
Efficient Non-Interactive Zero-Knowledge Proofs
in Cross-Domains without Trusted Setup?

Michael Backes1, Lucjan Hanzlik2, Amir Herzberg3, Aniket Kate4, and Ivan
Pryvalov (�)1

1 CISPA Helmholtz Center for Information Security
backes@cispa.saarland, ivan.pryvalov@cispa.saarland

2 Stanford University, CISPA Helmholtz Center for Information Security
lucjan.hanzlik@stanford.edu

3 University of Connecticut, Bar Ilan University
amir.herzberg@uconn.edu

4 Purdue University
aniket@purdue.edu

Abstract. With the recent emergence of efficient zero-knowledge (ZK)
proofs for general circuits, while efficient zero-knowledge proofs of alge-
braic statements have existed for decades, a natural challenge arose to
combine algebraic and non-algebraic statements. Chase et al. (CRYPTO
2016) proposed an interactive ZK proof system for this cross-domain
problem. As a use case they show that their system can be used to prove
knowledge of a RSA/DSA signature on a message m with respect to
a publicly known Pedersen commitment gmhr. One drawback of their
system is that it requires interaction between the prover and the veri-
fier. This is due to the interactive nature of garbled circuits, which are
used in their construction. Subsequently, Agrawal et al. (CRYPTO 2018)
proposed an efficient non-interactive ZK (NIZK) proof system for cross-
domains based on SNARKs, which however require a trusted setup as-
sumption.
In this paper, we propose a NIZK proof system for cross-domains that
requires no trusted setup and is efficient both for the prover and the ver-
ifier. Our system constitutes a combination of Schnorr based ZK proofs
and ZK proofs for general circuits by Giacomelli et al. (USENIX 2016).
The proof size and the running time of our system are comparable to
the approach by Chase et al. Compared to Bulletproofs (SP 2018), a
recent NIZK proofs system on committed inputs, our techniques achieve
asymptotically better performance on prover and verifier, thus presenting
a different trade-off between the proof size and the running time.

1 Introduction

Zero-knowledge (ZK) proofs, introduced by Goldwasser, Micali, and Rackoff [25],
are one of the central cryptographic building blocks, which allow a prover to con-
vince a verifier that a statement is true without revealing any other information.

? Accepted to PKC 2019. This is the submitted version.

Goldreich, Micali, and Wigderson showed that ZK proofs for NP-languages are
possible [24], which opened up a number of new research directions in cryptog-
raphy.

Zero-knowledge proof systems are an essential building block used in many
privacy-preserving systems, e.g. anonymous credential systems [12] and voting
protocols [26,7]. Unfortunately, only a few systems have been used in practice.
The main reason is that ZK proofs for general statements are usually ineffi-
cient. Thus, the research focus switched from general statements to interesting
subclasses. In particular, a prover can efficiently prove knowledge of discrete
logarithms in groups of known [18,34] and unknown [14,6] order. Those proofs
were extended to allow other statements, e.g., equivalence of discrete logarithms,
or knowledge of representation. The main advantage was that using the Fiat-
Shamir transformation [21] one can make those systems non-interactive (NIZK),
i.e. no interaction between the prover and the verifier is necessary to generate
the proof, and transform honest-verifier ZK protocols into full ZK. Groth and
Sahai [28,20] further extended the class of efficient NIZK proofs to statements
about pairing product equations. The common factor of those proofs is that
they are restricted to algebraic groups and cannot be efficiently used to prove
statements about non-algebraic structures, e.g., the SHA hash function or the
AES encryption scheme.

The problem of efficient interactive ZK proofs for non-algebraic statements
was solved by Jawurek et al. [30]. Their system allows to efficiently prove state-
ments of the following form: “The prover knows an input x such that y =
SHA(x) for some public y”. Unfortunately, one cannot apply the Fiat-Shamir
transformation to make those proofs non-interactive. The system is based on
garbled circuits [37], which are private coin protocols, which in turn makes the
system inherently interactive. Giacomelli et al. [23] addressed this limitation and
introduced ZKBoo, a non-interactive proof system for arithmetic circuits, based
on the “MPC-in-the-head” technique [29]. In their system, the proof size depends
linearly on the number of gates, input and output wires. This work was further
improved by Chase et al. [16] with the introduction of the ZKB++ system. The
authors were able to reduce the proof size by a constant factor and addressed
post-quantum security of the construction. Ames et al. [4] proposed Ligero, a
NIZK proof system based on the “MPC-in-the-head” technique, which has the
proof size proportional to the square root of the verification circuit size.

An interesting line of research present succinct non-interactive zero-knowledge
proofs (SNARKs) [27,22,9]. They allow compact proofs and very efficient veri-
fication, but require a complex trusted setup and the prover has to perform a
number of public key operations (i.e. modular exponentiations or equivalently
elliptic curve point multiplications) proportional to the circuit size. The setup
algorithm can be executed by a trusted party or by the participants of the system
using multi-party computation (MPC).

While there exist efficient proofs for algebraic and non-algebraic statements,
it became a natural challenge to combine both worlds and create a proof sys-
tem that would work efficiently in both, algebraic and non-algebraic, domains.

2

Obviously, one can implement algebraic structure directly using non-algebraic
statements by defining all group operations as functions. This approach intro-
duces a significant overhead in size of the proven statement, which increases the
size of the proof and the number of required computations. As noted by [3], de-
pending on the group size, the circuit for computing a single exponentiation could
be thousands or millions of gates. Alternatively, one can implement arithmetic
circuit directly using algebraic statements by treating each gate in a circuit as an
algebraic function and proving relations between gates. The prover’s/verifier’s
work and the proof size would be linear in the number of gates, and in case
of hash functions or block ciphers it could be tens of thousands of public key
operations and group elements.

The first attempt to efficiently solve this cross-domain problem was the
Crypto’16 work by Chase et al. [17]. Their system can be used e.g. to prove
that a given algebraic commitment (e.g. Pedersen commitment) C is a commit-
ment to x, where F (x) = 1 and F is expressed as a boolean circuit. The authors
show that an efficient proof system for this statement can be used as a building
block to construct more efficient proofs of knowledge of a signature and a com-
mitted message for RSA-FDH, DSA and EC-DSA signatures. Their system can
be extended to a scenario, where we have k commitments to x1, . . . , xk and the
input x is the concatenation x1|| . . . ||xk of values in those commitments.

Chase et al. propose two constructions of their proof system. For the first the
number of public key operations is linear in the size of x and that of symmetric
key operations is proportional to the number Fg of gates in F . The second
construction reduced the number of public key operations to a number linear in
the security parameter λ, but this comes at a cost of additional symmetric key
operations which are proportional to Fg + |x| · λ. Unfortunately, their approach
is based on the ZK proofs from [30] and the proof system is therefore interactive
by nature.

Bünz et al. [11] presented at S&P’18 efficient NIZK range proofs called Bul-
letproofs. Those proofs can also be used for proving statements expressed as
arithmetic circuits with algebraically committed inputs. The proof technique
relies on discrete log assumptions and the Fiat-Shamir transformation. While
Bulletproofs produce relatively short proofs, the prover’s work is still expensive,
specifically, the prover has to perform a number of public key operations linear
in the circuit size.

At Crypto’18, Agrawal, Ganesh, and Mohassel [3] presented non-iteractive
zero-knowledge proofs for composite statements. Whereas the authors addressed
the same problem of constructing zero-knowledge proofs in cross-domains, theirs
and our proposals differ in the underlying cryptographic blocks that handle the
arithmetic part of the proof system. Specifically, their proofs are based on Σ-
protocols and SNARKs [22]. As already noted, SNARKs allow for short proofs
and fast verification of arithmetic statements, however they require a trusted
setup for generating the common reference string (CRS) for a particular circuit
F . Typically, the CRS needs to be regenerated for a different circuit F ′. This

3

is not desirable in some applications such as ZCash, where an expensive MPC
protocol has to be run to generate a CRS [2].

Our contribution. In this work, we present an efficient (both for the prover
and the verifier) non-interactive zero-knowledge proof system for cross-domains
that requires no trusted setup assumption. Our system uses ZKB++ [16] as
a building block, which is based on a technique called “MPC-in-the-head” [29].
The idea is that the prover represents the circuit F as a multi-party computation
(MPC) and generates three shares x1⊕x2⊕x3 = x, where x is the original input
of the prover. The prover then performs the MPC computation using the values
x1, x2, x3 and given a challenge e ∈ {1, 2, 3} returns the view of computations
performed with inputs xe and xe+1. Executing these steps a number of times
decreases the soundness error of the proof. What is more, we can apply the Fiat-
Shamir transformation and allow the prover to compute this challenge itself,
making the system non-interactive.

We extend this idea to allow algebraic statements. To illustrate our solution
let us consider a simple example where the prover publishes y = SHA(x) and
a Pedersen commitment C = gx · hr. In this case, the prover wants to convince
the verifier that he knows x. To do so, he performs the “MPC-in-the-head” as
in ZKB++ and computes Pedersen commitments to all bits of the values x1,
x2, x3. Upon receiving a challenge e ∈ {1, 2, 3}, additionally to the views of the
MPC the prover opens all commitments to the bits of xe and xe+1. Finally, to
bind the “MPC-in-the-head” part to the Pedersen commitment C, the prover
computes commitments to the bits of the value xe⊕xe+1⊕xe+2 and proves that
these commitments contain the binary representation of the same value that is
in C. As in ZKB++, this extended system has to be executed several times in
order to decrease the probability of the prover cheating the verifier. However,
in contrast to [17] we can apply the Fiat-Shamir transformation to get a NIZK
system.

