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Abstract

The Distributed Auditing Proofs of Liabilities (DAPOL) are schemes designed to let companies that
accept (i) monetary deposits from consumers (i.e., custodial wallets, blockchain exchanges, banks,
gambling industry etc.) or (ii) fungible obligations and report claims from users (i.e., daily reporting
of COVID-19 cases , negative product reviews, unemployment rate, disapproval voting etc.) to
prove their total amount of liabilities or obligations without compromising the privacy of both users’
identity and individual amounts.

Throughout this document we’ll often refer to one of DAPOL’s most popular use cases, which is
proving solvency of cryptocurrency exchanges. Solvency is defined as the ability of a company to
meet its long-term financial commitments. In finance and particularly in blockchain systems, proof
of solvency consists of two components:

1. Proof of liabilities: proving the total quantity of coins the exchange owes to all of its
customers.

2. Proof of reserves (also known as proof of assets): proving ownership of digital assets (i.e.,
coins) in the blockchain.

Typically, an exchange should prove that the total balance of owned coins is greater than or equal to
their liabilities, which correspond to the sum of coins their users own internally to their platform.

It is highlighted that this proposal focuses on the proofs of liabilities part only, mainly because the
same solution can be applied to a broad range of applications, even outside solvency, and secondly
because the proof of assets part cannot easily be generalized and it differs between blockchain types
due to different privacy guarantees offered per platform [14; 18; 30; 31].

The extra benefit of DAPOL compared to conventional auditor-based approaches is it provides a
transparent mechanism for users to validate their balance inclusion in the reported total amount
of liabilities/obligations and complements the traditional validation performed by the auditors by
adding extra privacy guarantees.

This document focuses on a particular class of auditing cases, in which we assume that the audited
entity does not have any incentive to increase its liabilities or obligations. Although proofs of liabilities
are an essential part of proving financial solvency, it will be shown that there are numerous applications
of DAPOL, including their use in tax earning statements, “negative” voting and transparent reports
of offensive content in social networks, among the others.

The recommended approach combines previously known cryptographic techniques to provide a
layered solution with predefined levels of privacy in the form of gadgets. The backbone of this
proposal is based on the enhanced Maxwell’s Merkle-tree construction and is extended using balance
splitting tricks, efficient padding, verifiable random functions, deterministic key derivation functions
and the range proof techniques from Provisions and ZeroLedge solvency protocols, respectively.

Because Bulletproofs [5], Gro16 [23], Ligero [1], Plonk [21], Halo [3] and other efficient ZKP
constructions were not available or mature when the above solvency protocols were published, we will
assume that any efficient zero knowledge scheme for set membership in summation structures can be
a good candidate, but we hope we will agree as a community on one or two concrete constructions.
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About this proposal

The “DAPOL” document aligns with the scope of the ZKProof open initiative, which seeks to
mainstream ZKP cryptography and its real-world applications. This proposal focuses on a design
that promotes the use of ZKP in a variety of use cases and clearly shows the privacy and transparency
benefits offered by ZKP-based constructions compared to traditional approaches.

DAPOL is an inclusive community-driven process that focuses on privacy, transparency and security,
aiming to advance trusted specifications and open-source implementation of distributed auditing
processes, in particular for proofs of liabilities, obligations and “negative” votes.

Setting a standard for this crucial and demanding auditing process will be help make proofs of
solvency interoperable not only in financial institutes and services which routinely require them, but
also in other industries which require auditing of obligations and/or aggregated “negative” reports.
One of the main reasons for exploring standardization of ZKP in auditing is that there is now industry
inconsistency on the tools used for proofs of solvency. Oftentimes auditors need to re-implement
the algorithms proposed by the audited companies (provers) as there is not a common reference for
them, while it is clear that outdated weaker privacy-preserving techniques are still widely used (i.e.,
the original scheme of Maxwell [34]).

We also highlight that since this application requires efficient range proofs, set membership and
batch verification by nature, DAPOL can be used as a benchmarking use case when comparing zero
knowledge proof protocols.

This document intends on being a community-built reference for understanding and aiding the
development of auditing systems using ZKP. The ideas and algorithms described here are built on
top of excellent earlier work in the field, originally focused on solving solvency, such as the Maxwell
protocol, the Provisions and ZeroLedge proofs of liabilities and their extensions Provisions+ and
Maxwell+, respectively.

The following items offer guidance for the expected development process of this document, which is
open to contributions from and for the community.

Purpose. The purpose of standardizing DAPOL is to give a reference for the development of auditing
technology that is transparent, secure, interoperable and which supports selective privacy-preserving
properties.

Aims. The aim of the document is to serve as a point of reference for implementing interoperable
systems that prove the total liabilities and obligations of an entity in a distributed way, where every
user can check inclusion of their values/balances in the total amount reported.

We hope that the final solution will find use in many industries including finance (proofs of solvency,
syndicated loans and insurance, credit score, fund-raising etc), and any other business where reports of
obligations, responsibilities or “negative” votes are required (such as reporting fake news, disapproval
voting, transparent lottery prize pools etc).

Scope. The document intends to cover material relevant for its purpose — a complete solution for
DAPOL by supporting selective privacy levels in order to conform to the world’s variety of audit
standards. The proposed methods can be complementary to the current auditing best practices or
be applied independently in an auditor-less environment.
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Due to the recent advances in ZKP protocols and properties, although we expect that many generic
or specialized ZKP systems can be applied to DAPOL, our objective is to agree on one or at most
two concrete designs (specific ZKP scheme). This is very important to avoid delays in the adoption
of the proposed solution.
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Motivation

This proposal combines a set of cryptographic primitives to offer a decentralized privacy-preserving
solution for a class of auditing processes that require an entity to transparently report its total
amount of liabilities, obligations or anything related to fungible negative reports without exposing
any user data. The maturation of five major factors and technological developments inspired and
motivated this proposal:

1. Privacy-Enhancing Technologies (PET): Some of the technologies that demonstrate
the greatest potential for advanced privacy are Zero Knowledge Proofs (ZKP), Multi-Party
Computations (MPC), Differential Privacy (DP), Private Information Retrieval (PIR), Private
Set Intersection (PSI), Oblivious RAM (ORAM), Mix Networks and Secure Enclaves among
others. The most important observation is that these technologies have reached the point of
maturity and practicality, and standardization efforts are under way for many of them.

Privacy preserving auditing can benefit from all the above, but one of the most promising
primitives to apply is ZKP, a set of tools that allow a piece of information to be validated
without the need to expose the data that demonstrates it. ZKP let a prover demonstrate to a
verifier — any third-party, such as a user or the auditor — that certain data pass a shared
validation procedure, without sharing them explicitly. In our design, the audited entity should
prove its total liabilities or an encrypted variant of it, without exposing anything else about
the liabilities structure and its user-base. At the same time it can deliver ZKP to each user,
who can verify if their balances/amounts are included in the reported total liabilities.

Additionally, PIR, ORAM and Mix Networks can provide extra privacy guarantees, especially
because we want to hide access patterns to the provided proofs. A vulnerable period in the
distributed auditing process — which has not received enough attention in the literature —
occurs when the audited entity uses information of former audits to predict the probability of
a user checking their proofs. This information could be utilized by the audited entity to omit
particular balances in the upcoming audits, as the risk of being caught is very low. Due to the
above, ZKP should eventually be combined with these technologies as well.

2. Global privacy focused regulations: Auditing is already affected by new privacy focused
regulations. In 2019, regulators accelerated their efforts to reinforce and standardize data
security policies amid the growing realization of the economic value of data in several key
jurisdictions. The field of PET continued to breed new solutions that will shape the industry as
the new decade kicks off. European Union’s General Data Protection Regulation (GDPR) [19]
coming into effect has been a major influence on the global privacy landscape this past year.
Although the process formally began in 2018, it was the following year that saw the bulk of
compliance and enforcement effort pick up real steam. Over in the U.S., legislators have been
fiercely debating matters of data usage as well. California moved to become the first to adopt
its own regulatory framework, the California’s Consumer Privacy Act (CCPA)[8]. Several US
state legislatures — Massachusetts, New York and New Jersey among them — have already
moved or announced plans to consider their own privacy regulations.

3. Hype of decentralization: Due to its immutability, security and lack of a central authority,
the blockchain technology has grown in popularity and along with it so does the concept
of decentralization in various business and social processes. While blockchains are usually
correlated with cryptocurrencies, it, of course, has other use cases and applications and the
potential of being implemented across diverse sectors other than finance, including health,
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agriculture, and various other sectors that the blockchain itself might even redefine. For
audit purposes, blockchains can be used as an immutable public bulletin board where entities
publish their liability reports. Additionally, the decentralization concept and smart contract
capabilities allow for auditor-less solutions.

4. Broad range of applications: Although the most obvious use case of DAPOL is proofs of
solvency in cryptocurrency exchanges and wallets, we realized that the requirement of reporting
obligations has broader applications, even outside the finance industry. Some examples include
verifiable syndicated loans and insurance contracts, earnings on tax reports, jackpot prizes
in gambling, transparent charity fund-raising campaigns, disapproval voting and fake news
reports, among others. In all the above cases, adding a feature where everyone can check
the inclusion of his/her balance or negative vote in the total of reported obligations will add
transparency and an inherently privacy-preserving and distributed way of verifying correctness.
All in all, DAPOL can be a useful feature to numerous auditing cases. Even if it’s eventually
used as a complementary tool to traditional auditing, a standardized solution will reduce
fragmentation and increase adoption of PET technologies.

5. Lack of industry standards: Unfortunately, there are still no standardized protocols for
distributed privacy preserving auditing and this has reportedly caused loss of user funds in
the past. One of the most obvious applications of liabilities auditing is related to proofs of
solvency where an entity (i.e., a bank or a cryptocurrency exchange) proves that it has enough
assets to cover its liabilities (user deposits). Not surprisingly, there are at least two popular,
but different cases where a robust liabilities proof system could have prevented (or reduced)
loss of funds.

The first case is a well-known instance of putting much trust in auditors selected among a
handful of companies, and supports that blindly relying on third party entities to verify claims
may not be advisable. On June 15, 2002, Arthur Andersen was convicted of obstruction of
justice for shredding documents related to its audit of Enron, resulting in the Enron scandal
which eventually led to the bankruptcy of the Enron Corporation, an American energy company,
and the de facto dissolution of Arthur Andersen, which was one of the five largest audit and
accountancy partnerships in the world at that time. In addition to being the largest bankruptcy
reorganization in American history at that time, Enron was also cited as the biggest audit
failure.

The other real-world example was due to an exploit of the Bitcoin’s protocol, where in early
2014, customers of the Tokyo-based Mt. Gox, the largest and most important Bitcoin exchange
started to complain that they had requested withdrawals from Mt. Gox but never received
the money. Then, the site shut off all withdrawals and its Twitter account disappeared. As
it turned out, an attacker had slowly been draining all of Mt. Gox’s bitcoins without being
noticed. The company filed for bankruptcy in February 2014 citing $64 million in liabilities [15;
28].

