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Abstract

This survey discusses the security level of the signature scheme implemented in
Bitcoin and Ethereum.

1 Introduction
To authorize payments, Bitcoin and Ethereum use the Elliptic Curve Digital Sig-
nature Algorithm (ECDSA). The two ingredients for this algorithm are an elliptic
curve and a cryptographic hash function. Both Bitcoin and Ethereum work with
the elliptic curve secp256k1 which is recommended by the Standards for Efficient
Cryptography Group (see [SEC10]) and the hash function SHA256 (see [SHA13]).

Before we examine the security level of ECDSA with the above curve and hash
function, we would like to make some general comments. Firstly, mathematical
complexity does not necessarily guarantee the security of a cryptographic algorithm
when it is implemented in a real-world situation. Implementation can dramatically
lower the security level: for example, in 2011, the Playstation ECDSA security
break took advantage of low randomness in the signing procedure. In section 3 of
this article we will come back to some implementation issues in connection with
secp256k1.

All elliptic curve cryptography is based on the belief that the discrete logarithm
problem on an elliptic curve (see 1.1 below) is very difficult to solve. Although
these discrete logarithm problems are considered to be of exponential complexity,
there is currently no proof that they are not solvable in polynomial time. Note that
such proof would imply that P 6= NP which would answer one of the famous open
questions in computer science. To date, only a very specific class of elliptic curves,
those defined over binary fields, is thought by some experts to allow subexponential
running time (cf. [GG16]).
Our focus here is mainly to collect the known attack strategies for the discrete
logarithm problem on elliptic curves. We will cross check these strategies against
the secp256k1 curve in section 2. In section 3, we discuss some implementation
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issues, and in section 4, other recommended elliptic curves and signature algorithms.
At the end of this article one can find a short summary of our analysis.

1.1. The Discrete Logarithm Problem on Elliptic curves and ECDSA. We begin by
recalling some basic notions from mathematics. An elliptic curve (in short affine
Weierstrass form) E over a finite field Fq, q = pn a prime power, (e.g. if n = 1 then
Fp = Z/pZ), is the set of solutions of an equation

E : y2 = x3 +Ax+B (A,B ∈ Fq),

that is

E(Fq) := {(x, y) ∈ Fq × Fq | y2 = x3 +Ax+B}.

On an elliptic curve E we have a group operation as we have for example the
operation ‘ + ‘ on the integers Z (see e.g. [Was08]). The archetype of the discrete
logarithm problem (DLP) is formulated in the multiplicative group (F×

p , ·), namely:
given g, h ∈ F×

p , find k ∈ Z/(p − 1)Z such that gk = h mod (p). Formulating the
same computational task for elliptic curves and using the convention to write ‘ + ‘
instead of ‘ · ‘ results in the Elliptic Curve Discrete Logarithm Problem (ECDLP):
Given two points P,Q ∈ E(Fq) on E, find an integer a, if it exists, such that the
equation Q = aP holds. Or, using the logarithm notation in an intuitive way,
compute a = logP (Q) on E.
The signing algorithm ECDSA (Elliptic Curve Digital Signature Algorithm) uses
the integer a as the private key. Let us quickly outline how it works: We suppose
that a user U wants to sign a message m to authorize a payment to a merchant M .
Given (public) is an elliptic curve E/Fq over a finite field Fq, a base point P ∈ E(Fq)
(the base of our logarithm) of order r, and a hash function H (its values will be
considered modulo r) which is preimage and collision resistant. Then:

• Private key: U chooses a secrete integer a mod r , i.e. a ∈ Z/rZ.
• Public key: U computes Q = aP and publishes Q. (In Bitcoin the address of

the user U is derived from this data).

Then the actual algorithm goes as follows:

Signing:

(a) U chooses a random (each time a different one!) number 1 ≤ k < r and
computes R = (xR, yR) = kP ∈ E(Fq).

(b) Then U computes s = k−1(H(m) + axR) in Z/rZ (well-defined). U ’s
signature is then

(xR, s).

Verifying

(a) M computes u1 = s−1H(m) and u2 = s−1xR in Z/rZ, and then V =
(xV , yV ) = u1P + u2Q on E.