The number of public key operations in our system is proportional to |x| · λ.
This follows directly from the way we combine both domains. Each round we
have to prove that the commitments to the bits of xe⊕xe+1⊕xe+2 are the binary
representation of x. We solve this obstacle by committing to full values of the
ZKB++ share and not to its bits and show that we can still compute the XOR
value of them because 2 out of 3 values are revealed by the ZKB++ protocol.
This unique technique allows us to further decrease the number of public key
operations to O(|x|+ λ).

The contribution of this paper can be summarized as follows. We are the
first to present an efficient (both for the prover and the verifier) non-interactive
zero-knowledge (NIZK) proof system for algebraic and non-algebraic domains
(cross-domains) that requires no trusted setup. The solution is based on a com-
bination of ZKBoo [23,16] with standard Schnorr based proofs [34,15]. Using our
techniques, we obtain the efficient non-interactive proof of knowledge (proof of
possession) of DSA/RSA signatures, without revealing the signature itself.

Applications. A straightforward application of zero-knowledge proofs in cross-
domains are anonymous credentials. Chase et al. [17] observed that many existing

4

credential systems [10,12,13,8,5] rely on signature schemes that are tailored in a
specific way to provide the desired properties of the system. The user proves that
he knows a value x and a signature under this value. Using zero-knowledge proofs
in cross-domains allows to use standard signature schemes like RSA-FDH or DSA
for which there exist no efficient proof system in the standard algebraic setting.
In contrast to the system by Chase et al. our proofs are non-interactive, which
means that they can be used to construct round-optimal anonymous credential
systems. This implies that using our techniques, one can create concurrently
secure systems based on RSA and DSA signatures.

Another application of NIZK in cross-domains, mentioned in [3], are proofs of
solvency for Bitcoin exchanges. In this scenario, an exchange wants to prove to its
customers that it is solvent, i.e. that it has enough Bitcoins to cover its liabilities.
To this end, the exchange would need to prove the control over some Bitcoin
addresses. A certain Bitcoin address is a 160-bit hash of a public ECDSA key [1].
The corresponding proof is a proof of knowledge x such that H(gx) = y, where
H is a hash-function such as SHA-256. Here, only y is public, and the exchange
would like to keep its public key part gx hidden, otherwise an adversary could
track the movement of exchanges associated with its public key. Since the Bitcoin
network does not require a trusted setup assumption, proofs of solvency based on
the approach by [3] would require a trusted CRS generation to be done. On the
other hand, since our techniques do not require any trusted setup assumption,
they can be used directly to prove solvency for Bitcoin exchanges. The proof
system would additionally include a proof of equality of discrete logarithm of a
committed value and another committed value. More specifically, a prover would
need to prove knowledge of x such that H(gx) = y for some public y. Here the
input to the circuit H is gx. The prover has to commit to gx as Comgx and to
x as Comx and use the proof of equality of discrete logarithm of a committed
value and another committed value, for which we refer to [17].

Note that ours and the proof system by Chase et al. [17] or any other system
cannot be post-quantum secure if the underlying security assumptions in the
algebraic domain (integer factorization, discrete logarithms) can be broken by a
quantum adversary [35].

Comparison with existing techniques. We compare ours and prior work on
zero-knowledge proofs in cross-domains in Table 1. We discuss the efficiency of
the constructions based on a circuit F and a committed input x. For the algebraic
part of the proof system, Σ-protocols are used in all ZK proof systems presented
in the table. Σ-protocols require a constant number of public-key operations for
a single algebraic statement and do not require any trusted setup assumption.
The approach by Chase et al. [17] is the only interactive protocol in the table.
In their first construction, the arithmetic part of the proof system is based on
garbled circuits, whose prover’s/verifier’s cost amounts to O(|F |) of symmetric-
key operations. The number of public key operations is linear in the input size
|x|. In the second construction, Chase et al. achieve the number of public key
operations independent of |x| at the cost of increasing the circuit that has to
be garbled. Various techniques to reduce computation, communication, memory

5

requirements of garbled circuits are available, e.g. [32,38,36]; in [31] XOR-gates
can be garbled essentially at no cost. In Bulletproofs [11], the prover has to
perform a constant number of public key operations for each multiplication gate
of the circuit, while the verifier is more efficient due to the multi-exponentiation
trick. The proof size in Bulletproofs is logarithmic in the number of multiplication
gates in the arithmetic circuit for verifying the witness. The approach by Agrawal
et al. [3], which is based on SNARKs, is the only protocol that requires a trusted
setup assumption and produces constant proofs. Verifier’s work does not depend
on the circuit size, and the number of public key operations is linear in the input
size. Prover’s work requires a number of public key operations linear in the circuit
size. We analyze efficiency of our Construction 2. As we show in Section 3.4, it
requires O(|x| + λ) public key operations, while the number of symmetric-key
operations is O(|F | ·λ), since ZKB++ protocol has to be repeated to reduce the
soundness error to a negligible value. Proof size is dominated by ZKB++ and
amounts to O((|F |λ+ |x|)λ).

Table 1: Comparison of ZK proof systems in cross-domains for a circuit F with
an algebraically committed input x, where |F | denotes the circuit size, |x| the
number of input bits. We denote by λ the security parameter, by pub a public-key
operation, by sym a symmetric-key operation.

Non-
inter-
active

Without
trusted
setup

Prover’s work Verifier’s work Communication/
Proof size

CGM16 [17]
Constr.1

No Yes O(|x| · pub + |F | ·
sym)

O(|x| · pub + |F | ·
sym)

O((|F |+ |x|)λ)

CGM16 [17]
Constr.2

No Yes O(λ ·pub + (|F |+
|x|λ) · sym)

O(λ ·pub + (|F |+
|x|λ) · sym)

O((|F |+ |x|λ)λ)

BBB+18 [11] Yes Yes O(|F | · pub) O(|F |
log(|F |) · pub) O(log(|F |)λ)

AGM18 [3] Yes No O((|F |+ λ) · pub) O((|x|+ λ) · pub) O(λ)

This work Yes Yes O((|x|+λ) ·pub+
(|F | · λ) · sym)

O((|x|+λ) ·pub+
(|F | · λ) · sym)

O((|F |λ+ |x|)λ)

Paper Outline. The rest of the paper is organized as follows. Section 2 contains
preliminaries. In Section 3, we develop our solution for NIZK proofs in cross-
domains. The section starts with the problem statement for NIZK proofs in
cross-domains. Then, in Section 3.1 we present our first attempt cross-domain
NIZK proof system based on ZKB++ followed by its security analysis. Next,
in Section 3.2 we present an improved version and its security analysis. Finally,
in Section 3.3 we describe the optimization technique to reduce the number of
public key operations and in Section 3.4 we perform efficiency analysis of our
constructions. In Section 4, we complement NIZK proofs in cross-domains to
allow OR-proofs. Section 5 concludes.

6

2 Preliminaries

In this section we recall the notions of commitment schemes, zero-knowledge
and Σ-protocols. We also recall the details of the ZKBoo protocol introduced by
Giacomelli et al. [23].

2.1 Homomorphic Commitment Schemes

Let us by Mck denote the message space of the commitment scheme and by
OIck the space of opening information (also called randomness).

Definition 1 (Commitment Scheme). A commitment scheme consists of the
following PPT algorithms (Gen,Com,Open):

Gen(λ): on input security parameter λ, this algorithm outputs a commitment key
ck, which is an implicit input for the below algorithms.

Com(m, r): on input message m and opening information r, this deterministic
algorithm outputs a commitment Cm.

Open(Cm,m, r): on input commitment Cm, message m and opening information
r, this algorithm outputs a bit {0, 1}.

Definition 2 (Perfect Hiding). A commitment scheme is perfectly hiding, if
for all adversaries A we have:

Pr[ck← Gen(λ), (m0,m1, st)← A(ck), r ←$ OIck, C ← Com(m0, r) : A(st, C) = 1] =

Pr[ck← Gen(λ), (m0,m1, st)← A(ck), r ←$ OIck, C ← Com(m1, r) : A(st, C) = 1].

Definition 3 (Computational Binding). A commitment scheme is compu-
tationally binding, if for all PPT adversaries A we have:

|Pr[(ck)← Gen(λ), (m0, r0,m1, r1)← A(ck) : m0 6= m1 ∧

Com(m0, r0) = Com(m1, r1)]| ≤ AdvbindingA (λ),

where we require that m0,m1 ∈Mck, r0, r1 ∈ OIck and AdvbindingA (λ) is negligible
in the security parameter λ.

Definition 4 (Equivocality). A commitment scheme is equivocal, if there ex-
ists an algorithm Eval and an alternative Gen′ algorithm that additionally to
the commitment key ck returns a trapdoor τ such that given a commitment
C = Com(m, r) we have C = Com(m′,Eval(τ,m′, (C,m, r))) for any message
m′, i.e. Eval can be used to compute the randomness to open C to an arbitrary
value.

Moreover, we assume that there exists an efficient extraction algorithm Extrck
that given two openings of the same commitment, i.e. (m1, r1,m2, r2) where
Com(m1, r1) = Com(m2, r2) and m1 6= m2, returns the trapdoor τ .