We note that there is also a positive outcome of the Mt. Gox case: it introduced the requirement
of auditing processes in the cryptocurrency exchange space, originally by individual (human)
auditors, then by big audit firms, like Deloitte. More importantly, it ignited research on
efficient solvency schemes and the first cryptographic proof of solvency scheme was proposed
in 2014 by Gregory Maxwell [34]. Unfortunately, the original scheme leaked information
about its database size and individual balances and many exchanges decided not to use it
(e.g., Kraken) and they preferred trusted auditors instead [24]. Apart form privacy issues, the
original Maxwell scheme has also been proven to be insecure and it could lead to publishing less
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liabilities than expected. Nonetheless, it’s still the dominant scheme used in the industry [33].

For all of the above and due to the lack of a complete and efficient privacy preserving scheme,
the industry is still hesitant on using cryptographic proofs of solvency. Discussions in the
ZKProof Community Event in 2019 [9] also revealed that due to not having an official standard
reference, the auditors, who cannot blindly trust the specifications and implementation provided
by the audited entity, are oftentimes forced to implement a custom proof of liabilities solution
from scratch and have different variations of similar algorithms.

Stefan Thomas, the former CTO of Ripple, who personally audited Bitfinex and OKCoin
in 2014, offered an interesting quote when he mentioned: “Until we can implement fully
zero-knowledge, cryptographically provable audits, you have to trust the auditor, i.e. me, to
have done my job correctly” [10; 32]. This document comes as an answer to the above; we
recommend a practical ZKP-based solution for DAPOL.
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Chapter 1. Tools for Proofs of Liabilities

1.1 Cryptographic Primitives

This section enlists the most important cryptographic building blocks used in this proposal. Note
that more than one of the below primitives should be combined for a complete solution, while some
of them can optionally be used to provide extra security properties and privacy guarantees.

While it feels that the scope of the proposal in places feels too broad, the main idea is to consider
the proofs of liabilities as a primitive and further enhancements and applications, such as private
set intersection and disapproval voting are added as recommendations and ideas for extending the
security features of production-ready applications.

1.1.1 Merkle Trees

Merkle trees are hierarchical data structures that enable secure verification of collections of data. In a
Merkle tree, each node has been given an index pair (i, j) and is represented as N(i, j). The indexes
i, j are simply numerical labels that are related to a specific position in the tree. An important
feature of the Merkle tree is that the construction of each of its nodes is governed by the following
(simplified) equations:

N(i, j) =

{
H(Di) i = j

H(N(i, k)||N(k + 1, j)) i 6= j

where k = (i+ j − 1)/2 and H is a cryptographic hash function.

The i = j case corresponds to a leaf node, which is simply the hash of the corresponding i-th
packet of data Di. The i 6= j case corresponds to an internal or parent node, which is generated by
recursively hashing and concatenating child nodes, until one parent (the Merkle root) is found. The
tree depth M is defined as the lowest level of nodes in the tree, and the depth m of a node is the
level at which the node exists.

The primary function of a Merkle tree is to verify that some data packet Di is a member of a list or
set (known as set-membership) of N data packets δ ∈ D1, . . . , DN . The mechanism for verification
is known as a Merkle proof, and consists of obtaining a set of hashes known as the authentication
path for a given data packet Di and Merkle root R. The authentication path for a data packet is
simply the minimum list of hashes required to reconstruct the root R by way of repeated hashing and
concatenation. Note that a proof of inclusion could be performed trivially if all packets D1, . . . , DN

are known to the verifier, which does, though, require a much larger storage overhead than the
Merkle path and that the entire data set is available to the verifier.

2



Tools for Proofs of Liabilities

1.1.2 Summation Merkle Trees

A summation Merkle tree is a modified Merkle tree, where every leaf consists of (v, h) where v is a
numeric value (i.e., balance) and h is a blob, usually the result of a hash result under a collision-
resistant hash function H. The main difference between a regular and a summation Merkle tree, is
that in summation trees, each internal node contains a numeric value which equals the sum of its
children amounts. Thus, all of the leaf balances are filled up in a bottom-up order, and hence the
final balance of the root node is the summation of all leaf node numeric values.

Definition 1. A summation Merkle tree is a secure proof of sum correctness scheme, if the total
sum at the root node equals the sum of the amounts of all leaves in the tree and the cumulative
relation between the internal node and its children holds. Every intersection node of two successfully
verified paths remains the same as the one on the established summation Merkle tree, assuming the
collision resistance of the hash functions.

For a decentralized auditing proof of liabilities scheme where clients independently verify that their
balances are included in the total amount reported, the scheme is secure if the claimed liabilities are
no less than the sum of the amount of money in the dataset when no verification fails.

Based on a secure modification of the Maxwell protocol, it has been proven that for an internal
node to achieve summation correctness, we should include both its child balances unsummed rather
than just the their sum, i.e., h = H(v1||v2||h1||h2) is considered secure, while h = H(v1 + v2||h1||h2)
isn’t [17; 25].

1.1.3 Pedersen commitments

To protect user balances we recommend using Pedersen commitments. Let G be a cyclic group with
s = |G| elements, and let g and h be two random generators of G. Then a Pedersen commitment to
an integer v ∈ 0, 1, . . . , s− 1 is formed as follows: pick commitment randomness r, and return the
commitment c := COM(v, r) = gvhr.

Pedersen commitments are perfectly hiding: the commitment c reveals nothing about the committed
value v. In a similar way, the commitments are also computationally binding: if an adversary can
open a commitment c in two different ways (for the same r, two different values v and v′), then the
same adversary can be used to compute logh(g) and thus break the discrete logarithm problem in G.

A very useful property of Pedersen commitments is that they are additively homomorphic. If c1 and
c2 are two commitments to values v1 and v2, using commitment randomness r1 and r2, respectively,
then c := c1× c2 is a commitment to v1 + v2 using randomness r1 + r2, as c = (gv1hr1)(gv2hr2) =
gv1+v2hr1+r2 .

1.1.4 Set Membership Proofs

A set membership proof allows a prover to prove, in a zero-knowledge way, that his secret lies in a
given public set. Such proofs can be used, for instance, in the context of electronic voting, where
the voter needs to prove that his secret vote belongs to the set of all possible candidates. In the
liabilities case, such a proof can be used to prove inclusion of a user’s balance to the reported total

3



Section 1.1 Cryptographic Primitives

value. Another popular special case of the set membership problem occurs when the set S consists
of a range [a, a+ 1, a+ 2, . . . , b] — which we denote [a, b].

Definition 2. Let C = (Gen,Com,Open) be the generation, the commit and the open algo-
rithm of a string commitment scheme. For an instance c, a proof of set membership with re-
spect to commitment scheme C and set S is a proof of knowledge for the following statement:
PK(σ, ρ) : c← Com(σ; ρ) ∧ σ ∈ S

Note: The proof system is defined with respect to any commitment scheme. Thus, in particular, if
Com is a perfectly-hiding scheme, then the language ΓS consists of all commitments (assuming that
S is non-empty). Thus for soundness, it is important that the protocol is a proof of knowledge.

1.1.5 Zero-Knowledge Range Proofs

Zero-Knowledge Range Proofs (ZKRP) allow for proving that a number lies within a certain range.
In short, given a commitment to a value v, prove in zero-knowledge that v belongs to some discrete
set S. For the purposes of this work, S is a numerical range such as [0, 264 − 1].

Definition 3. A range proof with respect to a commitment scheme C is a special case of a proof of
set membership in which the set S is a continuous sequence of integers S = [a, b] for a, b ∈ N .

1.1.6 Verifiable Random Functions

A Verifiable Random Function (VRF) [27] is pseudorandom function which gives a public verifiable
proof of its output based on public input and private key. In short, it maps inputs to verifiable
pseudorandom outputs. VRFs can be used to provide deterministic pre-commitments which can
be revealed later using proofs. In the context of DAPOL, VRFs are required for deterministic and
unique generation of audit ids and inherently Merkle trees.

A VRF is a triple of the following algorithms:

KeyGen(r)→ (V K, SK). Key generation algorithm generates verification key V K and secret key
SK on random input r.

Eval(SK,M)→ (O, π). Evaluation algorithm takes secret key SK and message M as input and
produces pseudorandom output string O and proof π.

V erify(V K,M,O, π)→ 0/1. Verification algorithm takes as input verification key V K, message
M , output string O, and proof π. It outputs 1 if and only if it verifies that O is the output produced
by the evaluation algorithm on input secret key SK and message M , otherwise it outputs 0.

A VRF should support uniqueness according to which, for any fixed public VRF key and for any
input alpha, there is a unique VRF output beta that can be proved to be valid. Uniqueness must
hold even for an adversarial Prover that knows the VRF secret key SK.

VRFs need to be collision resistant. Collison resistance must hold even for an adversarial Prover
that knows the VRF secret key SK.

A VRF should be a pseudorandom function. Pseudorandomness ensures that the VRF hash output
beta (without its corresponding VRF proof pi) on any adversarially-chosen "target" VRF input
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alpha looks indistinguishable from random for any computationally bounded adversary who does
not know the private VRF key SK.

1.1.7 Private Information Retrieval

Publicly accessible databases are an indispensable resource for retrieving up to date information.
But they also pose a significant risk to the privacy of the user, since a curious database operator can
follow the user’s queries and infer what the user is after. Indeed, in cases where the user’s intentions
are to be kept secret, users are often cautious about accessing the database.

In recurring audits, an important property that a complete distributed liabilities proof solution
should satisfy, is to serve the inclusion proofs to clients without learning which proof has been
requested. This is desirable, because the audited entity can extract information about users who
never or rarely check their proofs and thus the risk from omitting their balances from upcoming
audit proofs is statistically lower.

Private Information Retrieval (PIR) is a protocol that allows a client to retrieve an element of a
database without the owner of that database being able to determine which element was selected.
While this problem admits a trivial solution - sending the entire database to the client allows the
client to query with perfect privacy - there are techniques to reduce the communication complexity
of this problem, which can be critical for large databases.

Additionally, Strong Private Information Retrieval (SPIR) is private information retrieval with the
additional requirement that the client only learn about the elements he is querying for, and nothing
else. This requirement captures the typical privacy needs of a database owner.

1.2 Schemes for Proofs of Liabilities

A list of cryptographic proofs of liabilities schemes used in this proposal is briefly described in this
section. Note that DAPOL uses and combines features from all of the following solutions.

1.2.1 Summation Tree based (Maxwell+)

Just before Mt. Gox’s bankruptcy case, Maxwell proposed a protocol (summarized in [34]) that
enables an exchange to prove its total liabilities while allowing users to verify that their accounts
are included in this total. The exchange constructs a summation Merkle tree similar to what is
described in 1.2, where each leaf node contains a customer’s balance in clear, as well as the hash of
the balance concatenated with the customer id and a fresh nonce (i.e., a hash-based commitment).