(b) M verifies the signature of user U by checking if xR = xV in Z/pZ holds.

If someone could compute discrete logarithms very fast then she would be able to
calculate the private key a from P and Q, and to sign payments in the name of user
U . More about the security of signature system ECDSA can be found in ([Bro05],
and [HMV04], 4.4.1, p. 184).
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2 Security of ECDLP with secp256k1

There are several different standards to secure Elliptic Curve Cryptography (ECC)
by making ECDLP infeasible: ANSI X9.63 (1999), IEEE P1363 (2000), SEC 2
(2000), NIST FIPS 186-2 (2000), Brainpool (2005), NSA Suite B (2005), ANSI
FRP256V1 (2011), Certicom SEC 2 v2 (2010), OSCCA SM2 (2010), NIST FIPS
186-4 (2013), Safecurves (2013). We follow the line of Safecurves (see [BL13]) as
it is one of the most recent and most strict standards which also covers related
implementation issues.

Set-up: Let E/Fq be an elliptic curve over Fq with q = pn. We assume that the
order of the group E(Fq) is

#E(Fq) = f · r

for some prime r and arbitrary f ∈ N.

All standards share the condition that the co-factor f equals 1 or is at least very
small (safe against subgroup attacks like Pohlig-Hellman) and work over prime fields,
i.e., n=1 (no subfield curves). This check will therefore not enter our discussion. The
choice of the prime p is also more about efficiency, besides it has to be big of course.
Some primes provide a faster field arithmetic in Fq than others, but this will not be
discussed here.
To measure the security level of ECDLP for a specific curve E one has to know the
(average) running time of the possible attacks. The most naive one would be to
calculate all multiples of P in the group E(Fq) until we find Q. This would take us
in the worst case r group operations and in average r/2. So to protect the private
key against this attack, one should choose r so that r/2 is large enough! Safecurves
recommends that the running time is bigger than 2100 group operations on E. In
subsection 2.2 the known attack strategies and their implied standards are applied
to secp256k1.

2.1. The elliptic curve secp256k1. This elliptic curve domain is recommended by
the Standards for Efficient Cryptography Group. See their website [SEC10] to get
more informations. It is designed for a 256-bit prime.
The elliptic curve secp256k1 is defined over the finite field Fp with

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

a generalized Mersenne prime number (faster field arithmetic). The defining equa-
tion of this elliptic curve is

E : y2 = x3 + 7.

Using the computer algebra system PARI, one easily verifies that

#E(Fp) = 1 · r

with prime r equal to

r = 2256 − 2129 − 1.

They also give a base point P , but any point is of order r.
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2.2. Attacks and security standards: Here we check the elliptic curve secp256k1
against the security standards of Safecurves. It passes the check if the corresponding
attack is not applicable or if r is big enough such that a too long running time is
guaranteed.

Pollard’s rho method: Pollard’s rho method in combination with automorphisms
on E produces so far the best results. This method has also the advantage that it
is suitable to parallelise the attack on more than one processor (see next chapter on
multiple ECDLPs). An up-to-date overview about the running times of these type
of algorithms can be found in [GG16], sections 4 and 5.

Algorithm Conditions Running Time Check
Pollard’s rho method no (

√
π/2 + o(1))

√
r X

Pollard’s ρ method
with automorphisms

automorphism with
average orbit size l

(
√
π/2 + o(1))

√
r√
l

X

Table 1: Pollard’s rho algorithms for secp256k1

The general theory of elliptic curves tells us that there are six automorphisms on
secp256k1 (as the so-called j-invariant of this curve is zero). And we do actually
know that the automorphism group is generated by the automorphism ψ : E −→ E,
(x, y) 7→ (ζ6x,−y), where ζ6 is a primitive 6th root of unity in Fp (see [BHH+14]). So
in the worst case, the number l in Table 1 would be 6, and we still had

√
πr/12 > 2100

saying that secp256k1 is safe against this attack. But we will come back to these
automorphisms in the context of speedups in scalar multiplication of points (see
below) and twist attacks in subsection 3.2.
Finally, we mention that the probability that this method terminates earlier than
the average running time is negligible.