7

We require that a commitment scheme is binding, hiding and equivocal.
Additionally, in this paper we assume that the used commitment scheme has
the following homomorphic property: for all m1,m2 ∈Mck and r1, r2 ∈ OIck we
have: Com(m1, r1) ·Com(m2, r2) = Com(m3, r3), where m3 = m1 +m2 and r3 =
r1 + r2. This homomorphism allows us to introduce multiplication by a known
scalar, i.e. given C = Com(m, r) we can compute C ′ = [k]C = Com(k ·m, k · r),
where by [k]C we denote multiplication of commitment C by a public scalar
k. What is more, for a given commitment Cb = Com(b, r) to a bit b, we can
easily compute the exclusive-or on this hidden value with a known bit α. If
α = 0, we leave C unchanged, otherwise, if α = 1, we compute Cb⊕α = C1/Cb =
Com(1 − b,−r), where C1 = Com(1, 0) is formally a commitment to 1 with no
randomness (instead of sampling it, it is set to 0). Note that for commitments
Cx = Com(x, r) =

∏
i∈[0,|x|−1][2

i]Cx[i] =
∏
i∈[0,|x|−1][2

i]Com(x[i], rx[i]), where

x[i] is the i-th bit of x, we can compute a commitment Cx⊕α for a known α.
To do so, we apply the above technique bitwise, i.e. to commitments Cx[i] and
using the new values we then compute the commitment Cx⊕α. Notice, that this
operation changes the opening information, which is now

∑
i∈[0,|x|−1](−1)α[i]rx[i],

i.e. Cx⊕α = Com(x⊕ α,
∑
i∈[0,|x|−1](−1)α[i]rx[i]).

An example of a scheme that has those properties is the one introduced by
Pedersen [33]. There, given a commitment key ck = (g, h, q, p), a message m ∈ Zq
and an opening information r ∈ Z∗q the commitment is of the form Com(m, r) =
gm ·hr mod p. Multiplying two commitments Com(m1, r1) ·Com(m2, r2) we get
gm1+m2hr1+r2 , which is a commitment to message m1+m2 mod q with opening
information r1+r2 mod q, as required. Note that the commitment scheme is also
equivocal and that there exists an extraction algorithm Extrck (to this end, one
simply needs to choose public parameters g, h with a known discrete logarithm).

2.2 Zero-Knowledge Proofs

Let R ⊂ {0, 1}∗×{0, 1}∗ be an efficiently computable binary relation, for which
R(x,w) = 1 ⇐⇒ (x,w) ∈ R. We call x a statement and w a witness. A very
simple example of such a relation is R = {(x,w) : x = SHA(w)}, where we
are given a SHA value as part of the statement and the preimage is part of
the witness. Obviously, given both values we can easily verify that R(x,w) = 1
by computing the SHA value on w and comparing it with x. We will assume
that |w| ≤ poly(|x|), which means that the witness length should be polynomial
in the statement length. We will denote by LR the language consisting of true
statements in R, i.e. LR = {x|∃w : (x,w) ∈ R}.

We call a cryptographic protocol between two PPT parties, the prover P and
the verifier V an argument for language LR if it has the following properties.
Using communication P wants to convince V that x ∈ LR, where x is a publicly
known statement. Obviously, the prover has some extra private input, e.g. he
knows a witness for which R(x,w) = 1.

At the end of the protocol the verifier outputs accept if he is convinced and
reject otherwise. The protocol is complete if for all x ∈ LR an honest prover

8

always convinces an honest verifier. We also require that if x 6∈ LR, then a
cheating prover has only a small chance ε (called soundess error) to convince
an honest verifier. This property should hold for all possible statements not
in the language, i.e. for all x 6∈ LR we have Pr[V(x) = accept] ≤ ε. Finally,
we require a property called zero-knowledge (ZK). Informally, this means that
whatever strategy a verifier follows, he learns nothing besides whether x ∈ LR. It
follows that he cannot get any information about the private input of the prover.
A weaker notion of ZK is called honest-verifier ZK (HVZK). Zero-knowledge
property in this case holds only for a verifier, who does not deviate from the
protocol.

A special case of such arguments are Σ-protocols, which follow a specific
communication pattern similar to the letter Σ. In the rest of the paper we will
only consider this type of protocols.

Definition 5 (Σ-Protocol). A protocol ΠR between a prover P and a verifier
V is a Σ-protocol for relation R if:

– The protocol consists of three phases:
1. (Commit) P sends a message a to V,
2. (Challenge) V picks a random e and sends it to P,
3. (Response) P sends a second message z to V.

– ΠR is complete - if both parties are honest, then for all x ∈ LR we have
Pr[(P,V)(x) = 1] = 1.

– ΠR is s-special sound - for any x and any set of s accepting conversations
T = {(a, ei, zi)}i∈{1,...,s}, where ei 6= ej if i 6= j, there exists an efficient
algorithm Extr that on input T outputs w such that R(x,w) = 1.

– ΠR is a special honest-verifier ZK (HVZK) - there exists a PPT simulator
SIM such that on input x ∈ LR outputs a triple (a′, e, z′) with the same
probability distribution of real conversations (a, e, z) of the protocol.

The last property ensures only that Σ-protocols are ZK if the verifier is
honest and does not base his challenge e on the first message of the prover. Σ-
protocols have found many applications in the design of efficient identification
and signature schemes. The main advantage of using those protocols is that
using the Fiat-Shamir transformation [21], they can be made non-interactive in
the random oracle model. What is more, using this technique the protocol is ZK
even if the verifier is dishonest. Note that if the challenge e is chosen from a
set of cardinality c, then s-special soundness implies that the soudness error is
(s− 1)/c.

Notation. Given two commitments Cx = Com(x, rx) and Cy = Com(y, ry) we
will denote by P{(Cx ≡ Cy)} the prover’s part and by V{(Cx ≡ Cy)} the ver-
ifier’s part of a Σ-protocol, where the prover tries to convince the verifier that
it knows openings (x, rx) and (y, ry) of public commitments Cx and Cy, respec-
tively, such that x = y. There exist very efficient Σ-protocols for the above
mentioned Pedersen commitments. In such a case, the witness is composed of
the committed value x and the opening informations rx and ry. We may some-
times append the notation to denote a subroutine algorithm such as Commit,

9

Response, or Reconstruct. The Commit subroutine has a special output nota-
tion. We denote by (st, a) the result of Commit execution, where st denotes an
internal state and a the output.

Notation for a bit commitment. We will also use this notion for a spe-
cial case, where the prover wants to show that the value committed in Cx =
Com(x, rx) is a bit, i.e. x ∈ {0, 1}. We will use P{(Cx ≡ C0) ∨ (Cx ≡ C1)}
to denote this special case. Note that we do not necessarily require the use of
commitments to values 0 (C0) and 1 (C1), as there exist more efficient real-
izations, i.e. given a commitment C = gx · hr the prover simply shows that it
knows the discrete logarithm of C or C/g to the base of h, and therefore C0

and C1 may be omitted. Moreover, we will use
∏|x|−1
i=0 C2i·x[i] = Com(x, r) to

denote a commitment to x, where x =
∑|x|−1
i=0 2ix[i], r =

∑|x|−1
i=0 2irx[i], and

Cx[i] = Com(x[i], rx[i]).

2.3 ZKBoo/ZKB++

Giacomelli et al. [23] proposed ZKBoo, an efficient Σ-protocol based on the idea
“MPC-in-the-head” [29]. Subsequently, Chase et al. [16] presented ZKB++, the
successor of ZKBoo, which has more compact proofs. As both versions of the
protocols differ primarily in technical aspects, our techniques can be applied to
either version. The main advantage of this system over the one by Jawurek et al.
[30] is that it can be made non-interactive using the Fiat-Shamir transformation.

ZKBoo/ZKB++ work for arithmetic functions F with prover’s input x and
the verifier holding no private input. Let y denote the output of function, i.e.
y = F (x). To create such a zero-knowledge proof of x, the prover splits the input
into 3 shares (x1, x2, x3) and for each pair xi, xi+1 runs the function F ′(xi, xi+1)
to obtain yi. F

′ is constructed in such a way that the correctness property of
ZKBoo/ZKB++ ensures y1 ⊕ y2 ⊕ y3 = y. The prover commits to all three
views. The verifier sends a challenge e ∈ {1, 2, 3}, which can be replaced by the
output of the random oracle applied on appropriate inputs. The prover opens
input shares (xe, xe+1) and the randomness used in computing F ′(xe, xe+1) in
the corresponding two views. The verifier then checks whether ye was correctly
computed or not. Another property of F ′ is that two out of three views leak
no information about the input x (the property is called 2-privacy; for more
details we refer to Definition 3 in [23]). The protocol is 3-special sound and
the soundness error of the protocol is 2/3. Therefore, to reduce the soundness
error to a negligible value the prover runs multiple independent rounds of ZK-
Boo/ZKB++ protocol. In Fig. 5 in Appendix we present the non-interactive
version of the ZKB++ protocol.

3 Combining ZKB++ with Algebraic Commitments

In this section we present our main contribution: a Σ-protocol for statements in
cross-domains. Throughout this paper we will consider the following statement

10

as the main building block that can be composed to create proofs for more
general statements.

Statement 1 Prove that there exists x such that F (x) = 1 and x is committed to
Cx, where x is a |x|-bit number, F is an arithmetic circuit, and the commitment
scheme is based on the group structure of order larger than 2|x| and allows some
homomorphic operations.

The naive approach to prove this statement is just to implement all algebraic
operations as a part of the circuit F and execute the ZKB++ protocol. However,
Chase et al. [17] already noticed that expressing modular exponentiation in a
boolean circuit would be computationally too expensive and fairly inefficient.
In particular, since the number of gates increases non-linearly in the size of the
input, this also means that the proof size increases at the same rate and so does
the time required to compute the proof. As we will show, there exists a more
efficient way of realizing this kind of proofs.

3.1 Our Technique - First Approach

We propose the following technique, in which we take advantage of:

1) the fact that the ZKB++ protocol is a Σ-protocol,

2) the additive sharing of the prover’s input x in the group Z2 in ZKB++,

3) that Σ-protocols can be executed in parallel,

4) a multiplicatively homomorphic commitment scheme in the group Zq; for
simplicity we assume that 2|x| < q, the other case is addressed in Section 3.3.

