
Dynamic Channel Deposit and Withdrawl for Lightning
Network
LITEX Lab

1 Introduction
Existing blockchain technology is held back by its serious performance and scalability issues, such as low
transaction capacity and prolonged delay. While Bitcoin [3] supports less than seven transactions per second,
Visa, on the contrary, supports up to 47,000 transactions per second at peak processing power. In Bitcoin,
a block is generated every 10 minutes and to ensure the validity of transactions, it requires 6 confirmations,
which will take approximately 60 minutes to complete. Bitcoin’s inefficiency and poor scalability inevitably
hinder the usability of blockchain in areas such as micropayments.

Lightning Network (LN) [4] is a practical approach to improve transaction capacity and reduce transaction
delay using a network of off-chain micropayment channels [2]. In LN, any two participants can collectively
build a bidirectional off-chain channel by depositing funds into the channel. They can later agree on any
new allocation regarding the funds which are already committed to the channel. With a cryptographic
technique namely RSMC (Revocable Sequence Maturity Contract), LN guarantees that neither participant
has any incentives to deny the latest agreement unless they broadcast their agreement to the main chain.
Whomever violates the terms first will lose all of his/her personal funds. In addition to RSMC that ensures
unconditional transfer of fundings, LN proposes another mechanism, HTLC (Hashed Timelock Contract),
which can be used for conditional transfer. The combination of RSMC and HTLC, together with a large
network of micropayment channels on the main blockchain of the Bitcoin network, formed a graph containing
all off-chain channels, in which nodes and lines represent participants and off-chain channels respectively.
Consequently, participants without mutually shared off-chain channels are still able to make transactions by
finding a path connecting different participants between them.

However, several fundamental functionalities and limitations are still left to be developed and improved.
One limitation is the malleability of payment channels. In particular, the channel with fixed capacity does
not support dynamic deposit and withdrawl, which will result in extra fees for channel management and
other possible inconveniences in many scenarios.

Wanting to improve payment channels’ malleability, we address both dynamic channel deposit (a.k.a.
splice-in) and withdrawl (a.k.a. splice-out) problems. We have constructed a case to demonstrate that
at least one on-chain broadcast is necessary for splice-in and splice-out. We then propose two approaches
for splice-in and splice-out that only result in one on-chain broadcast, reducing the number of necessary
broadcasts to the minimum.

2 Background
LN allows two counterparties to agree on an off-chain allocation of arbitrary amount of funds. It ensures the
off-chain security with the RSMC and HTLC mechanisms.

1

C1a C1b

RD1a
(seq=1000)

BR1a BR1b

C2a C2b

（A0, B0) （A0, B0)

OR（A1, B0)

（A1, B0)

RD1b
(seq=1000)

OR （A0, B1)

（A0, B1)

（A0, B0) （A0, B0)

Bob: 0.5BTC Alice: 0.5BTC
Alice: 0.5BTC

Bob: 0.5BTC

Bob: 0.5BTC

Alice: 0.5BTC

RD2a
(seq=1000)

（A2, B0)

RD2b
(seq=1000)

（A2, B0)

OR

Funding

Bob: 0.7BTC Alice: 0.3BTC
Alice: 0.3BTC Bob: 0.7BTC

Figure 1: RSMC (Revocable Sequence Maturity Contract)

Figure 1 reviews the RSMC mechanism. RSMC generates a pair of Commitment Transactions, each of
which is held by one’s counterparty. By broadcasting the Commitment Transaction, a counterparty has the
ability to close the channel by spending the Funding Transaction. Accordingly, funds within channel are
returned to both counterparties based on their latest agreement. To prevent old Commitment Transaction
from being broadcast, RSMC places a LockTime on the funds of the counterparty who broadcasts. At the
same time, it also enforces the exchange of private keys between two counterparties for old Commitment
Transactions. If either party discovers that an old Commitment Transaction (e.g., C1a in Figure 1) is
broadcast, he/she can broadcast a penalty transaction (BR1a) with previously exchanged private keys to
acquire all funds in the channel. Ensured by this mechanism, no one has the incentive to broadcast old
Commitment Transactions.