Transfer methods: The idea of these attacks are to reduce efficiently an ECDLP
into a discrete logarithm problem in a different group, e.g. F×

pm (MOV, Frey-Rück)
or in a so-called Jacobian of an hyperelliptic curve (GHS). There one could use an
index calculus to solve the problem which has subexponential running time.

Algorithm Conditions Running Time Check
ASSS attack r = p DLP in F+

p (easy!) X
MOV attack, Frey-
Rück attack

r|(pm − 1) for small
m > 0

DLP in F×pm X

GHS attack (Weil de-
scent)

strict conditions; at
least n > 2

faster than Pol-
lard’s rho method

X

Table 2: Transfer algorithms for secp256k1

Obviously, the ASSS and the GHS attacks do not apply (r 6= p and n = 1 in our
case). So we are left to check the MOV and Frey-Rück attacks. Without going into
the details, the integer m, called embedding degree, ensures in some sense that the
problem is still complicated enough after the reduction step. The reduction leads
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actually to subexponential running time but usually in a much bigger group. To
be secure against these attacks Safecurve and Brainpool suggest m > r−1

100 . SEC1,
X9.62, P1363 suggest m > 20, m > 30 respectively. The curve secp256k1 satisfies
the much stronger condition of Safecurves with m = r−1

6 .
There is a big improvement on DLP in finite fields, but so far only for some very
specific fields exists already quasi-polynomial running time (see [BGJT14]). This
does not apply (yet) to prime fields with a large prime. But any progress in this
field will affect the transfer methods.

CM elliptic curves: Elliptic curves with a small complex multiplication field dis-
criminant are known to give rise to efficient endomorphism which can be used to
accelerate the point multiplication. This idea was introduced by Gallant, Lambert,
and Vanstone (GLV) in [GLV01].

Algorithm Conditions Running Time Check
GLV type small CM discriminant speedup of 0, 7 —

Table 3: Efficient endomorphisms for secp256k1

Safecurves imposes on the CM field discriminant D of an elliptic curve the condi-
tion |D| > 2100. The discriminant of secp256k1 is −3 and hence fails the check.
Brainpool suggests a less strong bound for which it still fails. Actually, an efficient
endomorphism is for example in this case the automorphism ψ mentioned above.
In [SEC10], p. 4, it is explained that the curve secp256k1 is designed on purpose
this way to have a more efficient implementation property. We have seen in 1.1 that
to sign and to verify a message one has to compute a multiple of a point. This
makes the signing/verification process faster while risking only a kind of well un-
derstood speedup by a factor of 0.7. So it is arguable whether it is an performance
advantage or a lowering of security (by unexpected future improvements). Recent
progress indicates anyway that the restriction only to elliptic curves with small CM
field discriminant is not really justified anymore (see [GLS09] and [LS14]). Never-
theless, because of the long security history of elliptic curves with small CM field
discriminant (especially in pairing-based cyptrography) Safecurves is choosing this
very strict bound while saying that there is no evidence at the time of a serious
problem.

2.3. Some further comments. There is a long list of other attack strategies (most
notably the summation polynomial approach suggested by A. Semaev) or refine-
ments of the one mentioned here. As said in the introduction the controversail hope
is that these ideas might lead to a subexponetial running time in specific cases. We
refer the reader to [GG16] to find details. The authors mention in loc. cit. 10.2.
that even in the case an algorithm could be found they would be far from an efficient
implementation (actual time, huge storage size).
To get a feeling for the size of the numbers appearing here, let us do a specula-
tive calculation (no guarantee for sensible values!). In how many days we can solve
an ECDLP on the elliptic curve secp256k1 with the actual processor technology?
Suppose the execution of one group operation takes 10−9 seconds. Then, using the
above attack strategies, it would take us

10−9 ×
√
πr/12× 0.7 ≈ 38.5 · 1020 years.