The overall idea is to combine a ZKB++ round with zero-knowledge proofs
that input bits of x are bound to the public commitment. This part involves
ZK proofs for all individual bits of the ZKB++ input and the three exclusive-or
based bit shares. In particular, we prove that the exclusive-or value of those
shares is given in a commitment and is equal to the bit representation of x. We
then prove that values in the commitments match the real shares by giving open-
ing information for 2 out of 3 commitments, depending on the shares revealed
by ZKB++. More details can be found in Construction 1.

Construction 1 (Cross-ZKB++ First Attempt) Let x[i] denote the i-th
bit of input x, i.e. x = (. . . , x[1], x[0]). In the following, we describe necessary
steps to add to the ZKB++ protocol (Fig. 5) in order to realize the connection be-
tween the input bits (. . . , x[1], x[0]) of the function F and the public commitment
Cx, as defined in Statement 1.

– (Commit Phase) — The prover follows the steps specified by the ZKB++
protocol. Then, for each bit i of input x the prover commits to x[i] and to
the respective input shares x[i]1, x[i]2, x[i]3 and gets Cx[i], Cx[i]1 , Cx[i]2 , Cx[i]3 .

11

Again, for each bit i the prover executes the commit phase of a Σ-protocol
(with challenge space {1, 2, 3}) for the following algebraic statement:

P{
(
(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)

)
∧ (

∏
i∈[0,|x|−1]

C2i·x[i] ≡ Cx)∧

(
(Cx[i]1 · Cx[i]2 · Cx[i]3 ≡ Cx[i]) ∨ (Cx[i]1 · Cx[i]2 · Cx[i]3 ≡ C2+x[i])

)
}.

(1)

The prover sends commitments {Cx[i], Cx[i]1 , Cx[i]2 , Cx[i]3}i∈[0,|x|−1], and the
commitments from the ZKB++ protocol and the Σ-protocol to prove the
statement Eq. (1) to the verifier.

– (Challenge Phase) — The verifier sends the challenge e ∈ {1, 2, 3}.
– (Response Phase) — The prover executes the last phase of the ZKB++ and

the other proofs, and sends the result to the verifier. Additionally, he sends
the opening information for commitments Cx[i]e , Cx[i]e+1

, for all i ∈ [0, |x|−
1].

To verify the result the verifier follows the steps specified by the ZKB++
protocol and additionally performs the following checks: reject if the opening is
wrong or the bits of the shares don’t match the bits in the ZKB++ views, or if
any of the additional algebraic proofs is invalid.

We present in Figs. 1 and 2 the detailed description of Construction 1, instan-
tiated with t rounds of ZKB++ and made non-interactive using the Fiat-Shamir
transformation.

Note that the proof system Eq. (1) does not explicitly enforce Cx[i]1 , Cx[i]2 , Cx[i]3
to be commitments to bits. However, as we show in the proof of Theorem 1, it
is the case.

Security analysis

Lemma 1. Assuming the ZKB++ protocol is complete, the Σ-protocols for the
algebraic statements are complete and the used commitment scheme is homomor-
phic, then Construction 1 is a complete Σ-protocol for the statement in Prob-
lem 1.

Proof. Follows by inspection. ut

Theorem 1. Assuming the ZKB++ protocol is 3-special sound, the Σ-protocols
for the algebraic statements are 2-special sound and the used commitment scheme
is homomorphic and equivocal, then Construction 1 is a 3-special sound Σ-
protocol for Statement 1.

Proof. We will prove this theorem by constructing an efficient algorithm
ExtrCross that using 3 accepting tuples (a, e1, z1), (a, e2, z2) and (a, e3, z3) can
compute w∗ = (x∗, r∗), such that F (x∗) = 1 and Cx = Com(x∗, r∗), which is a
valid witness for the proven statement.

The algorithm works as follows:

12

p← Prove(x,Cx = Com(x, r))

1 : // (Commit step)

2 : (stζ , aζ)← ZKBF .Commit(x)

3 : foreach i ∈ [0, |x| − 1] do

4 : Cx[i] = Com(x[i], ri)

5 : foreach ρ ∈ [1, t] do

6 : Extract shares x[i]
(ρ)
1 , x[i]

(ρ)
2 , x[i]

(ρ)
3 from stζ

7 : C
x[i]

(ρ)
1

= Com(x[i]
(ρ)
1 , r

x[i]
(ρ)
1

)

8 : C
x[i]

(ρ)
2

= Com(x[i]
(ρ)
2 , r

x[i]
(ρ)
2

)

9 : C
x[i]

(ρ)
3

= Com(x[i]
(ρ)
3 , r

x[i]
(ρ)
3

)

10 : (stx, ax)← P{
∏

i∈[0,|x|−1]

C2i·x[i] ≡ Cx}.Commit(x,
∑|x|−1

i=0
2i · ri, r)

11 : foreach i ∈ [0, |x| − 1] do

12 : (stx[i], ax[i])← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Commit(x[i], ri)

13 : foreach ρ ∈ [1, t] do

14 : Cx[i](ρ) = C
x[i]

(ρ)
1

· C
x[i]

(ρ)
2

· C
x[i]

(ρ)
3

15 : (stx[i](ρ) , ax[i](ρ))← P{(Cx[i](ρ) ≡ Cx[i]) ∨ (Cx[i](ρ) ≡ C2+x[i])}.Commit(

16 : x[i]
(ρ)
1 + x[i]

(ρ)
2 + x[i]

(ρ)
3 , r

x[i]
(ρ)
1

+ r
x[i]

(ρ)
2

+ r
x[i]

(ρ)
3

, ri)

17 : // output of (Commit step)

18 : a = (aζ , (Cx[i])|x|, (Cx[i](ρ)1

)|x|·t, (Cx[i](ρ)2

)|x|·t, (Cx[i](ρ)3

)|x|·t,

19 : ax, (ax[i])|x|, (ax[i](ρ))|x|·t)

20 : // (Challenge step)

21 : e← H(a)

22 : // (Response step)

23 : rζ ← ZKBF .Response(e, stζ)

24 : rx ← P{
∏

i∈[0,|x|−1]

C2i·x[i] ≡ Cx}.Response(e, stx)

25 : foreach i ∈ [0, |x| − 1] do

26 : rx[i] ← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Response(e, stx[i])
27 : foreach ρ ∈ [1, t] do

28 : rx[i](ρ) ← P{(Cx[i](ρ) ≡ Cx[i]) ∨ (Cx[i](ρ) ≡ C2+x[i])}.Response(e, stx[i](ρ))
29 : return (e, a, rζ , rx, (rx[i])|x|, (rx[i](ρ))|x|·t,

30 : (x[i](ρ)e , r
x[i]

(ρ)
e

)|x|·t, (x[i]
(ρ)
e+1, rx[i](ρ)e+1

)|x|·t)

Fig. 1: Description of Cross-ZKB++ (First Attempt) Prove algorithm for func-
tion F (x) = 1 with a committed input Cx = Com(x, r), made non-interactive
using the Fiat-Shamir transformation and with t rounds of ZKB++.

13

{Reject, Accept} ← Verify(Cx, p)

1 : // Reconstruct step

2 : Parse p as (e, a, rζ , rx, (rx[i])|x|, (rx[i](ρ))|x|·t,

3 : (x[i](ρ)e , r
x[i]

(ρ)
e

)|x|·t, (x[i]
(ρ)
e+1, rx[i](ρ)e+1

)|x|·t)

4 : Parse a as (aζ , (Cx[i])|x|, (Cx[i](ρ)1

)|x|·t, (Cx[i](ρ)2

)|x|·t, (Cx[i](ρ)3

)|x|·t,

5 : ax, (ax[i])|x|, (ax[i](ρ))|x|·t)

6 : foreach i ∈ [0, |x| − 1] do

7 : foreach ρ ∈ [1, t] do

8 : Reject if C
x[i]

(ρ)
e
6= Com(x[i](ρ)e , r

x[i]
(ρ)
e

) or C
x[i]

(ρ)
e+1

6= Com(x[i]
(ρ)
e+1, rx[i](ρ)e+1

)

9 : (st′ζ , a
′
ζ)← ZKBF .Reconstruct(e, rζ)

10 : Reject if (x(ρ)e)t, (x
(ρ)
e+1)t do not match respective values in st′ζ

11 : a′x ← V{
∏

i∈[0,|x|−1]

C2i·x[i] ≡ Cx}.Reconstruct(e, rx)

12 : foreach i ∈ [0, |x| − 1] do

13 : a′x[i] ← V{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Reconstruct(e, rx[i])
14 : foreach ρ ∈ [1, t] do

15 : Cx[i](ρ) = C
x[i]

(ρ)
1

· C
x[i]

(ρ)
2

· C
x[i]

(ρ)
3

16 : a′x[i](ρ) ← V{(Cx[i](ρ) ≡ Cx[i]) ∨ (Cx[i](ρ) ≡ C2+x[i])}.Reconstruct(e, rx[i](ρ))

17 : a′ = (a′ζ , (Cx[i])|x|, (Cx[i](ρ)1

)|x|·t, (Cx[i](ρ)2

)|x|·t, (Cx[i](ρ)3

)|x|·t,

18 : a′x, (a
′
x[i])|x|, (a

′
x[i](ρ))|x|·t)

19 : e′ ← H(a′)

20 : Accept if e′ = e, otherwise Reject.

Fig. 2: Description of Cross-ZKB++ (First Attempt) Verify algorithm for func-
tion F (x) = 1 with a committed input Cx = Com(x, r), made non-interactive
using the Fiat-Shamir transformation and with t rounds of ZKB++.