C1a C1b

RD1a
(seq=1000)

BR1a BR1b

C2a C2b

（A0, B0) （A0, B0)

OR（A1, B0)

（A1, B0)

RD1b
(seq=1000)

OR （A0, B1)

（A0, B1)

（A0, B0) （A0, B0)

Bob: 0.5BTC Alice: 0.5BTC
Alice: 0.5BTC Bob: 0.5BTC

Alice: 0.5BTC

RD2a
(seq=1000)

（A2, B0)

RD2b
(seq=1000)

OR

Funding

Bob: 0.5BTC Alice: 0.3BTCAlice: 0.3BTC Bob: 0.5BTC

Bob: 0.5BTC

（A0, B2)

OR

Wait 3 days

(AH1, BH1)

HTRD2a
(seq=1000)

(AH3, BH3)

HED2a

Alice: 0.2BTC

(AH2, BH2, R)

Bob: 0.2BTC

OR

Wait 3 days

（AH4, BH4)

Alice: 0.2BTC

HTRD2b
(seq=1000)

Bob: 0.2BTC

(AH5, BH5, R)

HED2b

(AH6, BH6)

Figure 2: HTLC (Hashed Timelock Contract)

The HTLC mechanism utilizes hash functions, ensured by transactional ”locking” between two coun-
terparties, to construct a secure network of channels across multiple destinations between the starting and
ending participants [4]. Specifically, if the receiver can produce a pre-image R to fulfill a known pre-defined
image H(R), the sender pays the receiver. Figure 2 shows the detailed protocol of HTLC, in combination
with RSMC to forbid the broadcast of old agreements.

The major limitation of RSMC and HTLC is that funds in the channel cannot be dynamically adjusted
unless both participants close and then reopen the channel. Once a channel is built, the total funds in
a channel remains fixed. Existing design makes it impossible to deposit new funds into the channel or
partially withdraw funds from the channel. Furthermore, the off-chain channel has different capacities in
both directions. The capacities continue to change as funds are being transferred between participants,
which results in the channel dry-up problem, meaning funds for that particular direction is exhausted. For

2

instance, assuming one participant is a buyer and the other is a seller, the funds always goes from the buyer
to the seller, causing a dry-up in this channel direction. In this case, both participants have to close the
channel and recreate a new one. Closing and reopening channels are require to be broadcast, which give rise
to extra costs and time delay.

Existing approaches solve the channel dry-up problem by rebalancing funds across multiple channels [1].
However, achieving a rebalance requires identification of a loop in the LN graph [1]. For example, when the
unidirectional channel from A to B dries up, A can find a third-party participant C and transfer some funds
to C. Then C transfers the same funds to B (consuming transaction fees). Finally, B transfers the funds back
to A, which rebalances the channel between A and B. This routing-based rebalance requires specific network
topology since it is highly probable that no valid loop exists. In a case where a participant is a customer,
he/she usually spends his/her channel funds instead of receiving payment from others. Therefore, it is very
likely that his/her channels dry up quickly and fails to be rebalanced.

3 LITEX Solution
As we have discussed in §2, a truly applicable off-chain architecture needs to support the functionality of
dynamical channel deposit and withdrawl. Original Lightning Network assumes that the total funds in a
channel are throughout the channel’s lifetime. Thus, there is no need to broadcast any in-channel transactions.

Old Funding
Tx

Tx from A

(A, B)
1.0

(A)
0.5

C2a

C2b

RD2a
seq = 1000

RD2b
seq = 1000

(B)
0.5

(A)
1.0

(A3, B)
1.0

(A, B3)
0.5

(A)
1.0

(B)
0.5

(A, B)
1.5

(A, B)
1.5

C1a

C1b

RD1a
seq = 1000

RD1b
seq = 1000

(B)
0.5

(A)
0.5

(A2, B)
0.5

(A, B2)
0.5

(A)
0.5

(B)
0.5

(A, B)
1.0

(A, B)
1.0

Spent in other Tx

Figure 3: If the deposit from Alice is not broadcasted, she may double spend it after agreement new Com-
mittment Transactions with Bob.

