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Abstract

We present EDRAX, a general architecture for building cryptocurrencies with stateless transaction
validation. In EDRAX, all cryptocurrency nodes, such as miners and validating nodes, can validate
incoming transactions and subsequently update user balances simply by accessing the last confirmed
block. This removes the current need for storing, off-chain and on-disk, order-of-gigabytes large vali-
dation state. We present and implement two instantiations of EDRAX, one in the UTXO-based model of
Bitcoin-like cryptocurrencies, where we use sparse Merkle trees, and one in the account-based model
of Ethereum-like cryptocurrencies, where we show that Merkle trees cannot be used and where al-
gebraic vector commitments are needed instead. Towards this goal, we construct, prove secure and
implement the first practical algebraic vector commitment with logarithmic asymptotic costs that can
scale to millions of accounts, as required by cryptocurrencies today. Our evaluation of EDRAX shows
that (i) for the current scale of Bitcoin and Ethereum our stateless transaction validation overhead is
comparable to stateful transaction validation that requires gigabytes of local index data; (ii) while the
scale increases, the performance of stateful validation deteriorates substantially due to expensive I/Os
and our stateless validation is faster by up to approximately two orders of magnitude.

1 Introduction
Decentralized cryptocurrencies and smart contracts such as Bitcoin [19] and Ethereum [2] promise to
remove trusted online parties (e.g., banks and escrows) in sake of faster and more secure financial trans-
actions. Their underlying technology, the blockchain, is an ever-growing hashchain built on blocks of
incoming transactions that is agreed upon by a dynamic set of nodes participating in the peer-to-peer
cryptocurrency network. This ever-growing nature of the blockchain, however, can limit the cryptocur-
rency scalability, not only in terms of storage required to include all events since the genesis block, but
also in terms increasing overheads for transaction validation, blockchain verification and initial synchro-
nization.

In particular, most blockchain-based cryptocurrencies known to date consist of two kinds of parties,
clients that own coins (e.g., a secret key to a Bitcoin address) and nodes1 that validate transactions created
by the clients. To decide if an incoming transaction is valid so that it can be included in the next block or

1Nodes are further distinguished into miners that propose new blocks and validating nodes that merely validate and propagate
transactions and blocks in the network.
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propagated to a peer, nodes store all the history of transactions so far—namely the whole blockchain. For
example, if a new transaction appears requiring 5 bitcoins to be sent from address A to address B, a node
must query the blockchain to decide whether A has at least 5 bitcoins in his account. Only if this is the
case, is this transaction considered valid and candidate for appearing on the blockchain.

The blockchain data structure, however, is too large (e.g., Bitcoin blockchain is around 150 GB and
Ethereum blockchain has exceeded 400 GB) and is growing continuously. Therefore naively querying it
will simply take too long. For that reason, most cryptocurrency nodes are typically stateful, maintaining
an appropriate index called validation state that is smaller than the blockchain and which is enough for
deciding transaction validity. In some cryptocurencies (e.g., Bitcoin, ZCash, Komodo, Monero, Ergo)
the validation state is a set of immutable coins called UTXO (unspent transaction outputs), in Bitcoin
jargon. In this UTXO-based model, a transaction is valid if it spends coins which belong in UTXO. Other
cryptocurrencies (e.g., Nxt, Ethereum, Bitshares, NEM, Tezos) organize the validation state as a set of
mutable (and potentially long-living) accounts. In this account-based model, a transaction is valid if
it is trying to spend no more tokens than the available balance. Advantages and disadvantages of both
approaches are the focus of an ongoing debate in the cryptocurrency community [27].2

Challenges due to stateful validation. Locally maintaining the validation state, however, is quite cum-
bersome. In particular, the validation state is in the order of GBs (currently the UTXO set in Bitcoin is
around 2.7 GB [16] and the authenticated Patricia trie in Ethereum is around 14 GB) and could grow
substantially in the coming years. For example, approximately 86,000 Ethereum new accounts/addresses
are currently generated every day [13] and at this rate the Ethereum validation state is expected to dou-
ble in one year from now. For a new node to enter the network, the validation state needs to be either
downloaded and verified or computed from scratch, making such synchronization an extremely slow
process [14] (looking ahead, our approach will enable incoming miners to start validating transactions in-
stantly, by just accessing the last block). Also, being in the order of GBs, the validation state is stored on
disk (e.g., the geth Ethereum implementation stores the authenticated Patricia Trie using Google’s lev-
elDB [15]), leading to slow transaction validation due to expensive I/Os. This has facilitated various DoS
attacks like the one that took place on Ethereum in 2016 [26], where adversarially-crafted transactions
required a large number of disk accesses causing block validation times to reach 60 seconds! Finally,
having to store such large state to verify transactions can potentially lead to disadvantaged miners that
cannot dedicate large storage resources [7]. Several other practical issues and system-level components
(e.g., storage rent and sharding) that would benefit via a complete erasure of the local validation state are
analyzed extensively by Vitalik Buterin, Ethereum co-founder, in his recent blog post on the “stateless
client concept” [14].

Due to the challenges above, building a cryptocurrency protocol where all nodes can check the va-
lidity of transactions without having to store any local validation state (namely validation state can be
maintained as part of the cryptocurrency blocks on-chain) has been a challenging open problem in the
cryptocurrency community.

1.1 EDRAX architecture
We address the above by designing and implementing EDRAX, a cryptocurrency supporting stateless
transaction validation using verifiable data outsourcing methods such as authenticated data structures [25,
17] and vector commitments [11]. EDRAX comes in two versions, one supporting the UTXO-based model
and one for the account-based model. EDRAX’s architecture can be seen in Figure 1.

2One of the main advantages of the account-based model is the small transaction size. In particular, a public key can spend
any amount of funds v associated with it with a single transaction whereas in the UTXO-based model a public key distributes its
funds in many unspent outputs, meaning that spending an arbitrary amount of funds might require including many inputs in the
transaction, thus increasing the transaction size.
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Figure 1: EDRAX architecture. Transactions include proofs. Miners verify transactions using a short
digest stored at the last block t, an updated version of which is included in the next block t + 1. Clients
synchronize their local proofs after the new block is produced.

Validation digest, local proofs and transactions. In EDRAX, each block b includes a constant-size
validation digest of the current validation state (the one that includes all transactions up to block b),
computed with appropriate authenticated data structures. Clients, along with their coins, store short local
proofs of their coins with respect to the aforementioned digest. A local proof is a proof that a specific coin
can be spent given the current state of the blockchain (i.e., with respect to a certain validation digest). It
is included, along with the traditional digital signature, in an EDRAX transaction, enabling miners and
validating nodes to easily verify transactions by just accessing the latest validation digest.
Local proofs and digest synchronization. In EDRAX, Alice’s local proof for a coin with respect to a
validation digest digestt at time t will be outdated at time t+ 1, after Bob’s transactions are incorporated
in the blockchain and digestt changes to digestt+1. EDRAX’s authenticated data structures enable coin
owners to synchronize their local proofs efficiently by accessing from the blockchain the updates that
took place between t and t+ 1, so that they can spend their coins again at time t+ 1. Similarly, EDRAX
allows miners to easily update the digest from digestt to digestt+1 to incorporate new transactions added
to the blockchain. The new validation digest will be part of the new block. See Figure 1.

1.2 Warm-up: EDRAX for UTXO-based model via sparse Merkle trees
As warm-up, we show in Section 3 how to provide stateless transaction validation in the UTXO-based
model by just using Merkle trees. Recall that in the UTXO-based model, miners and validating nodes are
maintaining a set S of unspent transaction outputs. Whenever a new transaction tx appears that has input
x and output y, nodes must first check whether input x belongs in S, and if so, update set S by removing
x and inserting the new output y. Our construction represents S with a sparse Merkle tree of 2W leaves
where 2W is the maximum number of outputs that can ever be generated, e.g., W = 40 (in Section 7
we suggest an optimization with less leaves using authenticated red-black trees). At leaf i we store the
i-th transaction output that was inserted into set S. To delete a leaf j, we just set the value of this leaf to
be null. We then naturally define the validation digest to be the root of the underlying Merkle tree and
local proofs as Merkle tree proofs. The above approach allows insertions and deletions to be performed
by miners and validating nodes only if the whole Merkle tree is stored as validation state which is very
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large. In Section 3 we show how to append a new output y to S by having nodes access only the local
proof of the most recent output ever inserted in S (of size O(W )). Similarly, deletion of Alice’s spent
input x from S can be performed by having nodes process Alice’s local proof used to prove membership
of x in S.