14

1. First it uses the 3-special soundness of the ZKB++ protocol to extract a
value xZKB for which F (xZKB) = 1.

2. It uses the 2-special soundness of theΣ-protocols for the algebraic statements
to extract the values x[i], for all i ∈ [0, |x|−1], and the corresponding opening
information rx[i].

We now show the rest of his steps. Without loss of generality, let us assume that
e1 = 1, e2 = 2 and e3 = 3. For all i ∈ [0, |x|−1] let w2 = (x, r, x[i], rx[i], x[i]1, rx[i]1 ,
x[i]2, rx[i]2 , x[i]3, rx[i]3) be the witness extracted in step 2 and w1 = (xZKB) be
the witness extracted in step 1. Moreover, for i ∈ {1, 2, 3} let rx[i]ei and rx[i]ei+1

be the opening information to commitments Cx[i]ei and Cx[i]ei+1
, where we know

that Cx[i]ei = Com(x[i]ei , rx[i]ei) and Cx[i]ei+1
= Com(x[i]ei+1, rx[i]ei+1

).
We now turn to the following observation. If at some point the algorithm

ExtrCross encounters two different opening information to one commitment, i.e.
Com(a, b) = Com(c, d) it can use (a, b, c, d) to compute the equivocal trapdoor
and open any commitment to an arbitrarily value. In particular, it can use this
trapdoor to open commitment Cx to the value xZKB , i.e. in case x 6= xZKB
we can use (x, r) and the equivocal trapdoor to compute x∗ = xZKB and the
corresponding r∗ such that Cx = Com(x∗, r∗), which would constitute a valid
witness w∗.

We now proceed with the proof and notice that due to the verification done
by the verifier and the extracted witness w2, we know that

Cx[i]1 = Com(x[i]1, rx[i]1) = Com(x[i]e1 , rx[i]e1) = Com(x[i]e3+1, rx[i]e3+1
),

Cx[i]2 = Com(x[i]2, rx[i]2) = Com(x[i]e2 , rx[i]e2) = Com(x[i]e1+1, rx[i]e1+1
),

Cx[i]3 = Com(x[i]3, rx[i]3) = Com(x[i]e3 , rx[i]e3) = Com(x[i]e2+1, rx[i]e2+1
),

and that for i ∈ {1, 2, 3} x[i]ei are bits that correspond to disclosed views in the
ZKB++ protocol. Thus, it follows that x[i]1 = x[i]e1 , x[i]2 = x[i]e2 and x[i]3 =
x[i]e3 and in particular that xZKB [i] = x[i]1 ⊕ x[i]2 ⊕ x[i]3 for all i ∈ [0, |x| − 1].

We will now argue that because of the soundness of the proof system used
in step 2, for all i ∈ [0, |x| − 1] we have x[i] = x[i]1⊕ x[i]2⊕ x[i]3 = xZKB [i]. Let
us take a look at the following table.

x[i]1 x[i]2 x[i]3 x[i]1 + x[i]2 + x[i]3 x[i]1 + x[i]2 + x[i]3 − 2 x[i]1 ⊕ x[i]2 ⊕ x[i]3

0 0 0 0 -2 0
0 0 1 1 -1 1
0 1 0 1 -1 1
0 1 1 2 0 0
1 0 0 1 -1 1
1 0 1 2 0 0
1 1 0 2 0 0
1 1 1 3 1 1

The two rows x[i]1 + x[i]2 + x[i]3 and x[i]1 + x[i]2 + x[i]3 − 2 correspond
to the value that the commitment Cx[i] = Com(x[i], rx[i]) can be opened to.

15

However, due to the fact that the statement contains the additional constraint
that the commitment opens to a bit, we conclude that for (x[i], rx[i]) we have
x[i] = xZKB [i] (we used the coloured background to highlight the only way that
witness w2 can be correct).

Finally, we know that since the witness w2 is correct, it follows that:∑
i∈[0,|x|−1]

2i · x[i] = x.

However, since x[i] is the i-th bit of xZKB this means that xZKB = x and the
ExtrCross can return w∗ = (x∗, r∗) = (xZKB ,

∑
i∈[0,|x|−1] 2i · rx[i]), which is a

valid opening for Cx, where F (x∗) = 1.
We conclude that the values returned by ExtrCross are a valid witness for State-

ment 1.
ut

Theorem 2. Assuming the ZKB++ protocol and the Σ-protocols for the alge-
braic statements are HVZK and the commitment scheme is perfectly hiding, then
Construction 1 is a HVZK Σ-protocol for Statement 1.

Proof. We will show how to construct a simulator SIM that on input in State-
ment 1, outputs a transcript (a, e, z). The simulator works as follows:

– It runs the simulator for ZKB++ receiving a transcript (a′, e, z′), where z′

contains all the bits x[i]e and x[i]e+1. SIM chooses open information rx[i]e ,
rx[i]e+1

and computes commitments Cx[i]e = Com(x[i]e, rx[i]e), Cx[i]e+1
=

Com(x[i]e+1, rx[i]e+1
). Note that the openings rx[i]e , rx[i]e+1

are part of the
response z. Commitment to the bits x[i] and the bits x[i]e+2 are not opened,
so the simulator can compute Cx[i] and Cx[i]e+2

as commitments to zero.
– SIM runs the simulator for the Σ-protocol for the algebraic statements

receiving (a′′, e′′, z′′). Note that since this simulator should work for all pos-
sible challenges, there is a non-negligible probability that e′′ = e. Otherwise,
SIM just restarts it.

– Finally, SIM sets a = (a′, a′′, {Cx[i], Cx[i]1 , Cx[i]2 , Cx[i]3}i∈[0,|x|−1]) and z =
(z′, z′′, {rx[i]e , rx[i]e+1

}i∈[0,|x|−1])

Since all the simulators used by SIM generate valid transcripts it remains to
show that the commitments Cx[i] and Cx[i]e+2

generated by SIM are indistin-
guishable from values in real transcripts. However, this follows directly by the
perfectly hiding property of the commitment scheme. ut

Lemma 2. The soundness error of the Σ-protocol presented in Construction 1
is 2/3 and it has to be executed λ/(log2(3)−1) times/rounds to achieve a sound-
ness error of 2−λ.

Proof. The soundness error is implied directly from 3-special soundness of the
protocol (Theorem 1) and the challenge space of cardinality 3. The number of
rounds, let us denote it t, is simply the solution of equation (2/3)t = 2−λ. ut

16

3.2 Improved Version

The main disadvantage of Construction 1 is that we have to compute O(|x| · t)
commitments, which influences the number of public key operations we have to
additionally compute. The |x| factor is present because for each round ρ ∈ [1, t]

the relation x[i]
(ρ)
1 ⊕x[i]

(ρ)
2 ⊕x[i]

(ρ)
3 = x[i](ρ) is expressed as a conjunction of two

possible statements and we commit to the bits of the input x in every round.
In the following, we optimize Construction 1 to increase efficiency by decreasing
the number of commitment to O(|x|+ t).

Firstly, we notice that we can use the same commitments to bits of x for
every round that we repeat the protocol and instead of committing to the bits
of the ZKB++ shares we actually compute commitment to the whole values,
saving a lot of computations. Note that this idea will only work if the input to
ZKB++ is smaller that the order of the algebraic group that we use, otherwise
the bitwise exclusive-or of those values will not constitute a accepting input to
the ZKB++ circuit (i.e. x1 ⊕ x2 ⊕ x3 is not always equal to (x1 mod q) ⊕ (x2
mod q) ⊕ (x3 mod q)). However, in the next subsection we show how to make
the protocol work for ZKB++ input without a size constraint.

Secondly, the bits x[i]
(ρ)

e(ρ)
and x[i]

(ρ)

e(ρ)+1
are revealed in the response step of

the ZKB++ protocol (Fig. 5). Based on this observation, we can change the
relation

x[i]
(ρ)
1 ⊕ x[i]

(ρ)
2 ⊕ x[i]

(ρ)
3 = x[i]

and express the third share using the hidden value x, i.e.

x[i]
(ρ)

e(ρ)+2 = x[i]⊕ (x[i]
(ρ)

e(ρ)
⊕ x[i]

(ρ)

e(ρ)+1).

We now take into account that this relation is constructed for known bits and
that we can express Ca⊕α for a given Ca and α using homomorphic properties
of the commitment scheme. Thus, we can actually compute a commitment to

x[i]
(ρ)

e(ρ)+2 using the commitments to bits of x and the revealed bits of values

x[i]
(ρ)

e(ρ)
and x[i]

(ρ)

e(ρ)+1 . We use this commitment to bind the value x[i]
(ρ)
1 ⊕x[i]

(ρ)
2 ⊕

x[i]
(ρ)
3 with the value x inside the commitment Cx.
In Construction 2 we describe those ideas in more detail. We will show a

single round of the protocol, which only has a soundness error of 2/3 but below
present the idea how decrease the soundness error efficiently. Our protocol is
divided into four essential steps:

1. committing to bits of x,
2. proving using a Schnorr based Σ-protocol that those commitments contain

a bit,
3. a ZKB++ proof that there exists a xZKB such that F (xZKB) = 1, and
4. constant number of commitments Cx1

, Cx2
, Cx3

, which ensure x = xZKB .

Thus, if one would run the protocol many times, this still would require the
computation of O(|x| · t) commitments.

17

We solve this problem by taking advantage of the fact that Schnorr based
Σ-protocols can use a larger challenge space that decreases the soundness er-
ror without repeating the protocol. Unfortunately, this does not apply for the
ZKB++ part and for this to work we have to use a special kind of challenge. Let
e1, . . . , eρ be the challenges used for the ρ runs of the ZKB++ protocol, then
we can use e.g. eΣ =

∑
i∈[0,ρ−1] 3i · ei+1 in step 2. In other words, we execute

the first two steps once using the challenge eΣ and simultaneously run the last
two steps ρ-times, where each ZKB++ execution challenged respectively using
e1, . . . , eρ.