5



3 ECDSA in practice
Let us consider some issues appearing when implementing ECDSA. There might
arise some vulnerabilities during the curve and key generation or signature genera-
tion and verification processes. We survey only problems which are related to the
choice of an elliptic curve. General issues which occur while implementing, as for
example not checking whether a point is the point at infinity (see here for a report
of S. Lerner on this topic), we do not touch here.
The very first vulnerability could be manipulation: a suggested safe curve could
have a backdoor insecurity. Bitcoin and Ethereum work with one fixed curve – the
secp256k1 – and only generates private and public keys. According to Safecurves
the elliptic curve secp256k1 can be considered as somewhat ’rigid’ meaning that
almost all parameters are transparent to the public and hence can be assumed to
be not generated in order to be weak. More on manipulation of standardized curves
can be read in [BCC+15]. Now we turn to concrete implementation issues:

3.1. Ladders. The scalar multiplication of a point P on an elliptic curve E is often
used in ECDSA – for example for the public key generation. The so-called Mont-
gomery ladder is a fast and simple algorithm to do this computation in constant
time. To implement this ladder the elliptic curve has to be of a specific shape. The
curve secp256k1 does not allow the Montgomery ladder implementation. As a con-
sequence, besides the simplicity and efficiency, secp256k1 might leak informations
for side channel attacks as the time for some computations are not constant. This
lead already to successful key extraction and is reflected in libsecp256k1 implemen-
tation kit (see [GPP+16]). The author does not know whether this implementation
is fast and simple. The Brier-Joye ladder could be applied but slows down the com-
putation too much. Finally, Safecurves recommends a single-coordinate ladder as
the Montgomery one, as it makes it easier to implement a protection against the
attack we discuss next.

3.2. Twist security. The invalid-curve attack could lead to a serious vulnerability
for secp256k1 as pointed out in [BHH+14]. Therefore the attacker uses a similar
elliptic curve – a twist of the original curve – and just pretends to use the original
curve. If the twist is insecure in the sense of section 2.2 and the implementation does
not check whether the point suggested by the attacker does lie on the original curve,
he has very good chances to extract the private key after some inquiries. Now, the
standard quadratic twist of secp256k1 is also a safe curve (the cardinality of the
group has a 220-bit prime; see [BL13]), but the larger automorphism group leads to
four more twists. The biggest prime divisors of their order are 133, 188, 135, and
161 but do have also smaller prime factors making the attack probably more feasible
(see [BHH+14], p. 4). A curve which is not twist secure needs to check during the
signature and verification procedure whether the points are really on the curve.
This is doable but makes the implementation less efficient and less secure. For more
details about this attack we refer to [FLRV08] where one can find a computational
example with secp256k1.

3.3. Completeness & Indistinguishability. The formulas for the addition and scalar
multiplication on an elliptic curve might slightly change for some specific points
on the curve. An implementation which does not take care of these exceptions
produces errors. Completeness refers to curves having no exceptional cases. The
scalar multiplication on the curve secp256k1 is not complete.
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The representation of a point on an elliptic curve usually are distinguishable from a
randomly produced string. In order to disguise the appearance of points on elliptic
curves there are some strategies available (cf. [BL13]). These constructions are not
available for secp256k1.

3.4. Multiple ECDLP. In Bitcoin the public key of any user is generated from
secp256k1, their private keys, and the base point P . The situation looks as follows:
Assume we have L users with public keys Qi = aiP ∈ E(Fp), 1 ≤ i ≤ L. If someone
wants to find their private keys, she has to solve the following discrete logarithm
problems:

Qi = aiP (1 ≤ i ≤ L).

Do we have to solve L times a discrete logarithm problem? Or can take advantage
of the fact that the ECDLPs takes place on the same elliptic curve with the same
base point P? So far there is no algorithm known which finds the solution for one
instance faster (see [GG16], p. 4). But using an extended version of Pollard’s rho
method, once one is found this accelerates finding the other solutions progressively.
If for example L < r1/4, r is the size of our group, Kuhn and Struik showed that
one needs in average

√
2rL group operations. The extended algorithm of Pollard’s

rho presented in [HMV04], p. 164, lowers the running time, after finding the first
instance, for the second ECDLP by 50 %, the third then by 37%, and so on. So one
has to ensure that to find one instance is infeasible which secp256k1 does.

4 Open discussion
Up to now our focus was on the discrete logarithm problem and the ECDSA scheme
applied to the curve secp256k1 which Bitcoin and Ethereum uses. Let us look a
bit outside this frame by surveying some other (standardized) interesting curves and
signature schemes frequently discussed as good alternatives.