Note that the original proposal has been proven to be insecure as one can claim less liabilities than
the sum of the amount of all users’ contribution. Here we apply the fix proposed in [17; 25] and
we add to the hash both balances separately instead of aggregating them first. Throughout this
document, we refer to the fixed protocol as Maxwell+.

Each internal node stores the aggregate balance of its left child and right child, as well as the hash
of its left and right children data. The root node stores the aggregate of all customers’ balances,
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representing the total reported liabilities; then, the exchange broadcasts the root node. This is
illustrated in Figure 1.1.2.

When a customer verifies if their balance is included in the total liabilities declared by the exchange,
it is sufficient to only receive part of the hash tree in order to perform the verification. Specifically,
the exchange sends to the customer her nonce and the sibling node of each node on the unique path
from the customer’s leaf node to the root node, this is called the authentication path. The other
nodes on the path, including the leaf node itself, do not need to be transmitted because there exists
sufficient information to reconstruct them. The customer eventually accepts that their balance is
included if and only if their path terminates with the root broadcasted and signed by the exchange.

While elegant, this protocol does not hide the value of the exchange’s total liabilities which is
published in the root node. Although a rough sense of this value may be public knowledge, the exact
value may be sensitive commercial data. Furthermore, regular proofs will reveal precise changes
in the exchange’s holdings. This protocol also leaks partial information about other customers’
balances. For example, if a simple balanced tree is used, then each customer’s proof reveals the exact
balance of the sibling account in the tree (although the account holder remains anonymous). More
generally, each sibling node, revealed in a given authentication path, reveals the total holdings of
customers in that neighboring sub-tree. This could be mitigated somewhat by using an unbalanced
tree or perform random balance splitting so it is not immediately clear how many customers are in
any neighboring sub-tree, but the protocol inherently leaks some information.

Figure 1.1: A summation tree, based on the corrected version of Maxwell’s scheme.

Figure 1.1 shows a 4 node summation Merkle Tree by applying the fix of [17] and [25].

Maxwell’s design allows for a distributed proof checking, where every client verifies his/her balance
inclusion in the reported total liabilities, thus, in theory an auditing process could be performed
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by tolerating a probabilistic auditor-less threat model, where the sole information that gets public
(even to the auditor) is the root node.

However, there have been real world use cases, where a third party auditor receives all of the leaves
anyway [33]. If a centralized auditing is to be preferred, Maxwell’s scheme can be converted to a
regular Merkle tree (we refer to it as Centralized Maxwell) where no summation takes place. Such a
design is presented in Figure 1.2, where internal nodes do not carry balances, in order to hide sibling
amounts from regular users when checking their authentication path. The auditor however will have
access to every leaf balance and can just aggregate them to get the reported total value. In some
sense, users can verify inclusion of their hash only, but balance aggregation and correctness is only
performed by the auditor.

Figure 1.2: A centralized version of Maxwell’s scheme.

1.2.2 Random Split Summation Tree based (Split Maxwell+)

Split Maxwell [9] is a modification of the original Maxwell scheme that adds extra privacy guarantees,
both on what the auditor and other users learn. Briefly, the idea is to split balances then shuffle all
leaves before adding them to the summation tree. Due to splitting, each user will receive multiple
authentication paths and although the tree height might grow, less information is exposed by sibling
leaves, while the size of user-base is obfuscated. This construction can be applied on top of any
scheme, including Maxwell, Maxwell+, Centralized Maxwell and even Provisions.

An interesting property of Split Maxwell+ is that even if someone (i.e., an auditor) gets access
to every leaf, this auditor will gain limited information about individual user balances and at the
same time the number of leaves grows linearly to the number of splits, which effectively works as
a padding mechanism to hide the total number of users. Figures 1.3 and 1.4 show an example of
balance splitting for 3 users. Briefly, the benefits of Split Maxwell+ are the following:

• Limited exposure of customer balances to the auditor or other customers.

• Identities are fully protected and there is no link between splits of the same balance.

• Padding the total number of customers. In the Centralized Maxwell scheme the auditor has
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direct access on this number, while in every other solution it could be predicted by the tree
height.

• Multiple (subsequent) proofs of solvency cannot be combined to extract any of the above data,
because every audit is independent and a different split and shuffling is applied.

• Previously, one could correlate balances between different audits and extract statistical data
around specific customer’s profit/loss. Split Maxwell+ solves this as its proof applies a new
randomized splitting and shuffling.

• Due to the above, this model enables more frequent monitoring. Split Maxwell+ is only
recommended if for any reason a complete ZKP-based approach is not available or if an
application can tolerate some privacy leak.

The main drawbacks include:

• Less efficient proof construction and verification due to requiring larger trees after splitting
balances.

• Similarly to the original protocol, the total reported liabilities gets published. In some
applications this might not be desirable.

• Due to the above, if such proofs are provided every few weeks or months, one can extract
business information by checking updates on the total reported amounts.
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Figure 1.3: Randomly split balances then shuffle, based on Split Maxwell+ scheme.

Figure 1.4: Generate summation tree after splitting and shuffling, based on Split Maxwell+.
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1.2.3 Range Proof based (Provisions and ZeroLedge)

Dagher et al. [13] introduced the Provisions protocol which allows Bitcoin exchanges to prove that
they are solvent without revealing any additional information. As shown in Figure 1.5, the protocol
replaces visible balances with homomorphic commitments and relies on range proofs to prevent
an exchange from inserting fake accounts with negative balances. Note that although the original
Provisions design mainly addresses customer verification without Merkle trees, in this version we
present Provisions on top of the Maxwell+ scheme.

While Provisions [13] focused on both proof of assets and liabilities, a year later, ZeroLedge [17]
proposed a similar design focusing on the liabilities part only. Both systems are very similar, but
as they were published before Bulletproofs and other efficient ZKP schemes, the original provided
range proofs constructions are less performant, while the proof size was linear to the number of
customers. Since in these protocols, one party (the exchange) has to construct many range proofs at
once, Bulletproofs or other efficient ZKP schemes is a natural replacement for their NIZK proofs.
For instance if we apply the aggregation feature of Bulletproofs, the proof would then be dominated
by one commitment per customer, hundreds of times smaller than the original schemes.

Provisions’s elegant design offers a number of desirable privacy features:

• The total value of the liabilities is kept secret (from the auditor, public or users).

• Individual balances (i.e., from sibling nodes) are not exposed. Unlike random splitting,
Provisions offer full privacy in an acceptable range (i.e., amounts up to 264 − 1), due to the
combination of Pedersen commitments and range proofs.

• Similarly to any other scheme, identities are fully protected.

• Multiple (subsequent) proofs of solvency cannot be combined to extract any data about inactive
users or how their balances evolved, because every time a different blinding factor and audit id
is provided per user.

Provisions’s main drawbacks include:

• Computationally expensive proof construction and verification due to the extensive use of
range proofs. Faster ZKP schemes can speed up the process, but it still might require many
hours to compute proofs for dozens of millions of users.

• The total number of users is exposed. Although some padding can be applied by introducing
fake clients with zero balance, this is linear to the MaxDesiredSize− UserBaseSize, which
might be impractical for large MaxDesiredSize, i.e., > 240.

• Although the original Provisions paper mentions how to construct tree-based proofs (similarly
to Maxwell), it specifically focuses on account balances up to 251 and up to 2205 accounts,
which works well for Bitcoin. However, the tree-ified version can do much better than the flat
list approach, in the sense that it can allow bigger ranges and/or larger number of accounts.

Briefly, if the only limit is size of the underlying group order, under certain system parameters
and when numeric ranges in the range proof are close to the underlying group order, the
authentication path should always be accompanied by extra range proofs for the product of
two sibling commitments in the tree. We address this issue in section 4.5.
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Figure 1.5: Extended customer verification version of Provisions scheme for 4 nodes.

Figure 1.6: Add padding (fake accounts with zero balance) to Provisions scheme.
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1.2.4 Deterministic Tree Range Proofs based (DProvisions)

In the ZKProof Community Event in Amsterdam 2019, extensions of the Provisions scheme have
been presented and discussed further [9] that equip the protocol with extra security guarantees.
The updated scheme, DProvisions, is using a NIZK based range proof system as in Provisions,
but combined with a deterministic sparse Merkle tree construction. By utilizing Key Derivation
Functions (KDF) on top of VRFs (as shown in Figure 1.7) every audit id and blinding factor is
computed deterministically. This offers a number of new privacy and transparency features on
tree-based proofs of liabilities.

Most importantly, in non deterministic constructions, a malicious entity can put all of the users that
based on some analysis have higher probability of checking their proofs next to each other, and thus
statistically, only a small part of the tree might be verified for correctness. We can allow for better
dispersion of users’ leaves by allowing deterministic shuffles on each audit. This can be achieved
by sorting the hash values of the leaves before putting them on the tree. Because the hashes are
computed deterministically, due to the properties of VRF, a malicious entity cannot arbitrarily fix
the relational ordering of user nodes in the tree. That said, if two or more users work together,
they can learn if at least between them, the ordering has been applied correctly. Note that this
deterministic ordering is always different between different audit rounds, thus no information can be
extracted by subsequent ordering.

Figure 1.7: Deterministically generate audit_id for DProvisions.

Another feature of DProvisions is it utilizes sparse Merkle trees with the goal to minimize the number
of fake users (with zero balances) if required for padding purposes. Note that padding can help on
obfuscating the population size of the user-base. As shown in Figure 1.8, padding is only required to
the roots of empty sub-trees and thus, we can easily support tree heights that were not previously
possible. It is highlighted that the tree height reveals the maximum number of users, thus a tree of
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height = 40 can probably support most of today’s applications. In practice, one can just pick a big
enough tree that will work for next x years even in the most promising forecasting scenarios and
thus the tree size will never need to be updated; if it did, it might reveal that something changed,
i.e., more users (that surpass previous padding size) entered the system.

Figure 1.8: Sparse tree generation for DProvisions.

Padding size in Sparse Trees. Given M , the number of users, assuming it is a power of two:
M = 2m, and H, the height of the tree (the number of leaves in the tree can be at most 2H), we
estimate the bounds on the number of zero-nodes that we need to add to the tree as follows:

• in the best-case scenario all user nodes occupy the left-most leaves of the tree, therefore filling-in
the left-most lowest sub-tree of height m, the zero-nodes then need to be added along the path
from the root of this sub-tree to the root, there will be at most (H −m) of them added;

• in the worst-case scenario all users are evenly dispersed in the leaves of the tree, therefore the
lowest sub-trees of height (H −m) will have only one node each and will need (H −m) of
zero-nodes to be added to produce the roots of the sub-trees, the number of zero-nodes to be
added is then at most (H −m) ∗ 2m.

