and input z and (r, s) first checks if r and s are non zero elements of Z|G| and then verifies if
r = f(H(z) ·s−1 ·g+r ·s−1 ·D) (where the operations in the last formula are in G)9. If this holds, then the verification
algorithms outputs ok, and otherwise it outputs⊥. It is straightforward to verify that a verification of a correctly signed
message will always yield ok.

What remains is to construct the reduction function f : G → Z|G|. In ECDSA this is defined by exploiting
the structure of the elliptic curve group constructed over prime fields. Recall that every element of G has a form
(x, y) ∈ Z2

p . The function f on input (x, y) ignores y and produces as output f(x, y) = x mod |G|. The ECDSA
algorithm with f defined in this way is widely believed to be secure for several choices of the elliptic curves. It has
also been proven existentially unforgeable under a chosen message attack, provided some assumptions hold (see, e.g,
[21, 43]). The malleability of the ECDSA scheme is a more subtle issue. We address it in Section 3.

C Proof of Lemma 1

Assume first that the Buyer is honest and that the protocol has not been aborted. Let us call an execution i of the
KSignGeni(1λ) invalid, if at least one of the following happened:

(a) DecskiAH
(ciS) 6= diS ,

(b) the solution of the Φi is not equal to diS i.e. TLForceOpen(Φi) · diB · g 6= pk i,
(c) the Seller can open Γi into a value different than F (σ̂i) for a valid signature σ̂i on z.

9 Recall that G is an additive group, and hence a · g (for a ∈ Zp and g ∈ G) denotes
a times︷ ︸︸ ︷

g + · · ·+ g. Also a · b−1 · g (for a, b ∈ Zp
and g ∈ G) denotes c · g, where c = a · b−1 mod p.
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Call KSignGeni(1λ) uncovered if i ∈ J . If an execution i is invalid and i ∈ J then the Buyer will abort the protocol
with probability 1 − µ0(λ) where µ0 is a negligible function. That is because we assume that the underlying crypto-
graphic primitives are secure, so if the Seller can open a commitment (or timed commitment) to a certain value, then
she cannot open it to a different value. So as she opens Φi or Γi (if she does not open it then the Buyer will abort) in
case respectively (b) or (c) then the Buyer will find out that she cheated and he will abort. And in case (a) there is only
one secret key corresponding to pk iAH so the Seller has to reveal it and now the Buyer will also find out that the Seller
cheated.

The Seller and the Buyer execute the KSignGeni(1λ) procedure a times and the Seller reveals (a − b) random
executions (chosen by the honest Buyer). We assume that the Buyer did not abort the protocol, so none of the uncovered
executions was invalid (except with negligible probability). So the probability that at least b̂ executions were invalid,
but the Buyer did not abort the protocol, is at most (ignoring the negligible probabilities):

(
a− b̂
a− b

)/( a

a− b

)
=

b̂−1∏
j=0

b− i
a− i

≤
(
b

a

)b̂
.

We now show that if an execution i is not invalid then the probability that the Seller breaks key i is negligible. We
will prove that by showing that the Seller does not learn anything about the secret key sk i except of the corresponding
public key pk i and a single signature σi on a message z. It will be sufficient because we assume that the ECDSA
scheme used in the construction of the USG is a non-malleable signature scheme — in a not invalid execution Γi is a
commitment of F (σi), where σi is a signature on z and this is the only signature that the Seller knows.

In the first phase of the KSignGeni(1λ) the Seller chooses value diS independently to diB so (diS , d
i
B) is a multi-

plicative secret sharing of the secret key sk i (she cannot set diS = 0, in that case the Buyer would abort). By the same
argument (kiS , k

i
B) is a multiplicative secret sharing of the secret random value ki = kiS · kiB . In this phase the Seller

learns Di
B and Ki

B but these values can be computed by her given the public key pk i and the signature σi = (ri, si)
by calculating Di

B = (diS)
−1 · pk i and Ki

B = (diS)
−1 ·Ki and Ki can be easily computed from the signature and the

public key. So she has no information on neither sk i nor Ki but the public key pk i and the signature σi — values Di
B

and Ki
B do not give her any additional information.