Table 1: Comparison of our new vector commitment with existing work. While the lattice-based scheme
has better asymptotics, the constants in the proof size are quite large and therefore it is not suited for our
application (n is the size of the vector).

scheme public update proof Verify Prove UpdateDigest UpdateProof
key key

ECC-based [11] O(n2) O(n) O(1) O(1) O(n) O(1) O(1)
RSA-based [11] O(n) O(n) O(1) O(1) O(n log n) O(1) O(n)
lattice-based [21] O(1) O(1) O(log n) O(log n) O(n) O(log n) O(log n)

EDRAX O(n) O(log n) O(log n) O(log n) O(n) O(1) O(log n)

1.3 EDRAX for account-based model via algebraic vector commitments
In the account-based model, nodes maintain a vector of all account balances which serves as validation
state. Whenever Alice wishes to send δ tokens to Bob, she posts a transaction including this information.
To verify this transaction, nodes must access the balances vector to check whether Alice has at least δ
tokens in her account.
Why Merkle trees do not work here. One could consider using Merkle trees to provide stateless vali-
dation in the account-based model as well: Build a Merkle tree on top of the account balances, define the
Merkle digest as the validation digest and have the owner of account i maintain a Merkle proof for the
balance at position i as her local proof. However, there is a fundamental problem with such an approach.
Assume Alice’s balance is vA tokens and Bob’s balance is vB tokens. Whenever Alice wants to send,
say, 5 tokens to Bob, Alice needs to include a Merkle tree proof proving her current balance is vA ≥ 5.
Once the miner verifies the proof, the miner can process the verified proof to efficiently update the new
digest so as to reflect Alice’s new account balance as vA − 5. Unfortunately, due to the nature of Merkle
trees, Alice’s local proof does not suffice to update Bob’s new balance to vB + 5 as well unless Alice
includes Bob’s local proof in her transaction. However, this would require Alice to contact Bob and ask
for his proof every time she sends money to him which is against the spirit of cryptocurrencies where
Alice should be able to send money to Bob by just knowing a fixed public address. A similar approach
was recently introduced by Reyzin et al. [14] where some cryptocurrency nodes must eventually store
large state to circumvent the above fundamental problem.
Our approach. Our central observation is that any instantiation of algebraic vector commitments, as
defined by Catalano and Fiore [11], provides a solution to stateless validation in the account-based model.
An algebraic vector commitment is a way to compute a collision-resistant digest dig(v) of a vector v =
[v1, . . . , vn] such that updates (of the digest) at arbitrary indices i by an amount δ (namely vi = vi ± δ)
can be performed by an algorithm UpdateDigest that accesses only dig(v), index i, difference δ and some
fixed public parameters computed in the setup phase of the scheme—namely no proof is needed to update
dig(v) as in Merkle trees. Also, one can define a short proof πi for the value vi of vector v with respect
to a digest dig(v). This proof can be easily synchronized when an update (j, δ) takes place by just using
j’s update key upkj . See Definition 1 for the formal definition of algebraic vector commitments.

Algebraic vector commitments are perfect fit for implementing EDRAX in the account-based model:
The vector digest dig(v) serves as validation digest; a SPEND transaction is of the form [πi, vi, i→ j, δ]
meaning a client i owning vi tokens wants to send δ ≤ vi tokens to client j; Proof πi enable miners to
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check that δ ≤ vi; Auxiliary information i → j, δ allows miners to update dig(v) to reflect vi = vi − δ
and vj = vj + δ so as to include it in the next block—it also allows all other clients to synchronize their
local proofs πk accordingly. The detailed protocol is described in Section 4.

1.4 A new algebraic vector commitment
We design and implement a new algebraic vector commitment for EDRAX—see Section 5. Our con-
struction uses the `-variate “multiplexer” polynomial f(x), also called a multilinear extension, to rep-
resent a vector of n = 2` entries. E.g., for the vector V = [5 2 8 3] the polynomial f(x1, x2) is
5 · (1 − x2)(1 − x1) + 2 · (1 − x2)x1 + 8 · x2(1 − x1) + 3 · x2x1, so that f(0, 0) = V [0], f(0, 1) =
V [1], f(1, 0) = V [2], f(1, 1) = V [3]. Then the digest of the vector is computed as gf(s) where g is a
generator of an elliptic-curve group and s is a random point that is kept secret. The proof size of our
construction is exactly ` group elements. Our construction also features an O(`)-time algorithm3 for syn-
chronizing proof πi for a point i ∈ {0, 1}` given un update (j, δ) where j is another point in {0, 1}`—see
Algorithm DELTAPOLYNOMIALS in Section 5.
Comparison to other vector commitments. Succinctly representing vectors using multilinear exten-
sions was introduced by Zhang et al. [29, 28] for a different application, where no efficient proof syn-
chronization algorithms were presented. Their proof was slightly larger (2` − 1 group elements) due
larger domain of possible queries (as opposed to the hypercube {0, 1}` that we have here).

Other algebraic vector commitments that can be used to implement EDRAX were also introduced by
Catalano and Fiore [11]: One based on elliptic curve cryptography (ECC) and one based on the RSA
cryptosystem. Also Papamanthou et al. [21] presented a “streaming authenticated data structure” (that
can be cast as an algebraic vector commitment) based on lattice assumptions, which was subsequently
optimized and implemented in [24]. Unfortunately all these approaches are quite impractical. In partic-
ular, the ECC-based construction [11] has quadratic public key size (leading to hundreds of billions of
group elements for public parameters in EDRAX) as well as linear update key size (meaning an other-
wise constant-size EDRAX transaction i → j would suffer a linear blowup). Similarly the RSA-based
construction [11] requires linear time for proof update, leading to very slow proof synchronization. Also,
while the lattice construction has better asymptotics it suffers from high concrete parameters (as we an-
alyze in detail in our evaluation in Section 6): Numbers from [24] indicate an increase in transaction
size by at least two orders of magnitude (the size of a lattice hash is around 2.6 KB). A representative
comparison is shown in Table 1.

1.5 Implementation and evaluation
In Section 6 we implement sparse Merkle trees and our new vector commitment scheme and use our
implementation to simulate block processing in UTXO-based EDRAX and account-based EDRAX. Our
main finding indicates that as the size of the validation state increases, storing validation state on-disk, as
it happens today, is bound to considerably slow down block processing, even in the presence of caching.
In such cases EDRAX’s stateless transaction validation can yield up to 43× savings in block processing
times.

2 Preliminaries
We now present background material on bilinear maps, multilinear extensions, sparse Merkle trees and
vector commitments.

3Moreover, averaging over all j ∈ {0, 1}` the proof update complexity for i is O(1).
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Bilinear pairings. We denote by (p,G,GT , e, g) ← Gen(1λ) generation of bilinear-map parameters,
where G, GT are groups of prime order p, with g a generator of G, and where e : G × G → GT is an
efficient map, i.e., for all P,Q ∈ G and a, b ∈ Zp it is e(P a, Qb) = e(P,Q)ab. To prove security we will
be using the q-Strong Bilinear Diffie-Hellman assumption[9] (q-SBDH) on the groups G and GT that we
formally define in the Appendix—see Assumption 1.
Multilinear extension polynomial of vectors. Let F be a field (one can think of it as Zp) and let n = 2`.
Let i ∈ {0, . . . , n−1} and let ik denote its bit a position k. For a vector a = [a0, . . . , an−1] with elements
in the field F, we define its multilinear extension polynomial fa : F` → F as a polynomial of ` variables
that servers as a multiplexer for the vector a, i.e.,

fa(x1, . . . , x`) =

n−1∑
i=0

(
ai ·

∏̀
k=1

selectik(xk)

)
, (1)

where

selectik(xk) =

{
xk if ik = 1

1− xk if ik = 0
. (2)

Note that polynomial fa is the unique multilinear polynomial such that for all i with binary representation
i`, . . . , i1 it is fa(i1, . . . , i`) = ai. For example, for the vector a = [5 2 8 3] it is

fa(x1, x2) = 5 · (1− x2)(1− x1) + 2 · (1− x2)x1 + 8 · x2(1− x1) + 3 · x2x1 .

To simplify notation, we sometimes represent the point (x1, . . . , x`) as x. The following polynomial
decomposition from [28] is useful.

Lemma 1. For any multilinear polynomial f : F` → F and for t ∈ F`, there exist polynomials qi such
that f(x)− f(t) =

∑`
i=1(xi − ti)qi(x). Moreover, all qi can be computed in O(2`) = O(|f |) time.