• thus, the number of nodes to be added "artificially" is at least (H−m) and at most (H−m)∗2m.
Note that if we had to populate the whole tree with zero nodes as was previously suggested,
to make the tree complete, the number of zero-nodes would have to be 2H−1 which could be
impractical for H >= 32 or otherwise is significantly larger than the number of zero-nodes to
be added by our method.
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1.2.5 Secure Enclave based (Trusted Computing)

Decker et al. [16] suggested the idea of using Secure Enclaves technology for protecting correctness
of execution and user’s privacy at the same time. Their work made use of consumer general purpose
processors from Intel and AMD under the names Intel Trusted eXecution Technology (TXT) and
AMD Secure Virtual Machine (SVM), but nowadays one could use Intel SGX technology to implement
their scheme [9; 11]. Briefly, their proposal is to add privacy to Maxwell’s scheme without utilizing
zero knowledge proofs, but by running all of the computation in a trusted platform which provides
the following features:

• Protected Capabilities: commands which may access shielded locations, areas in memory
or registers which are only accessible to the trusted platform. These memory areas may contain
sensitive data such as private keys or a digest of some aspect of the current system state.

• Integrity Measurement: the process of measuring the software which is executing on the
current platform. A measurement is the cryptographic hash of the software which is executing
throughout each stage of execution.

• Integrity Reporting / Remote Attestation: the process of delivering a platform mea-
surement to a third party such that it can be verified to have originated from a trusted
platform.

These features of the trusted platform are deployed on consumer hardware in a unit called the
Trusted Platform Module (TPM), a secure cryptographic co-processor, which is usually incorporated
on the mainboard of the hardware.

Although such a design has the potential of being able to implement any complex logic the main
criticism of the enclave-based threat model is related to a) putting too much trust in the hardware
vendors and to b) reports of successful side channel attacks that can lead to secret exposure or
breaking the remote attestation security guarantees [1].

1.3 Privacy Features

Although the most widely method for POL is Maxwell’s original protocol, it inherently leaks some
information about user accounts and the exchange; it also provides less protection than desired
against an adversarial prover. Several of the weaknesses stem from the design providing the prover
with the opportunity to make arbitrary decisions in structuring the proof, without revealing those
decisions to the verifier. Additionally, auditors might request more extensive investigation, especially
for dispute resolution purposes, and sometimes random sampling might be required, to completely
meet the requirements of traditional auditing.

Subsequent schemes like Maxwell+, Split Maxwell+, Provisions, and DProvisions solve some of the
aforementioned issues but they do not completely eliminate them.

The goal of the final protocol is to satisfy the desirable privacy/security features presented below.

Account Information Leaks. No data about individual users (id or balance) should ever be
revealed, even between independent audits.

14



Tools for Proofs of Liabilities

In Maxwell scheme the proof is structured as a Merkle tree, therefore each verifier learns the balance
in their sibling’s leaf. Thus in order to mitigate account information leaks, the list of accounts must
be randomly shuffled for each new publication of the proof.

Even with shuffling, it is likely that verifiers can discover something about the distribution of
balances, especially when colluding with one another. Jesse Powell, the CEO of the bitcoin exchange
Kraken, has explicitly cited account holder privacy as the primary reason that his company has not
implemented the Maxwell Protocol [4].

Two methods have been suggested to mitigate this problem: balance splitting and zero knowledge
proofs.

In balance splitting, implementation might be easier and more straightforward; information leakage
can be mitigated by splitting each account’s balance among multiple leaf nodes, and requiring
verifiers to check each of their leaves individually. It’s true that many real world applications might
tolerate this leakage and use Split Maxwell+, but ideally we want to ensure full secrecy of the actual
values.

The second option (ZKP-based) completely hides balances by publishing homomorphic commitments,
which allow addition without revealing balances.

In theory, both methods can be combined. Although this will result to larger trees, splitting can also
work as a padding mechanism to hide the total number of users. The sparse Merkle tree solution of
DProvisions provides the same padding property without splitting. However, a combined ZKP and
splitting might be helpful if random sampling is required by third party auditors to meet regulation
and ensure that at least some leaves have been checked. Using splitting, the auditor will only learn
a portion of user’s balance.

Exchange Information Leaks. The total liabilities should not be revealed. This requirement is
not unlike those imposed on traditional banks [20; 36] and exchanges by regulation [12]. Note that
frequent proofs of solvency expose information on the amount of trading happening in the platform.
Imagine that if such proofs are provided every few weeks, one can extract business information on
the success of the exchange’s business. Thus, it is desirable to have the option to conceal the total
liabilities.

Dependence on Complete Account-Holder Verification. The Merkle-tree approach requires
that responsibility for verifying both the integrity and the correctness of the proof be distributed
to all account holders. Without universal participation, neither can be achieved. In the case of
correctness, this is necessary; a distributed proof of correctness is precisely what the scheme aims to
achieve. By combining Split Maxwell+ and DProvisions each user will need to verify correctness of
multiple authentication paths (computationally more expensive).

Interactive access to the proof. Each account holder receives an individual proof from the
exchange containing only the nodes between their own leaf node and the root. In practice, this
means that each account holder must request their individual proof, and thereby implicitly reveal to
the exchange which leaf (leaves) they are checking.

A malicious prover can use this information to omit users who rarely or never check their inclusion
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proofs. Mechanisms to protect against this leak are advisable.

Independent Verification Tool. We note that if a user does verify their account, they should
use a verification tool other than one provided by the exchange itself; such a tool could be automated
to increase participation. This is to ensure that the verification software verifies the proof cor-
rectly. Ideally the outcome of this proposal will priovide a reference implementation and eventually
independent services and apps will have support for proof verification.

Number of users. In both Provisions and Maxwell schemes, the number of customers gets
revealed. This information can be used to learn how an exchange is progressing and thus it is
desirable to obfuscate it or completely hide it if possible. DProvisions allows for an efficient padding
mechanism to achieve a pre-defined upper bound. The latter seems to meet the privacy and efficiency
requirements of today’s applications.

Implementation issues. Ideally, exchanges should not expose customer information to the auditor
(including individual balances), unless it is required for dispute resolution and routine sampling. That
said, Maxwell’s scheme was originally designed to work in a decentralized auditor-less environment,
but in practice, former real-world applications of the scheme revealed individual balances to the
auditor, not only the root. An example is the Iconomi case [33] in which the auditor received the
full Merkle trees (balances and hashes only, so no user data was shared) and checked all balances
and hashes up to the root node. The auditor was indeed able to check that there were no negative
balances and that all nodes were summed and hashed correctly. They also listed the root node
hashes publicly, meaning if Iconomi ever tried to change any balances or add or remove users in these
trees, it would be publicly known. Another issue with this approach is that they used the original
Maxwell protocol, which has been proven to have a flaw that allows hiding values within the tree.

Subsequent audits. The liabilities proof mainly consists of a commitment to each customer’s
balance and a proof that said balance is within a range. For all new users and users whose balance
changed the commitment the proof needs to be redone. For the other users, it is not technically
necessary to redo the proof. However, not changing the proofs for customers whose balance remained
unchanged will leak how many users were actively using their account between the two proofs. If
the complete proof were regenerated, then this information would remain private. If an exchange
were to accept this privacy leak it could drastically reduce the size of the proof updates, but it is not
advisable.

Dispute resolution. None of the protocols in literature provide dispute resolution. If a user finds
their account missing or balance incorrect, they do not have sufficient cryptographic evidence that
this is the case. Recall that the primary motivation for users keeping funds with an exchange is
to avoid needing to remember long-term cryptographic secrets, therefore exchanges must be able
to execute user orders and change their balance without cryptographic authentication from the
user (e.g., password authentication). Users who dislike an exchange may also falsely claim that
verification of their accounts failed, and it is not possible to judge if the user or the exchange is
correct in this case based on a Provisions transcript alone.
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Although the issue appears unsolvable cryptographically, one can use conventional mutual contract
signing for every single transaction that touches the user’s account, then one can reveal these
signatures, sum up the values and use this as an evidence in case of dispute. Ideally, the audited
company should push signatures to user’s email or phone number, and not serve it by request via a
website. The aforementioned is required to defend against deleting ‘evidence‘ on purpose.
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This chapter aims to enlist potential real-world applications of the DAPOL proposal, either as a
cryptographic primitive which should be combined with other tools or as a stand-alone service.

Note that all of the applications, whether they use accounting balances or other types of fungible
values, have exactly the same requirement. A prover should provide a proof a total liabilities or
obligations or "negative" votes in a way that every user whose value/balance should be included
in the aggregated liabilities can transparently verify his/her inclusion in the proof, ideally without
learning any information about other users’ balances.

2.1 Proofs of Solvency

A proof of solvency [2; 6; 9; 13; 17; 22; 34] is used as a public proof to verify that a custodial
service does not run as a fractional reserve, e.g., some of the customer assets could not be withdrawn
in a given moment. Maxwell’s protocol is already used by some Bitcoin exchanges to prove that
they still have the assets that the customers have deposited.

A proof of solvency is checking whether liabilities ≤ reserves and it consists of two components,
proof of liabilities and proof of reserves. It’s already mentioned across this proposal that DAPOL is
a proof of liabilities system and because the liabilities are independent on the blockchain technology
used at the reserves part, it can be used by any blockchain exchange and custodial wallet to
transparently prove solvency.

2.2 Disapproval Voting

The term negative voting is sometimes used for allowing a voter to reject the entire field of candidates;
it can also mean that the only option offered voters is to vote against one or more candidates, but it
is sometimes used for systems that allow a voter to choose whether to vote for or against a candidate.
In our context, a negative (or disapproval) vote is a vote against a candidate, proposal or service
and is either counted as minus one or it supports weights. Unlike most electoral systems, it requires
that only negative measures or choices be presented.

One of the most interesting instances of negative voting is expressing disapproval in a system (i.e.,
referendum) or a service (i.e., negative feedback for hotels or restaurants). All of the above cases
share the fact that there is no incentive for the prover to increase the amount of these votes.

DAPOL can be used as a primitive to support disapproval voting in a distributed manner, where
every candidate receives negative votes and stores them in his/her local ledger. Ideally, there is
no need for a central authority or web-service to receive votes, audit and oversee the process. If a
malicious entity tries to cheat by not including some votes, then a voter can always check his/her
inclusion in the reported result.

There might be use cases where the total reported amount should stay hidden and only be used in
comparison to another homomorphic commitment, i.e., to sort candidates without learning their
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actual voting percentage difference. An example would be an election system where competing
parties compare their pedersen commitments without revealing their actual number of negative votes
(i.e., by using MPC to produce a range proof of their number of votes difference).