The only additional information that the Seller learns during the KSignGeni(1λ) procedure is the value si0. Observe
first that si0 mod |G| can be computed by the Seller from the signature: si0 mod |G| = kiS · si mod |G|. However in
theory si2 can give the Seller more information than si0 mod |G|. Now we will show why this is not the case.

We assumed that the execution i is not invalid, so DecskiAH
(ciS) = diS is smaller (as an integer) than |G|. It follows

that DecskiAH
(ci2) is smaller than 2|G|2. The Buyer added to this value random ui times |G|2, so

P(si0 < 2|G|2 ∨ si0 > |G|
3
) <

< P(u < 2|G|) + P(u > |G|2 − 2|G|) =

= O
(
|G|−1

)
= negligible(λ),

and for any 2|G|2 ≤ x ≤ |G|3 we have

P(si0 = x) = P(u = x− DecskiAH
(ci2)) = |G|

−2
.

That proves that with overwhelming probability si0 is just si0 mod |G| plus |G| times something uniformly random, so
it gives the Seller no more information.

Summarizing, and ignoring the negligible probabilities, with probability at most (b/a)b̂ the Seller can create unde-
tected b̂ invalid executions, in each of them she breaks the respective key i. The rest of the executions are not invalid
and in them the Seller does not break the corresponding keys.

We can now assume that the Seller is honest and that the protocol has not been aborted. As it was in case of
dishonest the Seller after the first phase the only information about the sk i known by the Buyer is the public key pk i.
That is so because Di can be computed from the public key and for the Buyer Ki is just a random point in G. Later the
Buyer learns pk iAH that is randomly generated and ciS that by the security of the Paillier encryption scheme he cannot
distinguish from the encryption of a random value, so it gives him nothing. At the end he learns the commitment to
the Si = F (σi), for a hash function F modeled as a random oracle so by the hiding property of the commitment

18



scheme he known nothing about the Si and similarly by the properties of the timed commitment the Buyer will open
the commitment to diS and thus learn the secret key sk i only after time τ (both with probability 1 minus negligible).

This concludes the proof that this USG is (ε, b̂)-secure for ε =
(
b
a

)b̂
. ut

D Proof of Lemma 2

Assume first that the Buyer is honest and the Seller is not. The only way how the Buyer can lose his funds is by the
transaction T1, as only he knows the secret keys required to spend his money. T1 can be either redeemed by the Seller
or it can just lock the Buyer’s funds forever. We know from lemma 1 that with probability at most

(
b
a

)b
+ µ0(λ) for a

negligible µ0 the Seller can cheat in all b chosen executions of the KSignGen procedure and not be caught.
So with probability at least 1 −

(
b
a

)b − µ0(λ) at least one of the b chosen executions of the KSignGen procedure
was completed honestly by the Seller. Let the index of this execution be i. That means that Φi is an honest timed
commitment of diS so after force-opening this puzzle the Buyer will learn the secret key ŝk

i
. But he can easily compute

b − 1 correct signatures on a transaction redeeming T1, because he owns b − 1 out of 2b − 1 public key from the
multisig escrow of the transaction T1. So with additional signature created using ŝk

i
he will have b signatures so he

will be able to redeem transaction T1 and get back his fund (in case when e.g. the Seller does not redeem T1 by herself).
So his funds cannot be locked forever (except with probability

(
b
a

)b
+ µ0(λ)), he will take them back after spending

τ1 seconds on force-opening Φi.
Note also that the same is true when transaction T1 is mauled before it is included into the blockchain. In that case

the Seller will not be able to use signatures σ̂i but the Buyer will be able to get his funds back. This is the only problem
that the malleability of transactions can create and it does not affect the security of the protocol.