Sparse Merkle trees. Sparse Merkle trees are Merkle trees [17] built over key-value pairs (ki, vi) whose
keys ki are drawn from a large domain [0, 1, . . . , 2W − 1]. In particular, data item (ki, vi) is stored at the
ki-th leaf of the tree (the tree has a total of 2W leaves). We define a natural labeling for all nodes of the
sparse Merkle tree: Root takes label ε, his left child takes label 0, his right child takes label 1, his leftmost
grandchild takes label 00 and so on.

For W -bit leaf ki that stores the data element (ki, vi) we define the digest of leaf ki as dig(ki) =
ki||vi. For leaves ` that do not store a key we set dig(`) = null. For every internal node u of the
Merkle tree we define the digest of u as dig(u) = H(dig(v)||dig(w)), if either dig(v) or dig(w) is not
null and dig(u) = null otherwise. Here, v is the left child of u and w is the right child of u and H is a
collision-resistant hash function such as SHA-2.

Single item verification and deletion. For data item (k, v) let path(k) be the ordered set of nodes on
the path from k to the root ε and let sib(k) be the ordered set of siblings of nodes on path(k). Recall that
the proof π(k) for (k, v), with respect to the digest of the root dig(ε) is the set dig(k) ∪ {dig(v) : v ∈
sib(k)}. In particular, to verify the proof, one can run a verification algorithm

d← verifyMerkle(k, v, π(k)) (3)

that recomputes the digest of the root. If d = dig(ε) the verification is successful and one can be assured
(except with negligible probability) that (k, v) is the k-th leaf of the sparse Merkle tree. After a successful
verification, the verification algorithm can also be used to update dig(ε) when (k, v) is deleted from the
tree. In particular one can run verify(k, null, π(k)) to output the new digest d′. The proof size is O(W )
and the verification complexity is O(W ).
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Batch verification and deletion. The above approach can be generalized for verifying a set of data
items S = {(k1, v1), . . . , (kt, vt)} at once. In particular let path(S) be the union of path(ki) and
let sib(S) be the union of sib(ki). The proof π(S) for all (k1, v1), . . . , (kt, vt) in S, with respect to
the digest of the root dig(ε) is the set ∪idig(ki) ∪ {dig(v) : v ∈ sib(S)}. In this case we can call
verifyMerkle(S, π(S)) to recompute the digest of the sparse Merkle tree and verify all elements in S, as
well as verifyMerkle({(k1, null), . . . , (kt, null)}, π(S)) for the batch deletion of all data elements in S.
Vector commitments. We now give the definition of vector commitment, introduced by Catalano and
Fiore in [11]. We have changed the syntax a bit, to reflect our application better. In particular we distin-
guish between the prover public key prk, the verifier public key vrk and the update public key upki.

Definition 1 (Vector commitment scheme). A vector commitment scheme V consists of the following PPT
algorithms:

1. (prk, vrk, upk0, . . . , upkn−1)← KeyGen(1λ, n): Given security parameter λ and vector length n,
it outputs a prover key prk, a verifier key vrk and update keys upk0, . . . , upkn−1.4

2. dig ← Setup(a0, . . . , an−1, prk): Given prover key prk and vector a = (a0, . . . , an−1), it outputs
a digest dig.

3. (ai, πi) ← Prove(i, a, prk): Given prover key prk, vector a and index i, it outputs element ai and
proof πi.

4. {0, 1} ← Verify(dig, i, a, π, vrk): Given verifier key vrk, digest dig, an index i, a value a, it outputs
a bit denoting either accept or reject.

5. dig ← UpdateDigest(dig, u, δ, upku): Given update key upku, a digest dig, an index u, an update
δ5 at index u, it outputs the updated digest dig.

6. πi ← UpdateProof(πi, u, δ, upku): Given update key upku, a proof πi for a value at index i, an
update δ at index u, it outputs the updated proof πi.

The correctness definition for vector commitments is in the Appendix—Definition 3. We now present
the soundness definition.

Definition 2 (Soundness of vector commitment scheme). Consider the following experiment that takes
as input the security parameter λ and outputs vector a, index i, value a and a bit b.

• Let n be output by the adversary A;

• (prk, vrk, upk0, . . . , upkn−1)← KeyGen(1λ, n);

• Let a = [a0, . . . , an−1] be output by adversary A;

• dig← Setup(a, prk);

• for i = 1, . . . , t = poly(λ)

– Let update (u, δ) be output by the adversary A and let a be the updated vector;

– dig← UpdateDigest(dig, u, δ, upku);
4For an update (u, δ) on index u, update key upku is required to update either the digest or some other proof πi where

i = 1, . . . , n− 1. Note that all update keys are public and can be regarded as the pubic key of the system.
5Value δ can be either positive or negative indicating credit or debit for account u.
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Algorithm 1 Algorithm for updating most recent proof when a new output [PK, v] is generated.
1: procedure π(cnt+ 1)← UPDATEMOSTRECENTPROOF(π(cnt),PK, v)
2: Parse π(cnt) as d0, . . . , dW where d0 is cnt||[pk, v′];
3: Initialize π(cnt+ 1) as δ0, . . . , δW where δ0 is (cnt+ 1)||[PK, v] and δi = null for i > 0;
4: Let the binary representations of cnt and cnt+1 beB||bk, . . . , b0 andB||βk, . . . , b0 respectively,

where B is their common prefix;
5: Set q = |B| − 1;
6: Copy the last q hashes from π(cnt) to the last q positions of π(cnt+ 1);
7: Let π contain the first W − q hashes of π(cnt);
8: Run d← verifyMerkle(cnt, [pk, v], π);
9: Set δW−q+1 = d and δi = null for all 0 < i < W − q + 1 ;

10: return π(cnt+ 1);

• Let i, a, π be output by the adversary and let

b← Verify(dig, i, a, π, vrk) .

• return (a, i, a, b);

A vector commitment scheme is sound if for all PPT adversaries A, the probability b = 1 and a 6= ai,
where ai is the value at i is negligible.

3 EDRAX in UTXO-based model
As we mentioned in the introduction, the UTXO-based model follows the design of Bitcoin-like cryp-
tocurrencies, where validating a transaction tx depends on whether its inputs belong to a set of unspent
transaction outputs (or UTXO) that is maintained by the miners. Once this condition is verified, the spent
inputs of tx are removed from UTXO and the new outputs of tx are added to UTXO. We first describe a
version of EDRAX in this model.

Representing UTXO as a sparse Merkle tree. We will represent the UTXO set as a sparse Merkle
hash tree. A similar approach has been used in Zcash [8]—unlike Zcash, however, here we remove a
transaction output from the Merkle tree after it is spent by marking is as null, see Figure 2. In particular
each element of the UTXO is of the form (i, [pk, v]) where i is the an increasing timestamp/counter
indicating when this output was added to the UTXO (and serves as the “key” in the sparse Merkle tree)
and [pk, v] contains the public key pk and EDRAX units v that this output can be spent to (and serves as
the “value” in the sparse Merkle tree).

Validation digest. Every block b at time t (t refers to the rank of the block in the blockchain) in UTXO-
based EDRAX contains the following information as validation digest.

1. The UTXO digest digestt which is the roothash of the sparse Merkle tree built on transaction
outputs that have been generated up to block b, block b included (for outputs that have already been
spent we mark them as null);

2. The Merkle tree proof of the most recent entry in the UTXO, i.e., the Merkle tree proof correspond-
ing to the last output of the last transaction in the last block b. We call this proof most recent proof
and we denote it as πt.
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Figure 2: Evolution of the sparse Merkle tree on the UTXO set. In Tree A, the UTXO set contains
4 unspent outputs that were added with timestamps 0, 4, 5 and 7. The outputs that were added with
timestamps 1, 2, 3 and 6 have already been spent (and thus deleted/nullified). We highlight with green
color the nodes that constitute the most recent proof π(7). In Tree B a new transaction tx with input 4
appears in the system (thus 4 must be deleted from the tree), causing the most recent proof π(7) to change
one of its hashes to H(null||dig(5)), indicated with dark green color. The output of tx is added in Tree
C at the next position 8, causing the update of the most recent proof from π(7) to π(8). Note that π(8) in
Tree C can be easily computed from π(7) in Tree B using Algorithm 1.

Client state. A EDRAX client stores the list L of his unspent transaction outputs (i, [pki, vi]) (i.e., the
ones for which he knows respective secret keys ski) as well as respective Merkle proofs π(i).