It is highlighted that voting systems are a complex system in themselves and need to satisfy other
properties as well, including coercion and bribery. Thus, DAPOL should be combined with other
cryptographic tools for a complete solution depending on the requirements of the polling voting
system. For instance, users should definitely receive a signed receipt whenever they vote against and
use this as an evidence in case of dispute. Similarly, to disallow sybil attacks, one might need to
implement a double voting prevention mechanism.

2.3 Negative Reviews

Negative reviews in rating platforms (i.e., for hotels, restaurants, electronics etc) can be considered
an instance of disapproval voting. In an ideal distributed system, each seller or manufacturer could
receive negative votes about the quality of product or services and be obliged to publish a report on
the total number of received low ratings.

Obviously, one can cheat by omitting some or all of the negative votes with the risk of getting caught.
Note that there is no need for a central authority or website to run a disapproval tracking service,
because this theoretical design is completely decentralized.

Using DAPOL everyone can check that their vote has been included in the reported total number,
then compare the outcome against a pre-defined threshold. Obviously, for a complete system, a sybil
attack protection mechanism should also be employed.

2.4 Fundraising and ICO

Fundraising is the process of seeking and gathering voluntary financial contributions by engaging
individuals, businesses, charitable foundations, or governmental agencies. Although fundraising
typically refers to efforts of gathering money for non-profit organizations, it is sometimes used to refer
to the identification and solicitation of investors or other sources of capital for for-profit enterprises.

One of the issues with the current donation system is there is no easy way for the platform/charity
that aggregates user money transfers to prove that all user contributions are included in the total
reported amount. Also, official auditing in fundraising activities via donations is not always applied,
thus many donors might worry "is my contribution actually taken into account?". DAPOL can
actually increase both transparency and privacy of fundraising activities and as a result increase
trust and participation from users.

2.5 Revenue Reports

For tax audit purposes, businesses have to report revenue at regular intervals. Imagine if every
citizen/buyer could automatically contribute on verifying tax liabilities proof for every commercial
company.
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Obviously, DAPOL could be complementary to the current auditing system, but it can offer extra
privacy guarantees for the regular user, as the government or IRS would not necessarily need to
track individual receipts to crosscheck correctness of the accounting reports.

2.6 Syndicated Loans

A syndicated loan is offered by a group of lenders who work together to provide credit to a large
borrower. The borrower can be a corporation, an individual project, or a government. Each lender
in the syndicate contributes part of the loan amount, and they all share in the lending risk. One of
the lenders acts as the manager (arranging bank), which administers the loan on behalf of the other
lenders in the syndicate.

In some contexts where extra privacy is required, there might be a situation where lenders should
not necessarily know the contribution of other lenders. At the same time, the arranging bank might
be liable if it reports fake total contribution. DAPOL can be a good candidate cryptographic tool
for such scenarios.

2.7 Lottery Prizes

Lotteries are tightly controlled, being restricted or at least regulated in most places. However, there
have been reports for rigged jackpots and large-scale fraud scandals and it’s true that fairness is
difficult to demonstrate even for genuine lotteries.

Using blockchain technology and smart contracts, players can actually know and trust the probability
and revenue distribution, before a game is even played. In traditional lotteries though we require
third party auditors to ensure that the reported total pot is correctly computed. Actually, in many
lottery games, each user is contributing to the final prize based on the amount bet. A system like
DAPOL can add an extra safety net; the prize pool is actually a liability and the organizer does not
have any incentive to increase it. Thus, DAPOL can transparently hide individual contributions
and/or only reveal the total prize amount to the winners only.

2.8 Credit Score and Financial Obligations

A credit score is a number that represents an assessment of the creditworthiness of a person, or
the likelihood that the person will repay his or her debts. Credit scores are generated based on the
statistical analysis of a person’s credit report. In addition to its original purpose, credit scores are
also used to determine insurance rates and for pre-employment screening.

Usually these services are centralized and credit bureaus such as Experian, Equifax and TransUnion
maintain a record of a person’s borrowing and repaying activities.

Using DAPOL, a new distributed credit system of financial obligations can be formulated, where users
maintain their credit score without requiring a third tracking party. Such a system would probably
be less invasive and more private. Additionally, if we combine DAPOL with other cryptographic
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primitives (i.e., SMPC), employers as well as lenders can compare credit reports without revealing
their actual values.

2.9 Referral Schemes

A referral website is an Internet address or hostname used to get a visitor to another site (referring).
A visitor has clicked a hyperlink on the referral website, which leads to the website where he/she is
located now.

The referral industry is usually monetizing by introducing fees; the referring website should pay
back the referrer. However in many cases, i.e., in gambling websites, the fee is linked with the user’s
activity, for instance registration or depositing funds. Unfortunately, the referral party has to blindly
trust the report from the referring website to receive the fair payback fee.

A similar scenario is referral fees in the real estate business, where fees are charged by one agent or
broker to another for a client referred.

DAPOL can provide an extra layer of transparency in the referrals business; if users get used to this
model and they have incentives [7] or an automatic way to check inclusion proofs, a reporting entity
might be caught if they report fake or skewed numbers.

2.10 Official Liability Reports

During epidemics and pandemics, affected health agencies and local authorities report official numbers
of infections and fatalities caused by a virus or bacteria. The same is applied at a micro-scale (i.e.,
cities, hospitals) for various diseases. Similarly, companies need to report work accidents per period,
while authorities publish unemployment rates at a regular basis. The common element between all
of the above is the official reported numbers can be simulated to liabilities and obligations.

One example use case is the recent 2019–20 coronavirus pandemic (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak was first identified in
Wuhan, Hubei, China, in December 2019, and was recognized as a pandemic by the World Health
Organization (WHO) on 11 March 2020. Transparency, timely information and accurate reports are
very important on drawing conclusive insights from the mortality trajectories to avoid delays on
preparing the health facilities and properly defend against the pandemic side-effects.

DAPOL can be used as a complementary tool for communities, hospitals and other organizations
to leverage the technology and allow individuals to privately verify. Although a complete solution
requires a well-documented approach, roughly, the idea is that each person detected with the
virus could get a signed response from local authorities or medical center. Then, on each day, the
corresponding organization or authority publishes a Merkle tree, where each leaf corresponds to one
person (or a number of people if multiple cases are reported in bulk i.e., when hospitals update/report
to a central database).

Then, infected people can check their inclusion in the tree, while organizations can cross-compare
their numbers without even disclosing the actual amounts; although we expect that in this particular
use case, the total reported amount (Merkle root) should be public. Note that such a tool will help
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these organizations to identify pitfalls in their internal processes. Obviously, this naive approach can
be enhanced by combining DAPOL with other privacy preserving and data analysis techniques and
we hope to get precious feedback from the community to accommodate that.
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Chapter 3. PoL Definitions and Algorithms

3.1 Basic PoL Algorithms

A proof of liabilities scheme PoL can be naturally described using several algorithms run by the
prover, auditor and the users at different stages of the process.

(TL, aud)← AuditSetup(ACCS). The AuditSetup algorithm takes as input a list of accounts denoted
by ACCS and outputs the total liabilities as well as material required for the audit aud. This includes
both private and public materials which we denote by aud = (audpk, audsk). For simplicity, we let
each account in ACCS be a tuple (uid, bal) where uid is a unique user identifier associated with the
account and bal is the current balance for the account used in the proof of liabilities.

(Πaud) ← AuditorProve(aud). The AuditorProve algorithm takes as input the audit material aud
output by the AuditSetup and a proof of liability Πaud to be verified by the auditor. The proof
intends to show that the claimed total is consistent with the public component of the setup audpk.

{0, 1} ← AuditorVerify(TL, audpk,Πaud). The AuditorVerify algorithm takes as input the declared
total liabilities TL, the public audit material audpk and the proof Πaud. It outputs 1 if the verification
passes and 0 otherwise.

πuid ← UserProve(uid, aud). The UserProve algorithm takes as input the unique user identifier uid
for a particular user and the audit material and outputs a user specific proof πuid.

{0, 1} ← UserVerify(uid, audpk, πuid, bal). The UserVerify algorithm takes as input, the user identifier
uid and its balance bal, the public audit material audpk and a proof πuid, and ouputs 1 if the proof
verifies and 0 otherwise.

Security. The notion of security we propose for proof of liabilities is probabilistic in nature. In
particular, we bound the probability that a malicious prover can eliminate more than t user balances
from the total liabilities using a function δ(c, t), given that the AuditorVerify outputs 1 and UserVerify
outputs 1 for a uniformly chosen fraction c of total balances in ACCS. More formally:

Definition 4 (PoL Security). A proof of liabilities scheme PoL is δ(c, t)-secure for the set of accounts
ACCS, if for every 0 < c < 1 and every S ⊂ ACCS of size t, for a randomly chosen set of users
U = {u1, . . . , uk} ⊂ ACCS where k = c|ACCS|,

Pr
[
AuditorVerify(audpk,Πaud)

k∧
i=1

UserVerify(ui, audpk, πui)∧
TL′ < liab(ACCS \ S)∣∣∣(TL′, (audpk, audsk))← AuditSetup; Πaud ← AuditorProve;πui ← UserProve(ui, aud) for ui ∈ U

]
< δ(c, t)

where liab(A) denotes the total liabilities of balances in the set A and the probability is over the
randomness in choosing U and the coin tosses of the various algorithms.
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PoL Privacy. We consider privacy guarantees against dishonest users and a dishonest auditor
separately.

An auditor who does not collude with any users only sees the public portion of the audit material
audpk , the total liabilities, as well as the proof provided by the prover i.e. Πaud. We refer to this as
the auditor’s view in a real execution of the PoL scheme and denote it by ViewAuditorPoL (ACCS). We
then require that this view can be simulated by a PPT simulator that does not see the information
in ACCS and only has access to leakage function L(ACCS) which depends on the particular scheme.
Examples of such leakage functions are |ACCS| and liab(ACCS). More formally:

Definition 5 (Auditor Privacy). A proof of liabilities scheme PoL is L-private against a dishonest
auditor, if for every PPT auditor A, there exists a PPT simulator SIMA such that the following
distributions are computationally indistinguishable

ViewAPoL(ACCS) ≈ SIMA(1λ, L(ACCS))

A subset of users U = {u1, . . . , un}, who can collude among each other, get to see the public audit
material audpk, those users’ balances i.e. tuples of the form BalU = {(ui, bali)}ni=1 as well as the set
of proofs generated by the prover i.e. {πu1 , . . . , πun}. We refer to this the adversary’s view in the
real execution of the PoL scheme and denote it by ViewAU

PoL(ACCS) where AU denotes an adversary
who controls the users in U . We then require that this view can be simulated by a PPT simulation
that only sees the balances of users in U as well as a leakage function L(ACCS) which depends on
the particular scheme. More formally:

Definition 6 (User Privacy). A proof of liabilities scheme PoL is L-private against dishonest users
if for every subset of users U = {u1, . . . , un}, and every PPT adversary AU who corrupts the users
in U , there exists a PPT simulator SIMA such that the following distributions are computationally
indistinguishable

ViewAU
PoL(ACCS) ≈ SIMA(1λ,ACCS[U ], L(ACCS))

where ACCS[U ] is the set of (uid, baluid) for all uid ∈ U .