This simple trick allows us to increase the efficiency of the proof. Now the
prover only has to compute a constant number of commitments per round and
commit to the bits of the input x only once.

Construction 2 (Cross-ZKB++) In the following, we describe necessary steps
to add to the ZKB++ protocol (Fig. 5) in order to realize the connection between
the input bits x = (. . . , x[1], x[0]) to the function F , where x < q and the public
commitment Cx in group of order q, as defined in Statement 1.

– (Commit Phase) — The prover executes the commit step of the ZKB++
protocol using input x, where Cx = Com(x, r). The prover chooses random
opening informations r1, . . . r|x|−1 and commits to the bits x[i] by computing:

Cx[i] = Com(x[i], ri), for i ∈ [1, |x| − 1].

To compute the remaining commitment he uses the opening information r0 =
r −

∑
i∈[1,|x|−1] 2i · ri. Note that because of the homomorphic properties of

the commitment scheme this means that Cx =
∏
i∈[0,|x|−1][2

i]Cx[i] = Com(2i ·
x[i], 2i · ri). For each bit i of input x the prover executes the commit step of
a Σ-protocol for the following algebraic statement:

P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}. (2)

The next step is also different. In this protocol we commit to the full values
of the respective input shares x1, x2, x3 and get Cx1 , Cx2 , Cx3 , where Cx1 =
Com(x1, rx1), Cx2 = Com(x2, rx2), Cx3 = Com(x3, rx3). The prover sends
commitments {Cx[i]}i∈[0,|x|−1], Cx1

, Cx2
, Cx3

and the commitments from the
ZKB++ protocol and the Σ-protocol Eq. (2) to the verifier.

– (Challenge Phase) — The verifier sends the challenge e ∈ {1, 2, 3} to the
prover.

– (Response Phase) — The prover executes the response step for ZKB++,
the Σ-protocol and sends the result to the verifier. Knowing e, the prover
computes α = xe ⊕ xe+1, where by α[i] we will denote its i-th bit. Using the
homomorphic exclusive-or described in subsection 2.1, he then computes the
commitment

Cz =
∏

i∈[0,|x|−1]

[2i]Cx[i]⊕α[i],

18

which is

Com(xe+2,
∑

i∈[0,|x|−1]

(−1)α[i]rx[i]).

Finally, the prover sends the opening information rxe , rxe+1 for commitments

Cxe , Cxe+1 and value rz = rxe+2 −
∏
i∈[0,|x|−1](−1)α[i]rx[i].

To verify the result the verifier follows the steps specified by the ZKB++
protocol and additionally performs the following checks: reject if the opening is
wrong or the shares in the commitments do not match the ones in the ZKB++
views, or if any of the additional algebraic proofs is invalid. The verifier aborts
if Cx 6=

∏
i∈[0,|x|−1][2

i]Cx[i]. Knowing the shares xe, xe+1 and the openings rxe ,

rxe+1
, the verifier also computes Cz =

∏
i∈[0,|x|−1][2

i]Cx[i]⊕αi and checks that

Cz · Com(0, rz) = Cxe+2
.

We present in Figs. 3 and 4 the detailed description of Construction 2, instan-
tiated with t rounds of ZKB++ and made non-interactive using the Fiat-Shamir
transformation.

Security analysis

Lemma 3. Assuming the ZKB++ protocol is complete, the Σ-protocols for the
algebraic statements are complete and the used commitment scheme is homomor-
phic, then Construction 2 is a complete Σ-protocol for the statement in Prob-
lem 1.

Proof. Follows by inspection. ut

Theorem 3. Assuming the ZKB++ protocol is 3-special sound the used Σ-
protocols are 2-special sound and the used commitment scheme is homomorphic
and equivocal, then Construction 2 is a 3-special sound Σ-protocol for State-
ment 1.

Proof. As in the proof of Theorem 1 we will construct an efficient algorithm
ExtrCross that using 3 accepting tuples (a, e1, z1), (a, e2, z2) and (a, e3, z3) can
compute a witness that the statement is true. The extraction algorithm will
return a value x and an opening information r such that F (x) = 1 and Cx =
Com(x, r), which is a valid witness for the proven statement. We will now describe
the idea behind the algorithm ExtrCross, which is as follows:

– First it uses the 3-special soundness of the ZKB++ protocol to extract a
value xZKB for which F (xZKB) = 1.

– It uses the 2-special soundness of the proof system for Eq. (2) to extract the
bits x[i], for all i ∈ [0, |x| − 1], and the opening information rx[i].

– It computes rZKB , as described below, and returns (x∗, r∗) = (xZKB , rZKB)
as a valid witness.

19

p← Prove(x,Cx = Com(x, r))

1 : // (Commit step)

2 : (stζ , aζ)← ZKBF .Commit(x)

3 : foreach i ∈ [1, |x| − 1] do

4 : Cx[i] = Com(x[i], ri)

5 : r0 = r −
∑

i∈[1,|x|−1]

2i · ri

6 : Cx[0] = Com(x[0], r0)

7 : foreach i ∈ [0, |x| − 1] do

8 : (stx[i], ax[i])← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Commit(x[i], ri)

9 : foreach ρ ∈ [1, t] do

10 : Extract shares x
(ρ)
1 , x

(ρ)
2 , x

(ρ)
3 from stζ

11 : C
x
(ρ)
1

= Com(x
(ρ)
1 , r

x
(ρ)
1

), C
x
(ρ)
2

= Com(x
(ρ)
2 , r

x
(ρ)
2

), C
x
(ρ)
3

= Com(x
(ρ)
3 , r

x
(ρ)
3

)

12 : a = (aζ , (Cx[i])|x|, (ax[i])|x|, (Cx(ρ)1

)t, (Cx(ρ)2

)t, (Cx(ρ)3

)t) // output of (Commit step)

13 : // (Challenge step)

14 : e← H(a)

15 : // (Response step)

16 : rζ ← ZKBF .Response(e, stζ)

17 : foreach i ∈ [0, |x| − 1] do

18 : rx[i] ← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Response(e, stx[i])
19 : foreach ρ ∈ [1, t] do

20 : α(ρ) = x(ρ)e ⊕ x
(ρ)
e+1

21 : C(ρ)
z =

∏
i∈[0,|x|−1]

[2i]Cx[i]⊕α(ρ)[i]

22 : r(ρ)z = r
x
(ρ)
e+2

−
∏

i∈[0,|x|−1]

(−1)α[i]rx[i]

23 : return (e, a, rζ , (rx[i])|x|, (x
(ρ)
e , r

x
(ρ)
e

)t, (x
(ρ)
e+1, rx(ρ)e+1

)t, (r
(ρ)
z)t)

Fig. 3: Description of Cross-ZKB++ Prove algorithm for function F (x) = 1 with
a committed input Cx = Com(x, r), made non-interactive using the Fiat-Shamir
transformation and with t rounds of ZKB++.

20

{Reject, Accept} ← Verify(Cx, p)

1 : // Reconstruct step

2 : Parse p as (e, a, rζ , (rx[i])|x|, (x
(ρ)
e , r

x
(ρ)
e

)t, (x
(ρ)
e+1, rx(ρ)e+1

)t, (r
(ρ)
z)t)

3 : Parse a as (aζ , (Cx[i])|x|, (ax[i])|x|, (Cx(ρ)1

)t, (Cx(ρ)2

)t, (Cx(ρ)3

)t)

4 : Reject if Cx 6=
∏

i∈[0,|x|−1]

[2i]Cx[i]

5 : foreach ρ ∈ [1, t] do

6 : Reject if C
x
(ρ)
e
6= Com(x(ρ)e , r

x
(ρ)
e

) or C
x
(ρ)
e+1

6= Com(x
(ρ)
e+1, rx(ρ)e+1

)

7 : α(ρ) = x(ρ)e ⊕ x
(ρ)
e+1

8 : C(ρ)
z =

∏
i∈[0,|x|−1]

[2i]Cx[i]⊕α(ρ)[i]

9 : Reject if C(ρ)
z · Com(0, r(ρ)z) 6= C

x
(ρ)
e+2

10 : (st′ζ , a
′
ζ)← ZKBF .Reconstruct(e, rζ)

11 : Reject if (x(ρ)e)t, (x
(ρ)
e+1)t do not match respective values in st′ζ

12 : foreach i ∈ [0, |x| − 1] do

13 : a′x[i] ← V{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Reconstruct(e, rx[i])
14 : a′ = (a′ζ , (Cx[i])|x|, (a

′
x[i])|x|, (Cx(ρ)1

)t, (Cx(ρ)2

)t, (Cx(ρ)3

)t)

15 : e′ ← H(a′)

16 : Accept if e′ = e, otherwise Reject.

Fig. 4: Description of Cross-ZKB++ Verify algorithm for function F (x) = 1 with
a committed input Cx = Com(x, r), made non-interactive using the Fiat-Shamir
transformation and with t rounds of ZKB++.

21

We will now show how ExtrCross computes witness w∗ = (x∗, r∗) and that
the returned values are valid. Let w2 = ({x[i], rx[i]}i∈[0,|x|−1]) be the witness ex-
tracted in step 2 and w1 = (xZKB) be the witness extracted in step 1. Moreover,
let rxe and rxe+1 be the opening information to commitments Cxe1 , Cxe2 and
Cxe3 , where we know that Cxe1 = Com(xe1 , rxe1), Cxe2 = Com(xe2 , rxe2) and
Cxe3 = Com(xe3 , rxe3).

Again we observe that if the algorithm ExtrCross encounters two different
opening information to one commitment the equivocal trapdoor can be used to
open the commitment Cx to the value w1 = xZKB .