SPEND transaction. For simplifying exposition, suppose Alice wants to create a transaction tx that
spends a transaction output (x, [pk, v]) in her local list L to a specific public key PK (we can trivially
generalize the SPEND transaction for multiple inputs and outputs). Let sk be the corresponding secret
key to pk. Alice constructs and signs, using sk, the following transaction:

[(x, [pk, v]), π(x),PK] .

To be valid, π(x) must refer to the last block, i.e., block at time t.

New block creation. Suppose the last block that was computed is block t and miners are competing to
compute block t+ 1. To do that miners collect incoming SPEND transactions of the type

[(x, [pk, v]), π(x),PK], sig

and decide using the validation digest stored at block t whether to include a transaction in block t+ 1 by
performing the following:

1. (transaction signature verification) Check that signature sig is valid under public key pk;

2. (verifying membership of transaction input in UTXO) Run

verifyMerkle(x, [pk, v], π(x))

as in Relation 3 to output a digest d. If d equals digestt (part of the validation digest), then the
miner is assured (x, [pk, v]) exists in the UTXO set and thus can be spent.

The time required for verifying a transaction is O(W ) since one Merkle tree proof must be verified per
transaction. The transactions that satisfy the above checks are candidates for the next block. The block
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has size O(m ·W ) where m is the number of transactions in the block. Finally, in the new block t + 1,
miners must also include the updated validation digest, i.e., UTXO digest digestt+1 and the new most
recent proof πt+1. We describe this procedure next.

Update of validation digest. We first show how to update the validation digest digestt, πt for one
transaction [(x, [pk, v]), π(x),PK] with one input and one output and then we generalize to multiple
transactions—see Figure 2. In particular, to compute digestt+1 and πt+1 given digestt and πt the miners
perform the following steps:

1. (deleting transaction input from UTXO) Update the UTXO digest digestt to d′ to not contain spent
input (x, [pk, v]) anymore by running d′ ← verifyMerkle(x, null, π(x)) as we described in Sec-
tion 2;

2. (updating most recent proof due to deletion) Let cnt be the timestamp corresponding to the most
recent proof πt. For every node v ∈ sib(cnt)∩path(x) replace every hash dig(v) in the most recent
proof πt with the new hashes dig(v) as computed by running algorithm verifyMerkle(x, null, π(x))
above leading to a new proof π′—see Tree B in Figure 2.

3. (adding transaction output to UTXO) The new transaction output should now be stored at leaf
cnt + 1 as (cnt + 1), [PK, v]). Because of the addition of the new leaf, the most recent proof
π′ = π(cnt) computed above must be updated to πt = π(cnt + 1). Intuitively this can be done
since πt is “to the right” of π′—see UpdateMostRecentProof (Algorithm 1) for the detailed
pseudocode and Tree C in Figure 1. After πt+1 is computed, miners can finally update the digest
d′ by running verifyMerkle(cnt+ 1, [PK, v], πt) which will output the final digest digestt+1.

Processing multiple inputs and outputs. To process a block with more than one transactions with more
than one inputs and outputs (as it typically happens in practice), miners must perform batch verification
and batch deletion to verify and delete the inputs from the UTXO, as described in Section 2. This not just
an optimization, but it is needed for correctness (otherwise proofs will be out-of-sync). Finally, to add
the new outputs to the UTXO, the miners run Step (5) above as many times as the number of new outputs
generated in the block. Updating the validation digest with the above steps takes O(m ·W ) time where
m is the total number of transaction inputs and outputs in the block.

Proof computation and synchronization. For an unspent output (x, [pk, v]) in the UTXO, let π(x) be
the proof stored locally by the client with respect to time t. To synchronize π(x) for time t+ 1, the client
must process all transactions in the block at time t+ 1 by performing the same steps as the miners above.
But instead of outputting digest digestt+1 at time t+ 1 and most recent proof πt+1 at time t+ 1, he just
replaces the affected hashes in his proof π(x), due batch deletion and addition of the new outputs. In
general, to synchronize between t1 and t2, he repeats this process t2 − t1 times.

4 EDRAX in account-based model
We now describe our version of EDRAX stateless cryptocurrency that uses balances (such as Nxt, Ethereum,
Bitshares, NEM, Tezos). Recall in such systems the miners maintain a database with balances and trans-
action validity is checked against this database (instead of UTXO). To implement EDRAX in the account-
based model, we will use any secure vector commitment scheme (as given in Definition 1) as a black box
but in Section 5 we provide a concrete construction which is efficient both asymptotically and in practice.

Setup. Just like Zcash [8], EDRAX requires an one-time setup phase. In particular given an upper
bound n on the number of accounts that EDRAX can support6 and the security parameter λ, algorithm

6E.g., for Ethereum the number of accounts now is approximately 30 million; we will show experiments for 1 billion accounts.
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KeyGen(1λ, n) is executed outputting the prover key prk, the verification key vrk and update keys upki—
these public parameters are hardcoded into the EDRAX reference software client. As an optimization one
can just hardcode a Merkle tree digest of these parameters (since they can be quite large) and retrieve
them as required during the build—this technique is used in Zcash, for example. Finally, to mitigate
the risk of trapdoor leakage during execution of KeyGen, we can use a secure multiparty computation
protocol as in [10].

Validation digest. Just like in other cryptocurrencies, EDRAX miners store the whole blockchain. Also
for each block b at time t they include, along with transaction data, two constant-size values:

1. The account digest digestt which is a summary (hash) of the account balances in the system up to
block b, block b included. It is computed using a vector commitment scheme as in Definition 1.
It is initialized by running dig ← Setup(0, . . . , 0, prk) which, in our implementation, is g0 = 1,
where 1 denotes the identity element of the bilinear group G. In general the digest digestt will be
on a vector a that stores mappings of public keys to balances. Our implementation does that by
storing mappings of the type

i→ [h(PK)||balance]
where i is in {0, 1, . . . , n− 1} and is assigned by miners for a specific public key PK—this assign-
ment is triggered via a special INIT transaction that serves as “registration” for a new user and is
described in the following.7 8

2. The account counter cntt that indicates how many INIT transactions have occurred up to block b,
block b included—roughly speaking this indicates how many accounts are currently in the system.
It is initialized as 0.

Client state. Apart from a public and a secret key required in other cryptocurrencies, an EDRAX client is
required to store the local proof π for the value of his balance with respect to the account digest digestt.
In our implementation, proof π is particularly small, having only log n group elements. Also in our
implementation each proof is initialized as (1, . . . , 1) where 1 is the group identity element.

INIT transaction. Just like in Bitcoin and Ethereum, the first time Alice ever wants to use EDRAX, she
creates a pair of private and public keys (sk, pk) (e.g., using elliptic curve cryptography). Recall however
that EDRAX represents accounts as integers in {0, 1, . . . , n−1} (where, in our implementation n is around
230) and therefore a mechanism to map Alice’s public key pk to an integer i ∈ {0, 1, . . . , n− 1} must be
in place. To achieve that, EDRAX offers an INIT transaction that allows Alice to map her public key to
the next available index i. In particular Alice constructs and signs, using sk, the transaction

[INIT, pk] .

Looking forward, after registering a mapping of the next available index i to public key pk, this transaction
will implicitly define Alice’s public key PKa as [pk||i||upki] where upki is the update key of the vector
commitment scheme.

SPEND transaction. Let us assume that Alice has public key PKa = [pka||i||upki], corresponding secret
key ska and current balance equal to v′ EDRAX units. She wants to send v ≤ v′ EDRAX units to Bob that
has public key PKb = [pkb||j||upkj ]. Alice constructs and signs, using ska, the following transaction:

[PKa,PKb, v, πi, v
′] ,

7EDRAX cannot map public keys directly to balances as the vector commitment supports only a polynomial number of indices
and the domain of public keys is exponential.

8As in Ethereum, EDRAX stores the mapping i → [h(PK)||nonce||balance], where nonce shows how many payments have
been made out from PK. This is necessary to distinguish between two separate payments from the same public key and a replay
attack of the same payment. For simplicity, we do not include nonce in our exposition.
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meaning that public key PKa wishes to send v EDRAX units to public key PKb and πi is her local proof
proving that PKa has enough funds v′ ≥ v (with respect to the latest account digest digestt) to support
this transaction.