24



Proofs of Liabilities

3.2 Centralized Maxwell+

AuditSetup(ACCS)

1: Randomly shuffle the tuples in ACCS, record the new location of each tuple after the shuffle as
its leaf index and append the index to the tuple, i.e. update the tuple to (uid, baluid, indexuid).

2: For every (uid, bal, index) ∈ ACCS, let com ← commit(uid; r) using fresh random-
ness r, let h ← H(baluid||indexuid||com), and append com, h, r to the tuple to get
(uid, bal, index, com, r, h). Denote the new augmented set of tuples by ACCS ′.

3: Let d = dlog2 |ACCS ′|e. Create a full binary tree of depth d where we store the information
for nodes at depth i in an array Di[1 . . . 2

i]. Let TL← 0.
4: For all 1 ≤ j ≤ 2d, if a tuple (uid, bal, j, com, r, h) is present in ACCS ′, let Dd[j] ← h and
TL← TL+ bal. If not, let Dd[j]← 0λ

5: for i = d− 1 to 1 do
6: for j = 1 to 2i do
7: Retrieve hL = Di+1[2j − 1] and hR = Di+1[2j] and let Di[j]← H(hL||hR).
8: end for
9: end for

10: Output aud =
(
audpk = (TL,D1), audsk = (D2, . . . Dd,ACCS ′)

)
.

Figure 3.1: Setup for
∏basic

SuMT
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AuditorProve(aud)

1: For every tuple (uid, bal, index, com, r, h) ∈ ACCS ′, append the tuple (bal, index, com)
to Πaud.

2: Output Πaud

AuditorVerify(TL, audpk,Πaud)

1: Let total = 0, D′1[], . . . , D′d[] be empty arrays. For every tuple (a, index, com) ∈ Πaud

verify that a > 0. If not output 0 and abort. Otherwise, let total ← total + a and
D′d[index]← H(a||index||com).

2: Check if total ?
= TL and output 0 if it fails.

3: for i = d− 1 to 1 do
4: for j = 1 to 2i do
5: Retrieve hL = D′i+1[2j − 1] and hR = D′i+1[2j] and let D′i[j]← H(hL||hR).
6: end for
7: end for
8: Check if D1[1]

?
= D′1[1]. If not output 0, else output 1.

UserProve(uid, aud)

1: Append the tuple (uid, bal, index, com, r, h) ∈ ACCS ′ associated with uid to πuid.
2: Append (d,Dd[index]) to πuid
3: for i = d to 1 do
4: if (index mod 2)

?
= 1 then

5: Append (i,Di[index+ 1]) to πuid
6: index← (index+ 1)/2
7: else
8: Append (i,Di[index− 1]) to πuid
9: index← index/2

10: end if
11: end for
12: output πuid

UserVerify(uid, audpk, πuid, bal)

1: Retrieve (uid, bal, index, com, r, h) from πuid
2: verify the commitment given com, uid, r.
3: Retrieve (d, val) from πuid. Check that val ?

= H(bal||index||com). If not, output 0.
4: hash← val
5: for i = d to 1 do
6: Retrieve (i, val) from πuid

7: if (index mod 2)
?
= 1 then

8: hash← H(hash||val), index← (index+ 1)/2
9: else

10: hash← H(val||hash), index← index/2
11: end if
12: end for
13: Check hash ?

= D1[1]. If not output 0, else 1.

Figure 3.2: Prove and Verify algorithms for
∏basic

SuMT
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3.3 Distributed Maxwell+

AuditSetup(ACCS)

1: Randomly shuffle the tuples in ACCS, record the new location of each tuple after the shuffle as
its leaf index and append the index to the tuple, i.e. update the tuple to (uid, baluid, indexuid).

2: For every (uid, bal, index) ∈ ACCS, let com ← commit(uid; r) using fresh random-
ness r, let h ← H(baluid||indexuid||com), and append com, h, r to the tuple to get
(uid, bal, index, com, r, h). Denote the new augmented set of tuples by ACCS ′.

3: Let d = dlog2 |ACCS ′|e. Create a full binary tree of depth d where we store the information
for nodes at depth i in an array Di[1 . . . 2

i]. Let TL← 0.
4: For all 1 ≤ j ≤ 2d, if a tuple (uid, bal, j, com, r, h) is present in ACCS ′, let Dd[j] ← (h, bal)

and TL← TL+ bal. If not, let Dd[j]← (0λ, 0)
5: for i = d− 1 to 1 do
6: for j = 1 to 2i do
7: Retrieve (hL, balL) = Di+1[2j − 1] and (hR, balR) = Di+1[2j]
8: Let Di[j]← (H(balL||balR||hR||hL), balL + balR).
9: end for

10: end for
11: Output aud =

(
audpk = (TL,D1), audsk = (D2, . . . Dd,ACCS ′)

)
.

Figure 3.3: Setup for
∏dist

SuMT
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UserProve(uid, aud)

1: Append the tuple (uid, bal, index, com, r, h) ∈ ACCS ′ associated with uid to πuid.
2: for i = d to 1 do
3: if (index mod 2)

?
= 1 then

4: Append (path, i,Di[index]) and (sib, i,Di[index+ 1]) to πuid
5: index← (index+ 1)/2
6: else
7: Append (path, i,Di[index]) and (sib, i,Di[index− 1]) to πuid
8: index← index/2
9: end if

10: end for
11: output πuid

UserVerify(uid, audpk, πuid, bal)

1: Retrieve (uid, bal, index, com, r, h) from πuid
2: verify the commitment given com, uid, r.
3: Retrieve (path, d, (hp, balp)) from πuid. Check that hp

?
= H(balp||index||com) and

bal
?
= balp. If not, output 0.

4: for i = d to 2 do
5: Retrieve (path, i, (hp, balp)) and (sib, i, (hs, bals)), (path, i− 1, (h, bal)) from πuid.
6: Check that balp, bals > 0 and bal ?

= balp + bals. Output 0 if not.
7: if (index mod 2)

?
= 1 then

8: Check if (h
?
= H(hp||hs) and output 0 if not.

9: index← (index+ 1)/2
10: else
11: Check if h ?

= H(hs||hp), and output 0 if not.
12: index← index/2
13: end if
14: end for
15: Output 1.

Figure 3.4: Prove and Verify algorithms for
∏dist

SuMT

3.4 Basic Tree-Provisions and DProvisions

In this solution we use summation Merkle tree but instead of using the balances in plaintext, they
will be committed to using a Pedersen commitment, which allows for homomorphic addition and
efficient range proofs.
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AuditSetup(ACCS)

1: Randomly shuffle the tuples in ACCS, record the new location of each tuple after the shuffle as
its leaf index and append the index to the tuple, i.e. update the tuple to (uid, baluid, indexuid).

2: For every (uid, bal, index) ∈ ACCS, let R ← H(uid; r) using fresh randomness r, let
Pcom = gbalhR, and h ← H(index||Pcom), and append h, Pcom, r to the tuple to get
(uid, bal, index, h, Pcom, r,R). Denote the new augmented set of tuples by ACCS ′.

3: Let d = dlog2 |ACCS ′|e. Create a full binary tree of depth d where we store the information
for nodes at depth i in an array Di[1 . . . 2

i]. Let TL← 0.
4: For all 1 ≤ j ≤ 2d, if a tuple (uid, bal, j, h, Pcom, r,R) is present in ACCS ′, let Dd[j] ←

(h, Pcom, bal, R) and TL← TL+ bal. If not, let Dd[j]← (0λ, P com(0, r′), 0, r′)
5: for i = d− 1 to 1 do
6: for j = 1 to 2i do
7: Retrieve (hL, P comL, balL, RL) = Di+1[2j− 1] and (hR, P comR, balR, RR) = Di+1[2j]
8: Let Di[j]← (H(PcomL||PcomR||hL||hR), P comL ⊗ PcomR, balL + balR, RL +RR).
9: end for

10: end for
11: Output aud =

(
audpk = (TL,D1), audsk = (D2, . . . Dd,ACCS ′)

)
.

Figure 3.5: Setup for
∏zk

SuMT
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UserProve(uid, aud)

1: Append the tuple (uid, bal, index, h, Pcom, r,R) ∈ ACCS ′ associated with uid to πuid.
2: for i = d to 1 do
3: if (index mod 2)

?
= 1 then

4: Retrieve (hL, P comL, balL, RL) = Di[index] and (hR, P comR, balR, RR) =
Di[index+ 1]

5: Compute the range proof π+PcomR
using balR, RR.

6: Append (path, i, hL, P comL) and (sib, i, hR, P comR, π
+
PcomR

) to πuid
7: index← (index+ 1)/2
8: else
9: Retrieve (hL, P comL, balL, RL) = Di[index − 1] and (hR, P comR, balR, RR) =
Di[index]

10: Compute the range proof π+PcomL
using balL, RL.

11: Append (path, i, hR, P comR) and (sib, i, hL, P comL, π
+
PcomL

) to πuid
12: index← index/2
13: end if
14: end for
15: output πuid

UserVerify(uid, audpk, πuid, bal)

1: Retrieve (uid, bal, index, h, Pcom, r,R) from πuid

2: verify that R ?
= H(uid||r) and R, bal is a valid opening for Pcom

3: Retrieve (path, d, hp, P comp) from πuid. Check that hp
?
= H(index||Pcom). If not,

output 0.
4: for i = d to 2 do
5: Retrieve (path, i, hp, P comp) and (sib, i, hs, P coms, π

+
Pcoms

), (path, i − 1, h, Pcom)
from πuid.

6: Verify π+Pcoms
and check that Pcom ?

= Pcomp ⊗ Pcoms. Output 0 if not.

7: if (index mod 2)
?
= 1 then

8: Check if (h
?
= H(Pcoms||Pcomp||hs||hp) and output 0 if not.

9: index← (index+ 1)/2
10: else
11: Check if h ?

= H(Pcoms||Pcomp||hs||hp), and output 0 if not.
12: index← index/2
13: end if
14: end for
15: Output 1.