We now proceed with the proof and notice that since all the tuples are ac-
cepting, we conclude that the openings of the commitments Cx1

, Cx2
, Cx3

are
valid. This is the case because we have valid openings (xe1 , rxe1), (xe2 , rxe2),
(xe3 , rxe3). It follows that the binary representations of x1, x2, x3 correspond to
the correct input of the ZKB++ protocol and we have xZKB = x1 ⊕ x2 ⊕ x3.
Note that this is only true because xZKB is shorter that the order of the used
group. Moreover, we know that by construction:

Cx =
∏

i∈[0,|x|−1]

[2i]Com(x[i], rx[i]),

and that x[i] are bits.
Let e = e1, the ExtrCross computes commitment Cz =

∏
i∈[0,|x|−1][2

i]Cx[i]⊕αi ,
where α = xe⊕xe+1. Since we know that for e1 we receive an accepting state, we
know that Cz ·Com(0, rz) = Cxe+2

= Com(xe+2, rxe+2
). This basically means that

ExtrCross can open Cz to xe+2 using randomness rxe+2
− rz. We now distinguish

two cases:

1. the openings of Cz and Cxe+2
are different, i.e. this means that∑

i∈[0,|x|−1]

2i(x[i]⊕ αi) 6= xe+2,

2. the openings of Cz and Cxe+2
are the same.

In the first case we notice that ExtrCross knows openings of the commitment
Cz to two different values. Thus, it can use an extractor Extrck to compute
the equivocality trapdoor for the commitment scheme and compute rZKB as
Eval(τ, xZKB , (Cx,

∑
i∈[0,|x|−1] 2ix[i],

∑
i∈[0,|x|−1] 2irx[i])). In other words, the ex-

traction algorithm ExtrCross uses the trapdoor to open the commitment from the
statement to the value xZKB for which F (xZKB) = 1. This means that the re-
turned values are a valid witness for the proven statement. In the second case
we know that: ∑

i∈[0,|x|−1]

2i(x[i]⊕ αi) = xe+2.

This means that r∗ =
∑
i∈[0,|x|−1] 2irx[i] is an opening of the commitment Cx

to a value x′ for which we know that x′ ⊕ xe ⊕ xe+1 = xe+2. It follows that
x′ = xe ⊕ xe+1 ⊕ xe+2 = xZKB . Thus, in this case ExtrCross can also return
w∗ = (xZKB , r

∗), which ends the proof. ut

22

Theorem 4. Assuming the ZKB++ protocol is HVZK and the commitment
scheme is perfectly hiding, then Construction 2 is a HVZK Σ-protocol for State-
ment 1.

Proof. We will show how to construct a simulator SIM that on input of a
statement as in Statement 1 with commitment Cx, outputs a transcript (a, e, z).
The simulator works as follows:

– It runs the simulator for ZKB++ receiving a transcript (a′, e, z′), where z′

contains the shares xe and xe+1.
– SIM chooses randomness rxe , rxe+1 and computes commitments Cxe =

Com(xe, rxe), Cx[i]e+1
= Com(xe+1, rxe+1

). Note that the openings for those
commitments are part of the response z. Commitments to the bits of x[i]
and to xe+2 are not opened, so the simulator can compute the commitments
Cx[i] and Cxe+2 as follows.

– For i ∈ [1, |x| − 1] it computes commitments Cx[i] as commitments to 0. For
j = 0 it uses the homomorphic properties of the commitment scheme to

compute Cx[j] such that Cx =
∏|x|−1
i=0 [2i]Cx[i].

– It then chooses a randomness rz and computes

Cxe+2
=

∏
i∈[0,|x|−1]

C2i·(x[i]⊕xe[i]⊕xe+1[i]) · Com(0,−(rz)).

– SIM runs the simulator for the Σ-protocol for the algebraic statement re-
ceiving (a′′, e′′, z′′). Note that since this simulator should work for all possi-
ble challenges, there is a non-negligible probability that e′′ = e. Otherwise,
SIM just restarts it.

– Finally, SIM sets a = (a′, a′′, Cx1 , Cx2 , Cx3 , {Cx[i]}i∈[0,|x|−1]) and z = (z′, z′′,
rxe , rxe+1

, rz)
ut

Lemma 4. The soundness error of the Σ-protocol presented in Construction 2
is 2/3.

Proof. It is implied directly from 3-special soundness of the protocol (Theorem 3)
and the challenge space of cardinality 3. ut

3.3 Optimization for large input space

We now show how to reduce the number of public key operations to be propor-
tional to the message space of the commitment scheme and independent of the
input size of the function F , which is desirable when the input to the ZKB++
circuit is large and required if we want to use Construction 2 for such circuits.
This optimization will utilize the properties of modular arithmetics.

Let F (m) = 1 be a function that has to be proven in the cross-domains,
and let m ≥ q where [0, q − 1] is the message space of the commitment scheme.
The prover proceeds as follows. Instead of committing to m, it commits to C =

23

Comq(m
′), where m′ satisfies m′ < q and m = k · q+m′ and proves the relation

between m and m′ as part of F . Let the original cross-domain statement be
described as: P{m : (F (m) = 1) ∧ (Cm = Comq(m, r))}. Then the optimized
version is defined as:

P{m,m′, k : (Fopt(m,m
′, k, q) = 1) ∧ Cm = Comq(m

′, r)},

where
Fopt(m,m

′, k, q) = (F (m) = 1 ∧ (m = m′ + k · q)) .

It is easy to see that Cm can be opened either to m, or to m′, as both values are
equal modulo q. Furthermore, the prover indeed proves that m and m′ are equal
modulo q. Finally, the prover proves that m′ is the value committed to in Cm.

This solution requires us to create an arithmetic circuit as part of the state-
ment proven by ZKB++. Fortunately, this is a standard integer multiplication
circuit of a number k < |x| and q = O(λ). We can view such a multiplication as
the addition of q, k-bit numbers. Since adding two k-bit numbers can be done
using O(k) gates, it follows that this multiplication can be done using O(k · q)
gates, which is also O(|x| ·λ). In particular, we have that this can be done using
O(|F | · λ) gates, because |x| < |F |. Thus, the asymptotic number of symmetric
operations remains the same and we only introduce a slight overhead using this
technique.

3.4 Efficiency

We will discuss the computation overhead and increase in the proof size of our
techniques. We will compare both constructions for Statement 1 and focus only
on public key operations, i.e. exponentiations and multiplications in the used
group G of order q, where `q = log q. Let us assume that we run both protocols
ρ times for input x and that we use Pedersen commitments. Moreover, we will
by `ZKB denote the proof size of the ZKB++ protocol, by `Σ the proof size of
the Σ-protocol for Eq. (1) and by `G the size of group elements.

In such a case the proof size of Construction 1 is ρ · (`ZKB + `Σ + 4 · |x| ·
`G +2 · |x| · `q), which asymptotically is O(|x| ·ρ). Construction 2 was introduced
to decrease this by depending less on Σ-protocols for algebraic statements and
using the homomorphic properties of the commitment scheme. When executed
in parallel, the proof size is ρ · (`ZKB + (3 · |x| + 3) · `G + 2 · |x| · `q + 3 · `q),
which is better but still O(|x| ·ρ). Fortunately, we have shown that certain parts
of the computations can be reused throughout every round. Therefore, for an
optimized version of Construction 2 we end up with a proof size of ρ · (`ZKB +
3 · `G + 3 · `q) + |x| · (3 · `G + 2 · `q), which is O(|x|+ ρ).

To compute the proof in Construction 1 we have to compute 4 ·ρ · |x| commit-
ments and compute the proof for statement Eq. (1), which strongly depends on
the instantiation but it requires at least O(ρ · |x|) exponentiations. Computing
commitments to bits costs one exponentiation and one multiplication. In the
end, for this construction we require O(ρ · |x|) exponentiations. In case of Con-
struction 2 we have to compute |x| · (3 · `G) + ρ · 3 · `G commitments and 2 · |x|

24

exponentiations for the proof for statement Eq. (2). We also have to compute
the commitment Cz, which requires us to compute |x| · ρ multiplications in G.
Given the fact, that we assumed that |x| is of the size of log q it follows that
the cost of those multiplications is comparable with ρ exponentiations in G. It
follows, that for this construction we require only O(|x|+ ρ) exponentiations.

4 NIZK OR-proofs in cross-domains

Proofs of partial knowledge [19], also known as OR-proofs, allow to efficiently
prove only a part of a statement, without revealing, which part has been proven.
Below we show how to prove the most simple OR-statement in cross-domains,
which can be used as a basis for proving more complex statements.

Statement 2 Prove knowledge of x1 s.t. F (x1) = 1 or knowledge of x2 such
that y = gx2 , where F is an arithmetic circuit.

We are going to use ZKB++ for proving the first part and the standard
Schnorr proof for the second part. Since the both parts of the proof system are Σ-
protocols, a challenge e will be “distributed” between these parts as e = e1 + e2.
Assume e1 ∈ Zp and e2 ∈ Zq, where p > q. The prover generates e1 or e2 and
derives the remaining element based on e. Both e1 and e2 should have the same
distribution regardless of the part that is being proved. Depending on which
part is being proved, we proceed as follows. Given e ∈ Zp, to prove the first
part the prover picks e2 ←R Zq and computes e1 = e− k · e2, where k = bp/qc.
Given e ∈ Zp, to prove the second part the prover picks e1 ←R Zp and computes
e′2 = e−e1 ∈ Zp. To preserve the distribution of e2, the prover performs rejection
sampling: it further computes the largest p′ that satisfies p′ = k ·q ≤ p for integer
k and rejects and regenerates e1 if e1 > Zp′ , otherwise e2 ← e′2(mod q). It is
easy to see that the probability of rejection is at most 1/2, and e1 and e2 are
distributed identically regardless of which part has been proven.