Assume now that the Seller indeed redeems transaction T1. The only way how she can do it is by using T2 and all
the signatures σ̂1, . . . , σ̂b. So in that case the Buyer learns σi. As the execution number i of the KSignGen protocol
was honest, then the Buyer will be able to compute the secrets Si,j for j = 1, . . . , 2λ. Now we will compute what is
the probability, that the Buyer will not be able to extract the witness x′ although he did not abort in the second Cut and
Choose verification in the step 2 in the SellWitnessf protocol.

Lets call j ∈ {1, . . . , 2λ} valid if VerifyResponse(Bi,j , ci,jk , r
i,j
k ) = true for both k = 1 and k = 2 and ci,j0 6= ci,j1 ,

where (ci,jk , r
i,j
k ) := DecSi,j (γ

i,j
k ). Otherwise we will call j invalid. Assume first that more then λ indices j are valid.

That means that at least one index j 6∈ J i is valid. In that case the Buyer will learn Si,j because execution number iwas
honest so he will learn ci,jk and ri,jk for k = 1, 2 and he will be able to compute x′ = ExtractF (B

i,j , ci,j1 , ri,j1 , ci,j2 , ri,j2 )
and from the definition of the extractor function f(x′) = true.

In the second case we have at least λ invalid indices. If j is invalid and j ∈ J i then with probability at least 1
2 the

Buyer will abort for the pair (i, j). That is true, because the Buyer’s challenge ci,jB is independent of γi,jk , so even if in
one of the γi,jk there is a correct (challenge, response) pair then it will be different than ci,jB with probability 1

2 . Let X
be the event that the Buyer aborts and Y (r) an event when at least r invalid indices are present in J i. Then

P(X) ≥ P
(
X ∧ Y

(
1

4
λ

))
=

= P
(
X|Y

(
1

4
λ

))
· P
(
Y

(
1

4
λ

))
≥

≥

(
1−

(
1

2

) 1
4λ
)
· (1− µ1(λ)) = 1− µ2(λ)

where µ1 is negligible (it can be easily proven using the Stirling’s approximation) so also µ2 is negligible. That ends
the proof that the Buyer can be cheated with probability at most

(
b
a

)b
+ negligible.

Assume now that the Seller is honest and the Buyer is not. Observe first, that the Seller reveals signatures σ̂i only
when she is redeeming the transaction T1. She does it only after T1 is included into the blockchain so T1 cannot be
withdrawn. Additionally at that moment only the Seller can redeem T1. That is true, because from the lemma 1 we
know that the Buyer cannot sign any message with respect to any of the public keys p̂k

i
until τ0 seconds elapsed. He

needs to create such a signature to redeem T1. The Seller broadcasts T2 much earlier than after τ0 seconds so it will be
included into the blockchain so she will gain dB.
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What remains to be proven is that the Buyer learns no information about x until the Seller reveals signatures σ̂i

by broadcasting T2. But we know that the F is a zero knowledge proof and for each Setupi,j phase the Buyer sends
at most one challenge ci,jB and learns at most one response ri,j . This response corresponds the the challenge ci,jB , so
it gives him no information about x. The only other values that the Buyer learns are either commitments or values
encrypted with unknown for him keys. But we assumed that the encryption schemes and commitment schemes are
secure, so except with the negligible probability the Buyer learns no information about x if the Seller does not get the
Buyer’s funds. ut

E Proof of Lemma 3

We have to prove that this protocol satisfy completeness, validity and zero knowledge properties.
The completeness is easy to see. If the Prover knows the factorization of n = pq then he can use the Tonelli-

Shanks algorithm [42] to find both square roots of any quadratic residue mod p and q and by the Chinese remainder
theorem he can find all four square roots mod n. Two of them are smaller than n

2 so he will be able to find and open
the commitment for rb = x.