Figure 3.6: Prove and Verify algorithms for
∏zk

SuMT

Here is a list of basic API we need for Pedersen commitments and the accompanying range proofs:

1. ADD(r, s) for scalar r, s

2. Com(m, r) = gmhr
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3. V erify(c,m, r) = (c
?
= mmhr)

4. Com(m1, r1)⊗ Com(m2, r2) = Com(m1 +m2, r1 + r2)

5. Prove(com(m, r),m, r)→ π+Com(m,r). This is the range proof for a fixed range.

6. V erify(Com(m, r), π+Com(m,r)) which outputs 1 if and only if range > m > 0
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Chapter 4. DAPOL Specifications

4.1 Structure of Summation Tree

DAPOL is utilizing the DProvisions (section 1.2.4) approach of deterministic sparse Merkle trees.
The complete proof is a full binary summation tree of height H, where the leaf data is generated
from user’s account data by applying a deterministic function for the creation of a unique audit
id and blinding factor per user. A user’s audit id is sometimes called a nonce in the literature.
Figure 4.1 shows the full process for the generation of b_factor (blinding factor) and h (user’s leaf
hash).

Figure 4.1: Deterministically generate audit_id for DAPOL.

As already mentioned, H = 40 is a reasonable option in order to obfuscate the total number of
users up to 240, but one can use any height that meet the privacy requirements of the corresponding
application. Accordingly, each user will receive an authentication path of 40 nodes and thus it is
advisable that the selected ZKRP system is as succinct as possible to minimize the verification cost.

The complete tree should be kept private by the audited entity in order to protect the privacy of its
users. Only the root node should be published, preferably in an immutable public bulletin board (i.e.,
one or more blockchains) and each individual user should securely and privately receive their own
partial proof tree (authentication path). We highlight the importance of publishing only one root
node to ensure every user has exactly the same view of the reported proof of liabilities commitment.
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Figure 4.2: Sparse tree for 3 nodes in DAPOL.

Note that the binary tree does not necessarily need to be a full tree and can in theory have any
shape. Huffman trees have also been recommended to minimize the information leakage against
no-padded trees, as close to half the remaining balance will be on each child, but this may cause
very deep trees.

The fixed-height sparse tree solution (Figure 4.2) was selected a) to have a consistent and fair
authentication path length for every user and b) to provide better estimates on population size
exposure up to a certain limit, even when users collude between themselves, see padding discussion
in section 1.2.4.

A note on deterministic scattering/placement algorithm. Ideally, we need a random scat-
tering algorithm to place user leaves in the tree, which is both unique and deterministic. This might
be important in full audits, in order to prove that indexes were not manipulated by the prover (i.e.,
putting those who regularly check their inclusion proofs next to each other with the aim to corrupt
parts of the tree that with high probability will not be checked).

There are a few options regarding deterministic shuffling and picking leaf indexes in the tree. A
straightforward way is to always use VRFs for computing audit ids, then order users based on their
unique and deterministic u_hash value. After ordering, we need to randomly place/scatter them in
the tree and then deterministically compute the padding nodes based on the output distribution
(again by using VRFs that take as an input the "fake" node index).

Assuming there are S users and the tree supports up to L leaves (thus, its height is logL), if S << L
and the collision probability of the truncated hashes up to logL bits is negligible, then the index per
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user is defined by u_hash truncated to logL bits.

The above works fine for the popular CRH hash functions like SHA2 and SHA3 for height = 256.
However, if there is a significant probability of collisions, i.e., with S = 216 and L = 232, the
probability of collision is roughly 50% and thus a node might not end up to the expected index.

However, the fact that a node is not in the expected index exposes information about the population
size; in this particular case, a user whose index has been moved learns that there is at least another
customer in the tree.

A heuristic method to circumvent this problem, which seems to work well when S << L, is to pick
the index randomly inside a range close to the expected index. An alternative would be to use a
ZKP-based set membership proof to hide any ordering or position evidence.

This proposal is open for discussions and comments around practical solutions of the above issue,
with a focus on effectively supporting trillions of account leaves to cover every possible real world
scenarios.

4.2 Leaf Node

Leaf nodes represent either user data or padding (fake users with balance zero) that has been
deterministically generated via VRF. Figure 4.3 shows a sparse tree of height 2, with two user nodes
at leaf level and one padding node at height = 1 (to replace the empty leaves). Such a tree can fit
up to four users, but as shown in this example, only one padding node is required due to the sparse
tree properties.

It is advised that the tree is deterministically generated so one can regenerate it in case of a full
audit. Regarding fake users (padding), the VRF takes as input the index to ensure uniqueness and
obviously their value is a commitment to zero.

Leaf nodes possess the following values:

• user_id : A unique identifier for the user. The user must ensure the uniqueness of this value
so using their e-mail or phone number is recommended. Note that this information is never
revealed by this scheme.

• node_index : the node index that is used as the deterministic seed (input) to the KDF/VRF
of padding nodes.

• prf : The serialized VRF output (if unique and deterministic leaf ordering is required), otherwise
one can use a seeded deterministic KDF or HMAC.

• audit_id: A unique deterministically generated value per user per audit.

• b_factor : a deterministically generated blinding factor used in Pedersen commitments to hide
amounts.

• u_hash: hash commitment of user’s id.

• com: a Pedersen commitment.

• π: a range proof on the Pedersen commitment value.
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• value: a clear (not encrypted) balance.

Note: although we could in theory get rid of u_hash, various discussions with auditors revealed that
sometimes a statistical sampling or tree scanning might be required in more demanding audits or for
dispute resolution purposes. A distinction between the u_hash and the homomorphic commitment
is required to either reveal the balance or the user id of a leaf node. Thus, we should ensure that
when user’s data is revealed the committed balance is not exposed and vice versa.

It is also highlighted that the range proofs (π’s) are not part of the tree construction, but they
accompany the authentication path which is sent to users. Efficient schemes that provide fixed size
range proofs (i.e., Gro16 with some trusted setup) or aggregation (i.e., Bulletproofs) can help on
producing succinct combined proofs for the full authentication path.

Figure 4.3: DAPOL tree of height = 2 for two users, one padding node.
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4.3 Internal Node

Internal nodes are generated using the function described below. The node’s encrypted balance is
the result of adding of its children’s homomorphic Pedersen commitments.

The node’s hash is the concatenation of all children commitments and hashes, fed to some hash
function, for instance sha256, similarly to [26].

function compute_internal_node (left_node, right_node) {
node.balance = left_node.balance + right_node.balance;
node.hash = sha256(

encoded(left_node.balance) ||
encoded(right_node.balance) ||
left_node.hash ||
right_node.hash

);
return node;

}

4.4 Root Node

The root node of the tree is like all internal nodes, possesses a balance commitment and a hash.

This data must be published publicly in one or more immutable databases (i.e., blockchains), so
that all users can ensure they’re verifying against the same proof tree. As the balance of the root
node reflects the total reported liabilities, when published, this data should be accompanied by a
range proof of the balance commitment, while the full payload, including a timestamp and metadata
information related (i.e., the audit round this proof refers to), should be signed by a prover (see
Figure 4.4).

Figure 4.4: The prover should sign the DAPOL root, along with the range proof, timestamp and
other required metadata.
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4.5 Authentication Path Proof

An authentication path contains only the nodes from the complete tree which a given user needs in
order to verify he/she was included in the tree. Unlike the original Maxwell scheme where users
observe sibling values, each node is accompanied by a range proof on the commitment value to
ensure it is a small positive number.

The path can be generated by starting with the user’s leaf node and including every parent node up
to the root. Then the sibling at each level must be added, and thus in practice an authentication
path is a list of sibling nodes per height layer. This would enable each user to verify independently
that their balance is included in the reported liabilities by following their path to the root, checking
at each node that the committed balance is the product of its two children node committed balances.

Nodes that can be directly computed are not usually submitted, to save space and encourage users
to compute them by themselves. However, in the generic case and when the range of the provided
range proofs is very close to the group order used in the commitment scheme, we should also send
the range proofs of the computed nodes as well.

A note on range proofs in the authentication path. It is highlighted that the extended
customer verification option of the original Provisions scheme mentions that a verifier should only
receive the range proofs of the sibling nodes only. But if we do not carefully set range limits, which
are more relaxed than the flat list approach, range overflows might be exploited.

If one wants to take full advantage of the maximum range possible (based on the group order), a
greedy solution would be to receive the range proofs of the computed nodes as well.

Without careful consideration, an exploitable scenario would be to use a range of [0, N) where N
is close to the curve order l of the Pedersen commitment scheme. Then, when merging nodes in
the summation tree, although the children nodes are in-range, their product might not be and as a
result, the computed value might overflow. A malicious prover can exploit this by adding a huge
fake balance to cancel out everything else in the tree and thus, manage to reduce the total liabilities.

Fortunately, current real world financial applications usually dictate a range up to 264 or 2128,
which is by far smaller than the typical curve order used in today’s cryptography. But as already
mentioned, DAPOL can be applied to a broad range of applications, even outside finance.

That said, to safely omit the range proofs of computed nodes, the allowed range of each commitment
should be less than l/H, where l is the group order and H the tree height. Thus, even if every balance
is very close to l/H, when we add them all together in the authentication path, no intermediate or
final value can surpass the group order l.

4.6 Dispute Resolution

As mentioned in the Provisions scheme, there is a drawback, inherent to all of the existing proof of
liability systems, according to which a user who raises a dispute has no cryptographic evidence to
support his/her claim. This is because account balances (or negative votes) are just numbers in the
prover’s accounting book or database and the prover can always claim that the customer never had
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that balance in his/her account. The problem is very similar to “One day you go your bank and you
realize your account balance is zero, what evidence can you provide to the court?” Along the same
lines, “How can a bank prove that it had your consent for all of your transactions?”

Consider a scenario where Alice wants to make a transaction in an exchange. Alice connects to the
exchange via TLS and authenticates herself using her password. They both know for sure whom they
are communicating with. However, this does not necessarily mean that they can fully trust each
other. Alice needs a confirmation that the transaction actually happened and that the exchange
cannot act without her permission. On the other hand, the exchange wants an evidence that it
indeed received an order from Alice.

Unfortunately, Alice cannot easily prove that she has actually sent the order. Likewise, even if she
“somehow” can prove the order, the exchange can still claim that the transaction was never processed.
Even worse, a malicious employee at the exchange could easily generate and store transactions
without Alice’s consent.

The above arguments hold because, typically, transaction orders are just records in conventional
databases and the main defense is usually data replication and logging. Sadly, none of the above
countermeasures can prevent fraud or be used as undeniable proofs.

Another side-effect of raw unsigned storage is the feeling that users do not really have control over
their funds; assets are just numbers in the exchange’s database.

For blockchain exchanges the issue appears unsolvable cryptographically. Recall that the primary
motivation for users keeping funds with an exchange is to avoid needing to remember long-term
cryptographic secrets, therefore exchanges must be able to execute user orders and change their
balance without cryptographic authentication from the user (e.g., password authentication). Users
who dislike an exchange may also falsely claim that verification of their accounts failed, and it is not
possible to judge if there is no any transaction proof.

One potential solution is to utilize signatures or mutual contract signing per transaction, thus
preferably both parties should sign. In some applications of DAPOL though (i.e., disapproval voting),
receiving a signed ticket/email from the prover only would be sufficient.