New block creation. Again, assume the last block that was computed is block t and miners compete to
compute block t+ 1. To do that miners collect new INIT and SPEND transactions of the type

[INIT, pk], sig

and
[PKa,PKb, v, πi, v

′], sig

respectively. For an INIT transaction to be candidate for inclusion in block t + 1, it is enough that its
signature verifies. To decide whether a SPEND transaction [PKa,PKb, v, πi, v

′], sig can be included in
the next block the miner needs to perform the following steps:

1. Parse PKa as [pka||i||upki] and check whether sig is a valid signature under pka;

2. Check whether v ≤ v′;
3. Check whether 1 ← Verify(digestt, i, h(PKa)||v′, πi, vrk) where digestt is the account digest of

the current block (at time t).

The new block has size O(m log n) where n is the upper bound on the number of accounts and m is the
number of transactions included in the block. Finally, in the new block t+1, miners must also include the
updated validation digest, i.e., account digest digestt+1 and the new account counter cntt+1. We describe
how miners compute these updated values next.

Update of validation digest. To update the validation digest the miners initially set cnt ← cntt and
digest← digestt. Then they consider INIT transactions first and SPEND transactions later.

In particular for every verified INIT transaction [INIT, pk], sig sent by Alice to be included in block
t+ 1 the miners set cnt = cnt+ 1 and implicitly assign the updated index cnt to pk9. Then they set

digest← UpdateDigest(digest, cnt, δ, upkcnt)

where δ = h(PK)||0 (we assume Alice begins with 0 balance) and where PK = [pk||cnt||upkcnt]. This
operation essentially registers Alice’s public key to a specific index cnt.

Then for every verified SPEND transaction [PKa,PKb, v, πi, v
′], sig the miners set

digest← UpdateDigest(digest, i,−v, upki)
and then again

digest← UpdateDigest(digest, j,+v, upkj) ,

where PKa = [pka||i||upki] and PKb = [pkb||j||upkj ]. This transaction updates the balances of the
sender and the receiver accordingly. Finally the miners set cntt+1 ← cnt and digestt+1 ← digest and
output the new validation digest to be included in block t+ 1.

Proof synchronization. Let π be Alice’s local proof that corresponds to the state of the system up
until block t. Now assume some transactions are taking place and block t + 1 is created. Alice’s local
proof π is no longer valid and Alice must synchronize her proof to make sure it incorporates all updates
(u1, δ1), (u2, δ2), . . . , (up, δp) that were included in block t+ 1. To do that she executes Algorithm 2 by
running π ← SYNCHRONIZEPROOF((u1, δ1), . . . , (up, δp), π) and outputs a new synchronized proof π.
Note that Alice does not have to synchronize her proof at every new block. She just has to synchronize her
proof whenever she wants to spend some EDRAX units to someone else in which case she must process
all the blocks since her proof was last synchronized in the same way as above.

9This defines Alice’s public key as [pk||cnt||upkcnt].
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Algorithm 2 Algorithm for synchronizing the proof so that updates (u1, δ1), . . . , (ut, δt) are included.
1: procedure π ← SYNCHRONIZEPROOF((u1, δ1), . . . , (up, δp), π)
2: for i = 1, . . . , p do
3: π ← UpdateProof(π, ui, δi, upkui

);

4: return π;

Algorithm 3 Algorithm for computing the polynomials that are required to update the proof at position i
on update (u, δ).

1: procedure [∆`(X), . . . ,∆1(X)]← DELTAPOLYNOMIALS(u, δ, i, `)
2: if ` > 0 then
3: if msb of u is 0 and msb of i is 1 then return

[
−δ ·∏`−1

k=1 selectuk
(xk), 0, . . . , 0

]
;

4: if msb of u is 1 and msb of i is 0 then return
[
+δ ·∏`−1

k=1 selectuk
(xk), 0, . . . , 0

]
;

5: if msb of u is 0 and msb of i is 0 then return[
−δ ·

`−1∏
k=1

selectuk
(xk),DELTAPOLYNOMIALS(u mod 2`, δ, i mod 2`, `− 1)

]
;

6: if msb of u is 1 and msb of i is 1 then return[
+δ ·

`−1∏
k=1

selectuk
(xk),DELTAPOLYNOMIALS(u mod 2`, δ, i mod 2`, `− 1)

]
;

5 Vector Commitment Construction
We now present our new vector commitment construction that we use in the implementation of account-
based EDRAX. We present all algorithms in detail, as defined in Definition 1 and then we prove correct-
ness as defined in Definition 3 in the Appendix and soundness, as required by Definition 2.

(prk, vrk, upk0, . . . , upkn−1)← KeyGen(1λ, n): Let (p,G,GT , e, g) be output by running BilGen(1λ).
Let ` = log n and let S be the powerset of {1, 2, . . . , `}. Select s1, . . . , s` randomly from F and set

prk =
{
g
∏

i∈S si : S ∈ S
}

and vrk = {gs1 , . . . , gs`} .

Also for all u = 0, . . . , n− 1, we have that the update key for position u contains ` group elements, i.e.,

upku =
{
g
∏t

k=1 selectuk
(sk) : t = 1, . . . , `

}
=
{
upku,t : t = 1, . . . , `

}
.

where selectuk
(sk) is defined in Equation 2.

dig← Setup(a0, . . . , an−1, prk): Set digest

dig = gfa(s1,...,s`) ,

where fa is the multilinear extension polynomial of the vector a = [a0, . . . , an−1] as defined in Equa-
tion 1.
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(ai, πi)← Prove(i, a, prk): Let i`, . . . , i1 be the binary representation of i. As ai = fa(i1, . . . , i`), using
polynomial decomposition, compute polynomials q1, . . . , q` such that

fa(x)− fa(i1, . . . , i`) =
∑̀
k=1

(xk − ik)qk(x) .

Output the proof πi as {gq1(s), . . . , gq`(s)}. To compute polynomials q1, . . . , q`, we divide fa(x) −
fa(i1, . . . , i`) by x` − i` and set q` as the quotient polynomial of the division, which is a multilin-
ear polynomial with variables x1, . . . , x`−1. The remainder is a multilinear polynomial with variables
x1, . . . , x`−1, which we divide by x`−1 − i`−1 to get q`−1. We repeat recursively until we get q1.

{0, 1} ← Verify(dig, i, a, π, vrk): Parse π asw1, . . . , w` and output 1 iff e(dig/ga, g) =
∏`
k=1 e(g

si−ik , wk).

dig← UpdateDigest(dig, u, δ, upku): Compute the new digest as

dig = dig ·
[
g
∏`

k=1 selectuk
(sk)
]δ

= dig ·
[
upku,`

]δ
.

πi ← UpdateProof(πi, u, δ, upku): Parse πi as w1, . . . , w`. For i = 1 to ` set

wi = wi · g∆i(s) ,

where ∆`(x), . . . ,∆1(x) are the polynomials computed by calling DELTAPOLYNOMIALS(u, δ, i, `) (see
Algorithm 3). Note that it is very easy to modify DELTAPOLYNOMIALS to output the terms g∆i(s) directly
by allowing it to access the update key upku of u (so instead for computing, for example, the polynomial
−δ ·∏`−1

k=1 selectuk
(xk) it can just directly output [upku,`−1]−δ).

5.1 Correctness of DELTAPOLYNOMIALS

The proof of correctness of our new vector commitment scheme lies upon proving the correctness of
DELTAPOLYNOMIALS used to update the proof for an index i, πi, when another update (u, δ) takes place
on an index u. To see why DELTAPOLYNOMIALS correctly performs this task, note that before the up-
date (u, δ), proof πi consists of {gq1(s), . . . , gq`(s)} where polynomials qi(x) satisfy fa(x1, . . . , x`) −
ai =

∑`
k=1(xk − ik) · qk(x). Due to the update (u, δ), the digest fa(x1, . . . , x`) increases by δ ·∏`

k=1 selectuk
(xk) and therefore polynomials qi(x) should be adjusted to qi(x)+∆i(x) to accommodate

this change, as described in the following lemma:

Lemma 2. Algorithm DeltaPolynomials(u, δ, i, `) correctly computes polynomials ∆`(x), . . . ,∆1(x)
such that

δ ·
∏̀
k=1

selectuk
(xk) =

∑̀
k=1

(xk − ik) ·∆k(x) , if u 6= i (4)

or

δ ·
∏̀
k=1

selectuk
(xk)− δ =

∑̀
k=1

(xk − ik) ·∆k(x) , if u = i , (5)

where ik is the k-th bit of i.