Now we will prove validity. Let P̂ be a (possibly malicious) Prover that convinces the honest Prover with probability
α. That means, that with probability at least α he commits to r where r is uniformly chosen square root of y.

We will now define the extractor E that has access to P̂ and controls the random oracle. E will play a role of the
honest Verifier in the interaction with P̂ . So at the beginningE samples random x and sends y = x2 mod n to P̂ . Then
P̂ makes a number of queries to the random oracle and sends two commitments to E. If P̂ made a query to the random
oracle on value x′ s.t. x′ is a square root of y different than x and n − x then the extractors calculates and returns a
factor of n by computing p = gcd(n, x− x′). Otherwise the extractor aborts.

The probability that P̂ is able to open a commitment without first querying the random oracle is negligible, so with
probability at least α minus negligible P̂ will query the oracle on the other square root of y so with probability at least
α minus negligible the Extractor will be able to return the factorization of n.

To prove the zero knowledge property we will construct a simulator S that has access to a (possibly malicious)
verifier V̂ and controls the random oracle. S will simulate the interaction between V̂ and the honest verifier. When S
is given value y from V̂ then it returns as the commitments two randomly sampled strings s0, s1 of a proper length.
After receiving x the Simulator aborts if x2 6= y mod n or x > n

2 . Otherwise he randomly samples b← {0, 1}, opens
sb as a commitment to x and programs the random oracle s.t. the commitment of x is exactly sb. Because of that the
verifier V̂ will accept the opening of the commitment so he will not be able to distinguish if he is interacting with S or
the honest Prover. ut

F Sketch of the security of the protocol for trading across chains

Because of lack of space we do not present here a formal security definition or a formal security proof. We just argument
how the parties can cheat and why the probability of stealing the other party’s funds is small.

Observe first, that the public keys created for Alice and for Bob will be uniformly random and the secret key will
be indeed secret-shared between the parties. This claim is clear for key pairs created for Bob as they are created in the
USG protocol. And each key pair created for Alice is equal to dkjA · d

lj
B · g where dljB was first chosen by Bob and dkjA

was later chosen independently (because of the commitments) by Alice.
Assume first that Bob is honest and Alice is not. Alice can cheat only in the USG protocol, including the creation

of the values xi. But as in the SellWitness protocol Alice would have to cheat in exactly b iterations of the KSignGen
procedure and Bob would have to choose exactly these invalid positions to get cheated. That is true, because he needs
only one secret key generated for him to redeem transaction T 1

B and get his money back and only one secret key
generated for Alice to get her funds from transaction T 1

A. So the probability that Alice will cheat Bob is at most
(
b
a

)b
.

If Alice is honest and Bob is not, then the only place when Bob can cheat and will not be caught immediately is
when calculating timed commitments to diB . But if at least one of these timed commitments were computed honestly
then Alice will be able to open it and get her funds back (in case when e.g. she broadcasts T 1

A but Bob do not broadcasts
T 1
B) because she needs only one signature to redeem T 1

A. And the probability that Bob will cheat in all b cases and in
none of the others (otherwise Alice would notice) is at most

(
b
a

)b
.
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Observe also that the malleability of the transactions is not a problem. The only case when it can matter is the case
of the transaction T 1

B — if it is mauled then Alice will not be able to use signatures σi and they will have to restart the
protocol.

Summarising, none of the parties can be cheated except with the probability (b/a)
b + negligible.
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Fig. 7: The running time and the probability of cheating of the Step 1 of the SellWitness protocol for following fixed parameters: (i)
λ = 1024 and b = 1, and (ii) λ = 512 and b = 8 and different values of a. The running time of Step 1 is proportional to a and does
not depend on other parameters. Using greater b gives much better security.
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a = 1024, and b = 8 and different values of λ. The running time of Step 2 is proportional to b · λ and does not depend on a. The
cheating probability in step 2 is negligible in λ.
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Fig. 9: The running time of an algorithm solving a timed commitment for different difficulties t.
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