New
Funding Tx Old Funding

Tx

Tx from A

(A)
0.5

C2a

C2b

RD2a
seq = 1000

RD2b
seq = 1000

(B)
0.5

(A)
1.0

(A3, B)
1.0

(A, B3)
0.5

(A)
1.0

(B)
0.5

(A, B)
0.5

(A, B)
0.5

C1a

C1b

RD1a
seq = 1000

RD1b
seq = 1000

(B)
0.5

(A)
0.5

(A2, B)
0.5

(A, B2)
0.5

(A)
0.5

(B)
0.5

(A, B)
1.0

(A, B)
1.0

Expected Commitment TXs

Figure 4: A new Funding Transaction is constructed, the remaining problem is to connect it with old Funding
Transaction(s).

When a deposit or a withdrawl occurs, the channel status is modified, which must be verified and rec-
ognized by most participants. Otherwise, the counterparty may claim a fake input and double-spend the

3

fund. Figure 3 shows an example where Alice deposits 0.5 BTCs into the channel. The deposit results in an
agreement on a pair of new Commitment Transactions with her counterparty Bob (1.0 BTC for Alice and 0.5
BTCs for Bob). If the deposit is not broadcast, Alice may spend the fund in other places. Although Bob can
detect the double-spend by monitoring all on-chain transactions, he has no method to compensate himself.

Thus, it is necessary to broadcast any channel modification caused by deposit or withdrawl. To broadcast
the channel modification, a new funding transaction has to be constructed. The channel deposit is shown
in Figure 4. In this case, the new Funding Transaction takes an UTXO from an external transaction for
deposit. Therefore, broadcasting the funding transaction spends the UTXO so that it cannot be double-
spent once the broadcast transaction is verified. The output of the new Funding Transaction is a pair of
Commitment Transactions, each of which is held by the respective counterparty in the channel. In Figure 4,
the Commitment Transactions also rsult in RD2a and RD2 transactions, which prevent old Commitment
Transactions from being broadcast.

The new funding transaction must interact with existing funding transactions to ensure the validity of
new Commitment Transactions. In particular, the total amount of ”vouts” must be equal to that of ”vins.”
We also need to invalidate old Commitment Transactions, i.e., the counterparty who broadcasts any old
commitment transaction will lose all his/her funds. Although broadcasting inevitably results in extra costs
and delay, it is applicable because channel deposit and withdrawl do not occur frequently.

We now propose two separate approaches to support dynamic channel deposit (i.e., splice-in) and with-
drawl (i.e., splice-out). The two approaches are differed by the layout of Funding Transactions, and we will
elaborate both approaches as follows.

C1a C1b

RD1a
(seq=1000)

BR1a BR1b

C2a C2b

（A0, B0) （A0, B0)

OR（A1, B0)

（A1, B0)

RD1b
(seq=1000)

OR （A0, B1)

（A0, B1)

（A0, B0) （A0, B0)

Bob: 0.5BTC Alice: 0.5BTC
Alice: 0.5BTC

Bob: 1.5BTC

Bob: 0.5BTC

Alice: 0.5BTC

RD2a
(seq=1000)

（A2, B0)
RD2b

(seq=1000)

OR

Funding

Bob: 0.7BTC Alice: 0.3BTCAlice: 0.3BTC

Bob: 0.7BTC

Funding

OR

C3a C3b

（A0, B0)

（A0, B0)（A0, B0)

Bob: 0.7BTC

RD3a
(seq=1000)

Alice: 1.3BTC

（A3, B0)

Alice: 1.3BTC

RD3b
(seq=1000)

Bob: 0.7BTC

ER2a

OR

（A1, B0)

(A2, B0)

ER1a

（A1, B0)

Bob: 0.5BTC

（A2, B0)

Bob: 1.3BTC

ER1b

（A0, B1)

（A0, B1)

Alice: 1.5BTC

（A0, B0)

（A3, B0)

ER2b

OR

（A2, B0)

（A0, B2)

（A0, B2)

Alice: 1.7BTC

Figure 5: FundPara RSMC transactions.