4.7 User Tracking

One privacy property that should be satisfied in environments that require continuous and subsequent
audits is that the prover should not be able to track who requested or downloaded his/her inclusion
proofs.

Such an information could expose data around who is regularly checking the proofs and who rarely
or never does. A malicious prover can omit adding balances from users with low probability to
check. However, if the prover does not have a clue on who requested and executed the inclusion
authentication path, he/she can only speculate and the risk of being caught is a lot higher.

It has already been suggested in the literature that ideally, users should use verified and audited
third party or locally installed tools to verify the proofs.

Apparently, the only part that users should privately download is the leaf index and the audit id (or
a related VRF output). As shown on the right part of 4.1, a system could also provide unique audit
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ids at the time of registration.

The trick is to use this audit id via a KDF to be able to derive the commitment’s blinding factor.
Then the proofs can either be broadcasted or served via third party services using PIR, ORAM
and network mixing services. The second approach will allow for lighter clients and the encryption
protects our PIR protocol against users who request to download other proof indexes (even if they
manage to receive them, they cannot decrypt the commitments).

All in all, using deterministic KDF derived audit ids, one can use regular PIR to simulate an
authenticated PIR protocol. This method can also be applied to the original Maxwell scheme to
allow for publishing all leaves, similarly to Provisions, something that was not previously possible.

4.8 Random Sampling

Traditional auditing might require full access or random sampling of nodes, especially when inves-
tigation takes place due to a dispute. As shown in Figure 4.5, a deterministic sparse Merkle tree
construction is compatible with random sampling, as the prover can provide a proof about the closest
real user to a requested index. In this example, if the auditor requests for the node at index = 11,
the prover can reply with the pink and green nodes, along with their shared authentication path as a
proof that the closest real user at index = 11 is the node at index = 8. The fact that "artificial"
padding nodes are constructed with a different input than real user nodes can be used to distinguish
between real and artificial users/nodes (see Figure 4.3 on how they differ).
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Figure 4.5: An authentication path from green and pink nodes to prove closest real user at index 11.
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Appendix A. Acronyms

• API: application program interface

• CCPA: California’s Consumer Privacy Act

• COM: cryptographic commitment

• CRH: collision-resistant hash (function)

• DAPOL: distributed auditing proofs of liabili-
ties

• DP: differential privacy

• GDPR: European Union’s General Data Pro-
tection Regulation

• HMAC: hash-based message authentication
code

• ICO: initial coin offering

• IRS: USA’s Internal Revenue Service

• KDF: key derivation function

• MAXWELL: Maxwell’s summation proof of
liabilities scheme

• MPC: multi-party computations

• NIZK: non-interactive zero-knowledge

• ORAM: oblivious ram simulator

• PCOM: Pedersen commitment

• PET: privacy-enhancing technologies

• PIR: private information retrieval

• PKI: public-key infrastructure

• POL: proofs of liabilities

• PPT: probabilistic polynomial time (simulator)

• PSI: private set intersection

• RAM: random access memory

• SGX: Intel’s Secure Guard eXtensions

• SHA: secure hash algorithm

• SHA2: secure hash algorithm 2, the successor
of SHA1

• SHA3: secure hash algorithm 3, the successor
of SHA2

• SMPC: secure multiparty computation

• SNARG: succinct non-interactive argument

• SNARK: SNARG of knowledge

• SPIR: strong private information retrieval

• SVM: AMD’s Secure Virtual Machine

• TLS: transport layer security

• TPM: trusted platform module

• TXT: Intel Trusted eXecution Technology

• VRF: verifiable random function

• ZK: zero knowledge

• ZKP: zero-knowledge proof

• ZKRP: zero-knowledge range proof
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Appendix B. Probability of Cheating

B.1 Proof for Maxwell Centralized

Theorem 7. The PoL scheme
∏basic

SuMTdescribed in Figures 3.1 and 3.2 is (1− c)t-secure according
to definition 4.

proof sketch. The meat of the proof is the following Lemma which bounds the probability of cheating
by a malicious prover.

Lemma 8. Let N be the total number of balances, and k be the number of uniformly sampled honest
users who execute UserVerify and output 1. If the auditor is honest and AuditorVerify also outputs 1 ,
the probability that the prover can corrupt balances of t users without getting caught is bounded by
(N−kN )t.

sketch. First we need to guarantee that the prove cannot provide multiple different views to the
auditor and different users. In particular, we argue that after running the AuditSetup algorithm
and outputting audpk, the prover is committed to all the user ids and user balances it stores in
all leaves of the Merkle tree, as well as the hash values it stores in internal nodes of the tree all
the way to the root D1[1]. The binding to the user ids is given by the binding property of the
commitment scheme used to compute com(uid; r) which guarantees that the prover can only open
the commitment to a unique uid. The binding to unique balances and internal node hashes is the
due the collision resistance of the hash function H and a standard iterative arguments for different
levels of the Merkle tree.

Given the above, we can assume that the auditor and all users who run their verification algorithm
are operating on the same set of values with all but negligible probability. Note if the auditor is
honest and its verification passes, we know that the sum of balances in all leaves add to the total
liabilities. Moreover, all users who verify their uid and balance inclusion in the Merkle tree ensure
that their correct balances were included in the total sum calculated by the auditor. Now, consider a
prover strategy that corrupts a subset t of balances stored in the leaves of the tree. These corrupted
balances go undetected if and only if the corresponding user is not among the k who are chosen for
verification. The total number of such possibilities is

(
N−t
k)

)
. On the other hand, the total number

of possible subsets of size k among the N users is
(
N
k

)
. It is easy to verify that the probability of

remaining undetected is bounded by the division of the two, i.e. (N−t
k )

(Nk )
. This probability can further

be bounded by (N−kN )t using known approximations.

Now observe that (N−kN )t = (1− k/N)t = (1− c)t. In otherwords, δ(c, t) = (1− c)t. This concludes
the proof.

44



Probability of Cheating

B.2 Proof for DAPOL

Theorem 9. The PoL scheme
∏dist

SuMTdescribed in Figures 3.3 and 3.4 is (1− c)t-secure according
to definition 4.

Proof. Similar to proof of Theorem 7, the main component of the overall proof, is the following
Lemma.

Lemma 10. Let N be the total number of balances, and k be the number of uniformly sampled users
who run UserVerify and output 1. The probability that a malicious prover can corrupt balances of t
users without getting caught is bounded by (N−kN )t.

We start by reducing the problem to only considering malicious provers who cheat by setting user
balances to zero but perform all other prover steps honestly. In particular, Lemma 11 shows that for
any prover that behaves arbitrarily malicious, there exists an alternative strategy that performs all
prover steps honestly except for setting a subset of user balances to zero in the leaves (or ommitting
them from the tree), with the same winning advantage and with equal or lower declared liabilities.

As argued earlier in proof of Theorem 7, for the rest of this discussion we assume that given the
binding property of the commitment scheme and the collision-resistance of the hash function H, we
assume that with all but negligible probability, both users and the auditor will receive the same
views from the prover.

Lemma 11. For every PPT prover A, there exists a PPT prover B with equal probability of getting
caught and equal or less declared liabilities, who only corrupts user balances by setting them to zero
or omitting them from the tree.

Proof. First observe that the two main malicious behaviors performed by the advesary A besides
setting balances to zero are to (i) use negative balances or partial sums in computing the summation
Merkle tree or (ii) use partial sums for internal nodes that are not the correct sum of its two children.
We ignore all other malicious behaviors that do not impact or only increase the total liabilities for
the prover as they can only hurt a cheating prover.

Consider a prover A who creates a summation tree with negative balances, negative partial sums, or
incorrect partial sums. We call a node corrupted if the value assigned to it is negative or its value
is not the sum of values for its two children (only for non-leaf nodes). For any corrupted node a,
consider the lowest ancester (furthest from the root) of a called b that is not corrupted. By definition,
at least one of the two children of b are corrupted. This implies that if any of b’s descendents are
among the k users who perform user verification, they will detect the cheating and report it.

The alternative strategy (taken by B) of replacing the balances of all leaves that descendants of b by
a zero balance and making sure that all non-leaf nodes are not corrupted, has the same probability of
getting caught. Moreover, note that in the former, total liabilities are at most reduced by ` balances
where ` is the number of leaves below b since value of b is positive by definition. In the former, we
explicity let balances for all leaves under b to be zero and hence obtain equal or higher reduction in
total declared liabilities.

Iteratively, repeating this process for all remaining corrupted nodes until none is left, yields our final
description of an adversarial prover B who has the same advantage of winning as A and equal or

45



Section B.2 Probability of Cheating DAPOL

lower total liabilities.

Based on Lemma 11, we can focus our attention only on adversaries that set a subset of user balances
to zero. In that case, we can invoke the analysis in proof of Theorem 7 to show that the probability
for any such adversary to get away with corrupting t balances is bounded by (N−kN )t = (1− c)t.

46


	Front matter
	Distributed Proofs of Liabilities (cover)
	Abstract
	About this proposal
	Contents
	Table of Contents
	List of Figures

	Motivation

	1 Tools for Proofs of Liabilities
	1.1 Cryptographic Primitives
	1.1.1 Merkle Trees
	1.1.2 Summation Merkle Trees
	1.1.3 Pedersen commitments
	1.1.4 Set Membership Proofs
	1.1.5 Zero-Knowledge Range Proofs
	1.1.6 Verifiable Random Functions
	1.1.7 Private Information Retrieval

	1.2 Schemes for Proofs of Liabilities
	1.2.1 Summation Tree based (Maxwell+)
	1.2.2 Random Split Summation Tree based (Split Maxwell+)
	1.2.3 Range Proof based (Provisions and ZeroLedge)
	1.2.4 Deterministic Tree Range Proofs based (DProvisions)
	1.2.5 Secure Enclave based (Trusted Computing)

	1.3 Privacy Features

	2 Applications
	2.1 Proofs of Solvency
	2.2 Disapproval Voting
	2.3 Negative Reviews
	2.4 Fundraising and ICO
	2.5 Revenue Reports
	2.6 Syndicated Loans
	2.7 Lottery Prizes
	2.8 Credit Score and Financial Obligations
	2.9 Referral Schemes
	2.10 Official Liability Reports

	3 Proofs of Liabilities
	3.1 Basic PoL Algorithms
	3.2 Centralized Maxwell+
	3.3 Distributed Maxwell+
	3.4 Basic Tree-Provisions and DProvisions

	4 DAPOL Specifications
	4.1 Structure of Summation Tree
	4.2 Leaf Node
	4.3 Internal Node
	4.4 Root Node
	4.5 Authentication Path Proof
	4.6 Dispute Resolution
	4.7 User Tracking
	4.8 Random Sampling

	A Acronyms
	B Probability of Cheating
	B.1 Probability of Cheating Maxwell Centralized
	B.2 Probability of Cheating DAPOL