Proof. By induction on `. For the base case, note that Algorithm DELTAPOLYNOMIALS(u, δ, i, 1) outputs
∆1(x) = −δ in case u is 0 and i is 1 or both u and i are 0 and ∆1(x) = δ in case u is 1 and i is 0 or both
u and i are 1. Indeed ∆1(x) does satisfy the relations above as we prove in the following by considering
all four possible cases.
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1. u = 0 and i = 1. In this case Relation 4 is indeed satisfied as δ · (1− x1) = (x1 − 1) · (−δ).

2. u = 0 and i = 0. In this case Relation 5 is indeed satisfied as δ · (1− x1)− δ = x1 · (−δ).

3. u = 1 and i = 0. In this case Relation 4 is indeed satisfied as δ · x1 = (x1 − 0) · δ.

4. u = 1 and i = 1. In this case Relation 5 is indeed satisfied as δ · x1 − δ = (x1 − 1) · δ.

For the inductive hypothesis, assume DELTAPOLYNOMIALS(u, δ, i, `−1) outputs polynomials ∆`−1(x), . . . ,∆1(x)
that satisfy either Relation 4 or Relation 5 (depending whether u = i or not). We prove the same claim
for DELTAPOLYNOMIALS(u, δ, i, `) by considering the following cases.

1. If msb of u is 0 and msb of i is 1, then the algorithm returns ∆`(x) = −δ ·∏`−1
k=1 selectuk

(xk) and
∆i(x) = 0 for all i < `. Since u 6= i, these polynomials must satisfy Relation 4 which can be rewritten
as

δ · (1− x`) ·
`−1∏
k=1

selectuk
(xk) = (x` − 1) ·∆`(x) +

`−1∑
k=1

(xk − ik) ·∆k(x) .

It is easy to see that this is indeed the case by simple substitution.

2. If msb of u is 0 and msb of i is 0, then the algorithm returns ∆`(x) = −δ · ∏`−1
k=1 selectuk

(xk)
along with ∆`−1(x), . . . ,∆1(x) as output by DELTAPOLYNOMIALS(u mod 2`, δ, i mod 2`, ` − 1). We
distinguish two subcases.

(a) u 6= i. In this case polynomials ∆`(x), . . . ,∆1(x) must satisfy Relation 4 which can be rewritten as

δ · (1− x`) ·
`−1∏
k=1

selectuk
(xk) = x` ·∆`(x) +

`−1∑
k=1

(xk − ik) ·∆k(x) .

By substituting the output polynomials and by using our inductive hypothesis that states δ·∏`−1
k=1 selectuk

(xk) =∑`−1
k=1(xk − ik) ·∆k(x) it is easy to see that this is indeed the case.

(b) u = i. In this case polynomials ∆`(x), . . . ,∆1(x) must satisfy Relation 5 which can be rewritten as

δ · (1− x`) ·
`−1∏
k=1

selectuk
(xk)− δ = x` ·∆`(x) +

`−1∑
k=1

(xk − ik) ·∆k(x) .

By substituting the output polynomials and by using our inductive hypothesis that states δ·∏`−1
k=1 selectuk

(xk)−
δ =

∑`−1
k=1(xk − ik) ·∆k(x) it is easy to see that this is indeed the case.

3. If msb of u is 1 and msb of i is 0, then algorithm returns ∆`(x) = δ·∏`−1
k=1 selectuk

(xk) and ∆i(x) = 0
for all i < `. Since u 6= i, these polynomials must satisfy Relation 4 which can be written as

δ · x` ·
`−1∏
k=1

selectuk
(xk) = x` ·∆`(x) +

`−1∑
k=1

(xk − ik) ·∆k(x) .

It is easy to see that this is indeed the case by simple substitution.

4. If msb of u is 1 and msb of i is 1, then the algorithm returns ∆`(x) = δ ·∏`−1
k=1 selectuk

(xk) along with
∆`−1(x), . . . ,∆1(x) as output by DELTAPOLYNOMIALS(u mod 2`, δ, i mod 2`, ` − 1). We distinguish
two subcases.
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(a) u 6= i. In this case polynomials ∆`(x), . . . ,∆1(x) must satisfy Relation 4 which can be rewritten as

δ · x` ·
`−1∏
k=1

selectuk
(xk) = x` ·∆`(x) +

`−1∑
k=1

(xk − ik) ·∆k(x) .

By substituting the output polynomials and by using our inductive hypothesis that states δ·∏`−1
k=1 selectuk

(xk) =∑`−1
k=1(xk − ik) ·∆k(x) it is easy to see that this is indeed the case.

(b) u = i. In this case polynomials ∆`(x), . . . ,∆1(x) must satisfy Relation 5 which can be rewritten as

δ · (1− x`) ·
`−1∏
k=1

selectuk
(xk)− δ = x` ·∆`(x) +

`−1∑
k=1

(xk − ik) ·∆k(x) .

By substituting the output polynomials and by using our inductive hypothesis that states δ·∏`−1
k=1 selectuk

(xk)−
δ =

∑`−1
k=1(xk − ik) ·∆k(x) it is easy to see that this is indeed the case.

5.2 Security and complexity analysis
Our vector commitment scheme can be viewed as an application of the selectively-secure verifiable poly-
nomial delegation scheme in [20], for the multilinear polynomial of Relation 1. While selective security
is very weak in general, we show it is enough for our application. This is because a vector commitment
requires evaluating the polynomial on a fixed number of points, i.e., on the hypercube {0, 1}` and not on
arbitrary (exponentially-many) points in Z`p. We provide the detailed proof in the following.

Theorem 1. The vector commitment scheme presented above is sound according to Definition 2 and
under Assumption 1.

Proof. For the proof of soundness we will use the following technique. First an `-SBDH instance

((p,G,GT , e, g), gs, . . . , gs
`

)

is given to adversary A1. Then A1 picks random b ∈ {0, 1}` (such that 2` is poly(λ)) and implicitly
computes s1 = s and si = ri · (s− b1) + bi where ri are chosen at random. Note now that, given

gs, . . . , gs
`

,

A1 can easily compute prk, vk and upku for all u = 0, 1, . . . , n− 1, which he all gives to A2. Moreover,
all of these keys are indistinguishable from the output of KeyGen since the ri’s have been picked at
random. We now show that if A2 is able to break soundness as defined in Definition 2 (by providing a
forgery (x, a, π) to A1) then A1 will be able to use that forgery and break Assumption 1.

Indeed, given a vector a and the corresponding digest dig, suppose A2 is able to output a forgery
(x, a, π) such that it holds 1 ← Verify(dig, x, a, π, vrk) and a 6= ax, where ax is the current value at
index x of a after a possible sequence of updates. Let us assume that the index x thatA2 chose to forge is
the index b thatA1 picked previously to compute the secrets si—namely x = b. Note that the probability
of that event is 1/2` = 1/poly(λ). Then the following should hold (note that π = (w1, w2, . . . , w`))

e(gfa(s1,...,s`)−a, g) =
∏̀
i=1

e(gsi−bi , wi)
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⇔ e(gfa(s1,...,s`)−ax+(ax−a), g) =
∏̀
i=1

e(gsi−bi , wi)

⇔ e(g
∑`

i=1(si−bi)qi(s1,...,s`)+(ax−a), g) =
∏̀
i=1

e(gsi−bi , wi)

⇔ e(g, g)(ax−a) =
∏̀
i=1

e

(
g,

wi
gqi(s1,...,s`)

)si−bi

⇔ e(g, g)ax−a = e

(
g,

w1

gq1(s1,...,s`)

)s−b1 ∏̀
i=2

e

(
g,

wi
gqi(s1,...,s`)

)ri(s−b1)

⇔ e(g, g)
ax−a
s−b1 = e

(
g,

w1

gq1(s1,...,s`)

)∏̀
i=2

e

(
g,

wi
gqi(s1,...,s`)

)ri

⇔ e(g, g)
1

s−b1 =

[
e

(
g,

w1

gq1(s1,...,s`)

)∏̀
i=2

e

(
g,

wi
gqi(s1,...,s`)

)ri] 1
ax−a

.

Therefore A1 can compute e(g, g)
1

s−b1 with probability 1/poly(λ) which breaks Assumption 1.