4

C1a C1b

RD1a
(seq=1000)

BR1a BR1b

C2a C2b

（A0, B0) （A0, B0)

OR（A1, B0)

（A1, B0)

RD1b
(seq=1000)

OR （A0, B1)

（A0, B1)

（A0, B0) （A0, B0)

Bob: 0.5BTC Alice: 0.5BTC
Alice: 0.5BTC Bob: 0.5BTC

Alice: 0.5BTC

RD2a
(seq=1000)

RD2b
(seq=1000)

OR

Funding

Bob: 0.5BTC Alice: 0.3BTCAlice: 0.3BTC Bob: 0.5BTC

Bob: 0.5BTC

OR

Wait 3 days

(AH1, BH1)

HTRD2a
(seq=1000)

HED2a

Alice: 0.2BTC

(AH2, BH2, R)

Bob: 0.2BTC

OR

Wait 3 days

（AH4, BH4)

Alice: 0.2BTC

HTRD2b
(seq=1000)

Bob: 0.2BTC

(AH5, BH5, R)

HED2b

Funding

OR

ER2a

ER1a ER1b

ER2b

C3a C3b

（A0, B0)（A0, B0)

RD3a
(seq=1000)

RD3b
(seq=1000)

OR

(A2, B0)

(A2, B0)

Bob: 1.3BTC

(A0, B0) (A0, B0)

(A3, B0) (A0, B3)

(A1, B0)

(A1, B0)

Bob: 1.5BTC

(A2, B0)

ERHT1a

ERHT2a

(AH1, BH1)

OR

(AH3, BH3)

(AH3, BH3)

Bob: 0.2BTC

Bob: 0.2BTC

(A0, B1)

(A0, B1)

OR (A0, B2)

Alice: 1.5BTC

(A0, B2)

ERHT1b

(AH5, BH5)

ERHT2b

OR

(AH6, BH6)

(AH6, BH6) Alice: 0.2BTC

Alice: 0.2BTC

OR

HED3aWait 3 days

OR

Bob: 0.5BTC

Alice: 1.3BTC

(AH7, BH7)

HTRD3a
(seq=1000)

(AH9, BH9)

Alice: 0.2BTC

Bob: 0.2BTC

(AH8, BH8, R)

Alice: 1.3BTC

Bob: 0.5BTC

Wait 3 days

Alice: 0.2BTC

(AH10, BH10)

HED3b

(AH11, BH11, R)

HTRD3b
(seq=1000)

(AH12, BH12)

Bob: 0.2BTC

Figure 6: FundPara HTLC transactions.

3.1 FundPara
The first approach FundPara enables each new commitment to take all Funding Transactions as its input.
The benefit of this approach is that all Funding Transactions are parallel: counterparties can agree on new
Commitment Transactions with arbitrary combinations of Funding Transactions as input. Figure 5 and 6
show the details of channel deposit for RSMC and HTLC. FundPara demands the invalidation of all existing
Commitment Transactions, while RSMC also invalidates old commitment transactions by exchanging private
keys. Thus, numerous keys are exchanged when a channel has made a large amount of transactions, resulting
in poor scalability.

5

New
Funding Tx

Old Funding
Tx Tx from A

(A, B)
1.0

(A)
0.5

C2a

C2b

RD2a
seq = 1000

RD2b
seq = 1000

(B)
0.5

(A)
1.0

(A3, B)
1.0

(A, B3)
0.5

(A)
1.0

(B)
0.5

(A, B)
1.5

(A, B)
1.5

C1a

C1b

RD1a
seq = 1000

RD1b
seq = 1000

(B)
0.5

(A)
0.5

(A2, B)
0.5

(A, B2)
0.5

(A)
0.5

(B)
0.5

(A, B)
1.0

(A, B)
1.0

Invalid

Figure 7: FundCasc: Alice deposits 0.5 BTCs into the channel.