4.1. Other (standardized) curves. A very profound discussion and security check of
most of the standardized curves can be found on the website [BL13] of Bernstein and
Lange. For example, the NIST P-256 curve suggested by the National Institute of
Standards and Technology is graded to be not safe in almost the same categories as
the secp256k1 (3.1 and 3.3 in our discussion). The NIST P-256 passes the CM field
discriminant check but fails the rigidity test as seeds for the curve generations are
not explained and might have a backdoor insecurity (in 2013 there was the rumor
that NSA was generating weak curves). The elliptic curve Curve25519 proposed by
D. J. Bernstein in 2006 is the most discussed alternative in formus like bitcointalk
or reddit. IETF has standardized this curve and Ripple is considering to support
it (see here). The curve Curve25519 passes all the tests we have discussed here
(see [BL13]) and has also no extra automorphisms (its j-invariant is 6= 0, 1728)
and hence lowers possible problems. Curve25519 is used in combination with the
signing scheme of Schnorr (see Ed25519 in 4.2). Also the curve E-521 introduced by
Bernstein-Lange, Hamburger, Aranha-Barreto-Pereira-Ricardini (independently) in
2013 passes all the security checks of Safecurves but appears less in the discussions
in the forums. The most recent contribution is from Hamburger with the curve
Ed448-Goldilocks which is also graded to be safe in all catergories.
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4.2. Schnorr algorithm vs ECDSA. A different signing system which is often dis-
cussed as an alternative to the ECDSA is the one introduced by Schnorr. First
note that both are theoretically safe signature algorithms. According to A. Back
(the founder of Hashcash; check here), the advantages of Schnorr’s algorithm are:
simpler to securely implement, more forgiving (based on dynamical hash function),
clearer security proofs, less constraints on hash function (has not to be collision
resistant). The most famous improper implementation of ECDSA happened Sony
Playstation. As reported in [BHH+14], poor randomness support during signature
generation in the Bitcoin system (the choice of k in section 1.1) already allowed at-
tackers to steal money from clients. The RFC deterministic ECDSA might prevent
this problem (see here). Lastly, another advantage is the possibility to use threshold
signature – a useful alternative to multi-signature schemes.
The most prominent implementation of a version of Schnorr’s algorithm is with the
twisted Edward curve Ed25519. This curve is birationally equivalent to Curve25519,
in other words, it is almost the curve Curve25519 and can be considered as safe as
this one. It shows very fast and secure performances (for more details see [BDL+11]).
There are of course other signature schemes, like ElGamal, and other topics as for
example malleability of signatures, but we do not discuss them here.

5 Summary
Let us summarize the essential critical points the choice of secp256k1 has to our
knowledge:

Pure mathematical vulnerabilities:

• Pollard’s rho method: Due to the existence of extra automorphisms there is a
speedup of Pollard’s rho attack but only to a small factor. See section 2.2.

• CM field discriminant: The CM field discriminant of secp256k1 is small.
Brainpool and Safecurves require this invariant to be big to prevent speedups
for scalar multiplication. But there is no evidence that this causes a serious
problem. See section 2.2.

Implementation related vulnerabilities:

• Ladder: No ladder implementation for scalar multiplication available. This
causes no constant time computations which might leak information to side
channeling attacks. See section 3.1.

• Twist security: The existence of four (besides the identity and the negation)
automorphisms could lead to a serious vulnerability if the signing implemen-
tation does not check whether the points are lying on the curve (invalid curve
attack). See section 3.2.

• Rigidity: Scalar multiplication has no uniform formulas making the implemen-
tation more vulnerable to errors. See section 3.3.

• Indistinguishability: No intrinsic construction available to disguise points on
the curve as random strings. See section 3.3.

A vulnerability of ECDSA signature scheme (independent of secp256k1):
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• Randomness: An implementation which does not guarantee enough random-
ness during the signature process allows an attacker to recover the private key
of a user. See section 4.2.

The curve Curve25519 for example has no extra automorphisms which prevent
speedups in Pollard rho and eventual invalid curve attacks. It shows at the same
time very efficient performances.
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