Asymptotic costs of vector commitment algorithms. KeyGen runs is time O(n) assuming it outputs
the update keys upku on a binary tree (some parts of the update keys are the same) and Setup runs in time
O(n) assuming it takes as input only the necessary parts of the update keys. The size of prk is O(n), the
size of vrk isO(log n) and the size of each upki is alsoO(log n). The running time of Prove isO(n), due
to Lemma 1. Algorithm Verify runs in O(log n) time. UpdateDigest runs in O(1) time and UpdateProof
runs in O(log n) time in the worst case (if one amortizes over all indices the time is O(1)). Note that
unlike previous approaches, UpdateProof input depends only on the index that is being updated, and not
on the index of the proof itself. In other words to update any proof πi with respect to index u, algorithm
UpdateProof takes as input the same information upku (that depends on this index u).

6 EDRAX Evaluation
In this section, we present an evaluation of EDRAX. In Sections 6.1 and 6.2, we first evaluate the two
primitives used in EDRAX: sparse Merkle trees in the UTXO-based model (see Section 6.1) and our
new vector commitment scheme in the account-based model (see Section 6.2). Then, in Section 6.3, we
compare block validation times and block size between stateless validation in EDRAX and traditional
stateful clients in both UTXO and account-based models.

Experimental setup. We implement our schemes in C++. We implement the sparse Merkle tree scheme
using the Scrypto library [6]. We use the GMP library [3] for field arithmetic, the ate-pairing [1] on a
254-bit elliptic curve for pairings in our vector commitment and LevelDB [5] to simulate the performance
of a stateful client.

We run the experiments of our schemes on an Amazon EC2 c4.4xlarge machine with 30GB of RAM
and an Intel Xeon E5-2666v3 CPU with 16 2.9GHz virtual cores. To simulate the cost of disk I/O for
stateful clients, we use a laptop with Intel Core i7, 16 GB RAM and 1TB HDD of 5400 RPM (SATA
interface, 128 GB SSD cache). We perform 10 runs and report their average for each data point of
running time, unless stated otherwise. Note that for stateful clients, the state is never larger than 128 GB
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so all state in these experiments is stored on the SSD, which means faster (in comparison with hard disk)
reported times for the case of stateful clients.

6.1 Evaluation of sparse Merkle tree
Table 2 shows the performance of our sparse Merkle tree for different values ofW (recallW is the height
of the tree). Sparse Merkle trees are quite efficient due to the lightweight SHA-2 hash function used. For
example for W = 40, it takes 0.063ms to verify a proof and the proof size is 0.35KB, which is enough
for supporting the total number of transaction outputs ever generated in Bitcoin—right now this number
is about 765 million, as computed using the BlockSci tool [4]. We implemented the algorithms to update
the most recent proof as well as the algorithm for the local proof synchronization presented in Section 3.
For a transaction of one input and one output the time to update the most recent proof is 0.081ms and the
time to synchronize the local proof is 0.011ms for W = 30. All numbers above scale linearly with W
(logarithmically to number of leaves).

Table 2: Performance of the sparse Merkle tree.
height proof verification update update
W size most recent proof local proof
30 0.341KB 0.055 ms 0.071ms 0.005ms
40 0.357KB 0.063 ms 0.081ms 0.011ms
50 0.363KB 0.074 ms 0.1ms 0.014ms

6.2 Evaluation of our new vector commitment
In this section, we evaluate the performance of our new vector commitment scheme. We also justify why
we did not use the similarly-performant, from an asymptotic perspective (see Table 1 in the introduc-
tion), lattice-based vector commitment from [24] for the EDRAX implementation, by directly comparing
with [24] and showing our vector commitment is much more practical.

One-time setup. The costliest part of our vector commitment scheme is the one-time setup to generate
the prover, update and verification keys. Such an expensive setup is not required by the lattice-based
scheme whose setup involves just a constant-time sampling of two lattice-based hash functions. Results
for our scheme are provided in Table 3. As shown in the table, it takes 2,301s to generate the keys for a
vector of 32 million elements, which is close to the current number of accounts in Ethereum [12]. Most of
the time in key generation is spent on computing exponentiations in the base group, which can be easily
parallelized. The key generation time is reduced by 7.6× to 303s with EC2 16 virtual cores. The running
time scales linearly with the number of elements in the vector, and it takes 42,508s for ` = 32, i.e., 4
billion elements, with parallelization.

Moreover, our implementation stores the prover key on disk, so it can scale to a larger ` as long as
the disk size is larger than the proving key size. The overhead for disk I/O is already included in the
key generation time reported in Table 3. Finally, the verification key size and the update key size for
one element are less than 1KB for ` ≤ 32 and grows logarithmically with the number of elements in the
vector. Note the EDRAX nodes do not need to store the prover key, just the update key and verification
key.

Proof size and verification time. Figure 3 shows the proof size and the verification time of our vector
commitment scheme and the lattice-based scheme in [24]. Though the asymptotics are the same in the
two schemes, the concrete performance in our scheme is better. The proof size is less than 1KB for
L ≤ 32 (same as the size of prk and vrk) in our scheme, while it is 62–78KB in the lattice-based scheme.
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Table 3: One-time setup in our vector commitment scheme for various values of `. The notation ∗ means
estimation due to long running times.

`
KeyGen KeyGen memory prk vrk & upk
(single) (multi) usage size size

25 2,301s 303s 14GB 4.1GB 0.78KB
26 4,611s 609s 25GB 8.2GB 0.81KB
28 18,756 s 2,738s 25GB 16.3GB 0.87KB
30 74,000s∗ 9,941s 25GB 65GB 0.93KB
32 295,000s∗ 42,508s 25GB 263GB 0.99KB
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Figure 3: Proof size and verification time for our vector commitment scheme and the lattice scheme [24].

As in EDRAX we need to attach a proof to each transaction, the transaction size would increase by two
orders of magnitude using the lattice-based scheme, which is impractical for our applications. In addition,
the verification time for ` = 25 is 210ms in the lattice-based scheme, while it takes 6ms in our scheme,
35× faster than the lattice-based scheme.

Digest update and proof synchronization. Figure 4 shows the time to update the digest and to perform
proof synchronization in the two schemes. It takes 8.3µs to update the digest and 15.1µs (amortized)
to synchronize the proof of one element, regardless of the value of `. In the lattice-based scheme, both
updating the digest and updating the proof takes around 790ms for ` = 25, and the time grows logarith-
mically with the number of elements in the vector. Note that in the lattice-based scheme, one can also
precompute the ”partial labels” ([24, Definition 14], similar to the update key). The time to update the
digest and the proof can be reduced significantly (both O(1) asymptotically, and tens of microseconds
concretely), but it would require an additional setup phase that is linear to the number of elements in the
vector and is slower than our key generation time. We omit the comparison to this alternative since the
proof size would still be the bottleneck.

6.3 Stateless validation vs. stateful validation
Using the primitives evaluated in Sections 6.1 and 6.2, we simulate stateless block processing for both
UTXO-based and account-based EDRAX. Then we compare our results with simulated stateful clients. In
all the experiments in this section we do not measure time spent on digital signature verification as well
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Figure 4: Time for updating the digest and for proof synchronization of vector commitment vs. the lattice
scheme [24].

as other stateless checks.
Blocks and transactions. In our simulation, each block contains 1,000 transactions. Recall that in the
UTXO-based model, a SPEND transaction has the following fields: amount of the transaction, sender’s
and recipient’s public keys, sender’s unspent output index and balance, and a proof of the output presence
in the UTXO set. In the account-based model, a SPEND transaction contains amount of the transaction,
sender’s and recipient’s public keys, the current balance in sender’s account, the proof of the balance and
the sender’s and recipient’s update keys.
Simulating stateful clients. We simulate the cost to process blocks for stateful clients storing the UTXO
set or account balances on disk. We use the LevelDB database with disk persistence, under default settings
and single synchronous batch write per block—note that LevelDB is used in Bitcoin’s core reference
implementation to store the UTXO. For the UTXO-based model, we perform 1 read and 1 delete for
the same key, and 2 writes with two new consecutive keys for each transaction (to read an output of the
sender, remove it from the UTXO, and create two new outputs). For the account-based model, we perform
2 reads and 2 writes on two randomly chosen keys (to get sender and recipient balances and to update
them). As the time to access the database varies a lot because of the disk I/O, we report the average of
processing 10,000 blocks in the figures for the stateful client.
UTXO-based model. The comparison of the performance between EDRAX and stateful clients in the
UTXO-based model is shown in Figure 5 (left). As 2W is an upper bound on the total number of transac-
tion outputs in the system, we setW = 40, which is enough to support even more transaction outputs than
those that have ever been generated in Bitcoin as of now. With this fixedW , the time to process one block
does not change with the number of transactions in the UTXO. As shown in the figure, it takes 534ms
to process one block in EDRAX, while it takes 213ms for a stateful client with 226 unspent transactions
in the UTXO, which is the similar to the scale of the UTXO in Bitcoin now. As the size of the UTXO
grows, EDRAX starts to outperform the stateful client. For example, it takes 14.18s for a stateful client to
process one block when the UTXO contains 1 billion transaction outputs, 26.5× slower than EDRAX.