3.2 FundCasc
The second approach FundCasc cascades all funding transactions, i.e., the output UTXO of old Funding
Transaction is directed as the ”vin” of the new Funding Transaction. Figure 7 depicts the solution. In
Figure 7, a new Funding Transaction takes two ”vins:” one is the UTXO from the external transaction
deposited by Alice, and the other is the UTXO from old Funding Transaction. Once the new Funding
Transaction is verified on chain, all old Commitment Transactions that are derived from the old Funding
Transaction become invalid. The reason is that all of them use the UTXO from old Funding Transaction as
”vin”, which has been spent by the new Funding Transaction. The new Funding Transaction has a ”vout”
with new funds in the channel. Then we use the ”funding-vout” of the new Funding Transaction to create a
pair of Commitment Transactions (C2a and C2b) for both participants of the channel.

Specifically, the splice-in proceeds as follows:

1. Creating a new Funding Transaction

2. Creating a pair of new Commitment Transactions (C2a and C2b), containing the corresponding RD2a
and RD2b

3. Signing the new Commitment Transactions

4. Exchanging signatures for new Commitment Transactions

5. Signing a new Funding Transaction

6. Exchanging signatures for the new Funding Transaction

7. Broadcasting the new Funding Transaction

New
Funding Tx

Old Funding
Tx

Withdraw
Tx

(A, B)

1.0

C2a

C2b

RD2a
seq = 1000

RD2b
seq = 1000

(B)

0.5

(A)

0.1

(A3, B)

0.1

(A, B3)

0.5

(A)

0.1

(B)

0.5

(A, B)

0.6

(A, B)

0.6

C1a

C1b

RD1a
seq = 1000

RD1b
seq = 1000

(B)

0.5

(A)

0.5

(A2, B)

0.5

(A, B2)

0.5

(A)

0.5

(B)

0.5

(A, B)

1.0

(A, B)

1.0

Invalid

(A)

0.4

Figure 8: FundCasc splice-out: Alice withdraws 0.4 BTCs from the channel.

6

Splice-out. The solution of splice-out is similar to that of splice-in. Figure 8 shows the procedure. We
construct a new Funding Transaction which takes the UTXO of an old Funding Transaction (1.0 BTC) as
its only ”vin”. It produces two ”vouts”: one specifing the remaining fundings in the channel (0.6 BTCs), and
the other ”vout” indicating the amount of funding withdrawn (0.4 BTCs). The remaining fundings result in
two Commitment Transactions, which corresponds to the fundings of both counterparties within the channel
(0.1 BTCs for Alice and 0.5 BTCs for Bob).

New Funding Tx

Old Funding Tx

funding-vout

Other Tx1

funding-vout

Other Tx2

Other Txn

........

vout1

voutn

vout2
........

Figure 9: LITEX general channel change: multiple ”vins” and ”vouts.”

Extensions. The splice-in and splice-out of FundCasc have exactly one ”vout” or ”vin”. In general, we
can construct arbitrary number of ”vins” and ”vouts” for the new Funding Transaction whenever deemed
necessary. Figure 9 demonstrates a case with n+1 ”vins” (one from previous Funding Transaction) and n+1
”vouts” (one from the channel).

This design brings great flexibility for channel management. For example, Alice wants to deposit a large
amount of funding into the channel but she only has multiple small UTXO. At the same time, Bob intends to
withdraw some fundings to his various accounts. In this case, they can agree on a new Funding Transaction
with multiple ”vins” and ”vouts”.

The proposed approach is also compatible with previous approaches such as channel rebalancing. For
example, a participant can use the Circle Pay approach to rebalance his/her fundings across multiple channel.
When Circle Pay fails, he/she may employ our proposed splice-in/splice-out approaches.

4 Implementation
LITEX team is currently developing FundCasc based on The Lightning Network Daemon (lnd) [5]. We will
be publishing our completed test code in a couple of weeks.

References
[1] R. Khalil and A. Gervais. REVIVE: Rebalancing O -Blockchain Payment Networks. In Proc. of CCS,

2017.

[2] J. Lind, I. Eyal, P. R. Pietzuch, and E. G. Sirer. Teechan: Payment channels using trusted execution
environments. CoRR, abs/1612.07766, 2016.

[3] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[4] J. Poon and T. Dryja. The bitcoin lightning network. cit. on, 2015.

7

[5] J. Poon and O. Osuntokun. Lightning network daemon, 2018.

8