Remark 1. If p >> q, it suffices to stay in Zp and convert an element from Zp
to Zq by taking its residue.

5 Conclusion

Zero-knowledge proofs are an essential component in various protocols, includ-
ing payment, electronic voting, anonymous credential systems. Proofs based on
algebraic groups and for arithmetic circuits represent two different domains.
In this work, we presented an efficient Σ-protocol in cross-domains, which can
be used to prove the possession of standard RSA/DSA signatures. Moreover,
the protocol can be executed non-interactively using the Fiat-Shamir transfor-
mation. It follows, that our results can be applied to build round-optimal and
concurrent-secure anonymous credentials based on standard signature schemes.
Our techniques are especially beneficial when applied for large circuits and when

25

the prover’s running time is critical. As future work, it would be interesting to
explore whether the approach by Ames et al. [4] can be used to achieve yet more
efficient and compact NIZK proofs in cross-domains.

Acknolwedgements. We would like to thank the anonymous reviewers for their
valuable comments. This work was supported by the German Research Foun-
dation (DFG) through funding for the project Methoden und Instrumente zum
Verständnis und zur Kontrolle von Datenschutz (SFB1223/1) and by the Ger-
man Federal Ministry of Education and Research (BMBF) through funding for
CISPA and the CISPA-Stanford Center for Cybersecurity (FKZ: 16KIS0762).

References

1. Technical background of version 1 bitcoin addresses. https://en.bitcoin.it/

wiki/Technical_background_of_version_1_Bitcoin_addresses, accessed: 2018-
10-09

2. Zcash parameter generation. https://z.cash/technology/paramgen.html, accessed:
2018-10-08

3. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for
composite statements. In: Advances in Cryptology–CRYPTO 2018 (3). pp. 643–
673. Springer (2018)

4. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight
sublinear arguments without a trusted setup. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. pp. 2087–2104.
ACM (2017)

5. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications Security.
pp. 1087–1098. ACM (2013)

6. Bangerter, E., Camenisch, J., Maurer, U.: Efficient proofs of knowledge of dis-
crete logarithms and representations in groups with hidden order. In: Public Key
Cryptography–PKC 2005. pp. 154–171. Springer (2005)

7. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 263–280. Springer (2012)

8. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In: Theory of Cryptography Conference. pp.
356–374. Springer (2008)

9. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: Advances in
Cryptology–CRYPTO 2013, pp. 90–108. Springer (2013)

10. Brands, S.A.: Rethinking public key infrastructures and digital certificates: build-
ing in privacy. Mit Press (2000)

11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: Short proofs for confidential transactions and more. In: IEEE Symposium
on Security and Privacy (SP). pp. 319–338. IEEE (2018)

12. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: International Conference
on the Theory and Applications of Cryptographic Techniques. pp. 93–118. Springer
(2001)

26

https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses

13. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Advances in Cryptology–CRYPTO 2004. pp. 56–72.
Springer (2004)

14. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Advances in Cryptology–CRYPTO ’97. pp. 410–424. Springer (1997)

15. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Tech. rep., ETH Zurich, Institut für Theoretische Informatik (1997)

16. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1825–1842. ACM (2017)

17. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In: Advances in Cryptology–CRYPTO 2016. pp. 499–530. Springer (2016)

18. Chaum, D., Evertse, J.H., van de Graaf, J., Peralta, R.: Demonstrating possession
of a discrete logarithm without revealing it. In: Advances in Cryptology–CRYPTO
’86. pp. 200–212. Springer (1986)

19. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Advances in Cryptology–CRYPTO
’94. pp. 174–187. Springer (1994)

20. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Public-Key
Cryptography–PKC 2014. pp. 630–649. Springer (2014)

21. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Advances in Cryptology–CRYPTO ’86. pp. 186–194.
Springer (1987)

22. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Advances in Cryptology–EUROCRYPT 2013.
pp. 626–645. Springer (2013)

23. Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: Faster zero-knowledge for boolean
circuits. In: USENIX Security Symposium. pp. 1069–1083 (2016)

24. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in zero-
knowledge and a methodology of cryptographic protocol design. In: Advances in
Cryptology–CRYPTO ’86. pp. 171–185. Springer (1986)

25. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on computing 18(1), 186–208 (1989)

26. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: International
Conference on Applied Cryptography and Network Security. pp. 467–482. Springer
(2005)

27. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Ad-
vances in Cryptology–ASIACRYPT 2010. pp. 321–340. Springer (2010)

28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Advances in Cryptology–EUROCRYPT 2008, pp. 415–432. Springer (2008)

29. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the thirty-ninth annual ACM sympo-
sium on Theory of computing. pp. 21–30. ACM (2007)

30. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. pp. 955–966. ACM
(2013)

27

31. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free xor gates and appli-
cations. In: International Colloquium on Automata, Languages, and Programming.
pp. 486–498. Springer (2008)

32. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Proceedings of the 1st ACM conference on Electronic commerce. pp.
129–139. ACM (1999)

33. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Advances in Cryptology–CRYPTO ’91. pp. 129–140. Springer (1991)

34. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

35. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: Proceedings of the 35th Annual Symposium on Foundations of Computer
Science. pp. 124–134. IEEE (1994)

36. Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Tiny-
garble: Highly compressed and scalable sequential garbled circuits. In: 2015 IEEE
Symposium on Security and Privacy (SP). pp. 411–428. IEEE (2015)

37. Yao, A.C.C.: How to generate and exchange secrets. In: Proceedings of the 27th An-
nual Symposium on Foundations of Computer Science. pp. 162–167. IEEE (1986)

38. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Advances in
Cryptology–EUROCRYPT 2015. pp. 220–250. Springer (2015)

28

The prover knows x to a public function F , such that y = F (x), where y is public.
t denotes the number of (parallel) rounds.

p← Prove(x)

1. (Commit step) For each round ρ ∈ [1, t]: Sample random tapes k
(ρ)
1 , k

(ρ)
2 , k

(ρ)
3

and simulate the MPC protocol to get an output view View
(ρ)
j and output

share y
(ρ)
j .

(x
(ρ)
1 , x

(ρ)
2 , x

(ρ)
3)← Share(x, k

(ρ)
1 , k

(ρ)
2 , k

(ρ)
3)

= (G(k
(ρ)
1), G(k

(ρ)
2), x⊕G(k

(ρ)
1)⊕G(k

(ρ)
2))

View
(ρ)
j ← Upd(...Upd(x

(ρ)
j , x

(ρ)
j+1, k

(ρ)
j , k

(ρ)
j+1)...)

y
(ρ)
j ← Output(View

(ρ)
j)

Commit D
(ρ)
j ← H ′(k

(ρ)
j ,View

(ρ)
j), let a(ρ) = (y

(ρ)
1 , y

(ρ)
2 , y

(ρ)
3 , D

(ρ)
1 , D

(ρ)
2 , D

(ρ)
3)

and let a = a(1), . . . , a(t) be the output of this step.
2. Compute the challenge: e ← H(a). Interpret e such that for ρ ∈ [1, t], e(ρ) ∈
{1, 2, 3}.

3. (Response step) For each round ρ ∈ [1, t]: let b(ρ) = (y
(ρ)

e(ρ)+2
, D

(ρ)

e(ρ)+2
) and

set z(ρ) ← (View
(ρ)

e(ρ)+1
, k

(ρ)

e(ρ)
, k

(ρ)

e(ρ)+1
). If e(ρ) 6= 1, add x

(ρ)
3 to z(ρ). Let r ←

[(b(1), z(1)), . . . , (b(t), z(t))] be the output of this step.
4. Output p← [e, r].

b← V erify(y, p):
1. (Reconstruct step) For each round ρ ∈ [1, t]: Run the MPC protocol to re-

construct the views. In particular: compute x
(ρ)

e(ρ)
, x

(ρ)

e(ρ)+1
using z(ρ) as part

of r of p in one of the following ways: x
(ρ)
1 ← G(k

(ρ)
1), x

(ρ)
2 ← G(k

(ρ)
2), or x

(ρ)
3

given as part of z(ρ).

Obtain View
(ρ)

e(ρ)+1
from z(ρ) and compute

View
(ρ)
e ← Upd(...Upd(x

(ρ)
j , x

(ρ)
j+1, k

(ρ)
j , k

(ρ)
j+1)...), y

(ρ)

e(ρ)
← Output(View

(ρ)

e(ρ)
),

y
(ρ)

e(ρ)+1
← Output(View

(i)

e(ρ)+1
), y

(i)

e(ρ)+2
← y ⊕ y(i)

e(ρ)
⊕ y(i)

e(ρ)+1
.

Compute the commitments for views View
(ρ)

e(ρ)
and View

(ρ+1)

e(ρ)
. For j ∈

{e(ρ), e(ρ) + 1}:
D

(ρ)
j ← H ′(k

(ρ)
j ,View

(ρ)
j).

Let a′(ρ) = (y
(ρ)
1 , y

(ρ)
2 , y

(ρ)
3 , D

(ρ)
1 , D

(ρ)
2 , D

(ρ)
3) and note that y

(ρ)

e(ρ)+2
and D

(ρ)

e(ρ)+2

are part of z(ρ). Let a′ = (a′(1), . . . , a′(t)) be the output of this step.
2. Compute the challenge: e′ ← H(a′). If e′ = e, output Accept, otherwise

output Reject.

Fig. 5: Non-interactive ZKB++ [16].

29

	Efficient Non-Interactive Zero-Knowledge Proofs in Cross-Domains without Trusted Setup