Note that the processing time of the stateful client increases dramatically when the UTXO size goes
from 227 to 228. This is because the cache in LevelDB and the operating system seem to be becoming
much less effective at these scales. When the number of transactions is less than or equal to 227, we
observe that most blocks are processed within hundreds of milliseconds, while some blocks take signifi-
cantly longer time, 1-4 seconds, due to cache misses and disk accesses. When the number of transactions
is equal to or larger than 228, most elements in the database are not cached, and the processing time for
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Figure 5: EDRAX vs. stateful (on-disk) validation. Left: UTXO-based model (W = 40); right: account-
based model (` = 30).

every block in our experiment is higher than 1s, which results in a much longer preprocessing time than
the time required for 227 transactions.
Account-based model. Figure 5 (right) shows the comparison in the account-based model. Again as 2`

is an upper bound on the number of accounts in the system, we fix ` = 30, supporting more accounts than
that currently in Ethereum. It takes 2,059ms to process one block in EDRAX, while it takes 197ms for
a stateful client with 225 accounts, the current scale in Ethereum. As the number of accounts grows, the
performance of EDRAX is comparable or faster than the stateful client. For example, with 228 accounts,
the stateful client requires 3.42s to process one block, and with 230 accounts, the stateful client takes
14.53s, 7.3× slower than EDRAX. Moreover, most time in EDRAX is spent on verifying proofs of our
vector commitment scheme, which can be easily parallelized. With 16 Amazon Ec2 virtual cores, the
processing time is reduced by 6.1× to 337ms. On the contrary, we do not observe any speedup when
parallelizing the stateful client, as the bottleneck is on disk I/O. Therefore, the performance of the parallel
of EDRAX is similar the stateful client with 225 accounts, and 43× faster with 230 accounts.
Main finding. The experiments above indicate that EDRAX not only removes the large storage require-
ment on the client, but also achieves comparable processing time under the current scale of cryptocurren-
cies, and will be much faster when the scale increases, due expensive I/Os of the database maintained by
the stateful client.
Block size and proof synchronization. Finally, though EDRAX significantly reduces the storage of
a client, it also introduces overhead on the block size and proof updates. In the UTXO-based model,
an additional sparse Merkle tree proof is included for each transaction output, which is 357 Bytes for
W = 40. In the account-based model, the client needs to attach a proof, the sender’s and recipient’s
update keys, which is 2.86KB in total for ` = 30. Also the clients must synchronize their proofs using the
information on the blockchain. It takes 11ms to synchronize one’s proof per block with 1,000 transactions
in the UTXO model, and 30.2ms in the account-based model. We believe these overheads are reasonable
in practice, given the significant savings on storage and processing time.

7 Conclusions and discussion
In this paper we presented EDRAX, an architecture (and two different implementations thereof) for state-
less transaction validation in cryptocurrencies. Our concrete implementations are first steps—in the future
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more practical authenticated data structures or vector commitment schemes can be used as a drop-in re-
placement, leading to even better performance. Here we outline some directions for future research and
some observations.
Authenticated red-black trees instead of sparse Merkle trees. In UTXO-based version of EDRAX,
presented in Section 3, we used sparse Merkle trees as our basic authenticated data structure. Sparse
Merkle trees have fixed structure, allowing very flexible updates, especially when not all the tree is stored
locally. However, they have large proofs, O(W ), irrespective of the current size of the UTXO. We believe
one can implement the same algorithms for an authenticated red-black tree (or in general for an authenti-
cated balanced tree) and maintain a proof size that is always O(log n) where n is the current size of the
UTXO. We note here that while authenticated red black trees can be derived generically using the work
of Miller et al. [18], it is not clear how these algorithms can be used in EDRAX setting, since updates
must be performed without storing the whole authenticated tree, but just the most recent proof. Similar
algorithms, however, have been studied by Papamanthou and Tamassia [22], for the case of authenticated
skip lists.
Local proof synchronization by miners. In the general description of EDRAX we assume (for ease of
exposition) that a client wishing to perform an EDRAX transaction synchronizes her proof to be valid
with respect to the digest stored in the last (confirmed) block t of the blockchain. However, when the
transaction arrives (or when a miner wishes to include it in the next block), block t might not be the last
anymore (e.g., the last block might be t + 5) and therefore the proof originally computed by the client
will not be valid. This is not a problem since miners can easily update proofs and produce valid proofs
for t + 5 by processing transactions that took place between t and t + 5 exactly in the same way that
clients would do it (recall algorithms SYNCHRONIZEPROOF and DELTAPOLYNOMIALS do not require
any secrets for their execution and therefore can be easily executed by miners).
Introducing proof-serving nodes. One of the main differences of the EDRAX architecture with current
cryptocurrencies is the fact that clients must perform local proof synchronization (with the blockchain)
before they post their transactions. This introduces a moderate cost for the clients that did not exist before,
and also changes the user experience. To alleviate this cost, we can extend the EDRAX architecture to
contain proof-serving nodes (that can run for example on an Amazon machine) which do not participate
in the blockchain protocol. These nodes are responsible for storing and serving up-to-date proofs for all
the nodes of the cryptocurrency (and can be incentivized through some form of reward). Note that there
is no requirement that they serve correct proofs. In particular, a client that wants to post a transaction
can request his proof from a proof-serving node. If this proof is valid (which he can check by using the
digest from the blockchain), then he can use it, otherwise he can always use the “default” setting and
synchronize his proof by using the algorithms we presented before.
Supporting smart contracts in the stateless setting. We can envision an extension of EDRAX to support
stateless verification of smart contracts as well. Recall that in the smart contract setting, the flow of money
will depend of the execution of some contract code on the current contract state, which is updated after
the contract execution. Therefore for Alice to post a contract-triggering transaction she must provide a
proof of correctness of the current contract state for EDRAX nodes to execute on. For that, we can again
use a Merkle tree whose leaves store hashes of the contract state and have clients provide the respective
Merkle proofs. Two challenges that arise in this setting are (i) who is storing the contract state since any
client can post transactions that will trigger a contract execution; (ii) how to avoid including the contract
state as part of the transaction (the contract state might be too large). For both of these challeges, proof-
serving nodes (as introduced above) and SNARKs (e.g., [23]) might help. A complete treatment of these
challenges, however, is left as future work.
Adding privacy to account-based model. We note here that the problem of adding privacy in the
presented models (UTXO and account-based) is only partially solved, even in the stateful setting. In
particular, while Zcash [8] solves the problem of privacy in the UTXO-based model, there is no protocol
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(to the best of our knowledge) for the account-based model. Of course one could consider using a zero-
knowledge version of our new vector commitment to add privacy in the account-based model. However,
even if we could manage to add zero-knowledge on our construction, other more fundamental challenges
remain. In particular, note that in order to update the local proof, one needs to know index u of the
account whose balance changes. However this is precisely what a privacy-preserving account-based
cryptocurrency must hide! We leave it as an open problem to design a privacy-preserving cryptocurrency
(either stateful or stateless) in the account-based model.
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Appendix

Assumption
Assumption 1 ([9] q-Strong Bilinear Diffie-Hellman (q-SBDH)). For any PPT adversaryA, the following
probability is negligible:

Pr


(p,G,GT , e, g)← Gen(1λ);

s
R← Z∗p;

σ = ((p,G,GT , e, g), gs, . . . , gs
q

) :

(x, e(g, g)
1

s+x )← A(1λ, σ)

 .

Correctness definition of a vector commitment scheme
Definition 3 (Correctness of vector commitment scheme). We say that a vector commitment scheme is
correct, if for all λ ∈ N and n = poly(λ), for all public keys (prk, vrk, {upku})← KeyGen(1λ, n), for all
vectors a = [a0, . . . , an−1], if dig is a commitment to vector a computed by Setup(a, prk) and πi, for all i,
is a proof generated Prove(i, a, prk), then for a polynomial number of updates (u, δ) if dig and πi, for all
i, are produced by calls to UpdateDigest(dig, u, δ, upku) and UpdateProof(πi, u, δ, upku) respectively
then for all i it is Pr[1← Verify(dig, i, ai, πi, vrk)] = 1, where ai is the value at index i after all updates
took place.
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